Example 28g — One-parameter logistic IRT (Rasch) model
Description Remarks and examples References Also see

Description

To demonstrate a one-parameter logistic IRT (Rasch) model, we use the following data:

These data record results from a fictional instrument measuring mathematical ability. Variables q1 through q8 are the items from the instrument.

For discussions of Rasch models, IRT models, and their extensions, see Embretson and Reise (2000), van der Linden and Hambleton (1997), Skrondal and Rabe-Hesketh (2004), Andrich (1988), Bond and Fox (2015), and Fischer and Molenaar (1995). The standard one-parameter logistic model can be fit using the irt 1 pl command; see [IRT] irt 1pl. This example demonstrates how to fit this model. With gsem, we can build on this model to fit many of the extensions to basic IRT models discussed in these books.

See Item response theory (IRT) models in [SEM] Intro 5 for background.

Remarks and examples

Remarks are presented under the following headings:
1-PL IRT model with unconstrained variance
1-PL IRT model with variance constrained to 1
Obtaining item characteristic curves
Fitting the model with the Builder

1-PL IRT model with unconstrained variance

Mechanically speaking, one-parameter logistic (1-PL) IRT models are similar to the probit measurement model we demonstrated in [SEM] Example 27g. The differences are that we will use logit rather than probit and that we will place various constraints on the logit model to obtain results that will allow us to judge the difficulty of the individual questions.

The model we wish to fit is

In the 1-PL model, we place constraints that all coefficients, the factor loadings, are equal to 1 . The negative of the intercept for each question will then represent the difficulty of the question:

```
. gsem (MathAb -> (q1-q8)@1), logit
Fitting fixed-effects model:
Iteration 0: Log likelihood = -2750.3114
Iteration 1: Log likelihood = -2749.3709
Iteration 2: Log likelihood = -2749.3708
Refining starting values:
Grid node 0: Log likelihood = -2653.2353
Fitting full model:
Iteration 0: Log likelihood = -2653.2353
Iteration 1: Log likelihood = -2651.2171
Iteration 2: Log likelihood = -2650.9117
Iteration 3: Log likelihood = -2650.9116
Generalized structural equation model Number of obs = 500
Response: q1
Family: Bernoulli
Link: Logit
Response: q2
Family: Bernoulli
Link: Logit
Response: q3
Family: Bernoulli
Link: Logit
Response: q4
Family: Bernoulli
Link: Logit
Response: q5
Family: Bernoulli
Link: Logit
Response: q6
Family: Bernoulli
Link: Logit
Response: q7
Family: Bernoulli
Link: Logit
Response: q8
Family: Bernoulli
Link: Logit
Log likelihood = -2650.9116
    ( 1) [q1]MathAb = 1
    ( 2) [q2]MathAb = 1
    ( 3) [q3]MathAb = 1
    ( 4) [q4]MathAb = 1
    ( 5) [q5]MathAb = 1
    ( 6) [q6]MathAb = 1
    ( 7) [q7]MathAb = 1
    ( 8) [q8]MathAb = 1
```

4 Example 28 g — One-parameter logistic IRT (Rasch) model

Notes:

1. We had to use gsem and not sem to fit this model because the response variables were $0 / 1$ and not continuous and because we wanted to use logit and not a continuous model.
2. To place the constraints that all coefficients are equal to 1 , in the diagram we placed 1 s along the path from the underlying latent factor MathAb to each of the questions. In the command language, we added @1 to our command:
```
gsem (MathAb -> (q1-q8)@1), logit
```

Had we omitted the @1, we would have obtained coefficients about how well each question measured math ability.

There are several ways we could have asked that the model above be fit. They include the following:

```
gsem (MathAb -> q1@1 q2@1 q3@1 q4@1 q5@1 q6@1 q7@1 q8@1), logit
gsem (MathAb -> (q1 q2 q3 q4 q5 q6 q7 q8)@1), logit
gsem (MathAb -> (q1-q8)@1), logit
```

Similarly, for the shorthand logit, we could have typed family (bernoulli) link(logit).
3. The negative of the reported intercept is proportional to the difficulty of the item. The most difficult is q 2 , and the least difficult is q 3 .

1-PL IRT model with variance constrained to 1

The goal of the 1 -PL model is in fact to constrain the loadings to be equal. In the previous model, that was achieved by constraining them to be 1 and letting the variance of the latent variable float. An alternative with perhaps easier-to-interpret results would constrain the variance of the latent variable to be 1 -giving it a standard-normal interpretation-and constrain the loadings to be merely equal:

Fitting fixed-effects model:						
Iteration 0: Log likelihood $=-2750.3114$						
Iteration 1: Log likelihood $=-2749.3709$						
Iteration 2: Log likelihood $=-2749.3708$						
Refining starting values:						
Grid node 0: Log likelihood $=-2645.8536$						
Fitting full model:						
Iteration 0: Log likelihood $=-2656.1973$						
Iteration 1: Log likelihood $=-2650.9139$						
Iteration 2: Log likelihood $=-2650.9116$						
Iteration 3: Log likelihood $=-2650.9116$						
Generalized structural equation model					Number	obs $=500$
Log likelihood $=-2650.9116$						
(1) [q1] MathAb - [q8] MathAb $=0$						
(2) [q2]MathAb - [q8] MathAb $=0$						
(3) [q3] MathAb - [q8]MathAb						
(4) [q4]MathAb - [q8]MathAb =						
(5) [q5]MathAb - [q8] MathAb						
(6) [q6]MathAb - [q8]MathAb $=$						
(7) [q7]MathAb - [q8] MathAb						
(8) [/] $\operatorname{var}($ MathAb $)=$						
	Coefficien	Std. err.	z	$P>\|z\|$	[95\% con	interval]
q1						
MathAb	. 8904887	. 0575755	15.47	0.000	. 7776429	1.003335
_cons	. 0293253	. 1047674	0.28	0.780	-. 1760151	. 2346657
q2						
MathAb	. 8904887	. 0575755	15.47	0.000	. 7776429	1.003335
_cons	-. 5025011	. 1068768	-4.70	0.000	-. 7119758	-. 2930264
q3						
MathAb	. 8904887	. 0575755	15.47	0.000	. 7776429	1.003335
_cons	. 1607425	. 104967	1.53	0.126	-. 044989	. 366474
q						
MathAb	. 8904887	. 0575755	15.47	0.000	. 7776429	1.003335
_cons	-. 3574951	. 105835	-3.38	0.001	-. 5649279	-. 1500622
q5						
MathAb	. 8904887	. 0575755	15.47	0.000	. 7776429	1.003335
_cons	-. 0456599	. 1047812	-0.44	0.663	-. 2510273	. 1597076
q6						
MathAb	. 8904887	. 0575755	15.47	0.000	. 7776429	1.003335
_cons	-. 309752	. 1055691	-2.93	0.003	-. 5166637	-. 1028403
q7						
MathAb	. 8904887	. 0575755	15.47	0.000	. 7776429	1.003335
_cons	. 0949701	. 1048315	0.91	0.365	-. 1104959	. 300436

q8						
MathAb	. 8904887	. 0575755	15.47	0.000	. 7776429	1.003335
_cons	-. 0269103	. 1047691	-0.26	0.797	-. 232254	. 1784333
$\operatorname{var}($ Math Ab$)$	1 (constrained)					

Notes:

1. The log-likelihood values of both models is -2650.9116 . The models are equivalent.
2. Intercepts are unchanged.

Obtaining item characteristic curves

Item characteristic curves graph the conditional probability of a particular response given the latent trait. In our case, this simply amounts to graphing the probability of a correct answer against math ability. After estimation, we can obtain the predicted probabilities of a correct answer by typing

```
. predict pr*, pr
(option conditional(ebmeans) assumed)
(using 7 quadrature points)
```

We can obtain the predicted value of the latent variable by typing

```
. predict ability, latent(MathAb)
(option ebmeans assumed)
(using 7 quadrature points)
```

and thus we can obtain the item characteristic curves for all eight questions by typing
. twoway line pr1 pr2 pr3 pr4 pr5 pr6 pr7 pr8 ability, sort xlabel(-1.5(.5)1.5)
> legend(label(1 q1) label(2 q2) label(3 q3) label (4 q4) label(5 q5)
> label(6 q6) label(7 q7) label(8 q8)) xtitle(EB means for MathAb)

A less busy graph might show merely the most difficult and least difficult questions:

```
. twoway line pr2 pr3 ability, sort xlabel(-1.5(.5)1.5)
> legend(label(1 q2) label(2 q3)) xtitle(EB means for MathAb)
```


The slopes of each curve are identical because we have constrained them to be identical. Thus we just see the shift between difficulties with the lower items having higher levels of difficulty.

Fitting the model with the Builder

Use the diagram in 1-PL IRT model with unconstrained variance above for reference.

1. Open the dataset.

In the Command window, type

```
. use https://www.stata-press.com/data/r18/gsem_cfa
```

2. Open a new Builder diagram.

Select menu item Statistics > SEM (structural equation modeling) > Model building and estimation.
3. Put the Builder in gsem mode by clicking on the ${ }^{\text {sen }}$ button.
4. Create the measurement component for MathAb.

Select the Add measurement component tool, ${ }^{\text {꼉 }}$, and then click in the diagram about one-third of the way down from the top and slightly left of the center.
In the resulting dialog box,
a. change the Latent variable name to MathAb;
b. select $\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3, \mathrm{q} 4, \mathrm{q} 5, \mathrm{q} 6, \mathrm{q} 7$, and q 8 by using the Measurement variables control;
c. check Make measurements generalized;
d. select Bernoulli, Logit in the Family/Link control;
e. select Down in the Measurement direction control;
f. click on OK.

If you wish, move the component by clicking on any variable and dragging it.
5. Constrain all path coefficients to 1 .
a. Choose the Select tool, \star.
b. Click on the path from MathAb to q1. In the Contextual Toolbar, type 1 in the ${ }^{\varepsilon \beta}$ box and press Enter.
c. Repeat this process to add the 1 constraint on the paths from MathAb to each of the other measurement variables.
6. Estimate.

Click on the Estimate button, in the Standard Toolbar, and then click on OK in the resulting GSEM estimation options dialog box.
7. To fit the model in 1-PL IRT model with variance constrained to 1 , change the constraints in the diagram created above.
a. From the SEM Builder menu, select Estimation > Clear estimates to clear results from the previous model.
b. Choose the Select tool,
c. Click on the path from MathAb to q1. In the Contextual Toolbar, type b in the ${ }^{a \beta}$ box and press Enter.
d. Repeat this process to add the b constraint on the paths from MathAb to each of the other measurement variables.
e. With \star, click on the oval for MathAb. In the Contextual Toolbar, type 1 in the ${ }^{2} \sigma^{2}$ box and press Enter.
8. Estimate again.

Click on the Estimate button, in the Standard Toolbar, and then click on OK in the resulting GSEM estimation options dialog box.

You can open a completed diagram in the Builder for the first model by typing

```
. webgetsem gsem_irt1
```

You can open a completed diagram in the Builder for the second model by typing
. webgetsem gsem_irt2

References

Andrich, D. 1988. Rasch Models for Measurement. Newbury Park, CA: Sage.
Bond, T. G., and C. M. Fox. 2015. Applying the Rasch Model: Fundamental Measurement in the Human Sciences. 3rd ed. New York: Routledge.
Embretson, S. E., and S. P. Reise. 2000. Item Response Theory for Psychologists. Mahwah, NJ: Lawrence Erlbaum.
Fischer, G. H., and I. W. Molenaar, ed. 1995. Rasch Models: Foundations, Recent Developments, and Applications. New York: Springer.
Rasch, G. 1960. Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen: Danish Institute of Educational Research.
_ . 1980. Probabilistic Models for Some Intelligence and Attainment Tests (Expanded ed.). Chicago: University of Chicago Press.

Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Boca Raton, FL: Chapman and Hall/CRC.
van der Linden, W. J., and R. K. Hambleton, ed. 1997. Handbook of Modern Item Response Theory. New York: Springer.

Also see

[SEM] Example 27 g - Single-factor measurement model (generalized response)
[SEM] Example 29g - Two-parameter logistic IRT model
[SEM] Intro 5 - Tour of models
[SEM] gsem - Generalized structural equation model estimation command
[SEM] predict after gsem - Generalized linear predictions, etc.
[IRT] irt 1pl - One-parameter logistic model

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

