Title

varwle — Obtain Wald lag-exclusion statistics

Description Quick Options Remain References Also s

Quick start Remarks and examples Also see Menu Stored results Syntax Methods and formulas

Description

varwle reports Wald tests the hypothesis that the endogenous variables at a given lag are jointly zero for each equation and for all equations jointly.

Quick start

Wald lag-exclusion statistics after var, svar, or ivsvar

varwle

Same as above, but use vector autoregressive (VAR), structural autoregressive (SVAR), or instrumentalvariables SVAR estimation results stored in myest

varwle, estimates(myest)

Menu

Statistics > Multivariate time series > VAR diagnostics and tests > Wald lag-exclusion statistics

Syntax

```
varwle [, estimates(estname) separator(#)]
```

varwle can be used only after var, svar, or ivsvar; see [TS] var, [TS] var svar, or [TS] var ivsvar. collect is allowed; see [U] 11.1.10 Prefix commands.

Options

- estimates (*estname*) requests that varwle use the previously obtained set of var, svar, or ivsvar estimates stored as *estname*. By default, varwle uses the active estimation results. See [R] estimates for information on manipulating estimation results.
- separator(#) specifies how often separator lines should be drawn between rows. By default, separator lines do not appear. For example, separator(1) would draw a line between each row, separator(2) between every other row, and so on.

Remarks and examples

stata.com

After fitting a VAR model, one hypothesis of interest is that all the endogenous variables at a given lag are jointly zero. varwle reports Wald tests of this hypothesis for each equation and for all equations jointly. varwle uses the estimation results from a previously fitted var, svar, or, in StataNow, ivsvar. By default, varwle uses the active estimation results, but you may also use a stored set of estimates by specifying the estimates() option.

If the VAR model was fit with the small option, varwle also presents small-sample F statistics; otherwise, varwle presents large-sample χ^2 statistics.

Example 1: After var

We analyze the model with the German data described in [TS] var using varwle.

```
. use https://www.stata-press.com/data/r18/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)
. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4), dfk small</pre>
```

```
(output omitted)
```

. varwle

Equation: dln_inv

lag	F	df	df_r	Prob > F
1	2.64902	3	66	0.0560
2	1.25799	3	66	0.2960

Equation: dln_inc

lag	F	df	df_r	Prob > F
1	2.19276	3	66	0.0971
2	.907499	3	66	0.4423

Equation: dln_consump

lag	F	df	df_r	Prob > F
1	1.80804	3	66	0.1543
2	5.57645	3	66	0.0018

Equation: All

lag	F	df	df_r	Prob > F
1	3.78884	9	66	0.0007
2	2.96811	9	66	0.0050

Because the VAR model was fit with the dfk and small options, varwle used the small-sample estimator of $\widehat{\Sigma}$ in constructing the VCE, producing an F statistic. The first two equations appear to have a different lag structure from that of the third. In the first two equations, we cannot reject the null hypothesis that all three endogenous variables have zero coefficients at the second lag. The hypothesis that all three endogenous variables have zero coefficients at the first lag can be rejected at the 10% level for both of the first two equations. In contrast, in the third equation, the coefficients on the second lag of the endogenous variables are jointly significant, but not those on the first lag. However, we strongly reject the hypothesis that the coefficients on the first lag of the endogenous variables are zero in all three equations jointly. Similarly, we can also strongly reject the hypothesis that the coefficients are zero in all three equations is the endogenous variables are zero in all three equations jointly.

If we believe these results strongly enough, we might want to refit the original VAR model, placing some constraints on the coefficients. See [TS] var for details on how to fit VAR models with constraints.

Example 2: After svar

Here we fit a simple SVAR model and then run varwle:

```
. matrix a = (., 0 \land ., .)
. matrix b = I(2)
. svar dln_inc dln_consump, aeq(a) beq(b)
Estimating short-run parameters
Iteration 0: Log likelihood = -159.21683
Iteration 1:
              Log likelihood =
                                 490.92264
Iteration 2:
             Log likelihood =
                                 528.66126
Iteration 3:
             Log likelihood =
                                 573.96363
Iteration 4: Log likelihood =
                                 578.05136
Iteration 5:
              Log likelihood =
                                 578.27633
Iteration 6:
              Log likelihood =
                                 578.27699
Iteration 7: Log likelihood =
                                 578.27699
Structural vector autoregression
       [/A]1_2 = 0
 (1)
 (2)
       [/B]1_1 = 1
 (3)
       [/B]1_2 = 0
 (4)
       [/B]2_1 = 0
 (5)
       [/B]2_2 = 1
Sample: 1960q4 thru 1982q4
                                                  Number of obs
                                                                               89
Exactly identified model
                                                  Log likelihood
                                                                     =
                                                                          578.277
               Coefficient
                             Std. err.
                                                  P>|z|
                                                             [95% conf. interval]
                                             z
/A
                                                  0.000
                  89.72411
                             6.725107
                                          13.34
                                                             76.54315
                                                                         102.9051
         1_1
         2_1
                 -64.73622
                             10.67698
                                          -6.06
                                                  0.000
                                                            -85.66271
                                                                        -43.80973
         1_2
                         0
                            (constrained)
         2_2
                  126.2964
                             9.466318
                                          13.34
                                                  0.000
                                                             107.7428
                                                                         144.8501
/B
                         1
                            (constrained)
         1_1
                            (constrained)
                         0
         2_1
         1_2
                         0
                            (constrained)
         2_2
                         1
                            (constrained)
```

The output table from var svar gives information about the estimates of the parameters in the A and B matrices in the SVAR model. But, as discussed in [TS] var svar, an SVAR model builds on an underlying VAR model. When varwle uses the estimation results produced by svar, it performs Wald lag-exclusion tests on the underlying VAR model. Next we run varwle on these svar results.

. varwle

Equation: dln_inc

lag	chi2	df	Prob > chi2
1	6.88775	2	0.032
2	1.873546	2	0.392

Equation: dln_consump

lag	chi2	df	Prob > chi2
1	9.938547	2	0.007
2	13.89996	2	0.001

Equation: All

lag	chi2	df	Prob > chi2
1	34.54276	4	0.000
2	19.44093	4	0.001

Now we fit the underlying VAR model with two lags and apply varwle to these results.

- . var dln_inc dln_consump (output omitted)
- . varwle

Equation: dln_inc

lag	chi2	df	Prob > chi2
1	6.88775	2	0.032
2	1.873546	2	0.392

Equation: dln_consump

lag	chi2	df	Prob > chi2
1	9.938547	2	0.007
2	13.89996	2	0.001

Equation: All

lag	chi2	df	Prob > chi2
1	34.54276	4	0.000
2	19.44093	4	0.001

Because varwle produces the same results in these two cases, we can conclude that when varwle is applied to svar results, it performs Wald lag-exclusion tests on the underlying VAR model.

4

Stored results

varwle stores the following in r():

Matrices	
if e(small)==""	
r(chi2)	χ^2 test statistics
r(df)	degrees of freedom
r(p)	<i>p</i> -values
if e(small)!=""	
r(F)	F test statistics
r(df_r)	numerator degrees of freedom
r(df)	denominator degree of freedom
r(p)	<i>p</i> -values

Methods and formulas

varwle uses test to obtain Wald statistics of the hypotheses that all the endogenous variables at a given lag are jointly zero for each equation and for all equations jointly. Like the test command, varwle uses estimation results stored by var, svar, or ivsvar to determine whether to calculate and report small-sample F statistics or large-sample χ^2 statistics.

Abraham Wald (1902–1950) was born in Cluj, in what is now Romania. He studied mathematics at the University of Vienna, publishing at first on geometry, but then became interested in economics and econometrics. He moved to the United States in 1938 and later joined the faculty at Columbia. His major contributions to statistics include work in decision theory, optimal sequential sampling, large-sample distributions of likelihood-ratio tests, and nonparametric inference. Wald died in a plane crash in India.

References

- Amisano, G., and C. Giannini. 1997. Topics in Structural VAR Econometrics. 2nd ed, revised and enlarged. Heidelberg: Springer.
- Hamilton, J. D. 1994. Time Series Analysis. Princeton, NJ: Princeton University Press.
- Lütkepohl, H. 1993. Introduction to Multiple Time Series Analysis. 2nd ed. New York: Springer.
- Mangel, M., and F. J. Samaniego. 1984. Abraham Wald's work on aircraft survivability. Journal of the American Statistical Association 79: 259–267. https://doi.org/10.2307/2288257.

Wolfowitz, J. 1952. Abraham Wald, 1902–1950. Annals of Mathematical Statistics 23: 1–13 (and other reports in same issue). https://doi.org/10.1214/aoms/1177729480.

Also see

- [TS] **var** Vector autoregressive models⁺
- [TS] var intro Introduction to vector autoregressive models
- [TS] var ivsvar Instrumental-variables structural vector autoregressive models⁺
- [TS] var svar Structural vector autoregressive models
- [TS] varbasic Fit a simple VAR and graph IRFs or FEVDs

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.