| Description | Quick start | Menu for estat | Syntax |
| :--- | :--- | :--- | :--- |
| Options | Remarks and examples | Stored results | Methods and formulas |
| Reference | Also see |  |  |

## Description

estat aroots checks the eigenvalue stability condition after estimating the parameters of an ARIMA model using arima. A graph of the eigenvalues of the companion matrices for the AR and MA polynomials is also produced.
estat aroots is available only after arima; see [TS] arima.

## Quick start

Verify that all eigenvalues of the autoregressive polynomial lie inside the unit circle after arima estat aroots

Same as above, but suppress the graph
estat aroots, nograph
Label each plotted eigenvalue with its distance from the unit circle
estat aroots, dlabel

## Menu for estat

Statistics $>$ Postestimation

## Syntax

estat aroots [, options]
options Description

| nograph | suppress graph of eigenvalues for the companion matrices |
| :--- | :--- |
| dlabel | label eigenvalues with the distance from the unit circle |
| modlabel | label eigenvalues with the modulus |

Grid
nogrid suppress polar grid circles
$\operatorname{pgrid}([\ldots]) \quad$ specify radii and appearance of polar grid circles; see Options for details
Plot
marker_options
change look of markers (color, size, etc.)
Reference unit circle
rlopts (cline_options) affect rendition of reference unit circle
Y axis, X axis, Titles, Legend, Overall
twoway_options any options other than by () documented in [G-3] twoway_options
collect is allowed; see [U] 11.1.10 Prefix commands.

## Options

nograph specifies that no graph of the eigenvalues of the companion matrices be drawn.
dlabel labels each eigenvalue with its distance from the unit circle. dlabel cannot be specified with modlabel.
modlabel labels the eigenvalues with their moduli. modlabel cannot be specified with dlabel.
$\qquad$

## Grid

nogrid suppresses the polar grid circles.
$\operatorname{pgrid}([$ numlist $][$, line_options $])$ determines the radii and appearance of the polar grid circles. By default, the graph includes nine polar grid circles with radii $0.1,0.2, \ldots, 0.9$ that have the grid line style. The numlist specifies the radii for the polar grid circles. The line_options determine the appearance of the polar grid circles; see [G-3] line_options. Because the pgrid() option can be repeated, circles with different radii can have distinct appearances.
$\qquad$ Plot
marker_options specify the look of markers. This look includes the marker symbol, the marker size, and its color and outline; see [G-3] marker_options.

Reference unit circle
rlopts (cline_options) affect the rendition of the reference unit circle; see [G-3] cline_options.
twoway_options are any of the options documented in [G-3] twoway_options, except by(). These include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving_option).

## Remarks and examples

stata.com
Inference after arima requires that the variable $y_{t}$ be covariance stationary. The variable $y_{t}$ is covariance stationary if its first two moments exist and are time invariant. More explicitly, $y_{t}$ is covariance stationary if

1. $E\left(y_{t}\right)$ is finite and not a function of $t$;
2. $\operatorname{Var}\left(y_{t}\right)$ is finite and independent of $t$; and
3. $\operatorname{Cov}\left(y_{t}, y_{s}\right)$ is a finite function of $|t-s|$ but not of $t$ or $s$ alone.

The stationarity of an ARMA process depends on the autoregressive (AR) parameters. If the inverse roots of the AR polynomial all lie inside the unit circle, the process is stationary, invertible, and has an infinite-order moving-average (MA) representation. Hamilton (1994, chap. 1) shows that if the modulus of each eigenvalue of the matrix $\mathbf{F}(\boldsymbol{\rho})$ is strictly less than 1 , the estimated ARMA is stationary; see Methods and formulas for the definition of the matrix $\mathbf{F}(\boldsymbol{\rho})$.

The MA part of an ARMA process can be rewritten as an infinite-order AR process provided that the mA process is invertible. Hamilton (1994, chap. 1) shows that if the modulus of each eigenvalue of the matrix $\mathbf{F}(\boldsymbol{\theta})$ is strictly less than 1, the estimated ARMA is invertible; see Methods and formulas for the definition of the matrix $\mathbf{F}(\boldsymbol{\theta})$.

## > Example 1

In this example, we check the stability condition of the SARIMA model that we fit in example 3 of [TS] arima. We begin by reestimating the parameters of the model.

```
. use https://www.stata-press.com/data/r18/air2
(TIMESLAB: Airline passengers)
. generate lnair = ln(air)
```



Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

We can now use estat aroots to check the stability condition of the MA part of the model.
. estat aroots
Eigenvalue stability condition

| Eigenvalue | Modulus |
| :---: | :---: |
| $.824798+.4761974 i$ | .952395 |
| $.824798-.4761974 i$ | .952395 |
| .9523947 | .952395 |
| $-.824798+.4761974 i$ | .952395 |
| $-.824798-.4761974 i$ | .952395 |
| $-.4761974+.824798 i$ | .952395 |
| $-.4761974-$ | $.824798 i$ |
| $2.776 \mathrm{e}-16+.9523947 i$ | .952395 |
| $2.776 \mathrm{e}-16-.9523947 i$ | .952395 |
| $.4761974+.824798 i$ | .952395 |
| $.4761974-$ | $.824798 i$ |
| -.9523947 | .952395 |
| .4018324 | .952395 |

All the eigenvalues lie inside the unit circle.
MA parameters satisfy invertibility condition.


Because the modulus of each eigenvalue is strictly less than 1 , the MA process is invertible and can be represented as an infinite-order AR process.

The graph produced by estat aroots displays the eigenvalues with the real components on the $x$ axis and the imaginary components on the $y$ axis. The graph indicates visually that these eigenvalues are just inside the unit circle.

## Stored results

estat aroots stores the following in $r()$ :
Matrices

```
r(Re_ar) real part of the eigenvalues of F(\rho)
r(Im_ar) imaginary part of the eigenvalues of F(\rho)
r(Modulus_ar) modulus of the eigenvalues of F(\rho)
r(ar) F(\rho), the AR companion matrix
r(Re_ma) real part of the eigenvalues of F(0)
r(Im_ma) imaginary part of the eigenvalues of F(0)
r(Modulus_ma) modulus of the eigenvalues of F(0)
r(ma) F(0), the MA companion matrix
```


## Methods and formulas

Recall the general form of the ARMA model,

$$
\boldsymbol{\rho}\left(L^{p}\right)\left(y_{t}-\mathbf{x}_{t} \boldsymbol{\beta}\right)=\boldsymbol{\theta}\left(L^{q}\right) \epsilon_{t}
$$

where

$$
\begin{aligned}
& \boldsymbol{\rho}\left(L^{p}\right)=1-\rho_{1} L-\rho_{2} L^{2}-\cdots-\rho_{p} L^{p} \\
& \boldsymbol{\theta}\left(L^{q}\right)=1+\theta_{1} L+\theta_{2} L^{2}+\cdots+\theta_{q} L^{q}
\end{aligned}
$$

and $L^{j} y_{t}=y_{t-j}$.
estat aroots forms the companion matrix

$$
\mathbf{F}(\gamma)=\left(\begin{array}{ccccc}
\gamma_{1} & \gamma_{2} & \ldots & \gamma_{r-1} & \gamma_{r} \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

where $\gamma=\boldsymbol{\rho}$ and $r=p$ for the AR part of ARMA, and $\gamma=-\boldsymbol{\theta}$ and $r=q$ for the MA part of ARMA. aroots obtains the eigenvalues of $\mathbf{F}$ by using matrix eigenvalues. The modulus of the complex eigenvalue $r+c \mathrm{i}$ is $\sqrt{r^{2}+c^{2}}$. As shown by Hamilton (1994, chap. 1), a process is stable and invertible if the modulus of each eigenvalue of $\mathbf{F}$ is strictly less than 1.

## Reference

Hamilton, J. D. 1994. Time Series Analysis. Princeton, NJ: Princeton University Press.

## Also see

[TS] arima - ARIMA, ARMAX, and other dynamic regression models

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

