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Description
Stata has a suite of commands for fitting, forecasting, interpreting, and performing inference

on vector autoregressive (VAR) models and structural vector autoregressive (SVAR) models. The suite
includes several commands for estimating and interpreting impulse–response functions (IRFs), dynamic-
multiplier functions, and forecast-error variance decompositions (FEVDs). The table below describes
the available commands.

Fitting a VAR or SVAR
var [TS] var Fit VAR models
svar [TS] var svar Fit SVAR models

+ivsvar [TS] var ivsvar Fit instrumental-variables SVAR models
varbasic [TS] varbasic Fit a simple VAR and graph IRFs or FEVDs

+This feature is part of StataNow.

Model diagnostics and inference
varstable [TS] varstable Check the stability condition of VAR or SVAR estimates
varsoc [TS] varsoc Obtain lag-order selection statistics for VAR

and VEC models
varwle [TS] varwle Obtain Wald lag-exclusion statistics
vargranger [TS] vargranger Perform pairwise Granger causality tests
varlmar [TS] varlmar Perform LM test for residual autocorrelation
varnorm [TS] varnorm Test for normally distributed disturbances

Forecasting after fitting a VAR or SVAR
fcast compute [TS] fcast compute Compute dynamic forecasts
fcast graph [TS] fcast graph Graph forecasts after fcast compute

Working with IRFs, dynamic-multiplier functions, and FEVDs
irf [TS] irf Create and analyze IRFs, dynamic-multiplier functions,

and FEVDs

This entry provides an overview of vector autoregressions and structural vector autoregressions.
More rigorous treatments can be found in Hamilton (1994), Lütkepohl (2005), and Amisano and
Giannini (1997). Stock and Watson (2001) provide an excellent nonmathematical treatment of vector
autoregressions and their role in macroeconomics. Becketti (2020) provides an excellent introduction
to VAR analysis with an emphasis on how it is done in practice.
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Remarks and examples stata.com

Remarks are presented under the following headings:
Introduction to VAR models
Introduction to SVAR models
Short-run SVAR models
Long-run restrictions
IRFs and FEVDs
Instrumental-variables SVAR models (StataNow)

Introduction to VAR models
A VAR model is a model in which K variables are specified as linear functions of p of their own

lags, p lags of the other K − 1 variables, and possibly additional exogenous variables. Algebraically,
a p-order VAR model, written VAR(p), with exogenous variables xt is given by

yt = v+A1yt−1+ · · ·+Apyt−p+B0xt+B1xt−1+ · · ·+Bsxt−s+ut t ∈ {−∞,∞} (1)

where

yt = (y1t, . . . , yKt)
′ is a K × 1 random vector,

A1 through Ap are K ×K matrices of parameters,
xt is an M × 1 vector of exogenous variables,
B0 through Bs are K ×M matrices of coefficients,
v is a K × 1 vector of parameters, and
ut is assumed to be white noise; that is,

E(ut) = 0,
E(utu

′
t) = Σ, and

E(utu
′
s) = 0 for t 6= s

There are K2 × p + K × (M(s + 1) + 1) parameters in the equation for yt, and there are
{K × (K + 1)}/2 parameters in the covariance matrix Σ. One way to reduce the number of parameters
is to specify an incomplete VAR model, in which some of the A or B matrices are set to zero.
Another way is to specify linear constraints on some of the coefficients in the VAR model.

A VAR model can be viewed as the reduced form of a system of dynamic simultaneous equations.
Consider the system

W0yt = a+W1yt−1 + · · ·+Wpyt−p + W̃1xt + W̃2xt−2 + · · ·+ W̃sxt−s + et (2)

where a is a K × 1 vector of parameters, each Wi, i = 0, . . . , p, is a K ×K matrix of parameters,
and et is a K × 1 disturbance vector. In the traditional dynamic simultaneous equations approach,
sufficient restrictions are placed on the Wi to obtain identification. Assuming that W0 is nonsingular,
(2) can be rewritten as

yt =W−1
0 a+W−1

0 W1yt−1 + · · ·+W−1
0 Wpyt−p

+W−1
0 W̃1xt +W−1

0 W̃2xt−2 + · · ·+W−1
0 W̃sxt−s +W−1

0 et
(3)

which is a VAR model with

v = W−1
0 a

Ai = W−1
0 Wi

Bi = W−1
0 W̃i

ut = W−1
0 et
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The cross-equation error variance–covariance matrix Σ contains all the information about contempo-
raneous correlations in a VAR model and may be the VAR model’s greatest strength and its greatest
weakness. Because no questionable a priori assumptions are imposed, fitting a VAR model allows the
dataset to speak for itself. However, without imposing some restrictions on the structure of Σ, we
cannot make a causal interpretation of the results.

If we make additional technical assumptions, we can derive another representation of the VAR
model in (1). If the VAR model is stable (see [TS] varstable), we can rewrite yt as

yt = µ+

∞∑
i=0

Dixt−i +

∞∑
i=0

Φiut−i (4)

where µ is the K × 1 time-invariant mean of the process and Di and Φi are K ×M and K ×K
matrices of parameters, respectively. Equation (4) states that the process by which the variables in
yt fluctuate about their time-invariant means, µ, is completely determined by the parameters in
Di and Φi and the (infinite) past history of the exogenous variables xt and the independent and
identically distributed (i.i.d.) shocks or innovations, ut−1,ut−2, . . . . Equation (4) is known as the
vector moving-average representation of the VAR model. The Di are the dynamic-multiplier functions,
or transfer functions. The moving-average coefficients Φi are also known as the simple IRFs at horizon
i. The precise relationships between the VAR parameters and the Di and Φi are derived in Methods
and formulas of [TS] irf create.

The joint distribution of yt is determined by the distributions of xt and ut and the parameters v,
Bi, and Ai. Estimating the parameters in a VAR model requires that the variables in yt and xt be
covariance stationary, meaning that their first two moments exist and are time invariant. If the yt are
not covariance stationary, but their first differences are, a vector error-correction model can be used.
See [TS] vec intro and [TS] vec for more information about those models.

If the ut form a zero mean, i.i.d. vector process, and yt and xt are covariance stationary and are
not correlated with the ut, consistent and efficient estimates of the Bi, the Ai, and v are obtained
via seemingly unrelated regression, yielding estimators that are asymptotically normally distributed.
When the equations for the variables yt have the same set of regressors, equation-by-equation OLS
estimates are the conditional maximum likelihood estimates.

Much of the interest in VAR models is focused on the forecasts, IRFs, dynamic-multiplier functions,
and the FEVDs, all of which are functions of the estimated parameters. Estimating these functions is
straightforward, but their asymptotic standard errors are usually obtained by assuming that ut forms
a zero mean, i.i.d. Gaussian (normal) vector process. Also, some of the specification tests for VAR
models have been derived using the likelihood-ratio principle and the stronger Gaussian assumption.

In the absence of contemporaneous exogenous variables, the disturbance variance–covariance matrix
contains all the information about contemporaneous correlations among the variables. VAR models
are sometimes classified into three types by how they account for this contemporaneous correlation.
(See Stock and Watson [2001] for one derivation of this taxonomy.) A reduced-form VAR model,
aside from estimating the variance–covariance matrix of the disturbance, does not try to account
for contemporaneous correlations. In a recursive VAR model, the K variables are assumed to form
a recursive dynamic structural equation model in which the first variable is a function of lagged
variables, the second is a function of contemporaneous values of the first variable and lagged values,
and so on. In a structural VAR model, the theory you are working with places restrictions on the
contemporaneous correlations that are not necessarily recursive.

Stata has two commands for fitting reduced-form VAR models: var and varbasic. var allows
for constraints to be imposed on the coefficients. varbasic allows you to fit a simple VAR model
quickly without constraints and graph the IRFs.

https://www.stata.com/manuals/tsvarstable.pdf#tsvarstable
https://www.stata.com/manuals/tsirfcreate.pdf#tsirfcreateMethodsandformulas
https://www.stata.com/manuals/tsirfcreate.pdf#tsirfcreateMethodsandformulas
https://www.stata.com/manuals/tsirfcreate.pdf#tsirfcreate
https://www.stata.com/manuals/tsvecintro.pdf#tsvecintro
https://www.stata.com/manuals/tsvec.pdf#tsvec
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Because fitting a VAR model of the correct order can be important, varsoc offers several methods
for choosing the lag order p of the VAR model to fit. After fitting a VAR model, and before proceeding
with inference, interpretation, or forecasting, checking that the VAR model fits the data is important.
varlmar can be used to check for autocorrelation in the disturbances. varwle performs Wald tests to
determine whether certain lags can be excluded. varnorm tests the null hypothesis that the disturbances
are normally distributed. varstable checks the eigenvalue condition for stability, which is needed
to interpret the IRFs and IRFs.

Introduction to SVAR models

As discussed in [TS] irf create, a problem with VAR analysis is that, because Σ is not restricted
to be a diagonal matrix, an increase in an innovation to one variable provides information about the
innovations to other variables. This implies that no causal interpretation of the simple IRFs is possible:
there is no way to determine whether the shock to the first variable caused the shock in the second
variable or vice versa.

However, suppose that we had a matrix P such that Σ = PP′. We can then show that the variables
in P−1ut have zero mean and that E{P−1ut(P

−1ut)
′} = IK . We could rewrite (4) as

yt = µ+

∞∑
s=0

ΦsPP−1ut−s

= µ+

∞∑
s=0

ΘsP
−1ut−s

= µ+

∞∑
s=0

Θswt−s (5)

where Θs = ΦsP and wt = P−1ut. If we had such a P, the wk would be mutually orthogonal,
and the Θs would allow the causal interpretation that we seek.

SVAR models provide a framework for estimation of and inference about a broad class of P
matrices. As described in [TS] irf create, the estimated P matrices can then be used to estimate
structural IRFs and structural FEVDs. There are two types of SVAR models. Short-run SVAR models
identify a P matrix by placing restrictions on the contemporaneous correlations between the variables.
Long-run SVAR models, on the other hand, do so by placing restrictions on the long-term accumulated
effects of the innovations.

Short-run SVAR models

A short-run SVAR model without exogenous variables can be written as

A(IK −A1L−A2L
2 − · · · −ApL

p)yt = Aεt = Bet (6)

where L is the lag operator; A, B, and A1, . . . ,Ap are K × K matrices of parameters; εt is a
K × 1 vector of innovations with εt ∼ N(0,Σ) and E[εtε

′
s] = 0K for all s 6= t; and et is a K × 1

vector of orthogonalized disturbances; that is, et ∼ N(0, IK) and E[ete
′
s] = 0K for all s 6= t.

These transformations of the innovations allow us to analyze the dynamics of the system in terms
of a change to an element of et. In a short-run SVAR model, we obtain identification by placing
restrictions on A and B, which are assumed to be nonsingular.

https://www.stata.com/manuals/tsirfcreate.pdf#tsirfcreate
https://www.stata.com/manuals/tsirfcreate.pdf#tsirfcreate
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Equation (6) implies that Psr = A−1B, where Psr is the P matrix identified by a particular
short-run SVAR model. The latter equality in (6) implies that

Aεtε
′
tA
′ = Bete

′
tB
′

Taking the expectation of both sides yields

Σ = PsrP
′
sr

Assuming that the underlying VAR model is stable (see [TS] varstable for a discussion of stability),
we can invert the autoregressive representation of the model in (6) to an infinite-order, moving-average
representation of the form

yt = µ+

∞∑
s=0

Θsr
s et−s (7)

whereby yt is expressed in terms of the mutually orthogonal, unit-variance structural innovations et.
The Θsr

s contain the structural IRFs at horizon s.

In a short-run SVAR model, the A and B matrices model all the information about contemporaneous
correlations. The B matrix also scales the innovations ut to have unit variance. This allows the
structural IRFs constructed from (7) to be interpreted as the effect on variable i of a one-time unit
increase in the structural innovation to variable j after s periods.

Psr identifies the structural IRFs by defining a transformation of Σ, and Psr is identified by
the restrictions placed on the parameters in A and B. Because there are only K(K + 1)/2 free
parameters in Σ, only K(K + 1)/2 parameters may be estimated in an identified Psr. Because there
are 2K2 total parameters in A and B, the order condition for identification requires that at least
2K2−K(K + 1)/2 restrictions be placed on those parameters. Just as in the simultaneous-equations
framework, this order condition is necessary but not sufficient. Amisano and Giannini (1997) derive
a method to check that an SVAR model is locally identified near some specified values for A and B.

Before moving on to models with long-run constraints, consider these limitations. We cannot place
constraints on the elements of A in terms of the elements of B, or vice versa. This limitation is
imposed by the form of the check for identification derived by Amisano and Giannini (1997). As
noted in Methods and formulas of [TS] var svar, this test requires separate constraint matrices for
the parameters in A and B. Also, we cannot mix short-run and long-run constraints.

Long-run restrictions

A general short-run SVAR model has the form

A(IK −A1L−A2L
2 − · · · −ApL

p)yt = Bet

To simplify the notation, let A = (IK −A1L−A2L
2− · · · −ApL

p). The model is assumed to be

stable (see [TS] varstable), so A
−1

, the matrix of estimated long-run effects of the reduced-form VAR
shocks, is well defined. Constraining A to be an identity matrix allows us to rewrite this equation as

yt = A
−1

Bet

which implies that Σ = BB′. Thus C = A
−1

B is the matrix of long-run responses to the
orthogonalized shocks, and

yt = Cet

https://www.stata.com/manuals/tsvarstable.pdf#tsvarstable
https://www.stata.com/manuals/tsvarsvar.pdf#tsvarsvarMethodsandformulas
https://www.stata.com/manuals/tsvarsvar.pdf#tsvarsvar
https://www.stata.com/manuals/tsvarstable.pdf#tsvarstable
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In long-run models, the constraints are placed on the elements of C, and the free parameters are
estimated. These constraints are often exclusion restrictions. For instance, constraining C[1, 2] to be
zero can be interpreted as setting the long-run response of variable 1 to the structural shocks driving
variable 2 to be zero.

Stata’s svar command estimates the parameters of SVAR models. See [TS] var svar for more
information and examples.

Instrumental-variables SVAR models (StataNow)

A short-run SVAR model with the normalization A = Ik can be written as

yt = A1yt−1 + · · ·+Apyt−p + ut

ut = Bet

Columns of B describe the impact effect of each shock. A short-run SVAR model places restrictions
on some elements of B based on theory and estimates other elements. An instrumental-variables
SVAR model uses instruments to reduce the number of restrictions needed on B. An instrument zt
is an auxiliary variable, not included in the SVAR model, which is correlated with one of the SVAR
shocks and is unrelated to the remaining shocks. Thus, it can be written as

zt = pze1,t + ωt

The instrument has three properties: it is correlated with the shock of interest, e1,t (called the target
shock); it is uncorrelated with all other shocks; and it is potentially contaminated by measurement
noise wt, which is unrelated to the SVAR shocks.

Instead of a single instrument, there may be a vector of instruments. In this case, the mapping
between instruments and target shocks is

zt = Pze1,t + ωt

where zt is an r × 1 vector of instruments, e1,t is a g × 1 vector of target shocks, Pz is an r × g
matrix of relationships between instruments and target shocks, and ωt is an r × 1 vector of noise
terms.

An instrumental-variables SVAR model combines the SVAR equations with the instrument equations.
The VAR residuals and instruments are related to the SVAR shocks and instrument noise via

ut = B1e1,t +B2e2,t

zt = Pze1,t + ωt

where e1,t are target shocks and e2,t are nontarget shocks. This model can fit multiple columns of
B without placing any restrictions on them, which is impossible in a short-run SVAR model.

The ivsvar gmm command estimates the parameters of instrumental-variables SVAR models for
the case g = 1 (one target shock) and r ≥ 1 (one or more instruments). It estimates one column of
B, the one corresponding to the target shock.

The ivsvar mdist command estimates the parameters of instrumental-variables SVAR models for
the case r = g ≥ 1. There may be more than one target shock, and the number of instruments must
equal the number of target shocks. It estimates g columns of B, the ones corresponding to the target
shocks.

https://www.stata.com/manuals/tsvarsvar.pdf#tsvarsvar
https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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IRFs and FEVDs

IRFs describe how the K endogenous variables react over time to a one-time shock to one of the
K disturbances. Because the disturbances may be contemporaneously correlated, these functions do
not explain how variable i reacts to a one-time increase in the innovation to variable j after s periods,
holding everything else constant. To explain this, we must start with orthogonalized innovations so that
the assumption to hold everything else constant is reasonable. Recursive VAR models use a Cholesky
decomposition to orthogonalize the disturbances and thereby obtain structurally interpretable IRFs.
Structural VAR models use theory to impose sufficient restrictions, which need not be recursive, to
decompose the contemporaneous correlations into orthogonal components.

FEVDs are another tool for interpreting how the orthogonalized innovations affect the K variables
over time. The FEVD from j to i gives the fraction of the s-step forecast-error variance of variable i
that can be attributed to the jth orthogonalized innovation.

Dynamic–multiplier functions describe how the endogenous variables react over time to a unit
change in an exogenous variable. This is a different experiment from that in IRFs and FEVDs because
dynamic-multiplier functions consider a change in an exogenous variable instead of a shock to an
endogenous variable.

irf create estimates IRFs, Cholesky orthogonalized IRFs, dynamic-multiplier functions, and
structural IRFs and their standard errors. It also estimates Cholesky and structural FEVDs. The irf
graph, irf cgraph, irf ograph, irf table, and irf ctable commands graph and tabulate these
estimates. Stata also has several other commands to manage IRF and FEVD results. See [TS] irf for a
description of these commands.

fcast compute computes dynamic forecasts and their standard errors from VAR models. fcast
graph graphs the forecasts that are generated using fcast compute.

VAR models allow researchers to investigate whether one variable is useful in predicting another
variable. A variable x is said to Granger-cause a variable y if, given the past values of y, past values
of x are useful for predicting y. The Stata command vargranger performs Wald tests to investigate
Granger causality between the variables in a VAR model.
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Also see
[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] var — Vector autoregressive models+

[TS] var ivsvar — Instrumental-variables structural vector autoregressive models+

[TS] var svar — Structural vector autoregressive models

[TS] vec — Vector error-correction models

[TS] vec intro — Introduction to vector error-correction models
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