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Postestimation commands
The following postestimation commands are of special interest after arfima:

Command Description

estat acplot estimate autocorrelations and autocovariances
irf create and analyze IRFs
psdensity estimate the spectral density

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
∗estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
etable table of estimation results
forecast dynamic forecasts and simulations
lincom point estimates, standard errors, testing, and inference for linear combinations of

coefficients
lrtest likelihood-ratio test
∗margins marginal means, predictive margins, marginal effects, and average marginal effects
∗marginsplot graph the results from margins (profile plots, interaction plots, etc.)
∗nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict linear predictions, innovations, standardized innovations, etc.
∗predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗estat ic, margins, marginsplot, nlcom, and predictnl are not appropriate after arfima, mpl.
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predict

Description for predict

predict creates a new variable containing predictions such as expected values, fractionally
differenced series, and innovations. All predictions are available as static one-step-ahead predictions,
and the dependent variable is also available as a dynamic multistep prediction.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic options
]

statistic Description

Main

xb predicted values; the default
residuals predicted innovations
rstandard standardized innovations
fdifference fractionally differenced series

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

options Description

Options

rmse(
[

type
]

newvar) put the estimated root mean squared error of the predicted statistic
in a new variable; only permitted with options xb and residuals

dynamic(datetime) forecast the time series starting at datetime; only permitted with
option xb

datetime is a # or a time literal, such as td(1jan1995) or tq(1995q1); see [D] Datetime.

Options for predict

� � �
Main �

xb, the default, calculates the predictions for the level of depvar.

residuals calculates the predicted innovations.

rstandard calculates the standardized innovations.

fdifference calculates the fractionally differenced predictions of depvar.

https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/ddatetime.pdf#dDatetime
https://www.stata.com/manuals/ddatetime.pdf#dDatetime
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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� � �
Options �

rmse(
[

type
]

newvar) puts the root mean squared errors of the predicted statistics into the specified
new variables. The root mean squared errors measure the variances due to the disturbances but do
not account for estimation error. rmse() is only permitted with the xb and residuals options.

dynamic(datetime) specifies when predict starts producing dynamic forecasts. The specified date-
time must be in the scale of the time variable specified in tsset, and the datetime must be
inside a sample for which observations on the dependent variables are available. For example, dy-
namic(tq(2008q4)) causes dynamic predictions to begin in the fourth quarter of 2008, assuming
that your time variable is quarterly; see [D] Datetime. If the model contains exogenous variables,
they must be present for the whole predicted sample. dynamic() may only be specified with xb.

margins

Description for margins

margins estimates margins of response for expected values.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
options

]
statistic Description

xb predicted values; the default
residuals not allowed with margins

rstandard not allowed with margins

fdifference not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples stata.com

Remarks are presented under the following headings:

Forecasting after ARFIMA
IRF results for ARFIMA

https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/ddatetime.pdf#dDatetime
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
http://stata.com
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Forecasting after ARFIMA

We assume that you have already read [TS] arfima. In this section, we illustrate some of the
features of predict after fitting an ARFIMA model using arfima.

Example 1

We have monthly data on the one-year Treasury bill secondary market rate imported from the
Federal Reserve Bank (FRED) database using import fred; see [D] import fred. Below we fit an
ARFIMA model with two autoregressive terms and one moving-average term to the data.

. use https://www.stata-press.com/data/r18/tb1yr
(FRED, 1-year Treasury bill; secondary market rate, monthly 1959--2001)

. arfima tb1yr, ar(1/2) ma(1)
Iteration 0: Log likelihood = -235.31856
Iteration 1: Log likelihood = -235.26104 (backed up)
Iteration 2: Log likelihood = -235.25974 (backed up)
Iteration 3: Log likelihood = -235.2544 (backed up)
Iteration 4: Log likelihood = -235.13355
Iteration 5: Log likelihood = -235.13064
Iteration 6: Log likelihood = -235.12108
Iteration 7: Log likelihood = -235.11917
Iteration 8: Log likelihood = -235.11869
Iteration 9: Log likelihood = -235.11868
Refining estimates:
Iteration 0: Log likelihood = -235.11868
Iteration 1: Log likelihood = -235.11868

ARFIMA regression

Sample: 1959m7 thru 2001m8 Number of obs = 506
Wald chi2(4) = 1864.16

Log likelihood = -235.11868 Prob > chi2 = 0.0000

tb1yr Coefficient Std. err. z P>|z| [95% conf. interval]

tb1yr
_cons 5.496708 2.92038 1.88 0.060 -.2271321 11.22055

ARFIMA
ar

L1. .2326101 .1136625 2.05 0.041 .0098357 .4553845
L2. .3885209 .083565 4.65 0.000 .2247365 .5523054

ma
L1. .7755849 .0669559 11.58 0.000 .6443537 .906816

d .4606495 .0646499 7.13 0.000 .3339381 .5873609

/sigma2 .1466495 .009232 15.88 0.000 .1285551 .1647438

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

All the parameters are statistically significant at the 5% level, and they indicate a high degree of
dependence in the series. In fact, the confidence interval for the fractional-difference parameter d
indicates that the series may be nonstationary. We will proceed as if the series is stationary and
suppose that it is fractionally integrated of order 0.46.

https://www.stata.com/manuals/tsarfima.pdf#tsarfima
https://www.stata.com/manuals/dimportfred.pdf#dimportfred
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We begin our postestimation analysis by predicting the series in sample:

. predict ptb
(option xb assumed)

We continue by using the estimated fractional-difference parameter to fractionally difference the
original series and by plotting the original series, the predicted series, and the fractionally differenced
series. See [TS] arfima for a definition of the fractional-difference operator.

. predict fdtb, fdifference

. tsline tb1yr ptb fdtb, legend(cols(1))
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Month

1-year Treasury bill; secondary market rate
xb prediction
tb1yr fractionally differenced

The above graph shows that the in-sample predictions appear to track the original series well and
that the fractionally differenced series looks much more like a stationary series than does the original.

Example 2

In this example, we use the above estimates to produce a dynamic forecast and a confidence
interval for the forecast for the one-year treasury bill rate and plot them.

We begin by extending the dataset and using predict to put the dynamic forecast in the new
ftb variable and the root mean squared error of the forecast in the new rtb variable. (As discussed
in Methods and formulas, the root mean squared error of the forecast accounts for the idiosyncratic
error but not for the estimation error.)

. tsappend, add(12)

. predict ftb, xb dynamic(tm(2001m9)) rmse(rtb)

https://www.stata.com/manuals/tsarfima.pdf#tsarfima
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Now we compute a 90% confidence interval around the dynamic forecast and plot the original
series, the in-sample forecast, the dynamic forecast, and the confidence interval of the dynamic
forecast.

. scalar z = invnormal(0.95)

. generate lb = ftb - z*rtb if month>=tm(2001m9)
(506 missing values generated)

. generate ub = ftb + z*rtb if month>=tm(2001m9)
(506 missing values generated)

. tsline tb1yr ftb if month>tm(1998m12) ||
> tsrline lb ub if month>=tm(2001m9),
> legend(cols(1) label(3 "90% prediction interval"))
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90% prediction interval

IRF results for ARFIMA
We assume that you have already read [TS] irf and [TS] irf create. In this section, we illustrate

how to calculate the impulse–response function (IRF) of an ARFIMA model.

Example 3

Here we use the estimates obtained in example 1 to calculate the IRF of the ARFIMA model; see
[TS] irf and [TS] irf create for more details about IRFs.

https://www.stata.com/manuals/tsirf.pdf#tsirf
https://www.stata.com/manuals/tsirfcreate.pdf#tsirfcreate
https://www.stata.com/manuals/tsirf.pdf#tsirf
https://www.stata.com/manuals/tsirfcreate.pdf#tsirfcreate
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. irf create arfima, step(50) set(myirf)
(file myirf.irf created)
(file myirf.irf now active)
(file myirf.irf updated)

. irf graph irf
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The figure shows that a shock to tb1yr causes an initial spike in tb1yr, after which the impact
of the shock starts decaying slowly. This behavior is characteristic of long-memory processes.

Methods and formulas
Denote γh, h = 1, . . . , t, to be the autocovariance function of the ARFIMA(p, d, q) process for

two observations, yt and yt−h, h time periods apart. The covariance matrix V of the process of
length T has a Toeplitz structure of

V =


γ0 γ1 γ2 . . . γT−1
γ1 γ0 γ1 . . . γT−2
...

...
...

. . .
...

γT−1 γT−2 γT−3 . . . γ0


where the process variance is γ0 = Var(yt). We factor V = LDL′, where L is lower triangular and
D = Diag(νt). The structure of L−1 is of importance.

L−1 =


1 0 0 . . . 0 0

−τ1,1 1 0 . . . 0 0
−τ2,2 −τ2,1 1 . . . 0 0

...
...

...
. . .

...
...

−τT−1,T−1 −τT−1,T−2 −τT−1,T−2 . . . −τT−1,1 1


Let zt = yt − xtβ. The best linear predictor of zt+1 based on z1, z2, . . . , zt is ẑt+1 =∑t

k=1 τt,kzt−k+1. Define −τt = (−τt,t,−τt,t−1, . . . ,−τt−1,1) to be the tth row of L−1 up to, but
not including, the diagonal. Then τt = V−1t γt, where Vt is the t × t upper left submatrix of V and
γt = (γ1, γ2, . . . , γt)

′. Hence, the best linear predictor of the innovations is computed as ε̂ = L−1z,
and the one-step predictions are ŷ = ε̂+Xβ̂. In practice, the computation is
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ŷ = L̂−1
(
y −Xβ̂

)
+Xβ̂

where L̂ and V̂ are computed from the maximum likelihood estimates. We use the Durbin–Levinson
algorithm (Palma 2007; Golub and Van Loan 2013) to factor V̂, invert L̂, and scale y −Xβ̂ using
only the vector of estimated autocovariances γ̂.

The prediction error variances of the one-step predictions are computed recursively in the Durbin–
Levinson algorithm. They are the νt elements in the diagonal matrix D computed from the Cholesky
factorization of V. The recursive formula is ν0 = γ0, and νt = νt−1(1 − τ2t,t).

Forecasting is carried out as described by Beran (1994, sec. 8.7), ẑT+k = γ̃′kV̂
−1ẑ, where

γ̃′k = (γ̂T+k−1, γ̂T+k−2, . . . , γ̂k). The forecast mean squared error is computed as MSE(ẑT+k) = γ̂0−
γ̃′kV̂

−1γ̃k. Computation of V̂−1γ̃k is carried out efficiently using algorithm 4.7.2 of Golub and Van
Loan (2013).
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Also see
[TS] arfima — Autoregressive fractionally integrated moving-average models

[TS] estat acplot — Plot parametric autocorrelation and autocovariance functions

[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] psdensity — Parametric spectral density estimation after arima, arfima, and ucm
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