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Description

Unobserved-components models (UCMs) decompose a time series into trend, seasonal, cyclical,
and idiosyncratic components and allow for exogenous variables. ucm estimates the parameters of
UCMs by maximum likelihood.

All the components are optional. The trend component may be first-order deterministic or it may
be first-order or second-order stochastic. The seasonal component is stochastic; the seasonal effects
at each time period sum to a zero-mean finite-variance random variable. The cyclical component is
modeled by the stochastic-cycle model derived by Harvey (1989).

Quick start
Random-walk model for y using tsset data

ucm y

Add a cyclical component of order 2
ucm y, cycle(2)

Add a seasonal component arising every 3 periods
ucm y, cycle(2) seasonal(3)

Random-walk model for y with a drift component and a cyclical component of order 1
ucm y, model(rwdrift) cycle(1)

Smooth-trend model for y with cyclical and seasonal components of order 2
ucm y, model(strend) cycle(2) seasonal(2)

Menu
Statistics > Time series > Unobserved-components model
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Syntax
ucm depvar

[
indepvars

] [
if
] [

in
] [

, options
]

options Description

Model

model(model) specify trend and idiosyncratic components
seasonal(#) include a seasonal component with a period of # time units
cycle(#

[
, frequency(#f)

]
) include a cycle component of order # and optionally set initial

frequency to #f , 0 < #f < π; cycle() may be specified up to
three times

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, display of

omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process

collinear keep collinear variables
coeflegend display legend instead of statistics

model Description

rwalk random-walk model; the default
none no trend or idiosyncratic component
ntrend no trend component but include idiosyncratic component
dconstant deterministic constant with idiosyncratic component
llevel local-level model
dtrend deterministic-trend model with idiosyncratic component
lldtrend local-level model with deterministic trend
rwdrift random-walk-with-drift model
lltrend local-linear-trend model
strend smooth-trend model
rtrend random-trend model

You must tsset your data before using ucm; see [TS] tsset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
indepvars and depvar may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, collect, fp, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands


ucm — Unobserved-components model 3

Options

� � �
Model �

model(model) specifies the trend and idiosyncratic components. The default is model(rwalk). The
available models are listed in Syntax and discussed in detail in Models for the trend and idiosyncratic
components under Remarks and examples below.

seasonal(#) adds a stochastic-seasonal component to the model. # is the period of the season, that
is, the number of time-series observations required for the period to complete.

cycle(#) adds a stochastic-cycle component of order # to the model. The order # must be 1, 2, or
3. Multiple cycles are added by repeating the cycle(#) option with up to three cycles allowed.

cycle(#, frequency(#f)) specifies #f as the initial value for the central-frequency parameter
in the stochastic-cycle component of order #. #f must be in the interval (0, π).

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the estimator for the variance–covariance matrix of the estimator.

vce(oim), the default, causes ucm to use the observed information matrix estimator.

vce(robust) causes ucm to use the Huber/White/sandwich estimator.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
and sformat(% fmt); see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and from(matname); see [R] Maximize for all options except from(), and
see below for information on from().

from(matname) specifies initial values for the maximization process. from(b0) causes ucm to
begin the maximization algorithm with the values in b0. b0 must be a row vector; the number
of columns must equal the number of parameters in the model; and the values in b0 must be
in the same order as the parameters in e(b).

If your model fails to converge, try using the difficult option. Also see the technical note below
example 5.

The following options are available with ucm but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Remarks and examples stata.com

Remarks are presented under the following headings:

An introduction to UCMs
A random-walk model example
Frequency-domain concepts used in the stochastic-cycle model
Another random-walk model example
Comparing UCM and ARIMA
A local-level model example
Comparing UCM and ARIMA, revisited
Models for the trend and idiosyncratic components
Seasonal component

An introduction to UCMs

UCMs decompose a time series into trend, seasonal, cyclical, and idiosyncratic components and
allow for exogenous variables. Formally, UCMs can be written as

yt = τt + γt + ψt + βxt + εt (1)

where yt is the dependent variable, τt is the trend component, γt is the seasonal component, ψt is
the cyclical component, β is a vector of fixed parameters, xt is a vector of exogenous variables, and
εt is the idiosyncratic component.

By placing restrictions on τt and εt, Harvey (1989) derived a series of models for the trend and the
idiosyncratic components. These models are briefly described in Syntax and are further discussed in
Models for the trend and idiosyncratic components. To these models, Harvey (1989) added models for
the seasonal and cyclical components, and he also allowed for the presence of exogenous variables.

It is rare that a UCM contains all the allowed components. For instance, the seasonal component
is rarely needed when modeling deseasonalized data.

Harvey (1989) and Durbin and Koopman (2012) show that UCMs can be written as state-space
models that allow the parameters of a UCM to be estimated by maximum likelihood. In fact, ucm
uses sspace (see [TS] sspace) to perform the estimation calculations; see Methods and formulas for
details.

After estimating the parameters, predict can produce in-sample predictions or out-of-sample
forecasts; see [TS] ucm postestimation. After estimating the parameters of a UCM that contains
a cyclical component, estat period converts the estimated central frequency to an estimated
central period and psdensity estimates the spectral density implied by the model; see [TS] ucm
postestimation and the examples below.

We illustrate the basic approach of analyzing data with UCMs, and then we discuss the details of
the different trend models in Models for the trend and idiosyncratic components.

Although the methods implemented in ucm have been widely applied by economists, they are general
time-series techniques and may be of interest to researchers from other disciplines. In example 8, we
analyze monthly data on the reported cases of mumps in New York City.

http://stata.com
https://www.stata.com/manuals/tssspace.pdf#tssspace
https://www.stata.com/manuals/tsucmpostestimation.pdf#tsucmpostestimation
https://www.stata.com/manuals/tsucmpostestimation.pdf#tsucmpostestimation
https://www.stata.com/manuals/tsucmpostestimation.pdf#tsucmpostestimation
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A random-walk model example

Example 1

We begin by plotting monthly data on the U.S. civilian unemployment rate.

. use https://www.stata-press.com/data/r18/unrate

. tsline unrate, name(unrate)
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This series looks like it might be well approximated by a random-walk model. Formally, a
random-walk model is given by

yt = µt

µt = µt−1 + ηt
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The random-walk is so frequently applied, at least as a starting model, that it is the default model
for ucm. In the output below, we fit the random-walk model to the unemployment data.

. ucm unrate
searching for initial values ..........

(setting technique to bhhh)
Iteration 0: Log likelihood = 84.272992
Iteration 1: Log likelihood = 84.394942
Iteration 2: Log likelihood = 84.400923
Iteration 3: Log likelihood = 84.401282
Iteration 4: Log likelihood = 84.401305
(switching technique to nr)
Iteration 5: Log likelihood = 84.401306
Refining estimates:
Iteration 0: Log likelihood = 84.401306
Iteration 1: Log likelihood = 84.401307

Unobserved-components model
Components: random walk

Sample: 1948m1 thru 2011m1 Number of obs = 757
Log likelihood = 84.401307

unrate Coefficient Std. err. z P>|z| [95% conf. interval]

var(level) .0467196 .002403 19.44 0.000 .0420098 .0514294

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.

The output indicates that the model is nonstationary, as all random-walk models are.

We consider a richer model in the next example.

Example 2

We suspect that there should be a stationary cyclical component that produces serially correlated
shocks around the random-walk trend. Harvey (1989) derived a stochastic-cycle model for these
stationary cyclical components.

The stochastic-cycle model has three parameters: the frequency at which the random components
are centered, a damping factor that parameterizes the dispersion of the random components around
the central frequency, and the variance of the stochastic-cycle process that acts as a scale factor.
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Fitting this model to unemployment data yields

. ucm unrate, cycle(1)
searching for initial values ....................

(setting technique to bhhh)
Iteration 0: Log likelihood = 84.273579
Iteration 1: Log likelihood = 87.852115
Iteration 2: Log likelihood = 88.253422
Iteration 3: Log likelihood = 89.191311
Iteration 4: Log likelihood = 94.675898
(switching technique to nr)
Iteration 5: Log likelihood = 98.394691 (not concave)
Iteration 6: Log likelihood = 98.983093
Iteration 7: Log likelihood = 99.983625
Iteration 8: Log likelihood = 104.83113
Iteration 9: Log likelihood = 114.2697
Iteration 10: Log likelihood = 116.47453
Iteration 11: Log likelihood = 118.45857
Iteration 12: Log likelihood = 118.88057
Iteration 13: Log likelihood = 118.88421
Iteration 14: Log likelihood = 118.88421
Refining estimates:
Iteration 0: Log likelihood = 118.88421
Iteration 1: Log likelihood = 118.88421

Unobserved-components model
Components: random walk, order 1 cycle

Sample: 1948m1 thru 2011m1 Number of obs = 757
Wald chi2(2) = 26650.81

Log likelihood = 118.88421 Prob > chi2 = 0.0000

unrate Coefficient Std. err. z P>|z| [95% conf. interval]

frequency .0933466 .0103609 9.01 0.000 .0730397 .1136535
damping .9820003 .0061121 160.66 0.000 .9700207 .9939798

var(level) .0143786 .0051392 2.80 0.003 .004306 .0244511
var(cycle1) .0270339 .0054343 4.97 0.000 .0163829 .0376848

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.

The estimated central frequency for the cyclical component is small, implying that the cyclical
component is centered on low-frequency components. The high-damping factor indicates that all the
components from this cyclical component are close to the estimated central frequency. The estimated
variance of the stochastic-cycle process is small but significant.

We use estat period to convert the estimate of the central frequency to an estimated central
period.

. estat period

cycle1 Coefficient Std. err. [95% conf. interval]

period 67.31029 7.471004 52.66739 81.95319
frequency .0933466 .0103609 .0730397 .1136535

damping .9820003 .0061121 .9700207 .9939798

Note: Cycle time unit is monthly.
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Because we have monthly data, the estimated central period of 67.31 implies that the cyclical
component is composed of random components that occur around a central periodicity of about 5.61
years. This estimate falls within the conventional Burns and Mitchell (1946) definition of business-cycle
shocks occurring between 1.5 and 8 years.

We can convert the estimated parameters of the cyclical component to an estimated spectral
density of the cyclical component, as described by Harvey (1989). The spectral density of the cyclical
component describes the relative importance of the random components at different frequencies; see
Frequency-domain concepts used in the stochastic-cycle model for details. We use psdensity (see
[TS] psdensity) to obtain the spectral density of the cyclical component implied by the estimated
parameters, and we use twoway line (see [G-2] graph twoway line) to plot the estimated spectral
density.

. psdensity sdensity omega

. line sdensity omega
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The estimated spectral density shows that the cyclical component is composed of random components
that are tightly distributed at the low-frequency peak.

Frequency-domain concepts used in the stochastic-cycle model

The parameters of the stochastic-cycle model are easiest to interpret in the frequency domain. We
now provide a review of the useful concepts from the frequency domain. Crucial to understanding the
stochastic-cycle model is the frequency-domain concept that a stationary process can be decomposed
into random components that occur at the frequencies in the interval [0, π].

We need some concepts from the frequency-domain approach to interpret the parameters in the
stochastic-cycle model of the cyclical component. Here we provide a simple, intuitive explanation.
More technical presentations can be found in Priestley (1981), Harvey (1989, 1993), Hamilton (1994),
Fuller (1996), and Wei (2006).

As with much time-series analysis, the basic results are for covariance-stationary processes with
additional results handling some nonstationary cases. We present some useful results for covariance-
stationary processes. These results provide what we need to interpret the stochastic-cycle model for
the stationary cyclical component.

https://www.stata.com/manuals/tspsdensity.pdf#tspsdensity
https://www.stata.com/manuals/g-2graphtwowayline.pdf#g-2graphtwowayline
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The autocovariances γj , j ∈ {0, 1, . . . ,∞}, of a covariance-stationary process yt specify its
variance and dependence structure. In the frequency-domain approach to time-series analysis, the
spectral density describes the importance of the random components that occur at frequency ω relative
to the components that occur at other frequencies.

The frequency-domain approach focuses on the relative contributions of random components that
occur at the frequencies [0, π].

The spectral density can be written as a weighted average of the autocorrelations of yt. Like
autocorrelations, the spectral density is normalized by γ0, the variance of yt. Multiplying the spectral
density by γ0 yields the power-spectrum of yt.

In an independent and identically distributed (i.i.d.) process, the components at all frequencies are
equally important, so the spectral density is a flat line.

In common parlance, we speak of high-frequency noise making a series look more jagged and of
low-frequency components causing smoother plots. More formally, we say that a process composed
primarily of high-frequency components will have fewer runs above or below the mean than an i.i.d.
process and that a process composed primarily of low-frequency components will have more runs
above or below the mean than an i.i.d. process.

To further formalize these ideas, consider the first-order autoregressive (AR(1)) process given by

yt = φyt−1 + εt

where εt is a zero-mean, covariance-stationary process with finite variance σ2, and |φ| < 1 so that
yt is covariance stationary. The first-order autocorrelation of this AR(1) process is φ.

Below are plots of simulated data when φ is set to 0, −0.8, and 0.8. When φ = 0, the data are i.i.d.
When φ = −0.8, the value today is strongly negatively correlated with the value yesterday, so this case
should be a prototypical high-frequency noise example. When φ = 0.8, the value today is strongly
positively correlated with the value yesterday, so this case should be a prototypical low-frequency
shock example.
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The plots above confirm our conjectures. The plot when φ = −0.8 contains fewer runs above or
below the mean, and it is more jagged than the i.i.d. plot. The plot when φ = 0.8 contains more runs
above or below the mean, and it is smoother than the i.i.d. plot.
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Below we plot the spectral densities for the AR(1) model with φ = 0, φ = −0.8, and φ = 0.8.
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φ = 0
φ = 0.8
φ = -0.8

The high-frequency components are much more important to the AR(1) process with φ = −0.8 than
to the i.i.d. process with φ = 0. The low-frequency components are much more important to the
AR(1) process with φ = 0.8 than to the i.i.d. process.

Technical note

Autoregressive moving-average (ARMA) models parameterize the autocorrelation in a time series
by allowing today’s value to be a weighted average of past values and a weighted average of past i.i.d.
shocks; see Hamilton (1994), Wei (2006), and [TS] arima for introductions and a Stata implementation.
The intuitive ARMA parameterization has many nice features, including that one can easily rewrite
the ARMA model as a weighted average of past i.i.d. shocks to trace how a shock feeds through the
system.

Although it is easy to obtain the spectral density of an ARMA process, the parameters themselves
provide limited information about the underlying spectral density.

In contrast, the parameters of the stochastic-cycle parameterization of autocorrelation in a time series
directly provide information about the underlying spectral density. The parameter ω0 is the central
frequency at which the random components are clustered. If ω0 is small, then the model is centered
on low-frequency components. If ω0 is close to π, then the model is centered on high-frequency
components. The parameter ρ is the damping factor that indicates how tightly clustered the random
components are at the central frequency ω0. If ρ is close to 0, there is no clustering of the random
components. If ρ is close to 1, the random components are tightly distributed at the central frequency
ω0.

In the graph below, we draw the spectral densities implied by stochastic-cycle models with
four sets of parameters: ω0 = π/4, ρ = 0.8; ω0 = π/4, ρ = 0.9; ω0 = 4π/5, ρ = 0.8; and
ω0 = 4π/5, ρ = 0.9. The graph below illustrates that ω0 is the central frequency at which the other
important random components are distributed. It also illustrates that the damping parameter ρ controls
the dispersion of the important components at the central frequency.

https://www.stata.com/manuals/tsarima.pdf#tsarima
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Another random-walk model example

Example 3

Now let’s reconsider example 2. Although we might be happy with how our model has identified
a stationary cyclical component that we could interpret in business-cycle terms, we suspect that there
should also be a high-frequency cyclical component. It is difficult to estimate the parameters of a UCM
with two or more stochastic-cycle models. Providing starting values for the central frequencies can be
a crucial help to the optimization procedure. Below we estimate a UCM with two cyclical components.
We use the frequency() suboption to provide starting values for the central frequencies; we specified
the values below because we suspect one model will pick up the low-frequency components and the
other will pick up the high-frequency components. We specified the low-frequency model to be order
2 to make it less peaked for any given damping factor. (Trimbur [2006] provides a nice introduction
and some formal results for higher-order stochastic-cycle models.)

. ucm unrate, cycle(1, frequency(2.9)) cycle(2, frequency(.09))
searching for initial values ....................

(setting technique to bhhh)
Iteration 0: Log likelihood = 115.98563
Iteration 1: Log likelihood = 125.04043
Iteration 2: Log likelihood = 127.69387
Iteration 3: Log likelihood = 134.50864
Iteration 4: Log likelihood = 136.91353
(switching technique to nr)
Iteration 5: Log likelihood = 138.5091
Iteration 6: Log likelihood = 146.09273
Iteration 7: Log likelihood = 146.28132
Iteration 8: Log likelihood = 146.28326
Iteration 9: Log likelihood = 146.28326
Refining estimates:
Iteration 0: Log likelihood = 146.28326
Iteration 1: Log likelihood = 146.28326
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Unobserved-components model
Components: random walk, 2 cycles of order 1 2

Sample: 1948m1 thru 2011m1 Number of obs = 757
Wald chi2(4) = 7681.33

Log likelihood = 146.28326 Prob > chi2 = 0.0000

unrate Coefficient Std. err. z P>|z| [95% conf. interval]

cycle1
frequency 2.882382 .0668017 43.15 0.000 2.751453 3.013311

damping .7004295 .125157 5.60 0.000 .4551262 .9457328

cycle2
frequency .0667929 .0206848 3.23 0.001 .0262514 .1073345

damping .9074708 .0142273 63.78 0.000 .8795858 .9353559

var(level) .0207704 .0039669 5.24 0.000 .0129953 .0285454
var(cycle1) .0027886 .0014363 1.94 0.026 0 .0056037
var(cycle2) .002714 .001028 2.64 0.004 .0006991 .0047289

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.

The output provides some support for the existence of a second, high-frequency cycle. The high-
frequency components are centered at 2.88, whereas the low-frequency components are centered at
0.067. That the estimated damping factor is 0.70 for the high-frequency cycle whereas the estimated
damping factor for the low-frequency cycle is 0.91 indicates that the high-frequency components are
more diffusely distributed at 2.88 than the low-frequency components are at 0.067.

We obtain and plot the estimated spectral densities to get another look at these results.

. psdensity sdensity2a omega2a

. psdensity sdensity2b omega2b, cycle(2)

. line sdensity2a sdensity2b omega2a
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UCM cycle 1 spectral density
UCM cycle 2 spectral density

The estimated spectral densities indicate that we have found two distinct cyclical components.
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It does not matter whether we specify omega2a or omega2b to be the x-axis variable, because
they are equal to each other.

Technical note
That the estimated spectral densities in the previous example do not overlap is important for

parameter identification. Although the parameters are identified in large-sample theory, we have found
it difficult to estimate the parameters of two cyclical components when the spectral densities overlap.
When the spectral densities of two cyclical components overlap, the parameters may not be well
identified and the optimization procedure may not converge.

Comparing UCM and ARIMA

Example 4

This example provides some insight for readers familiar with autoregressive integrated moving-
average (ARIMA) models but not with UCMs. If you are not familiar with ARIMA models, you may
wish to skip this example. See [TS] arima for an introduction to ARIMA models in Stata.

UCMs provide an alternative to ARIMA models implemented in [TS] arima. Neither set of models
is nested within the other, but there are some cases in which instructive comparisons can be made.

The random-walk model corresponds to an ARIMA model that is first-order integrated and has
an i.i.d. error term. In other words, the random-walk UCM and the ARIMA(0,1,0) are asymptotically
equivalent. Thus

ucm unrate

and

arima unrate, arima(0,1,0) noconstant

produce asymptotically equivalent results.

The stochastic-cycle model for the stationary cyclical component is an alternative functional form
for stationary processes to stationary autoregressive moving-average (ARMA) models. Which model
is preferred depends on the application and which parameters a researchers wants to interpret. Both
the functional forms and the parameter interpretations differ between the stochastic-cycle model and
the ARMA model. See Trimbur (2006, eq. 25) for some formal comparisons of the two models.

That both models can be used to estimate the stationary cyclical components for the random-walk
model implies that we can compare the results in this case by comparing their estimated spectral
densities. Below we estimate the parameters of an ARIMA(2,1,1) model and plot the estimated spectral
density of the stationary component.

https://www.stata.com/manuals/tsarima.pdf#tsarima
https://www.stata.com/manuals/tsarima.pdf#tsarima
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. arima unrate, noconstant arima(2,1,1)

(setting optimization to BHHH)
Iteration 0: Log likelihood = 129.8801
Iteration 1: Log likelihood = 134.61953
Iteration 2: Log likelihood = 137.04909
Iteration 3: Log likelihood = 137.71386
Iteration 4: Log likelihood = 138.25255
(switching optimization to BFGS)
Iteration 5: Log likelihood = 138.51924
Iteration 6: Log likelihood = 138.81638
Iteration 7: Log likelihood = 138.83615
Iteration 8: Log likelihood = 138.8364
Iteration 9: Log likelihood = 138.83642
Iteration 10: Log likelihood = 138.83642

ARIMA regression

Sample: 1948m2 thru 2011m1 Number of obs = 756
Wald chi2(3) = 683.34

Log likelihood = 138.8364 Prob > chi2 = 0.0000

OPG
D.unrate Coefficient std. err. z P>|z| [95% conf. interval]

ARMA
ar

L1. .5398016 .0586304 9.21 0.000 .4248882 .6547151
L2. .2468148 .0359396 6.87 0.000 .1763744 .3172551

ma
L1. -.5146506 .0632838 -8.13 0.000 -.6386845 -.3906167

/sigma .2013332 .0032644 61.68 0.000 .1949351 .2077313

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

. psdensity sdensity_arma omega_arma

. line sdensity_arma omega_arma
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The estimated spectral density from the ARIMA(2,1,1) has a similar shape to the plot obtained by
combining the two spectral densities estimated from the stochastic-cycle model in example 3. For
this particular application, the estimated central frequencies of the two cyclical components from the
stochastic-cycle model provide information about the business-cycle component and the high-frequency
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component that is not easily obtained from the ARIMA(2,1,1) model. On the other hand, it is easier
to work out the impulse–response function for the ARMA model than for the stochastic-cycle model,
implying that the ARMA model is easier to use when tracing the effect of a shock feeding through
the system.

A local-level model example

We now consider the weekly series of initial claims for unemployment insurance in the United
States, which is plotted below.

Example 5

. use https://www.stata-press.com/data/r18/icsa1, clear

. tsline icsa
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This series looks like it was generated by a random walk with extra noise, so we want to use a
random-walk model that includes an additional random term. This structure causes the model to be
occasionally known as the random-walk-plus-noise model, but it is more commonly known as the
local-level model in the UCM literature.

The local-level model models the trend as a random walk and models the idiosyncratic components
as independent and identically distributed components. Formally, the local-level model specifies the
observed time-series yt, for t = 1, . . . , T , as

yt = µt + εt

µt = µt−1 + ηt

where εt ∼ i.i.d. N(0, σ2
ε ) and ηt ∼ i.i.d. N(0, σ2

η) and are mutually independent.
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We fit the local-level model in the output below:

. ucm icsa, model(llevel)
searching for initial values ..........

(setting technique to bhhh)
Iteration 0: Log likelihood = -9954.8223
Iteration 1: Log likelihood = -9917.406
Iteration 2: Log likelihood = -9905.6679
Iteration 3: Log likelihood = -9897.7588
Iteration 4: Log likelihood = -9894.2015
(switching technique to nr)
Iteration 5: Log likelihood = -9893.4337
Iteration 6: Log likelihood = -9893.2469
Iteration 7: Log likelihood = -9893.2469
Refining estimates:
Iteration 0: Log likelihood = -9893.2469
Iteration 1: Log likelihood = -9893.2469

Unobserved-components model
Components: local level

Sample: 07jan1967 thru 19feb2011 Number of obs = 2,303
Log likelihood = -9893.2469

icsa Coefficient Std. err. z P>|z| [95% conf. interval]

var(level) 116.558 8.806587 13.24 0.000 99.29745 133.8186

var(icsa) 124.2715 7.615506 16.32 0.000 109.3454 139.1976

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.
Note: Time units are in 7 days.

The output indicates that both components are statistically significant.

Technical note
The estimation procedure will not always converge when estimating the parameters of the local-level

model. If the series does not vary enough in the random level, modeled by the random walk, and in
the stationary shocks around the random level, the estimation procedure will not converge because it
will be unable to set the variance of one of the two components to 0.

Take another look at the graphs of unrate and icsa. The extra noise around the random level
that can be seen in the graph of icsa allows us to estimate both variances.

A closely related point is that it is difficult to estimate the parameters of a local-level model with
a stochastic-cycle component because the series must have enough variation to identify the variance
of the random-walk component, the variance of the idiosyncratic term, and the parameters of the
stochastic-cycle component. In some cases, series that look like candidates for the local-level model
are best modeled as random-walk models with stochastic-cycle components.

In fact, convergence can be a problem for most of the models in ucm. Convergence problems
occur most often when there is insufficient variation to estimate the variances of the components in
the model. When there is insufficient variation to estimate the variances of the components in the
model, the optimization routine will fail to converge as it attempts to set the variance equal to 0.
This usually shows up in the iteration log when the log likelihood gets stuck at a particular value and
the message (not concave) or (backed up) is displayed repeatedly. When this happens, use the
iterate() option to limit the number of iterations, look to see which of the variances is being driven
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to 0, and drop that component from the model. (This technique is a method to obtain convergence
to interpretable estimates, not a model-selection method.)

Example 6

We might suspect that there is some serial correlation in the idiosyncratic shock. Alternatively,
we could include a cyclical component to model the stationary time-dependence in the series. In the
example below, we add a stochastic-cycle model for the stationary cyclical process, but we drop
the idiosyncratic term and use a random-walk model instead of the local-level model. We change
the model because it is difficult to estimate the variance of the idiosyncratic term along with the
parameters of a stationary cyclical component.

. ucm icsa, model(rwalk) cycle(1)
searching for initial values ....................

(setting technique to bhhh)
Iteration 0: Log likelihood = -10055.453
Iteration 1: Log likelihood = -10047.163
Iteration 2: Log likelihood = -10047.146 (backed up)
Iteration 3: Log likelihood = -10047.146 (backed up)
Iteration 4: Log likelihood = -10047.145 (backed up)
(switching technique to nr)
Iteration 5: Log likelihood = -10047.142 (not concave)
Iteration 6: Log likelihood = -9889.8038
Iteration 7: Log likelihood = -9883.967
Iteration 8: Log likelihood = -9883.3818 (not concave)
Iteration 9: Log likelihood = -9883.3817 (not concave)
Iteration 10: Log likelihood = -9883.3815 (not concave)
Iteration 11: Log likelihood = -9883.3789 (not concave)
Iteration 12: Log likelihood = -9883.376 (not concave)
Iteration 13: Log likelihood = -9883.3684 (not concave)
Iteration 14: Log likelihood = -9882.0674 (not concave)
Iteration 15: Log likelihood = -9881.6606
Iteration 16: Log likelihood = -9881.4451
Iteration 17: Log likelihood = -9881.4441
Refining estimates:
Iteration 0: Log likelihood = -9881.4441
Iteration 1: Log likelihood = -9881.4441

Unobserved-components model
Components: random walk, order 1 cycle

Sample: 07jan1967 thru 19feb2011 Number of obs = 2,303
Wald chi2(2) = 23.04

Log likelihood = -9881.4441 Prob > chi2 = 0.0000

icsa Coefficient Std. err. z P>|z| [95% conf. interval]

frequency 1.469634 .3855654 3.81 0.000 .7139395 2.225328
damping .1644576 .0349537 4.71 0.000 .0959495 .2329656

var(level) 97.90982 8.320047 11.77 0.000 81.60282 114.2168
var(cycle1) 149.7323 9.980797 15.00 0.000 130.1703 169.2943

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.
Note: Time units are in 7 days.
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Although the output indicates that the model fits well, the small estimate of the damping parameter
indicates that the random components will be widely distributed at the central frequency. To get a
better idea of the dispersion of the components, we look at the estimated spectral density of the
stationary cyclical component.

. psdensity sdensity3 omega3

. line sdensity3 omega3
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The graph shows that the random components that make up the cyclical component are diffusely
distributed at a central frequency.

Comparing UCM and ARIMA, revisited

Example 7

Including lags of the dependent variable is an alternative method for modeling serially correlated
errors. The estimated coefficients on the lags of the dependent variable estimate the coefficients in an
autoregressive model for the stationary cyclical component; see Harvey (1989, 47–48) for a discussion.
Including lags of the dependent variable should be viewed as an alternative to the stochastic-cycle
model for the stationary cyclical component. In this example, we use the large-sample equivalence of
the random-walk model with pth order autoregressive errors and an ARIMA(p, 1, 0) to illustrate this
point.
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In the output below, we include 2 lags of the dependent variable in the random-walk UCM.

. ucm icsa L(1/2).icsa, model(rwalk)
searching for initial values ..........

(setting technique to bhhh)
Iteration 0: Log likelihood = -10026.649
Iteration 1: Log likelihood = -9947.9671
Iteration 2: Log likelihood = -9896.4778
Iteration 3: Log likelihood = -9890.8199
Iteration 4: Log likelihood = -9890.3202
(switching technique to nr)
Iteration 5: Log likelihood = -9890.1546
Iteration 6: Log likelihood = -9889.561
Iteration 7: Log likelihood = -9889.5608
Refining estimates:
Iteration 0: Log likelihood = -9889.5608
Iteration 1: Log likelihood = -9889.5608

Unobserved-components model
Components: random walk

Sample: 21jan1967 thru 19feb2011 Number of obs = 2,301
Wald chi2(2) = 271.88

Log likelihood = -9889.5608 Prob > chi2 = 0.0000

icsa Coefficient Std. err. z P>|z| [95% conf. interval]

icsa
L1. -.3250633 .0205148 -15.85 0.000 -.3652715 -.2848551
L2. -.1794686 .0205246 -8.74 0.000 -.2196961 -.1392411

var(level) 317.6474 9.36691 33.91 0.000 299.2886 336.0062

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.
Note: Time units are in 7 days.

Now we use arima to estimate the parameters of an asymptotically equivalent ARIMA(2,1,0) model.
(We specify the technique(nr) option so that arima will compute the observed information matrix
standard errors that ucm computes.) We use nlcom to compute a point estimate and a standard error
for the variance, which is directly comparable to the one produced by ucm.

https://www.stata.com/manuals/tsarima.pdf#tsarima
https://www.stata.com/manuals/rnlcom.pdf#rnlcom
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. arima icsa, noconstant arima(2,1,0) technique(nr)

Iteration 0: Log likelihood = -9896.4584
Iteration 1: Log likelihood = -9896.458

ARIMA regression

Sample: 14jan1967 thru 19feb2011 Number of obs = 2302
Wald chi2(2) = 271.95

Log likelihood = -9896.458 Prob > chi2 = 0.0000

OIM
D.icsa Coefficient std. err. z P>|z| [95% conf. interval]

ARMA
ar

L1. -.3249383 .0205036 -15.85 0.000 -.3651246 -.284752
L2. -.1793353 .0205088 -8.74 0.000 -.2195317 -.1391388

/sigma 17.81606 .2625695 67.85 0.000 17.30143 18.33068

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

. nlcom _b[sigma:_cons]^2

_nl_1: _b[sigma:_cons]^2

D.icsa Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 317.4119 9.355904 33.93 0.000 299.0746 335.7491

It is no accident that the parameter estimates and the standard errors from the two estimators
are so close. As the sample size grows the differences in the parameter estimates and the estimated
standard errors will go to 0, because the two estimators are equivalent in large samples.

Models for the trend and idiosyncratic components

A general model that allows for fixed or stochastic trends in τt is given by

τt = τt−1 + βt−1 + ηt (2)

βt = βt−1 + ξt (3)

Following Harvey (1989), we define 11 flexible models for yt that specify both τt and εt in (1).
These models place restrictions on the general model specified in (2) and (3) and on εt in (1). In
other words, these models jointly specify τt and εt.

To any of these models, a cyclical component, a seasonal component, or exogenous variables may
be added.



ucm — Unobserved-components model 21

Table 1. Models for the trend and idiosyncratic components

Model name Syntax option Model

No trend or idiosyncratic component model(none)

No trend model(ntrend) yt=εt

Deterministic constant model(dconstant) yt=µ+ εt
µ=µ

Local level model(llevel) yt=µt + εt
µt=µt−1 + ηt

Random walk model(rwalk) yt=µt
µt=µt−1 + ηt

Deterministic trend model(dtrend) yt=µt + εt
µt=µt−1 + β
β=β

Local level with model(lldtrend) yt=µt + εt
deterministic trend µt=µt−1 + β + ηt

β=β

Random walk with drift model(rwdrift) yt=µt
µt=µt−1 + β + ηt
β=β

Local linear trend model(lltrend) yt=µt + εt
µt=µt−1 + βt−1 + ηt
βt=βt−1 + ξt

Smooth trend model(strend) yt=µt + εt
µt=µt−1 + βt−1

βt=βt−1 + ξt

Random trend model(rtrend) yt=µt
µt=µt−1 + βt−1

βt=βt−1 + ξt

The majority of the models available in ucm are designed for nonstationary time series. The
deterministic-trend model incorporates a first-order deterministic time-trend in the model. The local-
level, random-walk, local-level-with-deterministic-trend, and random-walk-with-drift models are for
modeling series with first-order stochastic trends. A series with a dth-order stochastic trend must be
differenced d times to be stationary. The local-linear-trend, smooth-trend, and random-trend models
are for modeling series with second-order stochastic trends.

The no-trend-or-idiosyncratic-component model is useful for using ucm to model stationary series
with cyclical components or seasonal components and perhaps exogenous variables. The no-trend and
the deterministic-constant models are useful for using ucm to model stationary series with seasonal
components or exogenous variables.
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Seasonal component

A seasonal component models cyclical behavior in a time series that occurs at known seasonal
periodicities. A seasonal component is modeled in the time domain; the period of the cycle is specified
as the number of time periods required for the cycle to complete.

Example 8

Let’s begin by considering a series that displays a seasonal effect. Below we plot a monthly series
containing the number of new cases of mumps in New York City between January 1928 and December
1972. (See Hipel and McLeod [1994] for the source and further discussion of this dataset.)

. use https://www.stata-press.com/data/r18/mumps, clear
(Hipel and Mcleod (1994), http://robjhyndman.com/tsdldata/epi/mumps.dat)

. tsline mumps
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The graph reveals recurring spikes at regular intervals, which we suspect to be seasonal effects. The
series may or may not be stationary; the graph evidence is not definitive.

Deterministic seasonal effects are a standard method of incorporating seasonality into a model. In a
model with a constant term, the s deterministic seasonal effects are modeled as s parameters subject to
the constraint that they sum to zero; formally, γt+ γt−1+ · · ·+ γt−(s−1) = 0. A stochastic-seasonal
model is a more flexible alternative that allows the seasonal effects at time t to sum to ζt, a zero-mean,
finite-variance, i.i.d. random variable; formally, γt + γt−1 + · · ·+ γt−(s−1) = ζt.

In the output below, we model the seasonal effects by a stochastic-seasonal model, we allow for
the series to follow a random walk, and we include a stationary cyclical component.



ucm — Unobserved-components model 23

. ucm mumps, seasonal(12) cycle(1)
searching for initial values ....................

(setting technique to bhhh)
Iteration 0: Log likelihood = -3270.0908
Iteration 1: Log likelihood = -3257.6792
Iteration 2: Log likelihood = -3257.3017
Iteration 3: Log likelihood = -3249.8741
Iteration 4: Log likelihood = -3249.4774
(switching technique to nr)
Iteration 5: Log likelihood = -3248.9154
Iteration 6: Log likelihood = -3248.7233
Iteration 7: Log likelihood = -3248.7138
Iteration 8: Log likelihood = -3248.7138
Refining estimates:
Iteration 0: Log likelihood = -3248.7138
Iteration 1: Log likelihood = -3248.7138

Unobserved-components model
Components: random walk, seasonal(12), order 1 cycle

Sample: 1928m1 thru 1972m6 Number of obs = 534
Wald chi2(2) = 2141.69

Log likelihood = -3248.7138 Prob > chi2 = 0.0000

mumps Coefficient Std. err. z P>|z| [95% conf. interval]

frequency .3863607 .0282037 13.70 0.000 .3310824 .4416389
damping .8405622 .0197933 42.47 0.000 .8017681 .8793563

var(level) 221.2131 140.5179 1.57 0.058 0 496.6231
var(seasonal) 4.151639 4.383442 0.95 0.172 0 12.74303

var(cycle1) 12228.17 813.8394 15.03 0.000 10633.08 13823.27

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.

The output indicates that the trend and seasonal variances may not be necessary. When the variance of
the seasonal component is zero, the seasonal component becomes deterministic. Below we estimate the
parameters of a model that includes deterministic seasonal effects and a stationary cyclical component.

. ucm mumps ibn.month, model(none) cycle(1)
searching for initial values .......

(setting technique to bhhh)
Iteration 0: Log likelihood = -4138.3988
Iteration 1: Log likelihood = -3706.3937
Iteration 2: Log likelihood = -3533.649
Iteration 3: Log likelihood = -3426.8902
Iteration 4: Log likelihood = -3392.0083
(switching technique to nr)
Iteration 5: Log likelihood = -3374.3692
Iteration 6: Log likelihood = -3284.0435
Iteration 7: Log likelihood = -3283.0343
Iteration 8: Log likelihood = -3283.0284
Iteration 9: Log likelihood = -3283.0284
Refining estimates:
Iteration 0: Log likelihood = -3283.0284
Iteration 1: Log likelihood = -3283.0284
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Unobserved-components model
Components: order 1 cycle

Sample: 1928m1 thru 1972m6 Number of obs = 534
Wald chi2(14) = 3404.29

Log likelihood = -3283.0284 Prob > chi2 = 0.0000

mumps Coefficient Std. err. z P>|z| [95% conf. interval]

cycle1
frequency .3272754 .0262922 12.45 0.000 .2757436 .3788071

damping .844874 .0184994 45.67 0.000 .8086157 .8811322

mumps
month

1 480.5095 32.67128 14.71 0.000 416.475 544.544
2 561.9174 32.66999 17.20 0.000 497.8854 625.9494
3 832.8666 32.67696 25.49 0.000 768.8209 896.9122
4 894.0747 32.64568 27.39 0.000 830.0904 958.0591
5 869.6568 32.56282 26.71 0.000 805.8348 933.4787
6 770.1562 32.48587 23.71 0.000 706.4851 833.8274
7 433.839 32.50165 13.35 0.000 370.1369 497.541
8 218.2394 32.56712 6.70 0.000 154.409 282.0698
9 140.686 32.64138 4.31 0.000 76.7101 204.662

10 148.5876 32.69067 4.55 0.000 84.51508 212.6601
11 215.0958 32.70311 6.58 0.000 150.9989 279.1927
12 330.2232 32.68906 10.10 0.000 266.1538 394.2926

var(cycle1) 13031.53 798.2719 16.32 0.000 11466.95 14596.11

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

The output indicates that each of these components is statistically significant.

Technical note
In a stochastic model for the seasonal component, the seasonal effects sum to the random variable

ζt ∼ i.i.d. N(0, σ2
ζ ):

γt = −
s−1∑
j=1

γt−j + ζt

Stored results
Because ucm is estimated using sspace, most of the sspace stored results appear after ucm. Not

all of these results are relevant for ucm; programmers wishing to treat ucm results as sspace results
should see Stored results of [TS] sspace. See Methods and formulas for the state-space representation
of UCMs, and see [TS] sspace for more documentation that relates to all the stored results.

https://www.stata.com/manuals/tssspace.pdf#tssspaceStoredresults
https://www.stata.com/manuals/tssspace.pdf#tssspace
https://www.stata.com/manuals/tssspace.pdf#tssspace
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ucm stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(k cycles) number of stochastic cycles
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) p-value for model test
e(tmin) minimum time in sample
e(tmax) maximum time in sample
e(stationary) 1 if the estimated parameters indicate a stationary model, 0 otherwise
e(rank) rank of VCE
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) ucm
e(cmdline) command as typed
e(depvar) unoperated names of dependent variables in observation equations
e(covariates) list of covariates
e(tvar) variable denoting time within groups
e(eqnames) names of equations
e(model) type of model
e(title) title in estimation output
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(initial values) type of initial values
e(technique) maximization technique
e(tech steps) iterations taken in maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) parameter vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
State-space formulation
Cyclical component extensions

Introduction

The general form of UCMs can be expressed as

yt = τt + γt + ψt + xtβ+ εt

where τt is the trend, γt is the seasonal component, ψt is the cycle, β is the regression coefficients
for regressors xt, and εt is the idiosyncratic error with variance σ2

ε .

We can decompose the trend as

τt = µt

µt = µt−1 + αt−1 + ηt

αt = αt−1 + ξt

where µt is the local level, αt is the local slope, and ηt and ξt are i.i.d. normal errors with mean 0
and variance σ2

η and σ2
ξ , respectively.

Next consider the seasonal component, γt, with a period of s time units. Ignoring a seasonal
disturbance term, the seasonal effects will sum to zero,

∑s−1
j=0 γt−j = 0. Adding a normal error term,

ωt, with mean 0 and variance σ2
ω , we express the seasonal component as

γt = −
s−1∑
j=1

γt−j + ωt

Finally, the cyclical component, ψt, is a function of the frequency λ, in radians, and a unit-less
scaling variable ρ, termed the damping effect, 0 < ρ < 1. We require two equations to express the
cycle:

ψt = ψt−1ρ cosλ+ ψ̃t−1ρ sinλ+ κt

ψ̃t = −ψt−1ρ sinλ+ ψ̃t−1ρ cosλ+ κ̃t

where the κt and κ̃t disturbances are normally distributed with mean 0 and variance σ2
κ.

The disturbance terms εt, ηt, ξt, ωt, κt, and κ̃t are independent.

State-space formulation

ucm is an easy-to-use implementation of the state-space command sspace, with special modifi-
cations, where the local linear trend components, seasonal components, and cyclical components are
states of the state-space model. The state-space model can be expressed in matrix form as

yt = Dzt + Fxt + εt

zt = Azt−1 +Cζt
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where yt, t = 1, . . . , T , are the observations and zt are the unobserved states. The number of states,
m, depends on the model specified. The k × 1 vector xt contains the exogenous variables specified
as indepvars, and the 1 × k vector F contains the regression coefficients to be estimated. εt is the
observation equation disturbance, and the m0 × 1 vector ζt contains the state equation disturbances,
where m0 ≤ m. Finally, C is a m ×m0 matrix of zeros and ones. These recursive equations are
evaluated using the diffuse Kalman filter of De Jong (1991).

Below we give the state-space matrix structures for a local linear trend with a stochastic seasonal
component, with a period of 4 time units, and an order-2 cycle. The state vector, zt, and its transition
matrix, A, have the structure

A =



1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 −1 −1 −1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 ρ cosλ ρ sinλ 1 0
0 0 0 0 0 −ρ sinλ ρ cosλ 0 1
0 0 0 0 0 0 0 ρ cosλ ρ sinλ
0 0 0 0 0 0 0 −ρ sinλ ρ cosλ


zt =



µt
αt
γt
γt−1

γt−2

ψt,1
ψ̃t,1
ψt,2
ψ̃t,2



C =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1


ζt =


ηt
ξt
ωt
κt
κ̃t



D = ( 1 0 1 0 0 1 0 0 0 )

Cyclical component extensions

Recall that the stochastic cyclical model is given by

ψt = ρ(ψt−1 cosλc + ψ∗
t−1 sinλc) + κt,1

ψ∗
t = ρ(−ψt−1 sinλc + ψ∗

t−1 cosλc) + κt,2

where κt,j ∼ i.i.d. N(0, σ2
κ) and 0 < ρ < 1 is a damping effect. The cycle is variance-stationary

when ρ < 1 because Var(ψt) = σ2
κ/(1−ρ). We will express a UCM with a cyclical component added

to a trend as
yt = µt + ψt + εt

where µt can be any of the trend parameterizations discussed earlier.



28 ucm — Unobserved-components model

Higher-order cycles, k = 2 or k = 3, are defined as

ψt,j = ρ(ψt−1,j cosλc + ψ∗
t−1,j sinλc) + ψt−1,j+1

ψ∗
t,j = ρ(−ψt−1,j sinλc + ψ∗

t−1,j cosλc) + ψ∗
t−1,j+1

for j < k, and
ψt,k = ρ(ψt−1,k cosλc + ψ∗

t−1,k sinλc) + κt,1

ψ∗
t,k = ρ(−ψt−1,k sinλc + ψ∗

t−1,k cosλc) + κt,2

Harvey and Trimbur (2003) discuss the properties of this model and its state-space formulation.

� �
Andrew Charles Harvey (1947– ) is a British econometrician. After receiving degrees in economics
and statistics from the University of York and the London School of Economics and working
for a period in Kenya, he has worked as a teacher and researcher at the University of Kent,
the London School of Economics, and now the University of Cambridge. Harvey’s interests are
centered on time series, especially state-space models, signal extraction, volatility, and changes
in quantiles.� �
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Also see
[TS] ucm postestimation — Postestimation tools for ucm

[TS] arima — ARIMA, ARMAX, and other dynamic regression models

[TS] sspace — State-space models

[TS] tsfilter — Filter a time series for cyclical components

[TS] tsset — Declare data to be time-series data

[TS] tssmooth — Smooth and forecast univariate time-series data

[TS] var — Vector autoregressive models+
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