Example 9 - Structural model with measurement component

Description Remarks and examples References Also see

Description

To demonstrate a structural model with a measurement component, we use data from Wheaton et al. (1977):

notes
_dta:

1. Summary statistics data from Wheaton, B., Muthen B., Alwin, D., \& Summers, G., 1977, "Assessing reliability and stability in panel models", in D. R. Heise (Ed.), _Sociological Methodology 1977_ (pp. 84-136), San Francisco: Jossey-Bass, Inc.
2. Four indicators each measured in 1966, 1967, and 1981, plus another indicator (educ66) measured only in 1966.
3. Intended use: Create structural model relating Alienation in 1971, Alienation in 1967, and SES in 1966.

See Structural models 9: Unobserved inputs, outputs, or both in [SEM] Intro 5 for background.

Remarks and examples

Remarks are presented under the following headings:
Fitting the model
Fitting the model with the Builder Evaluating omitted paths with estat mindices Refitting the model

Fitting the model

Simplified versions of the model fit by the authors of the referenced paper appear in many SEM software manuals. A simplified model is

. sem		///
$>$	(anomia67 pwless67 <- Alien67)	/// measurement piece
$>$	(anomia71 pwless71 <- Alien71)	/// measurement piece
$>$	(Alien67 <- SES)	/// structural piece
$>$	(Alien71 <- Alien67 SES)	/// structural piece
$>$	(SES -> educ66 occstat66)	// measurement piece
Endogenous variables		
Measurement: anomia67 pwless67 anomia71 pwless71 educ66 occstat66		
Latent:		

```
Exogenous variables
```

 Latent: SES
 Fitting target model:
Iteration 0: Log likelihood $=-15249.988$
Iteration 1: Log likelihood $=-15246.584$
Iteration 2: Log likelihood $=-15246.469$
Iteration 3: Log likelihood = -15246.469

Structural equation model					Number of obs $=932$	
Log likelihood = -15246.469						
(1) [anomia67]Alien67 = 1						
(2) [anomia71]Alien71 $=1$						
(3) [educ66]SES						
	Coefficient	$\begin{gathered} \text { OIM } \\ \text { std. err. } \end{gathered}$	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% con	interval]
Structural						
SES	-. 6140404	. 0562407	-10.92	0.000	-. 7242701	-. 5038107
Alien71						
Alien67	. 7046342	. 0533512	13.21	0.000	. 6000678	. 8092007
SES	-. 1744153	. 0542489	-3.22	0.001	-. 2807413	-. 0680894
Measurement						
Alien67	1	(constrain				
_cons	13.61	. 1126205	120.85	0.000	13.38927	13.83073
pwless67						
Alien67	. 8884887	. 0431565	20.59	0.000	. 8039034	. 9730739
_cons	14.67	. 1001798	146.44	0.000	14.47365	14.86635
_cons	14.13	. 1158943	121.92	0.000	13.90285	14.35715
pwless71						
Alien71	. 8486022	. 0415205	20.44	0.000	. 7672235	. 9299808
_cons	14.9	. 1034537	144.03	0.000	14.69723	15.10277
educ66						
SES	1	(constrain				
_cons	10.9	. 1014894	107.40	0.000	10.70108	11.09892
occstat66						
SES	5.331259	. 4307503	12.38	0.000	4.487004	6.175514
_cons	37.49	. 6947112	53.96	0.000	36.12839	38.85161
var (e.ano~67)	4.009921	. 3582978			3.365724	4.777416
var(e.pwl~67)	3.187468	. 283374			2.677762	3.794197
$\operatorname{var}(\mathrm{e} . \mathrm{ano} \sim 71)$	3.695593	. 3911512			3.003245	4.54755
$\operatorname{var}(\mathrm{e} . \mathrm{pwl} \sim 71)$	3.621531	. 3037908			3.072483	4.268693
$\operatorname{var}(\mathrm{e}$. educ66)	2.943819	. 5002527			2.109908	4.107319
$\operatorname{var}(\mathrm{e} .0 \mathrm{cc} \sim 66)$	260.63	18.24572			227.2139	298.9605
$\operatorname{var}(\mathrm{e} . \mathrm{Ali} \sim 67)$	5.301416	. 483144			4.434225	6.338201
$\operatorname{var}(\mathrm{e} . \mathrm{Ali} \sim 71)$	3.737286	. 3881546			3.048951	4.581019
var (SES)	6.65587	. 6409484			5.511067	8.038482

Notes:

1. Measurement component: In both 1967 and 1971, anomia and powerlessness are used to measure endogenous latent variables representing alienation for the same two years. Education and occupational status are used to measure the exogenous latent variable SES.
2. Structural component: SES->Alien67 and SES->Alien71, and Alien67->Alien71.
3. The model versus saturated χ^{2} test indicates that the model is a poor fit.

Fitting the model with the Builder

Use the diagram above for reference.

1. Open the dataset.

In the Command window, type
. use https://www.stata-press.com/data/r18/sem_sm2
2. Open a new Builder diagram.

Select menu item Statistics > SEM (structural equation modeling) > Model building and estimation.
3. Create the measurement component for alienation in 1967.

Select the Add measurement component tool, 양, and then click in the diagram about halfway down from the top and one-third of the way in from the left.

In the resulting dialog box,
a. change the Latent variable name to Alien67;
b. select anomia67 and pwless67 by using the Measurement variables control;
c. select Up in the Measurement direction control;
d. click on OK.

If you wish, move the component by clicking on any variable and dragging it.
4. Create the measurement component for alienation in 1971.

Repeat the process from item 3, but place the measurement component about halfway down from the top and two-thirds of the way in from the left. Label the latent variable Alien71, and select measurement variables anomia71 and pwless71. Again drag to reposition if desired.
5. Create the measurement component for socioeconomic status.

Select the Add measurement component tool, ${ }^{\text {뭉 }}$, and then click in the diagram about one-third of the way up from the bottom and one-fourth of the way in from the left.
In the resulting dialog box,
a. change the Latent variable name to SES;
b. select educ66 and occstat66 by using the Measurement variables control;
c. select Down in the Measurement direction control;
d. click on OK.
6. Create a path from Alien67 to Alien71.
a. Select the Add path tool, \rightarrow.
b. Click in the right half of the Alien67 oval (it will highlight when you hover over it), and drag a path to the left half of the Alien71 oval (it will highlight when you can release to connect the path).
7. Create a path from SES to Alien67.

Continuing with the \rightarrow tool, click in the upper portion of the SES oval, and drag a path to the lower-left quadrant of the Alien67 oval.
8. Create a path from SES to Alien71.

Continuing with the \rightarrow tool, click in the upper-right quadrant of the SES oval, and drag a path to the lower-left quadrant of the Alien71 oval.
9. Clean up the direction of the errors.

The error on Alien67 may have been created under the path from Alien67 to Alien71. If so, choose the Select tool, ${ }^{\star}$, and then click in the Alien 67 oval. Click on one of the Error rotation buttons, $\hookrightarrow \stackrel{\rightharpoonup}{ }$, in the Contextual Toolbar until the error is where you want it.
10. Estimate.

Click on the Estimate button, in the Standard Toolbar, and then click on OK in the resulting SEM estimation options dialog box.

Tips: We took some care above to click in specific quadrants of the ovals when creating paths. This is because, by default, the Builder places the ends of paths on the boundary of the ovals and rectangles closest to where we click. When you create paths, it is often convenient to change the automation settings (Settings > Automation...) so that Connection attachment points is Attach based on position of variables rather than Attach nearest to drop point. With the Connection attachment points setting, the paths connect nicely regardless of where we click or drop in the variables' ovals and rectangles.

Note that when you create covariances with the Covariances tool, ${ }^{\wedge}$, Attach nearest to drop point is sometimes preferred.

You can open a completed diagram in the Builder by typing

Evaluating omitted paths with estat mindices

That the model is a poor fit leads us to look at the modification indices:
. estat mindices
Modification indices
$\left.\begin{array}{lrrrrrr}\hline & & & & & \text { Standard } \\ & & & \text { MI } & \text { df } & \text { P>MI } & \text { EPC }\end{array}\right)$

EPC is expected parameter change.
Notes:

1. There are lots of statistically significant paths we could add to the model.
2. Some of those statistically significant paths also make theoretical sense.
3. Two in particular that make theoretical sense are the covariances between e.anomia67 and e.anomia71 and between e.pwless67 and e.pwless71.

Refitting the model

Let's refit the model and include those two previously excluded covariances:

```
. sem ///
> (anomia67 pwless67 <- Alien67)
> (anomia71 pwless71 <- Alien71)
> (Alien67 <- SES)
> (Alien71 <- Alien67 SES)
> ( SES -> educ66 occstat66)
    /// measurement piece
    /// measurement piece
    /// structural piece
    /// structural piece
    /// measurement piece
    , cov(e.anomia67*e.anomia71) ///
    cov(e.pwless67*e.pwless71)
Endogenous variables
    Measurement: anomia67 pwless67 anomia71 pwless71 educ66 occstat66
    Latent: Alien67 Alien71
Exogenous variables
    Latent: SES
Fitting target model:
Iteration 0: Log likelihood = -15249.988
Iteration 1: Log likelihood = -15217.95
Iteration 2: Log likelihood = -15213.126
Iteration 3: Log likelihood = -15213.046
Iteration 4: Log likelihood = -15213.046
```

Structural equation model
Estimation method: ml
Log likelihood $=-15213.046$
(1) [anomia67]Alien67 $=1$
(2) [anomia71]Alien71 = 1
(3) [educ66]SES $=1$

LR test of model vs. saturated: chi2(4) = 4.78 Prob > chi2 = 0.3111

Notes:

1. We find the covariance between e.anomia67 and e.anomia71 to be significant ($Z=5.14$).
2. We find the covariance between e.pwless67 and e.pwless71 to be insignificant at the 5% level ($Z=1.29$).
3. The model versus saturated χ^{2} test indicates that the model is a good fit.

References

Acock, A. C. 2013. Discovering Structural Equation Modeling Using Stata. Rev. ed. College Station, TX: Stata Press.
Wheaton, B., B. Muthén, D. F. Alwin, and G. F. Summers. 1977. Assessing reliability and stability in panel models. In Sociological Methodology 1977, ed. D. R. Heise, 84-136. San Francisco: Jossey-Bass.

Also see

[SEM] Example 32g - Full structural equation model (generalized response)
[SEM] estat mindices - Modification indices
[SEM] test - Wald test of linear hypotheses

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

