
11 Language syntax

Contents
11.1 Overview

11.1.1 varlist
11.1.2 by varlist:
11.1.3 if exp
11.1.4 in range
11.1.5 =exp
11.1.6 weight
11.1.7 options
11.1.8 numlist
11.1.9 datelist
11.1.10 Prefix commands

11.2 Abbreviation rules
11.2.1 Command abbreviation
11.2.2 Option abbreviation
11.2.3 Variable-name abbreviation
11.2.4 Abbreviations for programmers

11.3 Naming conventions
11.4 varname and varlists

11.4.1 Lists of existing variables
11.4.2 Lists of new variables
11.4.3 Factor variables

11.4.3.1 Factor-variable operators
11.4.3.2 Base levels
11.4.3.3 Setting base levels permanently
11.4.3.4 Selecting levels
11.4.3.5 Applying operators to a group of variables
11.4.3.6 Using factor variables with time-series operators
11.4.3.7 Video examples

11.4.4 Time-series varlists
11.4.4.1 Video example

11.5 by varlist: construct
11.6 Filenaming conventions

11.6.1 A special note for Mac users
11.6.2 A shortcut to your home directory

11.7 References

11.1 Overview
With few exceptions, the basic Stata language syntax is[

by varlist:
]

command
[

varlist
] [

=exp
] [

if exp
] [

in range
] [

weight
] [

, options
]

where square brackets distinguish optional qualifiers and options from required ones. In this diagram,
varlist denotes a list of variable names, command denotes a Stata command, exp denotes an algebraic
expression, range denotes an observation range, weight denotes a weighting expression, and options
denotes a list of options.

1

2 [U] 11 Language syntax

11.1.1 varlist
Most commands that take a subsequent varlist do not require that you explicitly type one. If no

varlist appears, these commands assume a varlist of all, the Stata shorthand for indicating all the
variables in the dataset. In commands that alter or destroy data, Stata requires that the varlist be
specified explicitly. See [U] 11.4 varname and varlists for a complete description.

Some commands take a varname, rather than a varlist. A varname refers to exactly one variable.
The tabulate command requires a varname; see [R] tabulate oneway.

Example 1

The summarize command lists the mean, standard deviation, and range of the specified variables.
In [R] summarize, we see that the syntax diagram for summarize is

summarize
[

varlist
] [

if
] [

in
] [

weight
] [

, options
]

Farther down on the manual page is a table summarizing options, but let’s focus on the syntax
diagram itself first. Because everything except the word summarize is enclosed in square brackets, the
simplest form of the command is “summarize”. Typing summarize without arguments is equivalent
to typing summarize all; all the variables in the dataset are summarized. Underlining denotes the
shortest allowed abbreviation, so we could have typed just su; see [U] 11.2 Abbreviation rules.

The table that defines options looks like this:

options Description

Main

detail display additional statistics
meanonly suppress the display; calculate only the mean; programmer’s option
format use variable’s display format
separator(#) draw separator line after every # variables; default is separator(5)

Thus we learn we could also type, for instance, summarize, detail or summarize, detail
format.

As another example, the drop command eliminates variables or observations from a dataset. When
dropping variables, its syntax is

drop varlist

drop has no option table because it has no options.

In fact, nothing is optional. Typing drop by itself would result in the error message “varlist or in
range required”. To drop all the variables in the dataset, we must type drop all.

Even before looking at the syntax diagram, we could have predicted that varlist would be
required—drop is destructive, so Stata requires us to spell out our intent. The syntax diagram
informs us that varlist is required because varlist is not enclosed in square brackets. Because drop
is not underlined, it cannot be abbreviated.

https://www.stata.com/manuals/rtabulateoneway.pdf#rtabulateoneway
https://www.stata.com/manuals/rsummarize.pdf#rsummarize

[U] 11 Language syntax 3

11.1.2 by varlist:

The by varlist: prefix causes Stata to repeat a command for each subset of the data for which the
values of the variables in varlist are equal. When prefixed with by varlist:, the result of the command
will be the same as if you had formed separate datasets for each group of observations, saved them,
and then gave the command on each dataset separately. The data must already be sorted by varlist,
although by has a sort option; see [U] 11.5 by varlist: construct for more information.

Example 2

Typing summarize marriage rate divorce rate produces a table of the mean, standard
deviation, and range of marriage rate and divorce rate, using all the observations in the data:

. use https://www.stata-press.com/data/r18/census12
(1980 Census data by state)

. summarize marriage_rate divorce_rate

Variable Obs Mean Std. dev. Min Max

marriage_r~e 50 .0133221 .0188122 .0074654 .1428282
divorce_rate 50 .0056641 .0022473 .0029436 .0172918

Typing by region: summarize marriage rate divorce rate produces one table for each region
of the country:

. sort region

. by region: summarize marriage_rate divorce_rate

-> region = N Cntrl

Variable Obs Mean Std. dev. Min Max

marriage_r~e 12 .0099121 .0011326 .0087363 .0127394
divorce_rate 12 .0046974 .0011315 .0032817 .0072868

-> region = NE

Variable Obs Mean Std. dev. Min Max

marriage_r~e 9 .0087811 .001191 .0075757 .0107055
divorce_rate 9 .004207 .0010264 .0029436 .0057071

-> region = South

Variable Obs Mean Std. dev. Min Max

marriage_r~e 16 .0114654 .0025721 .0074654 .0172704
divorce_rate 16 .005633 .0013355 .0038917 .0080078

-> region = West

Variable Obs Mean Std. dev. Min Max

marriage_r~e 13 .0218987 .0363775 .0087365 .1428282
divorce_rate 13 .0076037 .0031486 .0046004 .0172918

https://www.stata.com/manuals/dby.pdf#dby

4 [U] 11 Language syntax

The dataset must be sorted on the by variables:

. use https://www.stata-press.com/data/r18/census12
(1980 Census data by state)

. by region: summarize marriage_rate divorce_rate
not sorted
r(5);

. sort region

. by region: summarize marriage_rate divorce_rate
(output appears)

We could also have asked that by sort the data:

. by region, sort: summarize marriage_rate divorce_rate
(output appears)

by varlist: can be used with most Stata commands; we can tell which ones by looking at their
syntax diagrams. For instance, we could obtain the correlations by region, between marriage rate
and divorce rate, by typing by region: correlate marriage rate divorce rate.

Technical note
The varlist in by varlist: may contain up to 120,000 variables with Stata/MP, 32,767 variables

with Stata/SE, or 2,048 variables with Stata/BE; these are the maximum allowed in the dataset. For
instance, if we had data on automobiles and wished to obtain means according to market category
(market) broken down by manufacturer (origin), we could type by market origin: summarize.
That varlist contains two variables: market and origin. If the data were not already sorted on
market and origin, we would first type sort market origin.

Technical note
The varlist in by varlist: may contain string variables, numeric variables, or both. In the example

above, region is a string variable, in particular, a str7. The example would have worked, however,
if region were a numeric variable with values 1, 2, 3, and 4, or even 12.2, 16.78, 32.417, and
152.13.

11.1.3 if exp

The if exp qualifier restricts the scope of a command to those observations for which the value
of the expression is true (which is equivalent to the expression being nonzero; see [U] 13 Functions
and expressions).

Example 3

Typing summarize marriage rate divorce rate if region=="West" produces a table for
the western region of the country:

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(5)
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions

[U] 11 Language syntax 5

. summarize marriage_rate divorce_rate if region == "West"

Variable Obs Mean Std. dev. Min Max

marriage_r~e 13 .0218987 .0363775 .0087365 .1428282
divorce_rate 13 .0076037 .0031486 .0046004 .0172918

The double equal sign in region=="West" is not an error. Stata uses a double equal sign to denote
equality testing and one equal sign to denote assignment; see [U] 13 Functions and expressions.

A command may have at most one if qualifier. If you want the summary for the West re-
stricted to observations with values of marriage rate in excess of 0.015, do not type summarize
marriage rate divorce rate if region=="West" if marriage rate>.015. Instead type

. summarize marriage_rate divorce_rate if region == "West" & marriage_rate > .015

Variable Obs Mean Std. dev. Min Max

marriage_r~e 1 .1428282 . .1428282 .1428282
divorce_rate 1 .0172918 . .0172918 .0172918

You may not use the word and in place of the symbol “&” to join conditions. To select observations
that meet one condition or another, use the “|” symbol. For instance, summarize marriage rate
divorce rate if region=="West" | marriage rate>.015 summarizes all observations for
which region is West or marriage rate is greater than 0.015.

Example 4

if may be combined with by. Typing by region: summarize marriage rate divorce rate
if marriage rate>.015 produces a set of tables, one for each region, reflecting summary statistics
on marriage rate and divorce rate among observations for which marriage rate exceeds
0.015:

. by region: summarize marriage_rate divorce_rate if marriage_rate > .015

-> region = N Cntrl

Variable Obs Mean Std. dev. Min Max

marriage_r~e 0
divorce_rate 0

-> region = NE

Variable Obs Mean Std. dev. Min Max

marriage_r~e 0
divorce_rate 0

-> region = South

Variable Obs Mean Std. dev. Min Max

marriage_r~e 2 .0163219 .0013414 .0153734 .0172704
divorce_rate 2 .0061813 .0025831 .0043548 .0080078

-> region = West

Variable Obs Mean Std. dev. Min Max

marriage_r~e 1 .1428282 . .1428282 .1428282
divorce_rate 1 .0172918 . .0172918 .0172918

https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions

6 [U] 11 Language syntax

The results indicate that there are no states in the Northeast and North Central regions for which
marriage rate exceeds 0.015, whereas there are two such states in the South and one state in the
West.

11.1.4 in range

The in range qualifier restricts the scope of the command to a specific observation range. A range
specification takes the form #1

[
/#2

]
, where #1 and #2 are positive or negative integers. Negative

integers are understood to mean “from the end of the data”, with −1 referring to the last observation.
The implied first observation must be less than or equal to the implied last observation.

The first and last observations in the dataset may be denoted by f and l (lowercase letter),
respectively. F is allowed as a synonym for f, and L is allowed as a synonym for l. A range specifies
absolute observation numbers within a dataset. As a result, the in qualifier may not be used when
the command is preceded by the by varlist: prefix; see [U] 11.5 by varlist: construct.

Example 5

Typing summarize marriage rate divorce rate in 5/25 produces a table based on the
values of marriage rate and divorce rate in observations 5–25:

. summarize marriage_rate divorce_rate in 5/25

Variable Obs Mean Std. dev. Min Max

marriage_r~e 21 .0093941 .0012851 .0075757 .01293
divorce_rate 21 .0045305 .0011273 .0029436 .0072868

This is, admittedly, a rather odd thing to want to do. It would not be odd, however, if we substituted
list for summarize. If we wanted to see the states with the 10 lowest values of marriage rate,
we could type sort marriage rate followed by list marriage rate in 1/10.

Typing summarize marriage rate divorce rate in f/l is equivalent to typing summarize
marriage rate divorce rate—all observations are summarized.

Example 6

Typing summarize marriage rate divorce rate in 5/25 if region == "South" produces
a table based on the values of the two variables in observations 5–25 for which the value of region
is South:

. summarize marriage_rate divorce_rate in 5/25 if region == "South"

Variable Obs Mean Std. dev. Min Max

marriage_r~e 4 .0108187 .0016621 .0089399 .01293
divorce_rate 4 .0051821 .0009356 .0043054 .0063596

The ordering of the in and if qualifiers is not significant. The command could also have been
specified as summarize marriage rate divorce rate if region == "South" in 5/25.

[U] 11 Language syntax 7

Example 7
Negative in ranges can be useful with sort. For instance, we have data on automobiles and wish

to list the five with the highest mileage ratings:
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. sort mpg

. list make mpg in -5/l

make mpg

70. Toyota Corolla 31
71. Plym. Champ 34
72. Subaru 35
73. Datsun 210 35
74. VW Diesel 41

11.1.5 =exp
= exp specifies the value to be assigned to a variable and is most often used with generate and

replace. See [U] 13 Functions and expressions for details on expressions and [D] generate for
details on the generate and replace commands.

Example 8

Expression Meaning

generate newvar=oldvar+2 creates a new variable named newvar
equal to oldvar+2

replace oldvar=oldvar+2 changes the contents of the existing variable
oldvar

egen newvar=rank(oldvar) creates newvar containing the ranks of
oldvar (see [D] egen)

11.1.6 weight
weight indicates the weight to be attached to each observation. The syntax of weight is

[weightword=exp]

where you actually type the square brackets and where weightword is one of
weightword Meaning

weight default treatment of weights
fweight or frequency frequency weights
pweight sampling weights
aweight or cellsize analytic weights
iweight importance weights

The underlining indicates the minimum acceptable abbreviation. Thus weight may be abbreviated w
or we, etc.

https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/dgenerate.pdf#dgenerate
https://www.stata.com/manuals/degen.pdf#degen

8 [U] 11 Language syntax

Example 9

Before explaining what the different types of weights mean, let’s obtain the population-weighted
mean of a variable called median age from data containing observations on all 50 states of the
United States. The dataset also contains a variable named pop, which is the total population of each
state.

. use https://www.stata-press.com/data/r18/census12
(1980 Census data by state)

. summarize median_age [weight=pop]
(analytic weights assumed)

Variable Obs Weight Mean Std. dev. Min Max

median_age 50 225907472 30.11047 1.66933 24.2 34.7

In addition to telling us that our dataset contains 50 observations, Stata informs us that the sum of
the weight is 225,907,472, which was the number of people living in the United States as of the
1980 census. The weighted mean is 30.11. We were also informed that Stata assumed that we wanted
“analytic” weights.

weight is each command’s idea of what the “natural” weights are and is one of fweight, pweight,
aweight, or iweight. When you specify the vague weight, the command informs you which kind
it assumes. Not every command supports every kind of weight. A note below the syntax diagram for
a command will tell you which weights the command supports.

Stata understands four kinds of weights:

1. fweights, or frequency weights, indicate duplicated observations. fweights are always integers.
If the fweight associated with an observation is 5, that means there are really 5 such observations,
each identical.

2. pweights, or sampling weights, denote the inverse of the probability that this observation
is included in the sample because of the sampling design. A pweight of 100, for instance,
indicates that this observation is representative of 100 subjects in the underlying population.
The scale of these weights does not matter in terms of estimated parameters and standard
errors, except when estimating totals and computing finite-population corrections with the svy
commands; see [SVY] Survey.

3. aweights, or analytic weights, are inversely proportional to the variance of an observation;
that is, the variance of the jth observation is assumed to be σ2/wj , where wj are the weights.
Typically, the observations represent averages, and the weights are the number of elements
that gave rise to the average. For most Stata commands, the recorded scale of aweights is
irrelevant; Stata internally rescales them to sum to N , the number of observations in your data,
when it uses them.

4. iweights, or importance weights, indicate the relative “importance” of the observation. They
have no formal statistical definition; this is a catch-all category. Any command that supports
iweights will define how they are treated. They are usually intended for use by programmers
who want to produce a certain computation.

See [U] 20.24 Weighted estimation for a thorough discussion of weights and their meaning.

Technical note

When you do not specify a weight, the result is equivalent to specifying [fweight=1].

https://www.stata.com/manuals/svysurvey.pdf#svySurvey
https://www.stata.com/manuals/u20.pdf#u20.24Weightedestimation

[U] 11 Language syntax 9

11.1.7 options

Many commands take command-specific options. These are described along with each command
in the Reference manuals. Options are indicated by typing a comma at the end of the command,
followed by the options you want to use.

Example 10

Typing summarize marriage rate produces a table of the mean, standard deviation, minimum,
and maximum of the variable marriage rate:

. summarize marriage_rate

Variable Obs Mean Std. dev. Min Max

marriage_r~e 50 .0133221 .0188122 .0074654 .1428282

The syntax diagram for summarize is

summarize
[

varlist
] [

if
] [

in
] [

weight
] [

, options
]

followed by the option table

options Description

Main

detail display additional statistics
meanonly suppress the display; calculate only the mean; programmer’s option
format use variable’s display format
separator(#) draw separator line after every # variables; default is separator(5)

Thus the options allowed by summarize are detail or meanonly, format, and separator().
The shortest allowed abbreviations for these options are d for detail, mean for meanonly, f for
format, and sep() for separator(); see [U] 11.2 Abbreviation rules.

Typing summarize marriage rate, detail produces a table that also includes selected per-
centiles, the four largest and four smallest values, the skewness, and the kurtosis.

. summarize marriage_rate, detail

marriage_rate

Percentiles Smallest
1% .0074654 .0074654
5% .0078956 .0075757

10% .0080043 .0078956 Obs 50
25% .0089399 .0079079 Sum of wgt. 50

50% .0105669 Mean .0133221
Largest Std. dev. .0188122

75% .0122899 .0146266
90% .0137832 .0153734 Variance .0003539
95% .0153734 .0172704 Skewness 6.718494
99% .1428282 .1428282 Kurtosis 46.77306

Some commands have options that are required. For instance, the ranksum command requires
the by(groupvar) option, which identifies the grouping variable. A groupvar is a specific kind of
varname. It identifies to which group each observation belongs.

10 [U] 11 Language syntax

Technical note

Once you have typed the varlist for the command, you can place options anywhere in the command.
You can type summarize marriage rate divorce rate if region=="West", detail, or you
can type summarize marriage rate divorce rate, detail, if region=="West". You use a
second comma to indicate a return to the command line as opposed to the option list. Leaving out
the comma after the word detail would cause an error because Stata would attempt to interpret the
phrase if region=="West" as an option rather than as part of the command.

You may not type an option in the middle of a varlist. Typing summarize marriage rate,
detail, divorce rate will result in an error.

Options need not be specified contiguously. You may type summarize marriage rate di-
vorce rate, detail, if region=="South", noformat. Both detail and noformat are op-
tions.

Technical note
Most options are toggles—they indicate that something either is or is not to be done. Sometimes

it is difficult to remember which is the default. The following rule applies to all options: if option
is an option, then nooption is an option as well, and vice versa. Thus if we could not remember
whether detail or nodetail were the default for summarize but we knew that we did not want
the detail, we could type summarize, nodetail. Typing the nodetail option is unnecessary, but
Stata will not complain.

Some options take arguments. The Stata kdensity command has an n(#) option that indicates
the number of points at which the density estimate is to be evaluated. When an option takes an
argument, the argument is enclosed in parentheses.

Some options take more than one argument. In such cases, arguments should be separated from
one another by commas. For instance, you might see in a syntax diagram

saving(filename
[
, replace

]
)

Here replace is the (optional) second argument. Lists, such as lists of variables (varlists) and lists
of numbers (numlists), are considered to be one argument. If a syntax diagram reported

powers(numlist)

the list of numbers would be one argument, so the elements would not be separated by commas. You
would type, for instance, powers(1 2 3 4). In fact, Stata will tolerate commas here, so you could
type powers(1,2,3,4).

Some options take string arguments. regress has an eform() option that works this way—for
instance, eform("Exp Beta"). To play it safe, you should type the quotes surrounding the string,
although it is not required. If you do not type the quotes, any sequence of two or more consecutive
blanks will be interpreted as one blank. Thus eform(Exp beta) would be interpreted the same as
eform(Exp beta).

[U] 11 Language syntax 11

11.1.8 numlist
A numlist is a list of numbers. Stata allows certain shorthands to indicate ranges:

Numlist Meaning

2 just one number
1 2 3 three numbers
3 2 1 three numbers in reversed order
.5 1 1.5 three different numbers
1 3 -2.17 5.12 four numbers in jumbled order
1/3 three numbers: 1, 2, 3
3/1 the same three numbers in reverse order
5/8 four numbers: 5, 6, 7, 8
-8/-5 four numbers: −8, −7, −6, −5
-5/-8 four numbers: −5, −6, −7, −8
-1/2 four numbers: −1, 0, 1, 2
1 2 to 4 four numbers: 1, 2, 3, 4
4 3 to 1 four numbers: 4, 3, 2, 1
10 15 to 30 five numbers: 10, 15, 20, 25, 30
1 2:4 same as 1 2 to 4
4 3:1 same as 4 3 to 1
10 15:30 same as 10 15 to 30
1(1)3 three numbers: 1, 2, 3
1(2)9 five numbers: 1, 3, 5, 7, 9
1(2)10 the same five numbers, 1, 3, 5, 7, 9
9(-2)1 five numbers: 9, 7, 5, 3, and 1
-1(.5)2.5 the numbers −1, −.5, 0, .5, 1, 1.5, 2, 2.5
1[1]3 same as 1(1)3
1[2]9 same as 1(2)9
1[2]10 same as 1(2)10
9[-2]1 same as 9(−2)1
-1[.5]2.5 same as −1(.5)2.5
1 2 3/5 8(2)12 eight numbers: 1, 2, 3, 4, 5, 8, 10, 12
1,2,3/5,8(2)12 the same eight numbers
1 2 3/5 8 10 to 12 the same eight numbers
1,2,3/5,8,10 to 12 the same eight numbers
1 2 3/5 8 10:12 the same eight numbers

poisson’s constraints() option has syntax constraints(numlist). Thus you could type con-
straints(2 4 to 8), constraints(2(2)8), etc.

11.1.9 datelist

A datelist is a list of dates or times and is often used with graph options when the variable being
graphed has a date format. For a description of how dates and times are stored and manipulated
in Stata, see [U] 25 Working with dates and times. Calendar dates, also known as %td dates, are
recorded in Stata as the number of days since 01jan1960, so 0 means 01jan1960, 1 means 02jan1960,
and 16,541 means 15apr2005. Similarly, −1 means 31dec1959, −2 means 30dec1959, and −16,541
means 18sep1914. In such a case, a datelist is a list of dates, as in

15apr1973 17apr1973 20apr1973 23apr1973

or it is a first and last date with an increment between, as in

17apr1973(3)23apr1973

or it is a combination:

15apr1973 17apr1973(3)23apr1973

https://www.stata.com/manuals/u25.pdf#u25Workingwithdatesandtimes

12 [U] 11 Language syntax

Dates specified with spaces, slashes, or commas must be bound in parentheses, as in

(15 apr 1973) (april 17, 1973)(3)(april 23, 1973)

Evenly spaced calendar dates are not especially useful, but with other time units, even spacing
can be useful, such as

1999q1(1)2005q1

when %tq dates are being used. 1999q1(1)2005q1 means every quarter between 1999q1 and 2005q1.
1999q1(4)2005q1 would mean every first quarter.

To interpret a datelist, Stata first looks at the format of the related variable and then uses the
corresponding date-to-numeric translation function. For instance, if the variable has a %td format,
the td() function is used to translate the date; if the variable has a %tq format, the tq() function
is used; and so on. See Typing dates into expressions in [D] Datetime.

11.1.10 Prefix commands
Stata has a handful of commands that are used to prefix other Stata commands. by varlist:,

discussed in section [U] 11.1.2 by varlist:, is in fact an example of a prefix command. In that section,
we demonstrated by using

by region: summarize marriage rate divorce rate

and later,

by region, sort: summarize marriage rate divorce rate

and although we did not, we could also have demonstrated

by region, sort: summarize marriage rate divorce rate, detail

Each of the above runs the summarize command separately on the data for each region.

by itself follows standard Stata syntax:
by varlist[, options]: . . .

In by region, sort: summarize marriage rate divorce rate, detail, region is by’s varlist
and sort is by’s option, just as marriage rate and divorce rate are summarize’s varlist and
detail is summarize’s option.

https://www.stata.com/manuals/ddatetime.pdf#dDatetimeSyntaxTypingdatesintoexpressions
https://www.stata.com/manuals/ddatetime.pdf#dDatetime

[U] 11 Language syntax 13

by is not the only prefix command, and the full list of such commands is

Prefix command Description

by run command on subsets of data
collect run command and collect results to include in a table
frame run command on the data in a specified frame
statsby same as by, but collect statistics from each run
rolling run command on moving subsets and collect statistics
bootstrap run command on bootstrap samples
jackknife run command on jackknife subsets of data
permute run command on random permutations
simulate run command on manufactured data
svy run command and adjust results for survey sampling
mi estimate run command on multiply imputed data and adjust results for multiple

imputation (MI)
bayes fit a Bayesian regression model
fmm fit a finite mixture model
nestreg run command with accumulated blocks of regressors and

report nested model comparison tests
stepwise run command with stepwise variable inclusion/exclusion
xi run command after expanding factor variables and interactions; for most

commands, using factor variables is preferred to using xi (see
[U] 11.4.3 Factor variables)

fp run command with fractional polynomials of one regressor
mfp run command with multiple fractional polynomial regressors
capture run command and capture its return code
noisily run command and show the output
quietly run command and suppress the output
version run command under specified version

The last group—capture, noisily, quietly, and version—deal with programming Stata and, for
historical reasons, capture, noisily, and quietly allow you to omit the colon, so one programmer
might code

quietly regress . . .

and another

quietly: regress . . .

All the other prefix commands require the colon. In addition to the corresponding reference manual
entries, you may want to consult Baum (2016) for a richer discussion of prefix commands.

11.2 Abbreviation rules
Stata allows abbreviations. In this manual, we usually avoid abbreviating commands, variable

names, and options to ensure readability:

. summarize myvar, detail

Experienced Stata users, on the other hand, tend to abbreviate the same command as

. sum myv, d

https://www.stata.com/manuals/dby.pdf#dby
https://www.stata.com/manuals/tablescollectget.pdf#tablescollectget
https://www.stata.com/manuals/dframeprefix.pdf#dframeprefix
https://www.stata.com/manuals/dstatsby.pdf#dstatsby
https://www.stata.com/manuals/tsrolling.pdf#tsrolling
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/rpermute.pdf#rpermute
https://www.stata.com/manuals/rsimulate.pdf#rsimulate
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes
https://www.stata.com/manuals/fmmfmm.pdf#fmmfmm
https://www.stata.com/manuals/rnestreg.pdf#rnestreg
https://www.stata.com/manuals/rstepwise.pdf#rstepwise
https://www.stata.com/manuals/rxi.pdf#rxi
https://www.stata.com/manuals/rfp.pdf#rfp
https://www.stata.com/manuals/rmfp.pdf#rmfp
https://www.stata.com/manuals/pcapture.pdf#pcapture
https://www.stata.com/manuals/pquietly.pdf#pquietly
https://www.stata.com/manuals/pquietly.pdf#pquietly
https://www.stata.com/manuals/pversion.pdf#pversion

14 [U] 11 Language syntax

As a general rule, command, option, and variable names may be abbreviated to the shortest string of
characters that uniquely identifies them.

This rule is violated if the command or option does something that cannot easily be undone; the
command must then be spelled out in its entirety.

Also, a few common commands and options are allowed to have even shorter abbreviations than
the general rule would allow.

The general rule is applied, without exception, to variable names.

11.2.1 Command abbreviation
The shortest allowed abbreviation for a command or option can be determined by looking at the

command’s syntax diagram. This minimal abbreviation is shown by underlining:

generate

append

rotate

run

If there is no underlining, no abbreviation is allowed. For example, replace may not be abbreviated,
the underlying reason being that replace changes the data.

rename can be abbreviated ren, rena, or renam, or it can be spelled out in its entirety.

Sometimes short abbreviations are also allowed. Commands that begin with the letter d include
decode, describe, destring, dir, discard, display, do, and drop, which suggests that
the shortest allowable abbreviation for describe is desc. However, because describe is such a
commonly used command, you may abbreviate it with the single letter d. You may also abbreviate
the list command with the single letter l.

The other exception to the general abbreviation rule is that commands that alter or destroy data
must be spelled out completely. Two commands that begin with the letter d, discard and drop, are
destructive in the sense that, once you give one of these commands, there is no way to undo the
result. Therefore, both must be spelled out.

The final exceptions to the general rule are commands implemented as ado-files. Such commands
may not be abbreviated. Ado-file commands are external, and their names correspond to the names
of disk files.

11.2.2 Option abbreviation

Option abbreviation follows the same logic as command abbreviation: you determine the mini-
mum acceptable abbreviation by examining the command’s syntax diagram. The syntax diagram for
summarize reads, in part,

summarize . . . , detail format

The detail option may be abbreviated d, de, det, . . . , detail. Similarly, option format may be
abbreviated f, fo, . . . , format.

The clear and replace options occur with many commands. The clear option indicates that
even though completing this command will result in the loss of all data in memory, and even though
the data in memory have changed since the data were last saved on disk, you want to continue. clear
must be spelled out, as in use newdata, clear.

[U] 11 Language syntax 15

The replace option indicates that it is okay to save over an existing dataset. If you type save
mydata and the file mydata.dta already exists, you will receive the message “file mydata.dta already
exists”, and Stata will refuse to overwrite it. To allow Stata to overwrite the dataset, you would type
save mydata, replace. replace may not be abbreviated.

Technical note

replace is a stronger modifier than clear and is one you should think about before using. With
a mistaken clear, you can lose hours of work, but with a mistaken replace, you can lose days of
work.

11.2.3 Variable-name abbreviation
• Variable names may be abbreviated to the shortest string of characters that uniquely identifies them

given the data currently loaded in memory.

If your dataset contained four variables, state, mrgrate, dvcrate, and dthrate, you could
refer to the variable dvcrate as dvcrat, dvcra, dvcr, dvc, or dv. You might type list dv to
list the data on dvcrate. You could not refer to the variable dvcrate as d, however, because
that abbreviation does not distinguish dvcrate from dthrate. If you were to type list d, Stata
would respond with the message “ambiguous abbreviation”. (If you wanted to refer to all variables
that started with the letter d, you could type list d*; see [U] 11.4 varname and varlists.)

• The character ~ may be used to mean that “zero or more characters go here”. For instance, r~8
might refer to the variable rep78, or rep1978, or repair1978, or just r8. (The ~ character is
similar to the * character in [U] 11.4 varname and varlists, except that it adds the restriction “and
only one variable matches this specification”.)

Above, we said that you could abbreviate variables. You could type dvcr to refer to dvcrate,
but, if there were more than one variable that started with the letters dvcr, you would receive an
error. Typing dvcr is the same as typing dvcr~.

16 [U] 11 Language syntax

11.2.4 Abbreviations for programmers

Stata has several useful commands and functions to assist programmers with abbreviating and
unabbreviating command names and variable names.

Command/function Description

unab expand and unabbreviate standard variable lists
tsunab expand and unabbreviate variable lists that may contain time-series

operators
fvunab expand and unabbreviate variable lists that may contain time-series

operators or factor variables

unabcmd unabbreviate command name

novarabbrev turn off variable abbreviation
varabbrev turn on variable abbreviation
set varabbrev set whether variable abbreviations are supported

abbrev(s,n) string function that abbreviates s to n display columns
abbrev(s,n) Mata variant of above that allows s and n to be matrices

11.3 Naming conventions

A name is a sequence of 1 to 32 letters (A–Z, a–z, and any Unicode letter), digits (0–9), and
underscores ().

Programmers: Local macro names can have no more than 31 characters in the name; see
[U] 18.3.1 Local macros.

Stata reserves the following names:

alias n r p
all N r se
b pi r ub

byte pred r z
coef r b r z abs
cons rc se

double r ci skip
float r cri str#
if r crlb strL
in r crub using
int r df with
long r lb

You may not use these reserved names for your variables.

The first character of a name must be a letter or an underscore (macro names are an exception;
they may also begin with a digit). We recommend, however, that you not begin your variable names
with an underscore. All of Stata’s built-in variables begin with an underscore, and we reserve the
right to incorporate new variables freely.

Stata respects case; that is, myvar, Myvar, and MYVAR are three distinct names.

Most objects in Stata—not just variables—follow this naming convention.

https://www.stata.com/manuals/punab.pdf#punab
https://www.stata.com/manuals/punab.pdf#punab
https://www.stata.com/manuals/punab.pdf#punab
https://www.stata.com/manuals/punabcmd.pdf#punabcmd
https://www.stata.com/manuals/pvarabbrev.pdf#pvarabbrev
https://www.stata.com/manuals/pvarabbrev.pdf#pvarabbrev
https://www.stata.com/manuals/rset.pdf#rsetRemarksandexamplesvarabbrev
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsabbrev()
https://www.stata.com/manuals/u12.pdf#u12.4.2.2DisplayingUnicodecharacters
https://www.stata.com/manuals/m-5abbrev.pdf#m-5abbrev()
https://www.stata.com/manuals/u18.pdf#u18.3.1Localmacros

[U] 11 Language syntax 17

11.4 varname and varlists
A varlist is a list of variable names. The variable names in a varlist refer either exclusively to new

(not yet created) variables or exclusively to existing variables. A newvarlist always refers exclusively
to new (not yet created) variables. Similarly, a varname refers to one variable, either existing or not
yet created. A newvar always refers to one new variable.

Sometimes a command will refer to a varname in another way, such as “groupvar”. This is still a
varname. The different name is used to give you an extra hint about the purpose of that variable. For
example, a groupvar is the name of a variable that defines groups within your data. Other common
ways of referring to a varname or varlist in Stata are

depvar, which means the dependent variable for an estimation command;

indepvars, which means a varlist containing the independent variables for an estimation command;

xvar, which means a continuous real variable, often plotted on the x axis of a graph;

yvar, which means a variable that is a function of an xvar, often plotted on the y axis of a
graph;

clustvar, which means a numeric variable that identifies the cluster or group to which an
observation belongs;

panelvar, which means a numeric variable that identifies panels in panel data, also known as
cross-sectional time-series data; and

timevar, which means a numeric variable with a %td, %tc, or %tC format.

11.4.1 Lists of existing variables

In lists of existing variable names, variable names may be repeated.

Example 11

If you type list state mrgrate dvcrate state, the variable state will be listed twice, once
in the leftmost column and again in the rightmost column of the list.

Existing variable names may be abbreviated as described in [U] 11.2 Abbreviation rules. You
may also use “*” to indicate that “zero or more characters go here”. For instance, if you suffix * to a
partial variable name (for example, sta*), you are referring to all variable names that start with that
letter combination. If you prefix * to a letter combination (for example, *rate), you are referring to
all variables that end in that letter combination. If you put * in the middle (for example, m*rate),
you are referring to all variables that begin and end with the specified letters. You may put more than
one * in an abbreviation.

Example 12

If the variables poplt5, pop5to17, and pop18p are in our dataset, we may type pop* as a
shorthand way to refer to all three variables. For instance, list state pop* lists the variables
state, poplt5, pop5to17, and pop18p.

If we had a dataset with variables inc1990, inc1991, . . . , inc1999 along with variables
incfarm1990, . . . , incfarm1999; pop1990, . . . , pop1999; and ms1990, . . . , ms1999, then *1995
would be a shorthand way of referring to inc1995, incfarm1995, pop1995, and ms1995. We could
type, for instance, list *1995.

18 [U] 11 Language syntax

In that same dataset, typing list i*95 would be a shorthand way of listing inc1995 and
incfarm1995.

Typing list i*f*95 would be a shorthand way of listing to incfarm1995.

~ is an alternative to *, and really, it means the same thing. The difference is that ~ indicates that
if more than one variable matches the specified pattern, Stata will complain rather than substituting
all the variables that match the specification.

Example 13

In the previous example, we could have typed list i~f~95 to list incfarm1995. If, however, our
dataset also included variable infant1995, then list i*f*95 would list both variables and list
i~f~95 would complain that i~f~95 is an ambiguous abbreviation.

You may use ? to specify that one character goes here. Remember, * means zero or more characters
go here, so ?* can be used to mean one or more characters goes here, ??* can be used to mean two
or more characters go here, and so on.

Example 14

In a dataset containing variables rep1, rep2, . . . , rep78, rep? would refer to rep1, rep2, . . . ,
rep9, and rep?? would refer to rep10, rep11, . . . , rep78.

You may place a dash (-) between two variable names to specify all the variables stored between
the two listed variables, inclusive. You can determine storage order by using describe; it lists
variables in the order in which they are stored.

Example 15

If the dataset contains the variables state, mrgrate, dvcrate, and dthrate, in that order, typing
list state-dvcrate is equivalent to typing list state mrgrate dvcrate. In both cases, three
variables are listed.

11.4.2 Lists of new variables
In lists of new variables, no variable names may be repeated or abbreviated.

You may specify a dash (-) between two variable names that have the same letter prefix and that
end in numbers. This form of the dash notation indicates a range of variable names in ascending
numerical order.

For example, typing input v1-v4 is equivalent to typing input v1 v2 v3 v4. Typing infile
state v1-v3 ssn using rawdata is equivalent to typing infile state v1 v2 v3 ssn using
rawdata.

Many commands that require a specific number of new variables also allow the new variables to
be specified using the stub* notation. For example, if you are using predict to generate four new
variables, you could type predict pred* to create new variables pred1, pred2, pred3, and pred4.

[U] 11 Language syntax 19

You may specify the storage type before the variable name to force a storage type other than
the default. The numeric storage types are byte, int, long, float (the default), and double. The
string storage types are str#, where # is replaced with an integer between 1 and 2045, inclusive,
representing the maximum length of the string, or strL. See [U] 12 Data.

For instance, the list var1 str8 var2 var3 specifies that var1 and var3 be given the default
storage type and that var2 be stored as a str8—a string whose maximum length is eight bytes.

The list var1 int var2 var3 specifies that var2 be stored as an int. You may use parentheses
to bind a list of variable names. The list var1 int(var2 var3) specifies that both var2 and var3
be stored as ints. Similarly, the list var1 str20(var2 var3) specifies that both var2 and var3
be stored as str20s. The different storage types are listed in [U] 12.2.2 Numeric storage types and
[U] 12.4 Strings.

Example 16

Typing infile str2 state str10 region v1-v5 using mydata reads the state and region
strings from the file mydata.raw and stores them as str2 and str10, respectively, along with the
variables v1 through v5, which are stored as the default storage type float (unless we have specified
a different default with the set type command).

Typing infile str10(state region) v1-v5 using mydata would achieve almost the same
result, except that the state and region values recorded in the data would both be assigned to str10
variables. (We could then use the compress command to shorten the strings. See [D] compress; it
is well worth reading.)

Technical note
You may append a colon and a value label name to numeric variables. (See [U] 12.6 Dataset,

variable, and value labels for a description of value labels.) For instance, var1 var2:myfmt specifies
that the variable var2 be associated with the value label stored under the name myfmt. This has the
same effect as typing the list var1 var2 and then subsequently giving the command label values
var2 myfmt.

The advantage of specifying the value label association with the colon notation is that value labels
can then be assigned by the current command; see [D] input and [D] infile (free format).

Example 17

Typing infile int(state:stfmt region:regfmt) v1-v5 using mydata, automatic reads
the state and region data from the file mydata.raw and stores them as ints, along with the variables
v1 through v5, which are stored as the default storage type.

In our previous example, both state and region were strings, so how can strings be stored in a
numeric variable? See [U] 12.6 Dataset, variable, and value labels for the complete answer. The
colon notation specifies the name of the value label, and the automatic option tells Stata to assign
unique numeric codes to all character strings. The numeric code for state, which Stata will make up
on the fly, will be stored in the state variable. The mapping from numeric codes to words will be
stored in the value label named stfmt. Similarly, regions will be assigned numeric codes, which are
stored in region, and the mapping will be stored in regfmt.

https://www.stata.com/manuals/u12.pdf#u12Data
https://www.stata.com/manuals/u12.pdf#u12.2.2Numericstoragetypes
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/dcompress.pdf#dcompress
https://www.stata.com/manuals/u12.pdf#u12.6Dataset,variable,andvaluelabels
https://www.stata.com/manuals/u12.pdf#u12.6Dataset,variable,andvaluelabels
https://www.stata.com/manuals/dinput.pdf#dinput
https://www.stata.com/manuals/dinfilefreeformat.pdf#dinfile(freeformat)
https://www.stata.com/manuals/u12.pdf#u12.6Dataset,variable,andvaluelabels

20 [U] 11 Language syntax

If we were to list the data, the state and region variables would look like strings. state,
for instance, would appear to contain things like AL, CA, and WA, but actually it would contain only
numbers like 1, 2, 3, and 4.

11.4.3 Factor variables
Factor variables are extensions of varlists of existing variables. When a command allows factor

variables, in addition to typing variable names from your data, you can type factor variables, which
might look like

i.varname
i.varname#i.varname
i.varname#i.varname#i.varname
i.varname##i.varname
i.varname##i.varname##i.varname

Factor variables create indicator variables from categorical variables and are allowed with most
estimation and postestimation commands, along with a few other commands.

Consider a variable named group that takes on the values 1, 2, and 3. Stata command list allows
factor variables, so we can see how factor variables are expanded by typing

. list group i.group in 1/5

1. 2. 3.
group group group group

1. 1 1 0 0
2. 1 1 0 0
3. 2 0 1 0
4. 2 0 1 0
5. 3 0 0 1

There are no variables named 1.group, 2.group, and 3.group in our data; there is only the
variable named group. When we type i.group, however, Stata acts as if the variables 1.group,
2.group, and 3.group exist. 1.group, 2.group, and 3.group are called virtual variables. 1.group
is a virtual variable equal to 1 when group = 1, and 0 otherwise. 2.group is a virtual variable equal
to 1 when group = 2, and 0 otherwise. 3.group is a virtual variable equal to 1 when group = 3,
and 0 otherwise.

The categorical variable to which factor-variable operators are applied must contain nonnegative
integers.

Technical note

We said above that 3.group equals 1 when group = 3 and equals 0 otherwise. We should have
added that 3.group equals missing when group contains missing. To be precise, 3.group equals 1
when group = 3, equals system missing (.) when group ≥ ., and equals 0 otherwise.

[U] 11 Language syntax 21

Technical note
We said above that when we typed i.group, Stata acts as if the variables 1.group, 2.group, and

3.group exist, and that might suggest that the act of typing i.group somehow created the virtual
variables. That is not true; the virtual variables always exist.

In fact, i.group is an abbreviation for 1.group, 2.group, and 3.group. In any command that
allows factor variables, you can specify virtual variables. Thus the listing above could equally well
have been produced by typing

. list group 1.group 2.group 3.group in 1/5

#.varname is defined as equal to 1 when varname = #, equal to system missing (.) when
varname ≥ ., and equal to 0 otherwise. Thus 4.group is defined even when group takes on only
the values 1, 2, and 3. 4.group would be equal to 0 in all observations. Referring to 4.group would
not produce an error such as “virtual variable not found”.

When factor-variable operators are used in a regression command, one of the categories is chosen
as a base category. If we type

. regress y i.group

this is equivalent to typing
. regress y 1b.group 2.group 3.group

1b.group is different from the other virtual variables. The b is a marker indicating base value.
1b.group is a virtual variable equal to 0. We can see this by typing

. list group i.group in 1/5

1. 2. 3.
group group group group

1. 1 1 0 0
2. 1 1 0 0
3. 2 0 1 0
4. 2 0 1 0
5. 3 0 0 1

When the i.group collection is included in a linear regression, virtual variable 1b.group drops
from the estimation because it does not vary; thus the coefficients on 2.group and 3.group would
measure the change from group = 1. Hence, the term base value.

11.4.3.1 Factor-variable operators

i.group is called a factor variable, although more correctly, we should say that group is a categorical
variable to which factor-variable operators have been applied. There are five factor-variable operators:

Operator Description

i. unary operator to specify indicators
c. unary operator to treat as continuous
o. unary operator to omit a variable or indicator
binary operator to specify interactions
binary operator to specify full-factorial interactions

22 [U] 11 Language syntax

When you type i.group, it forms the indicators for the distinct values of group. We will usually
say this more briefly as i.group forms indicators for the levels of group, and sometimes we will
abbreviate the statement even more and say i.group forms indicators for group.

The c. operator means continuous. We will get to that below.

The o. operator specifies that a continuous variable or an indicator for a level of a categorical
variable should be omitted. For example, o.age means that the continuous variable age should be
omitted, and o2.group means that the indicator for group = 2 should be omitted.

and ##, pronounced cross and factorial cross, are operators for use with pairs of variables.

i.group#i.sex means to form indicators for each combination of the levels of group and sex.

group#sex means the same thing, which is to say that use of # implies the i. prefix.

group#c.age (or i.group#c.age) means the interaction of the levels of group with the continuous
variable age. This amounts to forming i.group and then multiplying each level by age. We
already know that i.group expands to the virtual variables 1.group, 2.group, and 3.group,
so group#c.age results in the collection of variables equal to 1.group*age, 2.group*age, and
3.group*age. 1.group*age will be age when group = 1, and 0 otherwise. 2.group*age will
be age when group = 2, and 0 otherwise. 3.group*age will be age when group = 3, and 0
otherwise.

In a regression of y on age and group#c.age, group = 1 will again be chosen as the base
value of group. Thus group#c.age expands to 1b.group*age, 2.group*age, and 3.group*age.
1b.group*age will be zero because 1b.group is zero, so it will be omitted. 2.group*age will
measure the change in the age coefficient for group = 2 relative to the base group, and 3.group*age
will measure the change for group = 3 relative to the base.

[U] 11 Language syntax 23

Here are some more examples of use of the operators:

Factor specification Result

i.group indicators for levels of group
i.group#i.sex indicators for each combination of levels of group and sex,

a two-way interaction
group#sex same as i.group#i.sex

group#sex#arm indicators for each combination of levels of group, sex, and arm,
a three-way interaction

group##sex same as i.group i.sex group#sex

group##sex##arm same as i.group i.sex i.arm group#sex group#arm sex#arm
group#sex#arm

sex#c.age two variables—age for males and 0 elsewhere, and age for females
and 0 elsewhere; if age is also in the model, one of the two virtual
variables will be treated as a base

sex##c.age same as i.sex age sex#c.age

c.age same as age

c.age#c.age age squared
c.age#c.age#c.age age cubed

Several factor-variable terms are often specified in the same varlist, such as

. regress y i.sex i.group sex#group age sex#c.age

or, equivalently,

. regress y sex##group sex##c.age

11.4.3.2 Base levels

When we typed i.group in a regression command, group = 1 became the base level. When we
do not specify otherwise, the smallest level becomes the base level.

You can specify the base level of a factor variable by using the ib. operator. The syntax is

Base operatora Description

ib#. use # as base, # = value of variable
ib(##). use the #th ordered value as baseb

ib(first). use smallest value as base (default)
ib(last). use largest value as base
ib(freq). use most frequent value as base
ibn. no base level
aThe i may be omitted. For instance, you can type ib2.group or b2.group.
bFor example, ib(#2). means to use the second value as the base.

Thus, if you want to use group = 3 as the base, you can type ib3.group. You can type

. regress y i.sex ib3.group sex#ib3.group age sex#c.age

24 [U] 11 Language syntax

or you can type

. regress y i.sex ib3.group sex#group age sex#c.age

That is, you only have to set the base once. If you specify the base level more than once, it must be
the same base level. You will get an error if you attempt to change base levels in midsentence.

If you type ib3.group, the virtual variables become 1.group, 2.group, and 3b.group.

Were you to type ib(freq).group, the virtual variables might be 1b.group, 2.group, and
3.group; 1.group, 2b.group, and 3.group; or 1.group, 2.group, and 3b.group, depending on
the most frequent group in the data.

11.4.3.3 Setting base levels permanently

You can permanently set the base level by using the fvset command; see [R] fvset. For example,

. fvset base 3 group

sets the base for group to be 3. The setting is recorded in the data, and if the dataset is resaved, the
base level will be remembered in future sessions.

If you want to set the base group back to the default, type

. fvset base default group

If you want to set the base levels for a group of variables to be the largest value, you can type

. fvset base last group sex arm

See [R] fvset for details.

Base levels can be temporarily overridden by using the ib. operator regardless of whether they
are set explicitly.

11.4.3.4 Selecting levels

Typing i.group specifies virtual variables 1b.group, 2.group, and 3.group. Regardless of
whether you type i.group, you can access those virtual variables. You can, for instance, use them
in expressions and if statements:

. list if 3.group
(output omitted)

. generate over_age = cond(3.group, age-21, 0)

Although throughout this section we have been typing #.group such as 3.group as if it is
somehow different from i.group, the complete, formal syntax is i3.group. You are allowed to
omit the i. The point is that i3.group is just a special case of i.group; i3.group specifies an
indicator for the third level of group, and i.group specifies the indicators for all the levels of group.
Anyway, the above commands could be typed as

. list if i3.group
(output omitted)

. generate over_age = cond(i3.group, age-21, 0)

Similarly, the virtual variables 1b.group, 2.group, and 3.group more formally would be referred
to as i1b.group, i2.group, and i3.group. You are allowed to omit the leading i whenever what
appears after is a number or a b followed by a base specification.

https://www.stata.com/manuals/rfvset.pdf#rfvset
https://www.stata.com/manuals/rfvset.pdf#rfvset

[U] 11 Language syntax 25

You can select a range of levels—a range of virtual variables—by using the i(numlist).varname.
This can be useful when specifying the model to be fit using estimation commands. You may not
omit the i when specifying a numlist.

Examples Description

i2.cat single indicator for cat = 2
2.cat same as i2.cat

i(2 3 4).cat three indicators, cat = 2, cat = 3, and cat = 4; same as
i2.cat i3.cat i4.cat

i(2/4).cat same as i(2 3 4).cat

2.cat#1.sex a single indicator that is 1 when cat = 2 and sex = 1 and is 0 otherwise
i2.cat#i1.sex same as 2.cat#1.sex

Rather than selecting the levels that should be included, you can specify the levels that should
be omitted by using the o. operator. When you use io(numlist).varname in a command, indicators
for the levels of varname other than those specified in numlist are included. When omitted levels are
specified with the o. operator, the i. operator is implied, and the remaining indicators for the levels
of varname will be included.

Examples Description

io2.cat indicators for levels of cat, omitting the indicator for cat = 2
o2.cat same as io2.cat
io(2 3 4).cat indicators for levels of cat, omitting three indicators, cat = 2, cat = 3, and

cat = 4
o(2 3 4).cat same as io(2 3 4).cat
o(2/4).cat same as io(2 3 4).cat
o2.cat#o1.sex indicators for each combination of the levels of cat and sex, omitting the

indicator for cat = 2 and sex = 1

11.4.3.5 Applying operators to a group of variables

Factor-variable operators may be applied to groups of variables by using parentheses. You may
type, for instance,

i.(group sex arm)

to mean i.group i.sex i.arm.

26 [U] 11 Language syntax

In the examples that follow, variables group, sex, arm, and cat are categorical, and variables
age, wt, and bp are continuous:

Examples Expansion

i.(group sex arm) i.group i.sex i.arm

group#(sex arm cat) group#sex group#arm group#cat

group##(sex arm cat) i.group i.sex i.arm i.cat group#sex group#arm
group#cat

group#(c.age c.wt c.bp) group#c.age group#c.wt group#c.bp

group#c.(age wt bp) same as group#(c.age c.wt c.bp)

Parentheses can shorten what you type and make it more readable. For instance,

. regress y i.sex i.group sex#group age sex#c.age c.age#c.age sex#c.age#c.age

is easier to understand when written as

. regress y sex##(group c.age c.age#c.age)

11.4.3.6 Using factor variables with time-series operators

Factor-variable operators may be combined with the L. and F. time-series operators, so you
may specify lags and leads of factor variables in time-series applications. You could type iL.group
or Li.group; the order of the operators does not matter. You could type L.group#L.arm or
L.group#c.age.

Examples include

. regress y b1.sex##(i(2/4).group cL.age cL.age#cL.age)

. regress y 2.arm#(sex#i(2/4)b3.group cL.age)

. regress y 2.arm##cat##(sex##i(2/4)b3.group cL.age#c.age) c.bp
> c.bp#c.bp c.bp#c.bp#c.bp sex##c.bp#c.age

11.4.3.7 Video examples

Introduction to factor variables in Stata, part 1: The basics

Introduction to factor variables in Stata, part 2: Interactions

Introduction to factor variables in Stata, part 3: More interactions

https://www.youtube.com/watch?v=Wa1Nd9epHmY
https://www.youtube.com/watch?v=f-tLLX8v11c
https://www.youtube.com/watch?v=9vR9n35aX5k

[U] 11 Language syntax 27

11.4.4 Time-series varlists
Time-series varlists are a variation on varlists of existing variables. When a command allows a

time-series varlist, you may include time-series operators. For instance, L.gnp refers to the lagged
value of variable gnp. The time-series operators are

Operator Meaning

L. lag xt−1
L2. 2-period lag xt−2
. . .

F. lead xt+1

F2. 2-period lead xt+2

. . .

D. difference xt − xt−1
D2. difference of difference xt − xt−1 − (xt−1 − xt−2) = xt − 2xt−1 + xt−2
. . .

S. “seasonal” difference xt − xt−1
S2. lag-2 (seasonal) difference xt − xt−2
. . .

Time-series operators may be repeated and combined. L3.gnp refers to the third lag of variable
gnp. So do LLL.gnp, LL2.gnp, and L2L.gnp. LF.gnp is the same as gnp. DS12.gnp refers to the
one-period difference of the 12-period difference. LDS12.gnp refers to the same concept, lagged
once.

D1. = S1., but D2. 6= S2., D3. 6= S3., and so on. D2. refers to the difference of the difference.
S2. refers to the two-period difference. If you wanted the difference of the difference of the 12-period
difference of gnp, you would write D2S12.gnp.

Operators may be typed in uppercase or lowercase. Most users would type d2s12.gnp instead of
D2S12.gnp.

You may type operators however you wish; Stata internally converts operators to their canonical
form. If you typed ld2ls12d.gnp, Stata would present the operated variable as L2D3S12.gnp.

In addition to using operator#, Stata understands operator(numlist) to mean a set of operated
variables. For instance, typing L(1/3).gnp in a varlist is the same as typing L.gnp L2.gnp L3.gnp.
The operators can also be applied to a list of variables by enclosing the variables in parentheses; for
example,

. use https://www.stata-press.com/data/r18/gxmpl1

. list year L(1/3).(gnp cpi)

L. L2. L3. L. L2. L3.
year gnp gnp gnp cpi cpi cpi

1. 1989
2. 1990 5837.9 . . 124 . .
3. 1991 6026.3 5837.9 . 130.7 124 .
4. 1992 6367.4 6026.3 5837.9 136.2 130.7 124
5. 1993 6689.3 6367.4 6026.3 140.3 136.2 130.7

6. 1994 7098.4 6689.3 6367.4 144.5 140.3 136.2
7. 1995 7433.4 7098.4 6689.3 148.2 144.5 140.3
8. 1996 7851.9 7433.4 7098.4 152.4 148.2 144.5

28 [U] 11 Language syntax

The parentheses notation may be used with any operator. Typing D(1/3).gnp would return the
first through third differences.

The parentheses notation may be used in operator lists with multiple operators, such as
L(0/3)D2S12.gnp.

Operator lists may include up to one set of parentheses, which may enclose a numlist; see
[U] 11.1.8 numlist.

The time-series operators L. and F. may be combined with factor variables. If we want to lag
the indicator variables for the levels of the factor variable region, we would type iL.region. We
could also say that we are specifying the level indicator variables for the lag of the region variables.
They are equivalent statements.

The numlists and parentheses notation from both factor varlists and time-series oper-
ators may be combined. For example, iL(1/3).region specifies the first three lags of
the level indicators for region. If region has four levels, this is equivalent to typ-
ing i1L1.region i2L1.region i3L1.region i4L1.region i1L2.region i2L2.region
i3L2.region i4L2.region i1L3.region i2L3.region i3L3.region i4L3.region. Pushing
the notation further, i(1/2)L(1/3).(region education) specifies the first three lags of the level
1 and level 2 indicator variables for both region and education.

Technical note

The D. and S. time-series operators may not be combined with factor variables because such
combinations could have two meanings. iD.a could be the level indicators for the difference of the
variable a from its prior period, or it could be the level indicators differenced between the two periods.
These are generally not the same values, nor even the same number of indicators. Moreover, they are
rarely interesting.

Before you can use time-series operators in varlists, you must set the time variable by using the
tsset command:

. list l.gnp
time variable not set
r(111);

. tsset time
(output omitted)

. list l.gnp
(output omitted)

See [TS] tsset. The time variable must take on integer values. Also, the data must be sorted on the
time variable. tsset handles this, but later you might encounter

. list l.mpg
not sorted
r(5);

Then type sort time or type tsset to reestablish the order.

The time-series operators respect the time variable. L2.gnp refers to gnpt−2, regardless of missing
observations in the dataset. In the following dataset, the observation for 1992 is missing:

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(111)
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(5)

[U] 11 Language syntax 29

. use https://www.stata-press.com/data/r18/gxmpl2

. list year gnp l2.gnp, separator(0)

L2.
year gnp gnp

1. 1989 5837.9 .
2. 1990 6026.3 .
3. 1991 6367.4 5837.9
4. 1993 7098.4 6367.4 ← note, filled in correctly
5. 1994 7433.4 .
6. 1995 7851.9 7098.4

Operated variables may be used in expressions:

. generate gnplag2 = l2.gnp
(3 missing values generated)

Stata also understands cross-sectional time-series data. If you have cross sections of time series,
you indicate this when you tsset the data:

. tsset country year

See [TS] tsset. In fact, you can type that, or you can type

. xtset country year

xtset is how you set panel data just as tsset is how you set time-series data and here the two
commands do the same thing. Some panel datasets are not cross-sectional time series, however, in
that the second variable is not time, so xtset also allows

. xtset country

See [XT] xtset.

11.4.4.1 Video example

Time series, part 3: Time-series operators

11.5 by varlist: construct
by varlist: command

The by prefix causes command to be repeated for each distinct value or combination of values of the
variables in varlist. varlist may contain numeric, string, or a mixture of numeric and string variables.
(varlist may not contain time-series operators.)

by is an optional prefix to perform a Stata command separately for each group of observations
where the values of the variables in the varlist are the same.

During each iteration, the values of the system variables n and N are set in relation to the first
observation in the by-group; see [U] 13.7 Explicit subscripting. The in range qualifier cannot be
used with by varlist: because ranges specify absolute rather than relative observation numbers.

https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/xtxtset.pdf#xtxtset
https://www.youtube.com/watch?v=ik8r4WvrPkc
https://www.stata.com/manuals/u13.pdf#u13.7Explicitsubscripting

30 [U] 11 Language syntax

Technical note

The inability to combine in and by is not really a constraint because if provides all the functionality
of in and a bit more. If you wanted to perform command for the first three observations in each of
the by-groups, you could type

. by varlist: command if _n<=3

The results of command would be the same as if you had formed separate datasets for each group
of observations, saved them, used each separately, and issued command.

Example 18

We provide some examples using by in [U] 11.1.2 by varlist: above. We demonstrate the effect
of by on n, N, and explicit subscripting in [U] 13.7 Explicit subscripting.

by requires that the data first be sorted. For instance, if we had data on the average January and
July temperatures in degrees Fahrenheit for 420 cities located in the Northeast and West and wanted
to obtain the averages, by region, across those cities, we might type

. use https://www.stata-press.com/data/r18/citytemp3, clear
(City temperature data)

. by region: summarize tempjan tempjuly
not sorted
r(5);

Stata refused to honor our request because the data are not sorted by region. We must either sort
the data by region first (see [D] sort) or specify by’s sort option (which has the same effect):

. by region, sort: summarize tempjan tempjuly

-> region = NE

Variable Obs Mean Std. dev. Min Max

tempjan 164 27.88537 3.543096 16.6 31.8
tempjuly 164 73.35 2.361203 66.5 76.8

-> region = N Cntrl

Variable Obs Mean Std. dev. Min Max

tempjan 284 21.69437 5.725392 2.2 32.6
tempjuly 284 73.46725 3.103187 64.5 81.4

-> region = South

Variable Obs Mean Std. dev. Min Max

tempjan 250 46.1456 10.38646 28.9 68
tempjuly 250 80.9896 2.97537 71 87.4

-> region = West

Variable Obs Mean Std. dev. Min Max

tempjan 256 46.22539 11.25412 13 72.6
tempjuly 256 72.10859 6.483131 58.1 93.6

https://www.stata.com/manuals/u13.pdf#u13.7Explicitsubscripting
https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(5)
https://www.stata.com/manuals/dsort.pdf#dsort

[U] 11 Language syntax 31

Example 19

Using the same data as in the example above, we estimate regressions, by region, of average January
temperature on average July temperature. Both temperatures are specified in degrees Fahrenheit.

. by region: regress tempjan tempjuly

-> region = NE

Source SS df MS Number of obs = 164
F(1, 162) = 479.82

Model 1529.74026 1 1529.74026 Prob > F = 0.0000
Residual 516.484453 162 3.18817564 R-squared = 0.7476

Adj R-squared = 0.7460
Total 2046.22471 163 12.5535258 Root MSE = 1.7855

tempjan Coefficient Std. err. t P>|t| [95% conf. interval]

tempjuly 1.297424 .0592303 21.90 0.000 1.180461 1.414387
_cons -67.28066 4.346781 -15.48 0.000 -75.86431 -58.697

-> region = N Cntrl

Source SS df MS Number of obs = 284
F(1, 282) = 115.89

Model 2701.97917 1 2701.97917 Prob > F = 0.0000
Residual 6574.79175 282 23.3148644 R-squared = 0.2913

Adj R-squared = 0.2887
Total 9276.77092 283 32.7801093 Root MSE = 4.8285

tempjan Coefficient Std. err. t P>|t| [95% conf. interval]

tempjuly .9957259 .0924944 10.77 0.000 .8136589 1.177793
_cons -51.45888 6.801344 -7.57 0.000 -64.84673 -38.07103

-> region = South

Source SS df MS Number of obs = 250
F(1, 248) = 95.17

Model 7449.51623 1 7449.51623 Prob > F = 0.0000
Residual 19412.2231 248 78.2750933 R-squared = 0.2773

Adj R-squared = 0.2744
Total 26861.7394 249 107.878471 Root MSE = 8.8473

tempjan Coefficient Std. err. t P>|t| [95% conf. interval]

tempjuly 1.83833 .1884392 9.76 0.000 1.467185 2.209475
_cons -102.74 15.27187 -6.73 0.000 -132.8191 -72.66089

32 [U] 11 Language syntax

-> region = West

Source SS df MS Number of obs = 256
F(1, 254) = 2.84

Model 357.161728 1 357.161728 Prob > F = 0.0932
Residual 31939.9031 254 125.74765 R-squared = 0.0111

Adj R-squared = 0.0072
Total 32297.0648 255 126.655156 Root MSE = 11.214

tempjan Coefficient Std. err. t P>|t| [95% conf. interval]

tempjuly .1825482 .1083166 1.69 0.093 -.0307648 .3958613
_cons 33.0621 7.84194 4.22 0.000 17.61859 48.5056

The regressions show that a 1-degree increase in the average July temperature in the Northeast
corresponds to a 1.3-degree increase in the average January temperature. In the West, however, it
corresponds to a 0.18-degree increase, which is only marginally significant.

Technical note
by has a second syntax that is especially useful when you want to play it safe:

by varlist1 (varlist2): command

This says that Stata is to verify that the data are sorted by varlist1 varlist2 and then, assuming that
is true, perform command by varlist1. For instance,

. by subject (time): generate finalval = val[_N]

By typing this, we want to create new variable finalval, which contains, in each observation, the
final observed value of val for each subject in the data. The final value will be the last value if,
within subject, the data are sorted by time. The above command verifies that the data are sorted by
subject and time and then, if they are, performs

. by subject: generate finalval = val[_N]

If the data are not sorted properly, an error message will instead be issued. Of course, we could have
just typed

. by subject: generate finalval = val[_N]

after verifying for ourselves that the data were sorted properly, as long as we were careful to look.

by’s second syntax can be used with by’s sort option, so we can also type

. by subject (time), sort: generate finalval = val[_N]

which is equivalent to

. sort subject time

. by subject: generate finalval = val[_N]

See Mitchell (2020, chap. 8) for numerous examples of processing groups using the by: construct.
Also see Cox (2002).

[U] 11 Language syntax 33

11.6 Filenaming conventions
Some commands require that you specify a filename. Filenames are specified in the way natural

for your operating system:

Windows Unix Mac
mydata mydata mydata
mydata.dta mydata.dta mydata.dta
c:mydata.dta ~friend/mydata.dta ~friend/mydata.dta

"my data" "my data" "my data"
"my data.dta" "my data.dta" "my data.dta"

myproj\mydata myproj/mydata myproj/mydata
"my project\my data" "my project/my data" "my project/my data"

C:\analysis\data\mydata ~/analysis/data/mydata ~/analysis/data/mydata
"C:\my project\my data" "~/my project/my data" "~/my project/my data"

..\data\mydata ../data/mydata ../data/mydata
"..\my project\my data" "../my project/my data" "../my project/my data"

We strongly discourage using Unicode characters beyond plain ASCII in filenames because different
operating systems use different UTF encodings for Unicode characters. For example, because Linux
encodes filenames in UTF-8 and Windows encodes them in UTF-16, the file may become unusable after
it has been transferred from one system to another if it contains Unicode characters beyond plain
ASCII.

In most cases, where filename is a file that you are loading, filename may also be a URL. For
instance, we might specify use https://www.stata-press.com/data/r18/nlswork.

All operating systems allow blanks in filenames, and so does Stata. However, if the filename
includes a blank, you must enclose the filename in double quotes. Typing

. save "my data"

would create the file my data.dta. Typing

. save my data

would be an error.

Usually (the exceptions being copy, dir, ls, erase, rm, and type), Stata automatically provides
a file extension if you do not supply one. For instance, if you type use mydata, Stata assumes that
you mean use mydata.dta because .dta is the file extension Stata normally uses for data files.

34 [U] 11 Language syntax

Stata provides the following default file extensions that are used by various commands:

.ado automatically loaded do-files

.dct text data dictionary

.do do-file

.dta Stata dataset file format

.dtas Stata frameset file format

.dtasig datasignature file

.gph graph

.grec Graph Editor recording (text format)

.irf impulse–response function datasets

.log log file in text format

.mata Mata source code

.mlib Mata library

.mmat Mata matrix

.mo Mata object file

.raw text-format data

.smcl log file in SMCL format

.stbcal business calendars

.ster saved estimates

.sthlp help file

.stjson Stata collection results, labels, and styles

.stpr project file

.stptrace parameter-trace file; see [MI] mi ptrace

.stsem SEM Builder file

.stswm spatial weighting matrix

.stswp Do-file Editor backup (swap) file

.stxer ancillary file to .ster when using lasso commands

.sum checksum files to verify network transfers

You do not have to name your data files with the .dta extension—if you type an explicit file
extension, it will override the default. For instance, if your dataset was stored as myfile.dat, you
could type use myfile.dat. If your dataset was stored as simply myfile with no file extension,
you could type the period at the end of the filename to indicate that you are explicitly specifying the
null extension. You would type use myfile. to use this dataset.

Technical note

Stata also uses other file extensions. These files are of interest only to advanced programmers or
are for Stata’s internal use. They are

.class class file for object-oriented programming; see [P] class

.dlg dialog resource file

.idlg dialog resource include file

.ihlp help include file

.key search’s keyword database file

.maint maintenance file (for Stata’s internal use only)

.mnu menu file (for Stata’s internal use only)

.pkg user-site package file

.plugin compiled addition (DLL)

.scheme control file for a graph scheme

.style graph style file

.toc user-site description file

https://www.stata.com/manuals/u17.pdf#u17Ado-files
https://www.stata.com/manuals/dinfilefixedformat.pdf#dinfile(fixedformat)
https://www.stata.com/manuals/u16.pdf#u16Do-files
https://www.stata.com/manuals/pfileformats.pdf#pFileformats.dta
https://www.stata.com/manuals/pfileformats.pdf#pFileformats.dtas
https://www.stata.com/manuals/ddatasignature.pdf#ddatasignature
https://www.stata.com/manuals/g-2graphsave.pdf#g-2graphsave
https://www.stata.com/manuals/g-1grapheditor.pdf#g-1GraphEditor
https://www.stata.com/manuals/tsirfset.pdf#tsirfset
https://www.stata.com/manuals/rlog.pdf#rlog
https://www.stata.com/manuals/m-1source.pdf#m-1Source
https://www.stata.com/manuals/m-3matamlib.pdf#m-3matamlib
https://www.stata.com/manuals/m-3matamatsave.pdf#m-3matamatsave
https://www.stata.com/manuals/m-3matamosave.pdf#m-3matamosave
https://www.stata.com/manuals/dinfilefreeformat.pdf#dinfile(freeformat)
https://www.stata.com/manuals/psmcl.pdf#psmcl
https://www.stata.com/manuals/ddatetimebusinesscalendars.pdf#dDatetimebusinesscalendars
https://www.stata.com/manuals/restimatessave.pdf#restimatessave
https://www.stata.com/manuals/psmcl.pdf#psmcl
https://www.stata.com/manuals/tablescollectsave.pdf#tablescollectsave
https://www.stata.com/manuals/pprojectmanager.pdf#pProjectManager
https://www.stata.com/manuals/mimiptrace.pdf#mimiptrace
https://www.stata.com/manuals/mimiptrace.pdf#mimiptrace
https://www.stata.com/manuals/sembuilder.pdf#semBuilder
https://www.stata.com/manuals/spspmatrixuse.pdf#spspmatrixuse
https://www.stata.com/manuals/lassoestimatesstore.pdf#lassoestimatesstore
https://www.stata.com/manuals/dchecksum.pdf#dchecksum
https://www.stata.com/manuals/pclass.pdf#pclass
https://www.stata.com/manuals/pclass.pdf#pclass
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogramming
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogramming
https://www.stata.com/manuals/psmcl.pdf#psmcl
https://www.stata.com/manuals/rsearch.pdf#rsearch
https://www.stata.com/manuals/rnet.pdf#rnet
https://www.stata.com/manuals/pplugin.pdf#pplugin
https://www.stata.com/manuals/g-4schemesintro.pdf#g-4Schemesintro
https://www.stata.com/manuals/g-2graphquery.pdf#g-2graphquery
https://www.stata.com/manuals/u29.pdf#u29.5Makingyourowndownloadsite

[U] 11 Language syntax 35

11.6.1 A special note for Mac users

Have you seen the notation myfolder/myfile before? This notation is called a path and describes
the location of a file or folder (also called a directory).

You do not have to use this notation if you do not like it. You could instead restrict yourself to using
files only in the current folder. If that turns out to be too restricting, Stata for Mac provides enough
menus and buttons that you can probably get by. You may, however, find the notation convenient. If
you do, here is the rest of the definition.

The character / is called a path delimiter and delimits folder names and filenames in a path. If
the path starts with no path delimiter, the path is relative to the current folder.

For example, the path myfolder/myfile refers to the file myfile in the folder myfolder, which
is contained in the current folder.

The characters .. refer to the folder containing the current folder. Thus ../myfile refers to
myfile in the folder containing the current folder, and ../nextdoor/myfile refers to myfile in
the folder nextdoor in the folder containing the current folder.

If a path starts with a path delimiter, the path is called an absolute path and describes a fixed
location of a file or folder name, regardless of what the current folder is. The leading / in an absolute
path refers to the root directory, which is the main hard drive from which the operating system is
booted. For example, the path /myfolder/myfile refers to the file myfile in the folder myfolder,
which is contained in the main hard drive.

11.6.2 A shortcut to your home directory

Stata understands ~ to mean your home directory. Thus, you can refer to a dataset named
mydata.dta in a subdirectory named mydir within your home directory by referring to the path

~\mydir\mydata.dta

in Stata for Windows or by referring to the path

~/mydir/mydata.dta

in Stata for Mac or Stata for Unix.

11.7 References
Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

Buis, M. L. 2020. Stata tip 135: Leaps and bounds. Stata Journal 20: 244–249.

Cox, N. J. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86–102.

. 2009. Stata tip 79: Optional arguments to options. Stata Journal 9: 504.

. 2023. Stata tip 151: Puzzling out some logical operators. Stata Journal 23: 293–297.

Cox, N. J., and C. B. Schechter. 2019. Speaking Stata: How best to generate indicator or dummy variables. Stata
Journal 19: 246–259.

. 2023. Stata tip 152: if and if: When to use the if qualifier and when to use the if command. Stata Journal
23: 589–594.

Daniels, L., and N. Minot. 2020. An Introduction to Statistics and Data Analysis Using Stata. Thousand Oaks, CA:
Sage.

Kolev, G. I. 2006. Stata tip 31: Scalar or variable? The problem of ambiguous names. Stata Journal 6: 279–280.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata
Press.

http://www.stata-press.com/books/introduction-stata-programming/
https://doi.org/10.1177/1536867X20909707
http://www.stata-journal.com/article.html?article=pr0004
http://www.stata-journal.com/article.html?article=pr0048
https://doi.org/10.1177/1536867X231162009
https://doi.org/10.1177/1536867X19830921
https://doi.org/10.1177/1536867X231175349
http://www.stata.com/bookstore/introduction-to-statistics-and-data-analysis-using-stata/
http://www.stata-journal.com/article.html?article=dm0021
http://www.stata-press.com/books/data-management-using-stata/

36 [U] 11 Language syntax

Ryan, P. 2005. Stata tip 22: Variable name abbreviation. Stata Journal 5: 465–466.

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

http://www.stata-journal.com/article.html?article=dm0016

