Example 3 — Two-factor measurement model

Description Remarks and examples References Also see

Description

The multiple-factor measurement model is demonstrated using summary statistics dataset (SSD) sem_2fmm.dta:

```
. use https://www.stata-press.com/data/r18/sem_2fmm
(Affective and cognitive arousal)
. ssd describe
Summary statistics data from
https://www.stata-press.com/data/r18/sem_2fmm.dta
Observations: 216 Affective and cognitive arousal
Variables: 10 25 May 2022 10:11
(_dta has notes)
```

Variable name	Variable label
a1	Affective arousal 1
a2	Affective arousal 2
a3	Affective arousal 3
a4	Affective arousal 4
a5	Affective arousal 5
c1	Cognitive arousal 1
c2	Cognitive arousal 2
c3	Cognitive arousal 3
c4	Cognitive arousal 4
c5	Cognitive arousal 5

. notes

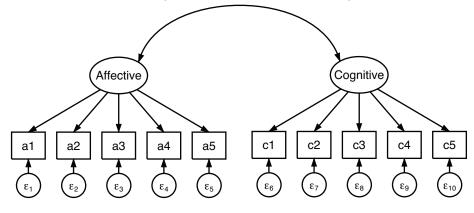
_dta:

- Source: Summary statistics data containing published covariances from Williams, Jr., T. O., R. C. Eaves, and Cynthia Cox. 2002. Confirmatory factor analysis of an instrument designed to measure affective and cognitive arousal. Educational and Psychological Measurement 62: 264-283. https://doi.org/10.1177/0013164402062002005.
- 2. a1-a5 report scores from 5 miniscales designed to measure affective arousal.
- c1-c5 report scores from 5 miniscales designed to measure cognitive arousal.
- 4. The series of tests, known as the VST II (Visual Similes Test II) were administered to 216 children ages 10 to 12. The miniscales are sums of scores of 5 to 6 items in VST II.

See [SEM] Example 2 to learn how we created this SSD.

Remarks and examples

stata.com


Remarks are presented under the following headings:

Fitting multiple-factor measurement models Displaying standardized results Fitting the model with the Builder Obtaining equation-level goodness of fit by using estat eggof

See Multiple-factor measurement models in [SEM] Intro 5 for background.

Fitting multiple-factor measurement models

Below we fit the model shown by Kline (2005, 70-74, 184), namely,

. sem (Affective -> a1 a2 a3 a4 a5) (Cognitive -> c1 c2 c3 c4 c5) Endogenous variables Measurement: a1 a2 a3 a4 a5 c1 c2 c3 c4 c5 Exogenous variables Latent: Affective Cognitive Fitting target model: Iteration 0: Log likelihood = -9542.8803 Iteration 1: Log likelihood = -9539.5505

Iteration 2: Log likelihood = -9539.3856 Iteration 3: Log likelihood = -9539.3851

Structural equation model Estimation method: ml					Number of	obs = 216
Log likelihood	1 = -9539.3851					
	fective = 1 gnitive = 1					
	Coefficient	OIM std. err.	Z	P> z	[95% conf.	interval]
Measurement						
a1 Affective	1	(constraine	d)			
a2 Affective	.9758098	.0460752	21.18	0.000	.885504	1.066116
a3 Affective	.8372599	.0355086	23.58	0.000	.7676643	.9068556
a4 Affective	.9640461	.0499203	19.31	0.000	.866204	1.061888
a5 Affective	1.063701	.0435751	24.41	0.000	.9782951	1.149107
c1 Cognitive	1	(constraine	d)			
c2 Cognitive	1.114702	.0655687	17.00	0.000	.9861901	1.243215
c3 Cognitive	1.329882	.0791968	16.79	0.000	1.174659	1.485105
c4 Cognitive	1.172792	.0711692	16.48	0.000	1.033303	1.312281
c5 Cognitive	1.126356	.0644475	17.48	0.000	1.000041	1.252671
var(e.a1) var(e.a2)	384.1359 357.3524	43.79119 41.00499			307.2194 285.3805	480.3095 447.4755
var(e.a3) var(e.a4) var(e.a5)	154.9507 496.4594 191.6857	20.09026 54.16323 28.07212			120.1795 400.8838 143.8574	199.7822 614.8214 255.4154
<pre>var(e.c1) var(e.c2)</pre>	171.6638 171.8055	19.82327 20.53479			136.894 135.9247	215.2649 217.1579
var(e.c3) var(e.c4) var(e.c5)	276.0144 224.1994 146.8655	32.33535 25.93412 18.5756			219.3879 178.7197 114.6198	347.2569 281.2527 188.1829
var(Affect~e) var(Cognit~e)	1644.463 455.9349	193.1032 59.11245			1306.383 353.6255	2070.034 587.8439
cov(Affect~e, Cognitive)	702.0736	85.72272	8.19	0.000	534.0601	870.087
LR test of mod	lel vs. satura	ted: chi2(3	Prob > chi	Prob > chi2 = 0.0000		

Notes:

- 1. In [SEM] **Example 1**, we ran sem on raw data. In this example, we run sem on SSD. There are no special sem options that we need to specify because of this.
- 2. The estimated coefficients reported above are unstandardized coefficients or, if you prefer, factor loadings.
- 3. The coefficients listed at the bottom of the coefficient table that start with e. are the estimated error variances. They represent the variance of the indicated measurement that is not measured by the respective latent variables.
- 4. The above results do not match exactly (Kline 2005, 184). If we specified sem option nm1, results are more likely to match to 3 or 4 digits. The nm1 option says to divide by N 1 rather than by N in producing variances and covariances.

Displaying standardized results

The output will be easier to interpret if we display standardized values for paths rather than path coefficients. A standardized value is in standard deviation units. It is the change in one variable given a change in another, both measured in standard deviation units. We can obtain standardized values by specifying sem's standardized option, which we can do when we fit the model or when we replay results:

Number of obs = 216

. sem, standardized

Structural equation model

Estimation method: ml

Log likelihood = -9539.3851

(1) [a1]Affective = 1

(2) [c1]Cognitive = 1

Standardized	Coefficient	OIM std. err.	z	P> z	[95% conf.	interval]
Measurement						
a1 Affective	0003553	01/2000	60 E2	0.000	.8721342	0005765
Allective	.9003553	.0143988	62.53	0.000	.0/21342	.9285765
a2 Affective	.9023249	.0141867	63.60	0.000	.8745195	.9301304
a3 Affective	.9388883	.0097501	96.29	0.000	.9197784	.9579983
a4 Affective	.8687982	.0181922	47.76	0.000	.8331421	.9044543
a5 Affective	.9521559	.0083489	114.05	0.000	.9357923	.9685195
c1 Cognitive	.8523351	.0212439	40.12	0.000	.8106978	.8939725
c2 Cognitive	.8759601	.0184216	47.55	0.000	.8398544	.9120658
c3 Cognitive	.863129	.0199624	43.24	0.000	.8240033	.9022547
c4 Cognitive	.8582786	.0204477	41.97	0.000	.8182018	.8983554
c5 Cognitive	.8930346	.0166261	53.71	0.000	.8604479	.9256212
var(e.a1)	. 1893602	.0259281			.1447899	.2476506
<pre>var(e.a2)</pre>	.1858097	.0256021			.1418353	.2434179
var(e.a3)	.1184887	.0183086			.0875289	.1603993
var(e.a4)	.2451896	.0316107			.1904417	.3156764
var(e.a5)	.0933991	.015899			.0669031	.1303885
<pre>var(e.c1)</pre>	.2735248	.0362139			.2110086	.354563
<pre>var(e.c2)</pre>	.2326939	.0322732			.1773081	.3053806
var(e.c3)	.2550083	.0344603			.1956717	.3323385
var(e.c4)	.2633578	.0350997			.2028151	.3419733
var(e.c5)	.2024893	.0296954			.1519049	.2699183
<pre>var(Affect~e) var(Cognit~e)</pre>	1	•			•	•
<pre>cov(Affect~e,</pre>						
Cognitive)	.8108102	.0268853	30.16	0.000	.758116	.8635045

Notes:

- 1. In addition to obtaining standardized coefficients, the standardized option reports estimated error variances as the fraction of the variance that is unexplained. Error variances were previously unintelligible numbers such as 384.136 and 357.352. Now they are 0.189 and 0.186.
- 2. Also listed in the sem output are variances of latent variables. In the previous output, latent variable Affective had variance 1,644.46 with standard error 193. In the standardized output, it has variance 1 with standard error missing. The variances of the latent variables are standardized to 1, and obviously, being a normalization, there is no corresponding standard error.
- 3. We can now see at the bottom of the coefficient table that affective and cognitive arousal are correlated 0.81 because standardized covariances are correlation coefficients.
- 4. The standardized coefficients for this model can be interpreted as the correlation coefficients between the indicator and the latent variable because each indicator measures only one factor. For instance, the standardized path coefficient a1<-Affective is 0.90, meaning the correlation between a1 and Affective is 0.90.</p>

Fitting the model with the Builder

Use the diagram above for reference.

1. Open the dataset.

In the Command window, type

- . use https://www.stata-press.com/data/r18/sem_2fmm
- 2. Open a new Builder diagram.

Select menu item Statistics > SEM (structural equation modeling) > Model building and estimation.

3. Change the size of the observed variables' rectangles.

From the SEM Builder menu, select Settings > Variables > All observed....

In the resulting dialog box, change the first size to .38 and click on OK.

4. Create the measurement component for affective arousal.

Select the Add measurement component tool, $^{\textcircled}$, and then click in the diagram about one-third of the way down from the top and one-fourth of the way in from the left.

In the resulting dialog box,

- a. change the Latent variable name to Affective;
- b. select a1, a2, a3, a4, and a5 by using the Measurement variables control;
- c. select Down in the Measurement direction control;
- d. click on OK.

If you wish, move this component by clicking on any variable and dragging it.

5. Create the measurement component for cognitive arousal.

Repeat the process from item 4, but place the measurement component about one-third of the way down from the top and three-fourths of the way in from the left. Label the latent variable Cognitive, and select measurement variables c1, c2, c3, c4, and c5. Drag to reposition if desired.

- 6. Correlate the latent factors.
 - a. Select the Add covariance tool, \frown .
 - b. Click in the upper-right quadrant of the Affective oval (it will highlight when you hover over it), and drag a covariance to the upper-left quadrant of the Cognitive oval (it will highlight when you can release to connect the covariance).
- 7. Clean up.

If you do not like where a covariance has been connected to its variable, use the Select tool,

▶, to click on the covariance, and then simply click on where it connects to an oval and drag the endpoint. You can also change the bow of the covariance by dragging the control point that extends from one end of the selected covariance.

8. Estimate.

Click on the **Estimate** button, \mathbb{P} , in the Standard Toolbar, and then click on **OK** in the resulting *SEM* estimation options dialog box.

9. Show standardized estimates.

From the SEM Builder menu, select View > Standardized estimates.

You can open a completed diagram in the Builder by typing

. webgetsem sem_2fmm

Obtaining equation-level goodness of fit by using estat eqgof

That the correlation between a1 and Affective is 0.90 implies that the fraction of the variance of a1 explained by Affective is $0.90^2 = 0.81$, and left unexplained is 1 - 0.81 = 0.19. Instead of manually calculating the proportion of variance explained by indicators, we can use the estat eqgof command:

. estat eqgof

Equation-level goodness of fit

Dependent variables	Fitted	Variance Predicted	Residual	R-squared	mc	mc2
Observed						
a1	2028.598	1644.463	384.1359	.8106398	.9003553	.8106398
a2	1923.217	1565.865	357.3524	.8141903	.9023249	.8141903
a3	1307.726	1152.775	154.9507	.8815113	.9388883	.8815113
a4	2024.798	1528.339	496.4594	.7548104	.8687982	.7548104
a5	2052.328	1860.643	191.6857	.9066009	.9521559	.9066009
c1	627.5987	455.9349	171.6638	.7264752	.8523351	.7264752
c2	738.3325	566.527	171.8055	.7673061	.8759601	.7673061
c3	1082.374	806.3598	276.0144	.7449917	.863129	.7449917
c4	851.311	627.1116	224.1994	.7366422	.8582786	.7366422
c5	725.3002	578.4346	146.8655	.7975107	.8930346	.7975107
Overall				.9949997		

mc = Correlation between dependent variable and its prediction.

mc2 = mc² is the Bentler-Raykov squared multiple correlation coefficient.

Notes:

- 1. fitted reports the fitted variance of each of the endogenous variables, whether observed or latent. In this case, we have observed endogenous variables.
- 2. predicted reports the variance of the predicted value of each endogenous variable.
- 3. residual reports the leftover residual variance.
- 4. R-squared reports R^2 , the fraction of variance explained by each indicator. The fraction of the variance of Affective explained by a1 is 0.81, just as we calculated by hand at the beginning of this section. The overall R^2 is also called the coefficient of determination.
- 5. mc stands for multiple correlation, and mc2 stands for multiple-correlation squared. R-squared, mc, and mc2 all report the relatedness of the indicated dependent variable with the model's linear prediction. In recursive models, all three statistics are really the same number. mc is equal to the square root of R-squared, and mc2 is equal to R-squared.

In nonrecursive models, these three statistics are different and each can have problems. R-squared and mc can actually become negative! That does not mean the model has negative predictive power or that it might not even have reasonable predictive power. $mc2 = mc^2$ is recommended by Bentler and Raykov (2000) to be used instead of R-squared for nonrecursive systems.

In [SEM] Example 4, we examine the goodness-of-fit statistics for this model.

In [SEM] Example 5, we examine modification indices for this model.

References

Acock, A. C. 2013. Discovering Structural Equation Modeling Using Stata. Rev. ed. College Station, TX: Stata Press.

Bentler, P. M., and T. Raykov. 2000. On measures of explained variance in nonrecursive structural equation models. Journal of Applied Psychology 85: 125–131. https://doi.org/10.1037/0021-9010.85.1.125.

Kline, R. B. 2005. Principles and Practice of Structural Equation Modeling. 2nd ed. New York: Guilford Press.

Also see

- [SEM] Example 1 Single-factor measurement model
- [SEM] **Example 2** Creating a dataset from published covariances
- [SEM] Example 20 Two-factor measurement model by group
- [SEM] Example 26 Fitting a model with data missing at random
- [SEM] **Example 31g** Two-factor measurement model (generalized response)
- [SEM] sem Structural equation model estimation command
- [SEM] estat eqgof Equation-level goodness-of-fit statistics

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.