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Description
swilk performs the Shapiro–Wilk W test for normality for each variable in the specified varlist.

Likewise, sfrancia performs the Shapiro–Francia W ′ test for normality. See [MV] mvtest normality
for multivariate tests of normality.

Quick start
Shapiro–Wilk test of normality

Shapiro–Wilk test for v1
swilk v1

Separate tests of normality for v1 and v2

swilk v1 v2

Generate new variable w containing W test coefficients
swilk v1, generate(w)

Specify that average ranks should not be used for tied values
swilk v1 v2, noties

Test that v3 is distributed lognormally
generate lnv3 = ln(v3)
swilk lnv3

Shapiro–Francia test of normality

Shapiro–Francia test for v1
sfrancia v1

Separate tests of normality for v1 and v2

sfrancia v1 v2

Same as above, but use the Box–Cox transformation
sfrancia v1 v2, boxcox

Specify that average ranks should not be used for tied values
sfrancia v1 v2, noties
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Menu
swilk

Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Wilk normality test

sfrancia

Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Francia normality test

Syntax

Shapiro–Wilk normality test

swilk varlist
[

if
] [

in
] [

, swilk options
]

Shapiro–Francia normality test

sfrancia varlist
[

if
] [

in
][
, sfrancia options

]
swilk options Description

Main

generate(newvar) create newvar containing W test coefficients
lnnormal test for three-parameter lognormality
noties do not use average ranks for tied values

sfrancia options Description

Main

boxcox use the Box–Cox transformation for W ′; the default is to use the
log transformation

noties do not use average ranks for tied values

by and collect are allowed with swilk and sfrancia; see [U] 11.1.10 Prefix commands.

Options for swilk

� � �
Main �

generate(newvar) creates new variable newvar containing the W test coefficients.

lnnormal specifies that the test be for three-parameter lognormality, meaning that ln(X−k) is tested
for normality, where k is calculated from the data as the value that makes the skewness coefficient
zero. When simply testing ln(X) for normality, do not specify this option. See [R] lnskew0 for
estimation of k.

noties suppresses use of averaged ranks for tied values when calculating the W test coefficients.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rlnskew0.pdf#rlnskew0
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Options for sfrancia

� � �
Main �

boxcox specifies that the Box–Cox transformation of Royston (1983) for calculating W ′ test
coefficients be used instead of the default log transformation (Royston 1993a). Under the Box–Cox
transformation, the normal approximation to the sampling distribution of W ′, used by sfrancia,
is valid for 5 ≤ n ≤ 1000. Under the log transformation, it is valid for 10 ≤ n ≤ 5000.

noties suppresses use of averaged ranks for tied values when calculating the W ′ test coefficients.

Remarks and examples stata.com

swilk can be used with 4 ≤ n ≤ 2000 observations. sfrancia can be used with 10 ≤ n ≤ 5000
observations; however, if the boxcox option is specified, it can be used with 5 ≤ n ≤ 1000
observations.

Also see [R] sktest for the skewness and kurtosis test described by D’Agostino, Belanger,
and D’Agostino (1990) with the empirical correction developed by Royston (1991b). While the
Shapiro–Wilk and Shapiro–Francia tests for normality are, in general, preferred for nonaggregated
data (Gould and Rogers 1991; Gould 1992b; Royston 1991b), the skewness and kurtosis test will
permit more observations. Moreover, a normal quantile plot should be used with any test for normality;
see [R] Diagnostic plots for more information.

Example 1

Using our automobile dataset, we will test whether the variables mpg and trunk are normally
distributed:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. swilk mpg trunk

Shapiro--Wilk W test for normal data

Variable Obs W V z Prob>z

mpg 74 0.94821 3.335 2.627 0.00430
trunk 74 0.97921 1.339 0.637 0.26215

. sfrancia mpg trunk

Shapiro--Francia W’ test for normal data

Variable Obs W’ V’ z Prob>z

mpg 74 0.94872 3.650 2.510 0.00604
trunk 74 0.98446 1.106 0.195 0.42271

We can reject the hypothesis that mpg is normally distributed, but we cannot reject that trunk is
normally distributed.

The values reported under W and W ′ are the Shapiro–Wilk and Shapiro–Francia test statistics.
The tests also report V and V ′ (Royston 1991d), which are more appealing indexes for departure
from normality. The median values of V and V ′ are 1 for samples from normal populations. Large
values indicate nonnormality. There is no more information in V (V ′) than in W (W ′)—one is just
the transform of the other.

http://stata.com
https://www.stata.com/manuals/rsktest.pdf#rsktest
https://www.stata.com/manuals/rdiagnosticplots.pdf#rDiagnosticplots
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Example 2

We have data on a variable called studytime, which we suspect is distributed lognormally:

. use https://www.stata-press.com/data/r18/cancer
(Patient survival in drug trial)

. generate lnstudytime = ln(studytime)

. swilk lnstudytime

Shapiro--Wilk W test for normal data

Variable Obs W V z Prob>z

lnstudytime 48 0.92731 3.311 2.547 0.00543

We can reject the lognormal assumption. We do not specify the lnnormal option when testing for
lognormality. The lnnormal option is for three-parameter lognormality.

Example 3

Having discovered that ln(studytime) is not distributed normally, we now test that
ln(studytime − k) is normally distributed, where k is chosen so that the resulting skewness is
zero. We obtain the estimate for k from lnskew0; see [R] lnskew0:

. lnskew0 lnstudytimek = studytime, level(95)

Transform k [95% conf. interval] Skewness

ln(studytim-k) -11.01181 -infinity -.9477328 -.0000173

. swilk lnstudytimek, lnnormal

Shapiro--Wilk W test for 3-parameter lognormal data

Variable Obs W V z Prob>z

lnstudytimek 48 0.97064 1.337 1.261 0.10363

We cannot reject the hypothesis that ln(studytime + 11.01181) is distributed normally. We do
specify the lnnormal option when using an estimated value of k.

Stored results
swilk and sfrancia store the following in r():

Scalars
r(N) number of observations r(W) W or W ′

r(p) p-value r(V) V or V ′

r(z) z statistic

Methods and formulas
The Shapiro–Wilk test is based on Shapiro and Wilk (1965) with a new approximation accurate

for 4 ≤ n ≤ 2000 (Royston 1992). The calculations made by swilk are based on Royston (1982,
1992, 1993b).

https://www.stata.com/manuals/rlnskew0.pdf#rlnskew0


swilk — Shapiro–Wilk and Shapiro–Francia tests for normality 5

The Shapiro–Francia test (Shapiro and Francia 1972; Royston 1983; Royston 1993a) is an
approximate test that is similar to the Shapiro–Wilk test for very large samples.

The relative merits of the Shapiro–Wilk and Shapiro–Francia tests the versus skewness and kurtosis
test have been a subject of debate. The interested reader is directed to the articles in the Stata Technical
Bulletin. Our recommendation is to use the Shapiro–Francia test whenever possible, that is, whenever
dealing with nonaggregated or ungrouped data (Gould and Rogers 1991; Gould 1992b); see [R] swilk.
If normality is rejected, use sktest to determine the source of the problem. As both D’Agostino,
Belanger, and D’Agostino (1990) and Royston (1991c) mention, researchers should also examine the
normal quantile plot to determine normality rather than blindly relying on a few test statistics. See
the qnorm command documented in [R] Diagnostic plots for more information on normal quantile
plots.

� �
Samuel Sanford Shapiro (1930–2023) earned degrees in statistics and engineering from City
College of New York, Columbia, and Rutgers. After employment in the U.S. Army and industry,
he joined the faculty at Florida International University in 1972. Shapiro has coauthored various
texts in statistics and published several papers on distributional testing and other statistical topics.� �
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