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Description

spregress is the equivalent of regress for spatial data. spregress fits spatial autoregressive
(SAR) models, also known as simultaneous autoregressive models. If you have not read [SP] Intro 1–
[SP] Intro 8, you should do so before using spregress.

To use spregress, your data must be Sp data. See [SP] Intro 3 for instructions on how to prepare
your data.

To specify spatial lags, you will need to have one or more spatial weighting matrices. See
[SP] Intro 2 and [SP] spmatrix for an explanation of the types of weighting matrices and how to
create them.

Quick start
Spatial autoregressive model of y on x1 and x2 with a spatial lag of y specified by the spatial

weighting matrix W using the GS2SLS estimator
spregress y x1 x2, gs2sls dvarlag(W)

Add a spatially lagged error term also specified by W

spregress y x1 x2, gs2sls dvarlag(W) errorlag(W)

Add spatial lags of covariates x1 and x2

spregress y x1 x2, gs2sls dvarlag(W) errorlag(W) ivarlag(W: x1 x2)

Add a higher-order spatial lag of y specified by another weighting matrix M

spregress y x1 x2, gs2sls dvarlag(W) errorlag(W) ivarlag(W: x1 x2) ///
dvarlag(M)

Use the ML estimator and include spatial lags of y, x1, x2 and the error term specified by W

spregress y x1 x2, ml dvarlag(W) errorlag(W) ivarlag(W: x1 x2)

Add an additional spatial lag of the covariates specified by the matrix M

spregress y x1 x2, ml dvarlag(W) errorlag(W) ivarlag(W: x1 x2) ///
ivarlag(M: x1 x2)

Same model fit by GS2SLS

spregress y x1 x2, gs2sls dvarlag(W) errorlag(W) ivarlag(W: x1 x2) ///
ivarlag(M: x1 x2)

Model fit by GS2SLS with spatial lags of y and of the error term and treating the errors as heteroskedastic
spregress y x1 x2, gs2sls heteroskedastic dvarlag(W) errorlag(W)
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Menu
Statistics > Spatial autoregressive models

Syntax
Generalized spatial two-stage least squares

spregress depvar
[

indepvars
] [

if
] [

in
]
, gs2sls

[
gs2sls options

]
Maximum likelihood

spregress depvar
[

indepvars
] [

if
] [

in
]
, ml

[
ml options

]
gs2sls options Description

Model
∗gs2sls use generalized spatial two-stage least-squares estimator
dvarlag(spmatname) spatially lagged dependent variable; repeatable
errorlag(spmatname) spatially lagged errors; repeatable
ivarlag(spmatname : varlist) spatially lagged independent variables; repeatable
noconstant suppress constant term
heteroskedastic treat errors as heteroskedastic
force allow estimation when estimation sample is a subset of the

sample used to create the spatial weighting matrix
impower(#) order of instrumental-variable approximation

Reporting

level(#) set confidence level; default is level(95)

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

optimization options control the optimization process; seldom used

coeflegend display legend instead of statistics
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ml options Description

Model
∗ml use maximum likelihood estimator
dvarlag(spmatname) spatially lagged dependent variable; not repeatable
errorlag(spmatname) spatially lagged errors; not repeatable
ivarlag(spmatname : varlist) spatially lagged independent variables; repeatable
noconstant suppress constant term
constraints(constraints) apply specified linear constraints
force allow estimation when estimation sample is a subset of the

sample used to create the spatial weighting matrix
gridsearch(#) resolution of the initial-value search grid; seldom used

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗ You must specify either gs2sls or ml.
indepvars and varlist specified in ivarlag() may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for spregress, gs2sls

� � �
Model �

gs2sls requests that the generalized spatial two-stage least-squares estimator be used.

dvarlag(spmatname) specifies a spatial weighting matrix that defines a spatial lag of the dependent
variable. This option is repeatable to allow higher-order models. By default, no spatial lags of the
dependent variable are included.

errorlag(spmatname) specifies a spatial weighting matrix that defines a spatially lagged error.
This option is repeatable to allow higher-order models. By default, no spatially lagged errors are
included.

ivarlag(spmatname : varlist) specifies a spatial weighting matrix and a list of independent variables
that define spatial lags of the variables. This option is repeatable to allow spatial lags created from
different matrices. By default, no spatial lags of the independent variables are included.

noconstant; see [R] Estimation options.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
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heteroskedastic specifies that the estimator treat the errors as heteroskedastic instead of ho-
moskedastic, which is the default; see Methods and formulas .

force requests that estimation be done when the estimation sample is a proper subset of the sample
used to create the spatial weighting matrices. The default is to refuse to fit the model. Weighting
matrices potentially connect all the spatial units. When the estimation sample is a subset of
this space, the spatial connections differ and spillover effects can be altered. In addition, the
normalization of the weighting matrix differs from what it would have been had the matrix been
normalized over the estimation sample. The better alternative to force is first to understand the
spatial space of the estimation sample and, if it is sensible, then create new weighting matrices for
it. See [SP] spmatrix and Missing values, dropped observations, and the W matrix in [SP] Intro 2.

impower(#) specifies the order of an instrumental-variable approximation used in fitting the model.
The derivation of the estimator involves a product of # matrices. Increasing # may improve the
precision of the estimation and will not cause harm, but will require more computer time. The
default is impower(2). See Methods and formulas for additional details on impower(#).

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

optimization options: iterate(#),
[
no
]
log, trace, gradient, showstep, hessian,

showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), and nonrtolerance;
see [M-5] optimize( ).

The following option is available with spregress, gs2sls but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Options for spregress, ml

� � �
Model �

ml requests that the maximum likelihood estimator be used.

dvarlag(spmatname) specifies a spatial weighting matrix that defines a spatial lag of the dependent
variable. Only one dvarlag() option may be specified. By default, no spatial lags of the dependent
variable are included.

errorlag(spmatname) specifies a spatial weighting matrix that defines a spatially lagged error. Only
one errorlag() option may be specified. By default, no spatially lagged errors are included.

ivarlag(spmatname : varlist) specifies a spatial weighting matrix and a list of independent variables
that define spatial lags of the variables. This option is repeatable to allow spatial lags created from
different matrices. By default, no spatial lags of the independent variables are included.

noconstant, constraints(constraints); see [R] Estimation options.

force requests that estimation be done when the estimation sample is a proper subset of the sample
used to create the spatial weighting matrices. The default is to refuse to fit the model. This is the
same force option described for use with spregress, gs2sls.

https://www.stata.com/manuals/spspmatrix.pdf#spspmatrix
https://www.stata.com/manuals/spintro2.pdf#spIntro2Remarksandexamplesforce
https://www.stata.com/manuals/spintro2.pdf#spIntro2
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/m-5optimize.pdf#m-5optimize()
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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gridsearch(#) specifies the resolution of the initial-value search grid. The default is
gridsearch(0.1). You may specify any number between 0.001 and 0.1 inclusive.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim) and that are robust to nonnormal independent and identically distributed
(i.i.d.) disturbance (robust). See [R] vce option.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] Maximize.

The following option is available with spregress, ml but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:
Introduction
Choosing weighting matrices and their normalization

Weighting matrices
Normalization of weighting matrices
Direct and indirect effects and normalization

Examples

Introduction
See [SP] Intro 1–[SP] Intro 8 for an overview of SAR models. The introductions also describe, in

detail and with examples, how to prepare your data for analysis with spregress and the other Sp
estimation commands.

Datasets for SAR models contain observations on geographical areas or other units; all that is
required is that there be some measure of distance that distinguishes which units are close to each
other. The spregress command models cross-sectional data. It requires each observation to represent
one unique spatial unit. For data with multiple observations on each unit—namely, panel data—see
[SP] spxtregress.

To fit models with endogenous regressors for cross-sectional data, see [SP] spivregress.

spregress, gs2sls uses a generalized method of moments estimator known as generalized
spatial two-stage least squares (GS2SLS). spregress, ml uses a maximum likelihood (ML) estimator.
For normally distributed data, ml is theoretically more efficient than gs2sls, but when data are i.i.d.,
spregress, gs2sls produces results that are not appreciably different from those of spregress,
ml. See Methods and formulas .

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
https://www.stata.com/manuals/spintro1.pdf#spIntro1
https://www.stata.com/manuals/spintro8.pdf#spIntro8
https://www.stata.com/manuals/spspxtregress.pdf#spspxtregress
https://www.stata.com/manuals/spspivregress.pdf#spspivregress
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The vce(robust) variance estimator can be used with spregress, ml to produce standard
errors that are robust to nonnormal i.i.d. errors; see [R] vce option. spregress, ml can produce
inconsistent estimates with data that are not identically distributed.

spregress, gs2sls has a heteroskedastic option that relaxes the assumption that errors are
i.i.d. With the heteroskedastic option, errors only need to be independent; see example 2.

Choosing weighting matrices and their normalization

Weighting matrices

It is important to understand that the choice of weighting matrices is part of your SAR model
specification.

The choice of weighting matrix should be based on the formulation of your research question.
Does it make sense to define spatial lags based on only neighboring areas? Or do you want to model
effects across distances that decrease with increasing distance? Or do you want to model spatial lags
based on some measure in your data, for example, the value of imports and exports between countries?

The Sp system has the spmatrix create command, which can create contiguity matrices and
inverse-distance matrices. For instance, typing

spmatrix create contiguity W

creates a symmetric weighting matrix, W, that has the same positive weight for contiguous spatial
units and, by default, a zero weight for all other units, with an option to include nonzero weights for
second-order neighbors (neighbors of neighbors). There are also Sp commands for creating custom
weighting matrices. See [SP] Intro 2 and [SP] spmatrix for details.

Both spregress, gs2sls and spregress, ml can fit models with multiple spatial lags of the
independent variables. You can specify multiple ivarlag() options with different spatial weighting
matrices for the same or different variables.

With the gs2sls estimator, you can also include dependent-variable spatial lags and autoregressive
error terms specified by two or more spatial weighting matrices. You do this by specifying multiple
dvarlag() options or multiple errorlag() options. Multiple weighting matrices can be viewed as
providing a “higher-order” approximation to the true dependent variable or error spatial dependence,
and they allow testing of the formulation of the spatial lag.

With the ml estimator, you can include only one dvarlag() and one errorlag(), but each can
have its own, possibly different, spatial weighting matrix.

Normalization of weighting matrices

spmatrix create by default normalizes the weighting matrix it creates by dividing the entries by
the absolute value of the largest eigenvalue of the matrix; this is the normalize(spectral) option.
The normalize(minmax) option scales the matrix using either the maximum of column sums or the
maximum of the row sums, whichever is smaller. The normalize(row) option scales each row of
the matrix by its row sum, so that each row sums to one.

You may have also created your own weighting matrix with good properties for the estimator. In
this case, you may want to leave the matrix unnormalized using the normalize(none) option.

What are the differences among the three normalizations?

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/spspmatrixcreate.pdf#spspmatrixcreate
https://www.stata.com/manuals/spintro2.pdf#spIntro2
https://www.stata.com/manuals/spspmatrix.pdf#spspmatrix
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There are two reasons to normalize: interpretability of the spatial lag coefficients and estimability.

normalize(spectral) and normalize(minmax) produce matrices that differ from the original
only by a scalar multiple. This not true for normalize(row), so let’s discuss it first.

Row normalization, normalize(row), has a long history and is popular in applied work. Row
normalization can potentially multiply different rows by different scalars, and if it does so, that changes
the model specification given by the weighting matrix. For example, if you start with a contiguity
matrix, and the first row has two 1s and the second row has four 1s, then after row normalization, the
first row contains two halves and the second four quarters. This amounts to spreading the potential
spillover effects of each spatial unit equally across its neighbors, whereas the original unnormalized
contiguity matrix modeled equal potential spillover effects for each neighbor regardless of the number
of neighbors. normalize(row) also transforms a symmetric contiguity matrix into an asymmetric
matrix. Row normalization should be used when the spatial lags it specifies are appropriate for your
research question and when the lags of the original matrix are not.

When the unnormalized matrix has been formulated to match your research question, there is the
choice of normalize(spectral), normalize(minmax), or normalize(none). The choice affects
the interpretation of the spatial lag coefficients.

Because dependent-variable spatial lags enter the model as λWy, covariate lags enter as γWx,
and the autoregressive errors are modeled using ρWe, we would expect the spatial lag coefficient
estimates to scale inversely by the scale of W. If W is scaled by c to become W/c, then λ̂ becomes
cλ̂, γ̂ becomes cγ̂, and ρ̂ becomes cρ̂.

For example, if an unnormalized matrix results in an estimation of ρ̂unnorm = 0.1, and if the
matrix is then scaled by c = 5, the estimation using the normalized matrix would yield ρ̂norm = 0.5.
So what we want for the interpretation of the parameter estimate is a scaling where ρ̂norm is typically
in the range −1 to 1. Recall from the discussion in [SP] Intro 2 and [SP] Intro 7 that ρ is not a true
correlation, only something like a correlation. There is no guarantee that the estimate for it will be
between −1 and 1. In an explosive model, the estimate will be outside this range.

The scaling factor c from normalize(spectral) is always less than or equal to the scaling
factor from normalize(minmax). So for the same model run with different normalizations, minmax
will result in an estimate ρ̂minmax that is larger than ρ̂spectral, the estimate resulting from using
spectral. So the spectral normalization is more likely to produce estimates of ρ in the range −1
to 1.

The second reason for normalization is estimability. The scaling from normalize(spectral)
guarantees nonsingularity of certain terms in the model estimation; see Methods and formulas . The
bigger scaling of normalize(minmax), of course, also guarantees nonsingularity, but it is a bigger
scaling than necessary.

Row normalization also guarantees nonsingularity, but because it is not a scalar multiple of the
unnormalized matrix, we cannot in general say how it will change the spatial lag coefficient estimates
relative to the estimates produced using the unnormalized matrix. Row normalization, as we said
earlier, results in a different model specification.

You may have created your own weighting matrix, and you know that based on its properties and
the form of the estimator that it will not yield singularities. In this case, you need not normalize.
If an unnormalized matrix, however, causes a singularity in the estimation, you may get “wrong”
estimation results, that is, ones differing by other than a scale factor from those using a spectral or
min–max normalization.

spmatrix create and other Sp matrix commands use spectral normalization by default because it is
the smallest scaling that in general guarantees nonsingularity without changing the model specification
of the original matrix. However, normalize(spectral) is computationally expensive. It can take

https://www.stata.com/manuals/spintro2.pdf#spIntro2
https://www.stata.com/manuals/spintro7.pdf#spIntro7
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a long time for large matrices. If this is a consideration, normalize(minmax) is faster to compute
and will yield results that are close to those of normalize(spectral).

Direct and indirect effects and normalization

Direct and indirect, also called spillover, effects were discussed in [SP] Intro 1 and [SP] Intro 2.
In example 1 below, we show how to get these estimates using the estat impact command.

The scaling property between the spectral and min–max normalizations and the spatial lag coefficient
estimates that we described in the previous section implies that the estimates of the direct and indirect
effects should be scale invariant. spregress, ml has this scaling property and gives scale-invariant
effects. When there is no autoregressive error term, spregress, gs2sls also has this scaling property
and gives scale-invariant effects. When there is an autoregressive error term, however, the GS2SLS
estimator is only asymptotically scale invariant.

Practically speaking, this means when you use estat impact to look at the direct and indirect effects
of the covariates after spregress, ml in all cases, or spregress, gs2sls with no errorlag(),
you will get results differing only by numerical precision whether you used normalize(spectral),
normalize(minmax), or an unnormalized matrix with sound numerical properties.

The GS2SLS estimator, however, is a nonlinear function of the weighting matrix when an autoregres-
sive error term is included. For this nonlinear GS2SLS estimator, models are well defined only if the
coefficient on the spatial lag of the dependent variable and the coefficient on the spatially lagged error
lie within certain intervals. Normalizing the weighting matrix by the spectral normalization or the
row normalization puts the estimates in these intervals when there are no higher-order lags. Because
min–max normalization is a close approximation to spectral normalization, the resulting estimates
should be close.

Again, practically speaking, this means that even though normalize(spectral) and normal-
ize(minmax) both simply multiply the original matrix by a scalar, and the scalars are similar in
size, estat impact may give slightly different estimates depending on the normalization for the
GS2SLS estimator with an autoregressive error term. This is especially the case in small samples, and
the differences will decrease as the sample size increases.

Of course, the normalize(row) normalization will yield different estimates of effects compared
with the other normalizations or with no normalization because row normalization results in a different
model specification.

In higher-order models with GS2SLS and autoregressive error terms, the estimator is a nonlinear
function of multiple weighting matrices. The sets of spatial lag coefficients for which the models are
well defined are multidimensional regions, but the same normalizations are used, and the tradeoffs
mentioned above still apply.

Examples

Example 1: A spatial autoregressive model

We want to model the homicide rate in counties in southern states of the United States.
homicide1990.dta contains hrate, the county-level homicide rate per year per 100,000 per-
sons; ln population, the logarithm of the county population; ln pdensity, the logarithm of the
population density; and gini, the Gini coefficient for the county, a measure of income inequality
where larger values represent more inequality (Gini 1909). The data are an extract of the data originally
used by Messner et al. (2000); see Britt (1994) for a literature review of the topic.

https://www.stata.com/manuals/spintro1.pdf#spIntro1
https://www.stata.com/manuals/spintro2.pdf#spIntro2


spregress — Spatial autoregressive models 9

We used spshape2dta to create homicide1990.dta and homicide1990 shp.dta. The latter
file contains the boundary coordinates for U.S. southern counties. See [SP] Intro 4, [SP] Intro 7,
[SP] spshape2dta, and [SP] spset.

Because the analysis dataset and the Stata-formatted shapefile must be in our working directory to
spset the data, we first save both homicide1990.dta and homicide1990 shp.dta to our working
directory by using the copy command. We then load the data and type spset to see the Sp settings.

. copy https://www.stata-press.com/data/r18/homicide1990.dta .

. copy https://www.stata-press.com/data/r18/homicide1990_shp.dta .

. use homicide1990
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)

. spset

Sp dataset: homicide1990.dta
Linked shapefile: homicide1990_shp.dta

Data: Cross sectional
Spatial-unit ID: _ID

Coordinates: _CX, _CY (planar)

We plot the homicide rate on a map of the counties by using the grmap command; see [SP] grmap.
Figure 1 is the result.

. grmap hrate

(1.30399e+01,6.42610e+01]
(8.2212200165,1.30399e+01]
(4.8036060333,8.2212200165]
[0.0000000000,4.8036060333]

Figure 1: Homicide rate in 1990 for southern U.S. counties

The homicide rate appears to be spatially dependent because the high homicide-rate counties appear
to be clustered together. As described in [SP] Intro 7, we can fit an ordinary linear regression and
test whether the errors are spatially correlated using the Moran test.

To conduct the test, we need a spatial weighting matrix. We will create one that puts the same
positive weight on contiguous counties and a zero weight on all other counties—a matrix known as
a contiguity matrix. We will use the default spectral normalization for the matrix. See [SP] Intro 2,
[SP] spmatrix create, and Choosing weighting matrices and their normalization above for details. We
type

. spmatrix create contiguity W

To create W, spmatrix used the coordinate data in homicide1990 shp.dta behind the scenes.

https://www.stata.com/manuals/spintro4.pdf#spIntro4
https://www.stata.com/manuals/spintro7.pdf#spIntro7
https://www.stata.com/manuals/spspshape2dta.pdf#spspshape2dta
https://www.stata.com/manuals/spspset.pdf#spspset
https://www.stata.com/manuals/spspset.pdf#spspset
https://www.stata.com/manuals/dcopy.pdf#dcopy
https://www.stata.com/manuals/spgrmap.pdf#spgrmap
https://www.stata.com/manuals/spintro7.pdf#spIntro7
https://www.stata.com/manuals/spintro2.pdf#spIntro2
https://www.stata.com/manuals/spspmatrixcreate.pdf#spspmatrixcreate
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Now, we run regress and then estat moran.

. regress hrate

Source SS df MS Number of obs = 1,412
F(0, 1411) = 0.00

Model 0 0 . Prob > F = .
Residual 69908.59 1,411 49.5454217 R-squared = 0.0000

Adj R-squared = 0.0000
Total 69908.59 1,411 49.5454217 Root MSE = 7.0389

hrate Coefficient Std. err. t P>|t| [95% conf. interval]

_cons 9.549293 .1873201 50.98 0.000 9.181837 9.916749

. estat moran, errorlag(W)

Moran test for spatial dependence
H0: Error terms are i.i.d.
Errorlags: W

chi2(1) = 265.84
Prob > chi2 = 0.0000

The test reports that we can reject that the errors are i.i.d. and confirms our visual appraisal of the
data.

To model the homicide rate hrate, we will use the GS2SLS estimator and specify the option
dvarlag(W) to fit a model with a spatial lag of hrate based on W.

. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W)
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(4) = 328.40

Prob > chi2 = 0.0000
Pseudo R2 = 0.1754

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

hrate
ln_populat~n .195714 .2654999 0.74 0.461 -.3246563 .7160843
ln_pdensity 1.060728 .2303736 4.60 0.000 .6092043 1.512252

gini 77.10293 5.330446 14.46 0.000 66.65544 87.55041
_cons -28.79865 2.945944 -9.78 0.000 -34.57259 -23.02471

W
hrate .2270154 .0607158 3.74 0.000 .1080146 .3460161

Wald test of spatial terms: chi2(1) = 13.98 Prob > chi2 = 0.0002

The estimated coefficient on the spatial lag of hrate is 0.23, indicating positive correlation between
the homicide rate in one county and the homicide rate in a neighboring county.

As we discussed in [SP] Intro 7 the coefficients cannot be interpreted as they are in standard
regression models. We can use estat impact to interpret results, but first we will illustrate how to
fit other SAR models.

https://www.stata.com/manuals/spestatmoran.pdf#spestatmoran
https://www.stata.com/manuals/spintro7.pdf#spIntro7
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We now include a spatial autoregressive error term by adding errorlag(W).

. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W) errorlag(W)
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

Estimating rho using 2SLS residuals:

Initial: GMM criterion = 16.837319
Alternative: GMM criterion = 10.842722
Rescale: GMM criterion = 1.1522691
Iteration 0: GMM criterion = 1.1522691
Iteration 1: GMM criterion = 1.1386586
Iteration 2: GMM criterion = 1.1386578
Iteration 3: GMM criterion = 1.1386578

Estimating rho using GS2SLS residuals:

Iteration 0: GMM criterion = .02771702
Iteration 1: GMM criterion = .0262056
Iteration 2: GMM criterion = .02606375
Iteration 3: GMM criterion = .02601873
Iteration 4: GMM criterion = .02601004
Iteration 5: GMM criterion = .02600789
Iteration 6: GMM criterion = .02600742
Iteration 7: GMM criterion = .02600731
Iteration 8: GMM criterion = .02600729

Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(4) = 276.72

Prob > chi2 = 0.0000
Pseudo R2 = 0.1736

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

hrate
ln_populat~n .1034997 .2810656 0.37 0.713 -.4473787 .6543781
ln_pdensity 1.081404 .2520505 4.29 0.000 .5873939 1.575414

gini 82.0687 5.658372 14.50 0.000 70.9785 93.1589
_cons -29.63033 3.070332 -9.65 0.000 -35.64807 -23.61259

W
hrate .1937419 .0654322 2.96 0.003 .0654972 .3219867

e.hrate .3555443 .0786465 4.52 0.000 .2014 .5096887

Wald test of spatial terms: chi2(2) = 226.21 Prob > chi2 = 0.0000

. estimates store gs2sls_model

Note that when an autoregressive error term is included, the estimation procedure becomes an iterative
generalized method of moments procedure.
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We keep the SAR error term e.hrate in our model and add terms representing spatial lags of the
independent variables by using ivarlag(W: . . . ).

. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W) errorlag(W)
> ivarlag(W: ln_population ln_pdensity gini)

(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

(output omitted )
Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(7) = 394.61

Prob > chi2 = 0.0000
Pseudo R2 = 0.1866

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

hrate
ln_populat~n -.3489221 .3050009 -1.14 0.253 -.9467129 .2488687
ln_pdensity 1.210485 .3015442 4.01 0.000 .6194695 1.801501

gini 89.17773 6.454876 13.82 0.000 76.5264 101.8291
_cons -28.80191 3.178656 -9.06 0.000 -35.03196 -22.57186

W
ln_populat~n 1.918436 .4598247 4.17 0.000 1.017196 2.819676
ln_pdensity -1.260725 .5326521 -2.37 0.018 -2.304704 -.2167459

gini -43.4606 8.607378 -5.05 0.000 -60.33075 -26.59045
hrate .5071798 .1139532 4.45 0.000 .2838356 .730524

e.hrate -.3135187 .1396411 -2.25 0.025 -.5872103 -.0398271

Wald test of spatial terms: chi2(5) = 61.81 Prob > chi2 = 0.0000

The coefficients for the lagged variables and the autoregressive error term are significant.

We are often unsure which spatial weighting matrix should be used to compute spatial lags. Many
researchers use a spatial weighting matrix whose (i, j)th element is the inverse of the distance between
units i and j. This inverse-distance matrix has many nice properties and a long history in spatial
analysis; see [SP] spmatrix and Choosing weighting matrices and their normalization above.

With the GS2SLS estimator, we can include spatial lags using two spatial weighting matrices, in
which case we might view them as together providing a “higher-order” approximation to the true
spatial process. We had in our model a spatial lag of the dependent variable using a contiguity matrix
alone. Now, we will include that and another lag of the dependent variable using an inverse-distance
matrix.

We create the inverse-distance matrix M with the default spectral normalization and use spmatrix
dir to list our Sp matrices.

. spmatrix create idistance M

. spmatrix dir

Weighting matrix name N x N Type Normalization

M 1412 x 1412 idistance spectral
W 1412 x 1412 contiguity spectral

https://www.stata.com/manuals/spspmatrix.pdf#spspmatrix
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Now, we add dvarlag(M) to our model.

. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W) errorlag(W)
> ivarlag(W: ln_population ln_pdensity gini) dvarlag(M)

(1412 observations)
(1412 observations (places) used)
(weighting matrices define 1412 places)

(output omitted )
Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(8) = 1323.43

Prob > chi2 = 0.0000
Pseudo R2 = 0.1121

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

hrate
ln_populat~n -.6245271 .2830848 -2.21 0.027 -1.179363 -.069691
ln_pdensity 1.266528 .2831372 4.47 0.000 .711589 1.821466

gini 69.30288 5.64501 12.28 0.000 58.23887 80.3669
_cons -19.77151 2.753498 -7.18 0.000 -25.16827 -14.37476

W
ln_populat~n 2.590823 .3806543 6.81 0.000 1.844754 3.336892
ln_pdensity -2.63202 .4261688 -6.18 0.000 -3.467295 -1.796744

gini -59.75958 6.438899 -9.28 0.000 -72.37959 -47.13957
hrate .9269412 .0492867 18.81 0.000 .8303411 1.023541

e.hrate -.8531151 .0914652 -9.33 0.000 -1.032384 -.6738465

M
hrate .2289786 .0755038 3.03 0.002 .0809939 .3769633

Wald test of spatial terms: chi2(6) = 676.93 Prob > chi2 = 0.0000

The hrate lag specified by M is significant in addition to the hrate lag specified by W. We may well
want to include both in our final model.

We could repeat the process, fitting a model with errorlag(M) in addition to errorlag(W), and
another model with ivarlag(M: . . . ) in addition to ivarlag(W: . . . ). One issue is that we have
“only” N = 1412 spatial units (observations) in this example. To fit higher-order lags, one needs
lots of spatial units, so we need to exercise judgment just as in any other model-building process.
In our final model, we keep a single weighting matrix for each term. We use W for dvarlag() and
ivarlag(), but M for errorlag().
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. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W) errorlag(M)
> ivarlag(W: ln_population ln_pdensity gini)

(1412 observations)
(1412 observations (places) used)
(weighting matrices define 1412 places)

(output omitted )
Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(7) = 357.06

Prob > chi2 = 0.0000
Pseudo R2 = 0.1241

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

hrate
ln_populat~n -.0475582 .3295548 -0.14 0.885 -.6934737 .5983573
ln_pdensity .8989538 .3211524 2.80 0.005 .2695066 1.528401

gini 89.91969 6.409286 14.03 0.000 77.35772 102.4817
_cons -32.21599 3.590014 -8.97 0.000 -39.25229 -25.17969

W
ln_populat~n 2.679931 .5218152 5.14 0.000 1.657192 3.702669
ln_pdensity -2.468953 .6209688 -3.98 0.000 -3.686029 -1.251876

gini -57.38302 9.418108 -6.09 0.000 -75.84217 -38.92387
hrate .6818566 .1141573 5.97 0.000 .4581125 .9056007

M
e.hrate .9533048 .1324392 7.20 0.000 .6937289 1.212881

Wald test of spatial terms: chi2(5) = 169.23 Prob > chi2 = 0.0000

. estimates store model_ex1_last

In [SP] Intro 7, we cautioned that interpreting covariate effects based on their coefficient estimates
is difficult when there is a dependent-variable lag or an independent-variable lag in the model.

The spatial lag of hrate modifies the covariate effects. A change in gini in a county changes the
conditional mean of hrate in that county, and that change in hrate changes the conditional mean
of hrate in all contiguous counties. The change in hrate in these counties then affects hrate in all
counties contiguous to them, and so on, until all counties linked by a chain of contiguous counties
are affected.

The effects of a covariate vary over the counties because of how the spatial lag of hrate modifies
the covariate effects. There are as many effects of a covariate as there are spatial units. As discussed
by LeSage and Pace (2009, sec. 2.7), we define the average of these spatial unit-level effects to be
the covariate effect.

The effect of gini on the conditional mean of hrate in other counties is called an indirect, or
spillover, effect.

Because a spatial lag of gini is included in the model, there is a second indirect effect. The
equation for hrate includes a term for gini in neighboring counties, so a change in gini in one
county changes the conditional mean of hrate in neighboring counties.

The effect of gini on the conditional mean of hrate in the same county is called a direct, or
own, effect. The sum of the direct and indirect effects is called the total effect.

https://www.stata.com/manuals/spintro7.pdf#spIntro7
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We use estat impact to estimate the magnitude of these effects.

. estat impact

progress : 33% 67% 100%

Average impacts Number of obs = 1,412

Delta-Method
dy/dx std. err. z P>|z| [95% conf. interval]

direct
ln_populat~n .3149608 .3545409 0.89 0.374 -.3799266 1.009848
ln_pdensity .6448149 .3426066 1.88 0.060 -.0266817 1.316311

gini 90.45773 6.380729 14.18 0.000 77.95173 102.9637

indirect
ln_populat~n 5.856241 2.256561 2.60 0.009 1.433463 10.27902
ln_pdensity -4.105437 1.883462 -2.18 0.029 -7.796956 -.413919

gini 8.691593 19.58268 0.44 0.657 -29.68975 47.07294

total
ln_populat~n 6.171202 2.411894 2.56 0.011 1.443976 10.89843
ln_pdensity -3.460622 2.029163 -1.71 0.088 -7.437708 .5164636

gini 99.14932 21.03394 4.71 0.000 57.92356 140.3751

See the percentages at the top of the output? For large datasets, calculating standard errors of the
effects can be time consuming, so estat impact reports its progress as it does the computations.

The direct effect of gini is positive because the coefficient of gini is positive. The indirect effect
of gini due to the spatial lag of hrate is positive because the coefficient of the dependent-variable
lag is positive and the coefficient of gini is positive. The indirect effect of gini due to its spatial
lag, however, is negative because the coefficient of its lag is negative. estat impact shows that the
two indirect effects of gini sum to a net positive indirect effect, although the sum is not significantly
different from 0.

Note that the normalization of W affects the size of the coefficient estimates for the lags of the
covariates. For the GS2SLS estimator, the normalization of W (except for the case of row normalization)
does not affect the asymptotic estimates of the covariate effects. In finite samples, this means that
the normalization of W may have a small effect on the estimates produced by estat impact—small
compared with the effect’s standard error. For the ML estimator, the normalization does not affect
the size of estimated effects shown by estat impact. See Choosing weighting matrices and their
normalization.

Running estat impact after spregress is essential for proper interpretation of the model. The
output of estat impact can be read directly as the change in the metric of the dependent variable
per incremental change of the covariate averaged across all the spatial units (observations).

estat impact shows marginal (incremental change) effects. We might want to see the total
effect of a discrete change in a covariate. The expectation of the dependent variable is linear in
the covariates in this example. We did not fit polynomial or other nonlinear terms. We could just
multiply the incremental change by the discrete change of the covariate. Or, we could use the margins
command, which works for both linear and nonlinear terms; see [R] margins.

The median of gini is 0.39, its 25th percentile is 0.37, and its 75th percentile is 0.41. So it is
reasonable to ask how a change of ± 0.02 in the Gini coefficient affects the homicide rate. Here’s
how to get the answer by using margins:

https://www.stata.com/manuals/spspregresspostestimation.pdf#spspregresspostestimationestatimpact
https://www.stata.com/manuals/rmargins.pdf#rmargins


16 spregress — Spatial autoregressive models

. margins, at(gini = generate(gini - 0.02)) at(gini = generate(gini))
> at(gini = generate(gini + 0.02))

Predictive margins Number of obs = 1,412

Expression: Reduced-form mean, predict()
1._at: gini = gini - 0.02
2._at: gini = gini
3._at: gini = gini + 0.02

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 2.550868 2.651383 0.96 0.336 -2.645746 7.747482
2 4.533855 2.584986 1.75 0.079 -.5326253 9.600334
3 6.516841 2.586198 2.52 0.012 1.447986 11.5857

A change of ± 0.02 in the Gini coefficient causes the homicide rate to change by roughly ± 2.0 per
100,000 persons per year.

The computations that margins must do to calculate standard errors can sometimes be time
consuming. Time will depend on the complexity of the spatial model and the number of spatial
units in the data. You may want to fit your model with a subsample of your data, run margins,
and extrapolate to estimate the time required to run margins on the full sample. See [P] timer and
[P] rmsg.

Example 2: spregress, gs2sls heteroskedastic

The spregress, gs2sls command has a heteroskedastic option that requires the errors to
be independent but not necessarily identically distributed. Practically speaking, this option causes the
estimates of the spatial autoregressive error correlations and the standard errors to change. In models
without spatially autoregressive errors, only standard errors will change. See Methods and formulas .

https://www.stata.com/manuals/ptimer.pdf#ptimer
https://www.stata.com/manuals/prmsg.pdf#prmsg
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If we add the heteroskedastic option to the last model we fit in example 1, we get

. spregress hrate ln_population ln_pdensity gini, gs2sls heteroskedastic
> dvarlag(W) errorlag(M) ivarlag(W: ln_population ln_pdensity gini)

(1412 observations)
(1412 observations (places) used)
(weighting matrices define 1412 places)
(output omitted )

Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(7) = 248.74

Prob > chi2 = 0.0000
Pseudo R2 = 0.1241

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

hrate
ln_populat~n -.0475582 .3545931 -0.13 0.893 -.7425479 .6474315
ln_pdensity .8989538 .4016155 2.24 0.025 .1118019 1.686106

gini 89.91969 10.71501 8.39 0.000 68.91866 110.9207
_cons -32.21599 5.013344 -6.43 0.000 -42.04197 -22.39002

W
ln_populat~n 2.679931 .5247129 5.11 0.000 1.651512 3.708349
ln_pdensity -2.468953 .6786844 -3.64 0.000 -3.79915 -1.138756

gini -57.38302 9.719208 -5.90 0.000 -76.43232 -38.33372
hrate .6818566 .13258 5.14 0.000 .4220047 .9417085

M
e.hrate .9614507 .1554489 6.18 0.000 .6567764 1.266125

Wald test of spatial terms: chi2(5) = 156.95 Prob > chi2 = 0.0000

. estimates store heterosk_model
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We used estimates store to store the results of the earlier model, and we stored this model,
too. We can now use estimates table to display coefficient estimates with their standard errors
side by side. See [R] estimates store and [R] estimates table.

. estimates table model_ex1_last heterosk_model, b(%6.3f) se(%6.3f)

Variable model~t heter~l

hrate
ln_populat~n -0.048 -0.048

0.330 0.355
ln_pdensity 0.899 0.899

0.321 0.402
gini 89.920 89.920

6.409 10.715
_cons -32.216 -32.216

3.590 5.013

W
ln_populat~n 2.680 2.680

0.522 0.525
ln_pdensity -2.469 -2.469

0.621 0.679
gini -57.383 -57.383

9.418 9.719
hrate 0.682 0.682

0.114 0.133

M
e.hrate 0.953 0.961

0.132 0.155

Legend: b/se

We see that standard errors are larger, especially those for the direct-effect coefficients of the covariates.
We also see that the estimate of ρ, the SAR error correlation labeled as e.hrate, differs between the
two estimators.

Example 3: spregress, ml

SAR models can be fit using ML estimation. Here’s the second model we fit in example 1 estimated
using ml in place of gs2sls.

. spregress hrate ln_population ln_pdensity gini, ml dvarlag(W) errorlag(W)
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

Performing grid search ... finished

Optimizing concentrated log likelihood:

Iteration 0: Log likelihood = -4557.201
Iteration 1: Log likelihood = -4556.763
Iteration 2: Log likelihood = -4556.7539
Iteration 3: Log likelihood = -4556.7539

Optimizing unconcentrated log likelihood:

Iteration 0: Log likelihood = -4556.7539
Iteration 1: Log likelihood = -4556.7539 (backed up)

https://www.stata.com/manuals/restimatesstore.pdf#restimatesstore
https://www.stata.com/manuals/restimatestable.pdf#restimatestable
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Spatial autoregressive model Number of obs = 1,412
Maximum likelihood estimates Wald chi2(4) = 240.21

Prob > chi2 = 0.0000
Log likelihood = -4556.7539 Pseudo R2 = 0.1590

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

hrate
ln_populat~n .5268247 .3038837 1.73 0.083 -.0687763 1.122426
ln_pdensity .5269135 .3136226 1.68 0.093 -.0877755 1.141603

gini 91.44471 6.263932 14.60 0.000 79.16763 103.7218
_cons -32.8348 3.205075 -10.24 0.000 -39.11663 -26.55297

W
hrate -.1850846 .1218453 -1.52 0.129 -.423897 .0537279

e.hrate .6244211 .0897639 6.96 0.000 .4484871 .8003551

var(e.hrate) 34.79054 1.599235 31.79315 38.07052

Wald test of spatial terms: chi2(2) = 227.84 Prob > chi2 = 0.0000

. estimates store ml_model

We stored the estimation results with estimates store, as we did with the same model fit with
gs2sls, and now we use estimates table to compare coefficient estimates and their standard
errors.

. estimates table gs2sls_model ml_model, b(%6.3f) se(%6.3f)

Variable gs2sl~l ml_mo~l

hrate
ln_populat~n 0.103 0.527

0.281 0.304
ln_pdensity 1.081 0.527

0.252 0.314
gini 82.069 91.445

5.658 6.264
_cons -29.630 -32.835

3.070 3.205

W
hrate 0.194 -0.185

0.065 0.122
e.hrate 0.356 0.624

0.079 0.090

var(e.hrate) 34.791
1.599

Legend: b/se

There are meaningful differences in the results. The coefficient of ln pdensity was significant in
the GS2SLS model but is nonsignificant in the ML model. The coefficient estimates for gini, however,
are similar, as are their standard errors. The coefficient of the lag of hrate becomes negative in the
ML model, and the SAR error correlation increases from ρ = 0.36 to ρ = 0.62.

We note that the ML estimator is not consistent under heteroskedasticity; for consistency, the error
distribution needs to be i.i.d., although it need not be normal. Heteroskedasticity may be the reason
why the estimates differ as they do. See Arraiz et al. (2010).
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Stored results
spregress, gs2sls stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(df m) model degrees of freedom
e(df c) degrees of freedom for test of spatial terms
e(iterations) number of generalized method of moments iterations
e(iterations 2sls) number of two-stage least-squares iterations
e(rank) rank of e(V)
e(r2 p) pseudo-R2

e(chi2) χ2

e(chi2 c) χ2 for test of spatial terms
e(p) p-value for model test
e(p c) p-value for test of spatial terms
e(converged) 1 if generalized method of moments converged, 0 otherwise
e(converged 2sls) 1 if two-stage least-squares converged, 0 otherwise

Macros
e(cmd) spregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(indeps) names of independent variables
e(idvar) name of ID variable
e(estimator) gs2sls
e(title) title in estimation output
e(constant) hasconstant or noconstant
e(exogr) exogenous regressors
e(dlmat) names of spatial weighting matrices applied to depvar
e(elmat) names of spatial weighting matrices applied to errors
e(het) heteroskedastic or homoskedastic
e(chi2type) Wald; type of model χ2 test
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(delta 2sls) two-stage least-squares estimates of coefficients in spatial lag equation
e(rho 2sls) generalized method of moments estimates of coefficients in spatial error equation
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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spregress, ml stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(df m) model degrees of freedom
e(df c) degrees of freedom for test of spatial terms
e(ll) log likelihood
e(iterations) number of maximum log-likelihood estimation iterations
e(rank) rank of e(V)
e(r2 p) pseudo-R2

e(chi2) χ2

e(chi2 c) χ2 for test of spatial terms
e(p) p-value for model test
e(p c) p-value for test of spatial terms
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) spregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(indeps) names of independent variables
e(idvar) name of ID variable
e(estimator) ml
e(title) title in estimation output
e(constant) hasconstant or noconstant
e(dlmat) name of spatial weighting matrix applied to depvar
e(elmat) name of spatial weighting matrix applied to errors
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(ml method) type of ml method
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(Hessian) Hessian matrix
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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Methods and formulas
SAR models date back to the works of Whittle (1954) and Cliff and Ord (1973, 1981). Cressie (1993),

LeSage and Pace (2009), and Waller and Gotway (2004) provide textbook introductions. Spatial
models have been applied in a variety of disciplines, such as criminology, demography, economics,
epidemiology, political science, and public health. See Darmofal (2015), Waller and Gotway (2004),
Kelejian and Prucha (2010), Drukker, Egger, and Prucha (2013), and Lee, Liu, and Lin (2010)
for examples in economics, social science, and public health, including examples of nongeographic
models such as social interactions and social networks.

The GS2SLS estimator was derived by Kelejian and Prucha (1998, 1999, 2010) and extended by
Arraiz et al. (2010) and Drukker, Egger, and Prucha (2013).

The formulas for the GS2SLS without higher-order spatial weighting matrices were published
in Drukker, Prucha, and Raciborski (2013). For the higher-order models, spregress, gs2sls
implements the estimator derived in Badinger and Egger (2011) and Prucha, Drukker, and Egger (2016).

The properties of the ML estimator were proven by Lee (2004), which also provides the formulas
for the robust estimator of the VCE.

Methods and formulas are presented under the following headings:

Model
GS2SLS estimator

2SLS estimator of δ
GMM estimator of ρ based on 2SLS residuals
GS2SLS estimator of δ
Efficient GMM estimator of ρ based on GS2SLS residuals

ML estimator
Log-likelihood function

Pseudo-R2

Model

We consider a cross-sectional spatial autoregressive model with autoregressive disturbances (SARAR),
allowing for higher-order spatial dependence in the dependent variable, exogenous independent
variables, and spatial errors. The model is

y =

K∑
k=1

βkxk +

P∑
p=1

γpWp xp +

R∑
r=1

λrWr y + u

u =

S∑
s=1

ρsMsu+ ε

(1)

where

y is an n× 1 vector of observations on the dependent variable;

xk is an n× 1 vector of observations on the exogenous variable; βk is the corresponding scalar
parameter;

Wp, Wr, and Ms are n× n spatial weighting matrices with 0 diagonal elements;

Wp xp, Wr y, and Msu are n× 1 vectors typically referred to as spatial lags for the exogenous
variable, dependent variable, and error term; γp, λr, and ρs are scalar parameters; and

ε is an n× 1 vector of innovations (i.i.d. disturbances).
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The model in (1) is frequently referred to as a higher-order spatial autoregressive model with
spatial autoregressive disturbances, or namely, a SARAR(R,S) model.

The spatial weighting matrices Wp, Wr, and Ms are assumed to be known and nonstochastic.
See [SP] Intro 2 and Darmofal (2015, chap. 2) for an introduction to spatial weighting matrices, and
see Kelejian and Prucha (2010) for a technical discussion of how normalization affects parameter
definition.

The scalar parameters γp and λr measure the degree to which the dependent variable depends on
its neighboring covariate’s values and outcomes. See example 1 and LeSage and Pace (2009, sec. 2.7)
for discussions of effect estimation.

The innovations ε are assumed to be i.i.d. or independent but heteroskedastically distributed, where
the heteroskedasticity is of unknown form. The errors u are spatially autoregressive.

The GS2SLS estimator produces consistent estimates in both cases when the heteroskedastic
option is specified. For the first-order SARAR model, see Kelejian and Prucha (1998, 1999, 2010),
Arraiz et al. (2010), and Drukker, Egger, and Prucha (2013) for formal results and discussions; for
the higher-order SARAR(R,S) model, see Badinger and Egger (2011) for formal results. The ML
estimator is consistent in the i.i.d. case for the SARAR(1, 1) model but generally not consistent in the
heteroskedastic case. See Lee (2004) for some results for the ML estimator; see Arraiz et al. (2010)
for evidence that the ML estimator does not produce consistent estimates in the heteroskedastic case.

The GS2SLS estimator can fit the SARAR(R,S) model, whereas the ML estimator can only fit the
SARAR(1, 1) model.

GS2SLS estimator
In this section, we give a detailed description of the computations performed by spregress,

gs2sls. For the SARAR(1, 1) model, spregress, gs2sls implements the estimator described in
Kelejian and Prucha (2010), Arraiz et al. (2010), and Drukker, Egger, and Prucha (2013); for the
SARAR(R,S) model, spregress, gs2sls implements the estimator described in Badinger and
Egger (2011). We will describe the GS2SLS estimator for the SARAR(R,S) model, which generalizes
the first-order SARAR model.

Let’s first rewrite (1) in a compact form:

y = Xβ +Xγ +Yλ+ u = Zδ + u

u = Uρ+ ε
(2)

where

X = [xk]k=1,...,K is an n×K matrix of exogenous covariates;

X = [Wp xp]p=1,...,P is an n× P matrix of spatial lags for the exogenous covariates;

Y = [Wr y]r=1,...,R is an n×R matrix of spatial lags for the dependent variables;

U = [Msu]s=1,...,S is an n× S matrix of spatial lags for the error term;

Z =
[
X,X,Y

]
is an n× (K + P +R) matrix;

β, γ, λ, and ρ denote the K × 1, P × 1, R× 1, and S × 1 vectors of coefficients corresponding
to X, X, Y, and U, respectively; and

δ = (β′, γ′, λ′)′ is a (K + P +R)× 1 vector of coefficients for Z.

In the following, we review the two-stage least-squares (2SLS), generalized spatial two-stage
least-squares (GS2SLS), and GMM estimation approaches as discussed in Badinger and Egger (2011).

https://www.stata.com/manuals/spintro2.pdf#spIntro2
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2SLS estimator of δ

In the first step, we apply 2SLS to (2) using an instrument matrix H1 to estimate δ. The 2SLS

estimator of δ—say, δ̃—is defined as

δ̃ =
(
Z̃′Z

)−1
Z̃′y

where Z̃ = PH1Z and PH1 = H1 (H
′
1H1)

−1
H′1. The 2SLS estimator δ̃ depends on the instrument

matrix H1. Let Xf denote all the exogenous regressors; that is, Xf =
[
X,X

]
in our case. The

instrument matrix H1 contains the linearly independent columns in

H1 =
[
Xf ,W

1Xf , . . . ,W
qXf

]
where W1 ≡ {Wr}r=1,...,R denotes all the spatial weighting matrices applied to the dependent
variable, and Wq ≡

{
Wj1Wj2 . . .Wjq

}
j1,j2,...,jq=1,...,R

denotes the product of q matrices from

W 1 in any possible permutation order.

The impower(#) option specifies q, the number of the power in Wq . The default is impower(2).
Increasing q may improve the precision of the estimation of δ.

We now illustrate the construction of H1 with an example. Suppose we use two spatial weighting
matrices W1 and W2 to generate the spatial lags for the dependent variable. So W1 = (W1,W2).
If we have q = 2, then W2 = (W1W1,W1W2,W2W1,W2W2). Plug W1 and W2 into the
definition of H1, and the instrument matrix H1 in this special case contains the linear independent
columns in the following matrix:

H1 = [Xf ,W1Xf ,W2Xf ,W1W1Xf ,W1W2Xf ,W2W1Xf ,W2W2Xf ]

GMM estimator of ρ based on 2SLS residuals

The initial GMM estimates of ρ solve the sample equivalent of the population moment conditions

(1/N)E(ε′Asε) = 0

(1/N)E(ε′Bsε) = 0 for s ∈ {1, . . . , S}

where As = Ms and Bs = M′sMs − diag(M′sMs). See the estimator derived in Badinger and
Egger (2011) and Prucha, Drukker, and Egger (2016) for details.

GS2SLS estimator of δ

The GS2SLS estimator of δ is based on the spatially Cochrane–Orcutt-transformed model.

ynt = Z∗(ρ) δ + ε (3)

where ynt = (In −
∑S
s=1 ρsMs)y, Z∗(ρ) = (In −

∑S
s=1 ρsMs)Z, and In is an n × n identity

matrix.
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Now, we apply the 2SLS estimator to (3) by using an instrument matrix H2 and replacing ρ with
ρ̃. The GS2SLS estimator of δ—say, δ̂—is defined as

δ̂ =
{
Ẑ∗(ρ̃)

′
Z∗(ρ̃)

}−1
Ẑ∗(ρ̃)

′
y∗(ρ̃)

where

y∗(ρ̃) = (In −
∑S
s=1 ρ̃sMs)y,

Z∗(ρ̃) = (In −
∑S
s=1 ρ̃sMs)Z,

Ẑ∗(ρ̃) = PH2Z∗(ρ̃), and

PH2 = H2 (H
′
2H2)

−1
H′2.

The instrument matrix H2 contains the linearly independent columns in

H2 = [H1,M1H1, . . . ,MSH1]

Efficient GMM estimator of ρ based on GS2SLS residuals

The form of the efficient GMM weighting matrix is given in Badinger and Egger (2011) and Prucha,
Drukker, and Egger (2016). The matrix has one form in the default homoskedastic case and another
in the heteroskedastic case. The form of the matrix causes the estimates of spatially autoregressive
error correlations and the standard errors to differ when the heteroskedastic option is specified.

ML estimator
We implement a quasimaximum likelihood (QML) estimator for the first-order SARAR model. We

can write SARAR(1, 1) [see (1)] as

y = Xβ +Xγ + λWy + u = Xfζ + λWy + u

u = ρMu+ ε
(4)

where

Xf = [X,X] is an n×L matrix containing exogenous covariates and spatial lags for the exogenous
variables, with L = K + P ;

ζ = (β′, γ′)′ is an L× 1 vector of coefficients;

W and M are n× n spatial weighting matrices with 0 diagonal elements; and

λ and ρ are scalar parameters.

Log-likelihood function

We give the log-likelihood function assuming that ε ∼ N(0, σ2In). Lee (2004) gives formal results
on the consistency and asymptotic normality of the QML estimator when the innovations are i.i.d. but
not necessarily normally distributed. Violations of the assumption that the innovations are i.i.d. can
cause the QML estimator to produce inconsistent results.
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The reduced form of (4) is

y = (In − λW)−1Xf ζ + (In − λW)−1(In − ρM)−1ε

The unconcentrated log-likelihood function is

lnL(y | ζ, λ, ρ, σ2) = −n
2

ln(2π)− n

2
ln(σ2) + ln||In − λW||+ ln||In − ρM||

− 1

2σ2
{(In − λW)y −Xf ζ}′ (In − ρM)′(In − ρM) {(In − λW)y −Xf ζ}

(5)

We can concentrate the log-likelihood function by taking first-order derivatives with respect to ζ
and σ2 in (5) and setting them to 0, yielding the maximizers

ζ̂(λ, ρ) = {X′f(In − ρM)′(In − ρM)Xf}
−1

X′f(In − ρM)′(In − ρM)(In − λW)y

σ̂2(λ, ρ) =
1

n

{
(In − λW)y −Xf ζ̂(λ, ρ)

}′
(In − ρM)′(In − ρM)

×
{
(In − λW)y −Xf ζ̂(λ, ρ)

}
Substituting ζ̂(λ, ρ) and σ̂2(λ, ρ) into the log-likelihood function in (5), we have the concentrated

log-likelihood function

lnLc(y |λ, ρ) = −
n

2
{ ln(2π) + 1} − n

2
ln{σ2(λ, ρ)}+ ln ||In − λW||+ ln ||In − ρM||

The QML estimates for λ̂ and ρ̂ can be computed by maximizing the concentrated log likelihood.
Then, we can calculate the QML estimates for ζ and σ2 as ζ̂(λ̂, ρ̂) and σ̂2(λ̂, ρ̂).

spregress, ml uses a grid search to find reasonable initial values for λ and ρ.

The formula for the robust VCE is given in Lee (2004).

Pseudo-R2

The pseudo-R2 is calculated as {corr(y, ŷ)}2, where ŷ is the reduced-form prediction of y.
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