Description

To demonstrate a structural model with a measurement component, we use the same data used in [SEM] Example 31g:

```
. use https://www.stata-press.com/data/r18/gsem_cfa
(Fictional math abilities data)
```

. summarize

Variable	Obs	Mean	Std. dev.	Min	Max
school	500	10.5	5.772056	1	20
id	500	50681.71	29081.41	71	100000
q1	500	.506	.5004647	0	1
q2	500	.394	.4891242	0	1
q3	500	.534	.4993423	0	1
q4	500	.424	.4946852	0	1
q5	500	.49	.5004006	0	1
q6	500	.434	.4961212	0	1
q7	500	.52	.5001002	0	1
q8	500	.494	.5004647	0	1
att1	500	2.946	1.607561	1	5
att2	500	2.948	1.561465	1	5
att3	500	2.84	1.640666	1	5
att4	500	2.91	1.566783	1	5
att5	500	3.086	1.581013	1	5
test1	500	75.548	5.948653	55	93
test2	500	80.556	4.976786	65	94
test3	500	75.572	6.677874	50	94
test4	500	74.078	8.845587	43	96

. notes
_dta:
1. Fictional data on math ability and attitudes of 500 students from 20
schools.
2. Variables q1-q8 are incorrect/correct ($0 / 1$) on individual math questions.
3. Variables att1-att5 are items from a Likert scale measuring each
student's attitude toward math.
4. Variables test1-test4 are test scores from tests of four different aspects of mathematical abilities. Range of scores: 0-100.

These data record results from a fictional instrument measuring mathematical ability. Variables q1 through q8 are the items from the instrument.

In this example, we will also be using variables att1 through att5. These are five Likert-scale questions measuring each student's attitude toward math.

See Structural models 9: Unobserved inputs, outputs, or both in [SEM] Intro 5 for background.

Remarks and examples

Remarks are presented under the following headings:
Structural model with measurement component
Fitting the model with the Builder

Structural model with measurement component

We wish to fit the following model:

This is the same model we fit in [SEM] Example 31g, except that rather than a correlation (curved path) between MathAtt and MathAb, this time we assume a direct effect and so allow a straight path.

If you compare the two path diagrams, in addition to the new substitution of the direct path for the curved path signifying correlation, there is now an error variable on MathAb. In the previous diagram, MathAb was exogenous. In this diagram, it is endogenous and thus requires an error term. In the Builder, the error term is added automatically.

To fit this model in the command language, we type

```
. gsem (MathAb -> q1-q8, logit)
> (MathAtt -> att1-att5, ologit)
> (MathAtt -> MathAb)
Fitting fixed-effects model:
Iteration 0: Log likelihood = -6629.7253
Iteration 1: Log likelihood = -6628.7848
Iteration 2: Log likelihood = -6628.7848
Refining starting values:
Grid node 0: Log likelihood = -6429.1636
```

```
Fitting full model:
Iteration 0: Log likelihood = -6429.1636
Iteration 1: Log likelihood = -6396.7471
Iteration 2: Log likelihood = -6394.6197
Iteration 3: Log likelihood = -6394.3949
Iteration 4: Log likelihood = -6394.3923
Iteration 5: Log likelihood = -6394.3923
Generalized structural equation model Number of obs = 500
Response: q1
Family: Bernoulli
Link: Logit
Response: q2
Family: Bernoulli
Link: Logit
Response: q3
Family: Bernoulli
Link: Logit
Response: q4
Family: Bernoulli
Link: Logit
Response: q5
Family: Bernoulli
Link: Logit
Response: q6
Family: Bernoulli
Link: Logit
Response: q7
Family: Bernoulli
Link: Logit
Response: q8
Family: Bernoulli
Link: Logit
Response: att1
Family: Ordinal
Link: Logit
Response: att2
Family: Ordinal
Link: Logit
Response: att3
Family: Ordinal
Link: Logit
Response: att4
Family: Ordinal
Link: Logit
Response: att5
Family: Ordinal
Link: Logit
Log likelihood = -6394.3923
    ( 1) [q1]MathAb = 1
    ( 2) [att1]MathAtt = 1
```

4 Example 32 g - Full structural equation model (generalized response)

	Coefficient	Std. err.	z	$P>\|z\|$	[95\% co	interval]
q1 MathAb _cons	$\begin{array}{r} 1 \\ .044612 \end{array}$	$\begin{aligned} & \text { (constrain } \\ & .1272967 \end{aligned}$	0.35	0.726	-. 204885	. 294109
q2 MathAb _cons	$\begin{array}{r} .3446066 \\ -.4572215 \end{array}$	$\begin{aligned} & .1050261 \\ & .0979965 \end{aligned}$	$\begin{array}{r} 3.28 \\ -4.67 \end{array}$	$\begin{aligned} & 0.001 \\ & 0.000 \end{aligned}$	$\begin{array}{r} .1387593 \\ -.6492911 \end{array}$	$\begin{array}{r} .550454 \\ -.2651519 \end{array}$
q3 MathAb _cons	$\begin{aligned} & .5445222 \\ & .1591406 \end{aligned}$	$\begin{aligned} & .1386992 \\ & .1033116 \end{aligned}$	$\begin{aligned} & 3.93 \\ & 1.54 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.123 \end{aligned}$	$\begin{array}{r} .2726767 \\ -.0433465 \end{array}$	$\begin{aligned} & .8163677 \\ & .3616276 \end{aligned}$
q4 MathAb _cons	$\begin{array}{r} .2858862 \\ -.3196648 \end{array}$	$\begin{aligned} & .0948549 \\ & .0947684 \end{aligned}$	$\begin{array}{r} 3.01 \\ -3.37 \end{array}$	$\begin{aligned} & 0.003 \\ & 0.001 \end{aligned}$	$\begin{array}{r} .099974 \\ -.5054075 \end{array}$	$\begin{array}{r} .4717984 \\ -.1339222 \end{array}$
q5 MathAb _cons	$\begin{array}{r} .8174769 \\ -.04543 \end{array}$	$\begin{array}{r} .1867022 \\ .116575 \end{array}$	$\begin{array}{r} 4.38 \\ -0.39 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.697 \end{aligned}$	$\begin{array}{r} .4515473 \\ -.2739129 \end{array}$	$\begin{aligned} & 1.183406 \\ & .1830528 \end{aligned}$
q6 MathAb _cons	$\begin{array}{r} .6030423 \\ -.3099919 \end{array}$	$\begin{aligned} & .1471949 \\ & .1070853 \end{aligned}$	$\begin{array}{r} 4.10 \\ -2.89 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.004 \end{aligned}$	$\begin{array}{r} .3145457 \\ -.5198754 \end{array}$	$\begin{array}{r} .8915389 \\ -.1001085 \end{array}$
q7 MathAb _cons	$\begin{aligned} & .7208369 \\ & .1047264 \end{aligned}$	$\begin{array}{r} .171309 \\ .1116494 \end{array}$	$\begin{aligned} & 4.21 \\ & 0.94 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.348 \end{aligned}$	$\begin{array}{r} .3850774 \\ -.1141024 \end{array}$	$\begin{aligned} & 1.056597 \\ & .3235553 \end{aligned}$
MathAb _cons	$\begin{array}{r} .5814736 \\ -.0250443 \end{array}$	$\begin{aligned} & .1426725 \\ & .1045135 \end{aligned}$	$\begin{array}{r} 4.08 \\ -0.24 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.811 \end{aligned}$	$\begin{array}{r} .3018406 \\ -.2298869 \end{array}$	$\begin{aligned} & .8611067 \\ & . ~ \\ & \hline \end{aligned}$
att1 MathAtt	1	(constrain				
att2 MathAtt	. 3788715	. 0971234	3.90	0.000	. 1885131	. 5692299
att3 MathAtt	-1.592717	. 3614956	-4.41	0.000	-2.301236	-. 8841989
att4 MathAtt	-. 8100108	. 1530675	-5.29	0.000	-1.110017	-. 510004
att5 MathAtt	. 5225425	. 1170166	4.47	0.000	. 2931942	. 7518907
MathAb MathAtt	. 581103	. 14776	3.93	0.000	. 2914987	. 8707072
/att1 cut1 cut2 cut3 cut4	$\begin{array}{r} -1.10254 \\ -.2495339 \\ .2983261 \\ 1.333052 \end{array}$	$\begin{array}{r} .131228 \\ .1160385 \\ .1164415 \\ .1391919 \end{array}$			$\begin{array}{r} -1.359742 \\ -.4769652 \\ .070105 \\ 1.060241 \end{array}$	$\begin{array}{r} -.8453377 \\ -.0221025 \\ .5265472 \\ 1.605864 \end{array}$

/att2				
cut1	-1.055791	. 1062977	-1.264131	-. 8474513
cut2	-. 1941211	. 0941435	-. 378639	-. 0096032
cut3	. 3598488	. 0952038	. 1732528	. 5464448
cut4	1.132624	. 1082204	. 9205156	1.344732
/att3				
cut1	-1.053519	. 1734001	-1.393377	-. 7136612
cut2	-. 0491074	. 1442846	-. 3319	. 2336853
cut3	. 5570672	. 1538702	. 2554871	. 8586472
cut4	1.666859	. 2135557	1.248297	2.08542
/att4				
cut1	-1.07378	. 1214071	-1.311734	-. 8358264
cut2	-. 2112462	. 1076501	-. 4222365	-. 0002559
cut3	. 406347	. 1094847	. 191761	. 620933
cut4	1.398185	. 1313327	1.140778	1.655593
/att5				
cut1	-1.244051	. 1148443	-1.469142	-1.018961
cut2	-. 336135	. 0986678	-. 5295203	-. 1427498
cut3	. 2137776	. 0978943	. 0219084	. 4056468
cut4	. 9286849	. 107172	. 7186316	1.138738
$\begin{gathered} \operatorname{var}(e . \text { MathAb) } \\ \operatorname{var}(\text { MathAtt }) \end{gathered}$	1.787117	. 5974753	. 9280606	3.441357
	1.520854	. 4077885	. 8991947	2.572298

Notes:

1. In the model fit in [SEM] Example 31g, we estimated a correlation between MathAtt and MathAb of 0.4725 .
2. Theoretically speaking, the model fit above and the model in [SEM] Example 31g are equivalent. Both posit a linear relationship between the latent variables and merely choose to parameterize the relationship differently. In [SEM] Example 31g, it was parameterized as a covariance. In this example, it is parameterized as causal. People often use structural equation modeling to confirm a proposed hypothesis. It is important that the causal model you specify be based on theory or that you have some other justification. You need something other than empirical results to rule out competing but equivalent models such as the covariance model. Distinguishing causality from correlation is always problematic.
3. Practically speaking, note that the log-likelihood values for this model and the model in [SEM] Example 31 g are equal at -6394.3923 . Also note that the estimated variances of math attitude, var (MathAtt), are also equal at 1.520854 .

Fitting the model with the Builder

Use the diagram in Structural model with measurement component above for reference.

1. Open the dataset.

In the Command window, type

```
. use https://www.stata-press.com/data/r18/gsem_cfa
```

2. Open a new Builder diagram.

Select menu item Statistics > SEM (structural equation modeling) > Model building and estimation.
3. Put the Builder in gsem mode by clicking on the sem button.
4. Create the measurement component for MathAb.

Select the Add Measurement Component tool, 향, and then click in the diagram about one-third of the way up from the bottom and slightly left of the center.
In the resulting dialog box,
a. change the Latent variable name to MathAb;
b. select q1, q2, q3, q4, q5, q6, q7, and q8 by using the Measurement variables control;
c. check Make measurements generalized;
d. select Bernoulli, Logit in the Family/Link control;
e. select Down in the Measurement direction control;
f. click on OK.

If you wish, move the component by clicking on any variable and dragging it.
5. Create the measurement component for MathAtt.

Select the Add Measurement Component tool, 뺭, and then click in the diagram about one-third of the way down from the top and slightly left of the center.
In the resulting dialog box,
a. change the Latent variable name to MathAtt;
b. select att1, att2, att3, att4, and att5 by using the Measurement variables control;
c. check Make measurements generalized;
d. select Ordinal, Logit in the Family/Link control;
e. select Up in the Measurement direction control;
f. click on OK.

If you wish, move the component by clicking on any variable and dragging it.
6. Create path from MathAtt to MathAb.
a. Select the Add Path tool, \rightarrow.
b. Click in the bottom of the MathAtt oval (it will highlight when you hover over it), and drag a path to the top of the MathAb oval (it will highlight when you can release to connect the path).
7. Clean up the direction of the error.

The error on MathAb has likely been created below the oval instead of to the right of the oval. If so, choose the Select tool, ${ }^{*}$, and then click in the MathAb oval. Click on one of the Error rotation buttons, $\leftrightarrows \stackrel{\rightharpoonup}{ }$, in the Contextual Toolbar until the error is where you want it.
8. Estimate.

Click on the Estimate button, in the Standard Toolbar, and then click on OK in the resulting GSEM estimation options dialog box.

You can open a completed diagram in the Builder by typing

Also see

[SEM] Example 9 - Structural model with measurement component
[SEM] Example 31g - Two-factor measurement model (generalized response)
[SEM] Intro 5 - Tour of models
[SEM] gsem - Generalized structural equation model estimation command

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

