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Description

npregress series performs nonparametric series estimation using a B-spline, piecewise polyno-
mial spline, or polynomial basis. Like linear regression, nonparametric regression models the mean
of the outcome conditional on the covariates, but unlike linear regression, it makes no assumptions
about the functional form of the relationship between the outcome and the covariates. npregress
series may be used to model the mean of a continuous, count, or binary outcome.

Quick start
Nonparametric regression of y on x and discrete covariate a using the default B-spline basis

npregress series y x i.a

Same as above, but use a polynomial basis
npregress series y x i.a, polynomial

Same as above, but use a piecewise polynomial spline basis
npregress series y x i.a, spline

Same as above, but use AIC to find the optimal basis function
npregress series y x i.a, criterion(aic) spline

Interpolate using three knots
npregress series y x i.a, knots(3)

Specify values of knots in matrix K

npregress series y x i.a, knotsmat(K)

Menu
Statistics > Nonparametric analysis > Nonparametric series regression
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Syntax
npregress series depvar indepvarsseries

[
if
] [

in
] [

weight
] [

, options
]

indepvarsseries is the list of independent variables for which a basis function will be formed.

options Description

Model

bspline use a third-order B-spline basis; the default
bspline(#) use a B-spline basis of order #
spline use a third-order piecewise polynomial spline basis
spline(#) use a piecewise polynomial spline basis of order #
polynomial use a polynomial basis
polynomial(#) use a polynomial basis of order #
asis(varlist) include varlist in model as specified; do not use in basis
nointeract(seriesvarlist) use seriesvarlist in basis without interactions
criterion(crittype) criterion to use; crittype may be cv, gcv, aic, bic, or mallows
knots(#) use a piecewise polynomial spline or B-spline basis function

with # knots
knotsmat(matname) use knots in matrix matname for piecewise polynomial spline

or B-spline estimation
distinct(#) minimum number of distinct values allowed in continuous

covariates; default is distinct(10)

basis(stub
[
, replace

]
) store elements of piecewise polynomial spline or B-spline basis

function using stub
rescale(stub

[
, replace

]
) store rescaled values of covariates using stub

SE

vce(vcetype) vcetype may be robust, ols, or bootstrap

Reporting

level(#) set confidence level; default is level(95)

aequations display auxiliary regression coefficients
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, collect, and jackknife are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights and iweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Options

� � �
Model �

bspline specifies that a third-order B-spline be selected. It is the default basis.

bspline(#) specifies that a B-spline of order # be used as the basis. The order may be 1, 2, or 3.

spline specifies that a third-order piecewise polynomial spline be selected as the basis.

spline(#) specifies that a piecewise polynomial spline of order # be used as the basis. The order
may be 1, 2, or 3.

polynomial specifies that a polynomial be selected as the basis.

polynomial(#) specifies that a polynomial of order # be used as the basis. The order may be an
integer between 1 and 16.

asis(varlist) specifies that variables in varlist be included as independent variables in the model
without any transformation. No B-spline, piecewise polynomial spline, or polynomial basis function
will be formed from these variables. Variables in varlist may not be specified in indepvarsseries.

nointeract(seriesvarlist) specifies that the terms in the basis function formed from variables in
seriesvarlist not be interacted with the terms of the basis function formed from other variables in
indepvarsseries. Covariates specified in seriesvarlist must be in indepvarsseries.

criterion(crittype) specifies that crittype be used to select the optimal number of terms in the
basis function. crittype may be one of the following: cv (cross-validation), gcv (generalized cross-
validation), aic (Akaike’s information criterion), bic (Schwarz’s Bayesian information criterion),
or mallows (Mallows’s Cp). The default is criterion(cv).

knots(#) specifies that a piecewise polynomial spline or B-spline basis function with # knots be
used. The minimum number of knots must be an integer greater than or equal to 1. The maximum
number of knots is either 4,096 or two-thirds of the sample size, whichever is smaller.

knotsmat(matname) specifies that the knots for each continuous covariate be the values in each row
of matname. The number of knots should be the same for each covariate, and there must be as
many rows as there are continuous covariates. If rows of matname are not labeled with varnames,
then rows are assumed to be in the order of indepvarsseries.

distinct(#) specifies the minimum number of distinct values allowed in continuous variables. By
default, continuous variables that enter the basis through either indepvarsseries or seriesvarlist
are required to have at least 10 distinct values. Continuous variables with few distinct values
provide little information for determining an appropriate basis function and may produce unreliable
estimates.

basis(stub
[
, replace

]
) specifies that the elements of the basis function generated by npregress

series be stored with the specified names.

The option argument stub is the prefix used to generate enumerated variables for each element of
the basis.

When replace is used, existing variables named with stub are replaced by those from the new
computation.

rescale(stub
[
, replace

]
) specifies that the rescaled covariates used to generate the basis function

be stored with the specified names.

The option argument stub is the prefix used to generate enumerated variable names for the covariates.

When replace is used, existing covariates named with stub are replaced by those from the new
computation.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust
to some kinds of misspecification (robust), that assume homoskedasticity (ols), and that use
bootstrap methods (bootstrap); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the auxiliary regression coefficients be reported. By default, only the
average marginal effects of the covariates on the outcome are reported.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, tolerance(#); see [R] Maximize. These options are

seldom used.

The following option is available with npregress series but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples stata.com

This entry assumes that you are already familiar with nonparametric regression. Below, we discuss
nonparametric series estimation; see [R] npregress intro for an overview of nonparametric regression
and the models fit by npregress series and npregress kernel.

Remarks are presented under the following headings:

Overview
Estimation and effects

Overview

npregress series implements nonparametric series estimation using a B-spline, piecewise
polynomial spline, or polynomial basis. The covariates may be continuous or discrete. npregress
series allows you to estimate covariate effects and other counterfactuals related to the unknown
mean function after estimation.

The word “nonparametric” refers to the fact that the parameter of interest—the mean as a function of
the covariates—is given by the unknown function g(xi), which is an element of an infinite-dimensional
space of functions. In contrast, in a parametric model, the mean for a given value of the covariates,
E(yi|xi) = f(xi,β), is a known function that is fully characterized by the parameter of interest, β,
which is a finite-dimensional real vector (Shao 2003).

The nonparametric regression model of outcome yi given the k-dimensional vector of covariates
xi is given by

yi = g (xi) + εi (1)

E (εi|xi) = 0 (2)

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
https://www.stata.com/manuals/rnpregressintro.pdf#rnpregressintro
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where εi is the error term. Equations (1) and (2) imply that

E (yi|xi) = g (xi)

Once we account for the information in the covariates, the error term provides no information about
the mean of our outcome. The conditional mean function is therefore given by g(xi).

The mean estimate we obtain using nonparametric series estimation has the same form of the mean
function estimate we obtain using linear regression. The regressors, however, are not variables in the
data but functions of the variables. An example would be a kth-order polynomial. Suppose we have
one covariate. The elements of the polynomial in this case would be

(
xi, x

2
i , . . . , x

k
i

)
. If we define

zi as a vector with elements
(
xi, x

2
i , . . . , x

k
i

)
, we may write the estimate of the mean function as

z′iβ̂

where β̂ has the form of an ordinary least-squares estimate.

npregress series allows us to specify other functional forms for zi depending on the basis
we select: B-spline, piecewise polynomial spline, or polynomial. See Methods and formulas for the
formulas for each basis.

Although the estimate of the mean function has the form of a linear regression, the individual
coefficients are not easily interpretable. For instance, in our kth-order polynomial example, if xi is
continuous, the marginal effect of xi is not a single coefficient but rather is a function of k elements
of β and the covariate xi.

In the example above, we had only one covariate, xi. If we have more than one covariate, we
approximate the mean function by using interactions of the terms in the basis function for each covariate.
For instance, a polynomial of xi and wi would have terms

(
xi, wi, xiwi, x

2
i , w

2
i , . . . , w

k
i x

k
i

)
. As the

number of covariates increases, the number of terms in the basis function increases exponentially.
This is referred to in the literature as the curse of dimensionality.

npregress series allows us to reduce the dimensionality by using the nointeract() option to
request that some covariates not be interacted with others. For the example above, this is equivalent
to specifying a model of the form

yi = g1 (xi) + g2 (wi) + εi (3)

In (3), g1 (xi) and g2 (wi) are unknown functions, but there are no interactions between xi and
wi. This ameliorates the curse of dimensionality but imposes more structure to the model.

You may also want to reduce the curse of dimensionality by requesting a parametric component,
by using the asis() option, to fit models like this:

yi = g (xi) + wiβ+ εi (4)

In (4), g (xi) is unknown but we assume that wi enters the model linearly.

As mentioned above, the regression coefficients are not easily interpretable. We can, however,
estimate marginal effects, as reported in the npregress series output, and use margins to answer
specific questions about the effects of covariates on the conditional mean, g (xi). We demonstrate
this in the examples below.

For detailed introductions to series estimators and the methods implemented by npregress
series, see de Boor (2001), Schumaker (2007), Eubank (1999), Schoenberg (1969), Newey (1997),
and Chen (2007).
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Estimation and effects

Example 1: Nonparametric series regression estimation

dui.dta contains information about the number of monthly drunk driving citations in a local
jurisdiction (citations). Suppose we want to know the effect of increasing fines on the number of
citations. Because citations is a count variable, we could consider fitting the model with poisson
or nbreg. However, both of these estimators make assumptions about the distribution of the data. If
these assumptions are not true, we will obtain inconsistent estimates.

By using npregress series, we do not have to make any assumptions about how citations
is distributed. We use npregress series to estimate the average marginal effect of drunk driving
penalties (fines) on citations.

. use https://www.stata-press.com/data/r18/dui
(Fictional data on monthly drunk driving citations)

. npregress series citations fines

Computing approximating function

Minimizing cross-validation criterion

Iteration 0: Cross-validation criterion = 55.15697
Iteration 1: Cross-validation criterion = 55.11413

Computing average derivatives

Cubic B-spline estimation Number of obs = 500
Criterion: cross-validation Number of knots = 3

Robust
citations Effect std. err. z P>|z| [95% conf. interval]

fines -8.020769 .464836 -17.26 0.000 -8.931831 -7.109707

Note: Effect estimates are averages of derivatives.

The iteration log first tells us that the approximating function is being computed. At this stage, the
number of knots of the cubic B-spline is selected using cross-validation. Three knots were selected.

After the approximating function is computed, average marginal effects are computed. This second
step is computationally expensive. The computation time increases with the number of elements in
the basis function, which in turn increases with the complexity of the mean function we are trying
to compute.

The table reports that the average marginal effect of fines on the mean number of citations is
−8.02. Increasing fines, on average, reduces the number of citations.
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npregress series generates a system variable for each element of the basis function. Additionally,
variables are generated with the rescaled values of the continuous covariates used to construct the
basis function. To see the variables that npregress series generated for example 1, we type

. describe *_*, fullnames

Variable Storage Display Value
name type format label Variable label

__x1rs double %10.0g fines rescaled to [0,1]
_x1__b1 double %10.0g Basis term 1 for fines
_x1__b2 double %10.0g Basis term 2 for fines
_x1__b3 double %10.0g Basis term 3 for fines
_x1__b4 double %10.0g Basis term 4 for fines
_x1__b5 double %10.0g Basis term 5 for fines
_x1__b6 double %10.0g Basis term 6 for fines
_x1__b7 double %10.0g Basis term 7 for fines

To specify a name for each of the elements of the basis function, we can use the basis() option
with a stub.

. npregress series citations fines, basis(basis)
(output omitted )

We get the following set of names for the elements of the basis function:

. describe basis*, fullnames

Variable Storage Display Value
name type format label Variable label

basis1 double %10.0g Basis term 1 for fines
basis2 double %10.0g Basis term 2 for fines
basis3 double %10.0g Basis term 3 for fines
basis4 double %10.0g Basis term 4 for fines
basis5 double %10.0g Basis term 5 for fines
basis6 double %10.0g Basis term 6 for fines
basis7 double %10.0g Basis term 7 for fines

We may also modify the name of the rescaled variable by using the rescale() option.

. npregress series citations fines, rescale(rescaled)
(output omitted )

This will give us

. describe rescaled*, fullnames

storage display value
variable name type format label variable label

rescaled1 double %10.0g fines rescaled to [0,1]
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Example 2: Estimation with more than one regressor

We now extend example 1. In addition to fines, we model citations as a function of whether
the jurisdiction is small, medium, or large (csize) and whether there is a college in the jurisdiction
(college).

. npregress series citations fines i.csize i.college

Computing approximating function

Minimizing cross-validation criterion

Iteration 0: Cross-validation criterion = 30.26251

Computing average derivatives

Cubic B-spline estimation Number of obs = 500
Criterion: cross-validation Number of knots = 1

Robust
citations Effect std. err. z P>|z| [95% conf. interval]

fines -7.787386 .2917941 -26.69 0.000 -8.359292 -7.215481

csize
(Medium

vs
Small) 4.732592 .5087968 9.30 0.000 3.735368 5.729815
(Large

vs
Small) 10.91757 .5350892 20.40 0.000 9.868813 11.96632

college
(College

vs
Not coll..) 6.514286 .5958949 10.93 0.000 5.346353 7.682218

Note: Effect estimates are averages of derivatives for continuous covariates
and averages of contrasts for factor covariates.

The average marginal effect of fines is −7.79, slightly less in magnitude than the −8.02 that
we estimated in example 1. The output also shows effects for the variables csize and college. In
these categorical variables, the effects are differences instead of derivatives. For example, if every
jurisdiction in the population were a college town, we would expect 6.51 more citations than if none
were college towns.

Example 3: Expected citations for different levels of fines

The npregress series command reported that the average marginal effect of fines on number
of citations is negative. We can use margins to further explore the relationship between level of
fines and expected number of citations. What would we expect if all jurisdictions set fines to $8,000?
What if they all set fines to $9,000? $10,000? $11,000? We use the at(fines=(8 9 10 11)) option
with margins to estimate these expected values.
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. margins, at(fines=(8 9 10 11))

Predictive margins Number of obs = 500
Model VCE: Robust

Expression: Mean function, predict()
1._at: fines = 8
2._at: fines = 9
3._at: fines = 10
4._at: fines = 11

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 49.58234 1.47392 33.64 0.000 46.69351 52.47117
2 28.35154 .5730302 49.48 0.000 27.22842 29.47466
3 20.40163 .3320855 61.43 0.000 19.75075 21.0525
4 14.78085 .4297201 34.40 0.000 13.93862 15.62309

There appears to be a dramatic drop in the expected number of citations as fines increase from
$8,000 to $9,000. We can visualize these results if we type marginsplot.
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Predictive margins with 95% CIs

Figure 1.

Are there significant differences in the expected number of citations as we increase fines in
increments of $1,000? If we use the reverse-adjacent contrast operator, ar., with margins, we can
estimate these differences and perform tests.
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. margins, at(fines=(8 9 10 11)) contrast(atcontrast(ar._at) nowald effects)

Contrasts of predictive margins Number of obs = 500
Model VCE: Robust

Expression: Mean function, predict()
1._at: fines = 8
2._at: fines = 9
3._at: fines = 10
4._at: fines = 11

Expression: Mean function, predict()
1._at: fines = 8
2._at: fines = 9
3._at: fines = 10
4._at: fines = 11

Delta-method
Contrast std. err. z P>|z| [95% conf. interval]

_at
(2 vs 1) -21.2308 1.610261 -13.18 0.000 -24.38685 -18.07475
(3 vs 2) -7.94991 .7085254 -11.22 0.000 -9.338595 -6.561226
(4 vs 3) -5.620773 .5683614 -9.89 0.000 -6.734741 -4.506806

When fines are increased from $8,000 to $9,000, we expect a decrease of 21.23 in the number of
citations. Smaller but still statistically significant decreases in the number of citations are expected
as fines are increased from $9,000 to $10,000 and from $10,000 to $11,000.

Example 4: Estimating the effect for different levels of jurisdiction size

Now, we estimate the effect of increasing fines for different jurisdiction sizes.

. margins csize, dydx(fines)

Average marginal effects Number of obs = 500
Model VCE: Robust

Expression: Mean function, predict()
dy/dx wrt: fines

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

fines
csize

Small -5.992484 .4491224 -13.34 0.000 -6.872747 -5.11222
Medium -7.740284 .4366709 -17.73 0.000 -8.596144 -6.884425
Large -10.20492 .564166 -18.09 0.000 -11.31067 -9.099178

If all jurisdictions were small but other characteristics were as they are observed, then we expect
that the marginal effect of fines would be −5.99. We see that the effect is more extreme as the
size of the jurisdiction increases. If all jurisdictions were large, we expect that the average marginal
effect of fines would be −10.20.

We can further explore the effects of fines for different jurisdiction sizes by estimating the expected
number of citations with fines at specific levels.

. margins csize, at(fines=(8(1)11))
(output omitted )
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To visualize the effect, we type marginsplot.
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Figure 2.

For each jurisdiction size, we see that on average higher fines result in fewer citations. We also
see that the effect of changing fine levels is nonlinear and differs across the counterfactual jurisdiction
size. For instance, as fines increase from $8,000 to $9,000, the expected number of citations decreases
faster for small jurisdictions than for medium ones.

Stored results
npregress series stores the following in e():

Scalars
e(N) number of observations
e(r2) R2

e(r2 a) adjusted R2

e(converged) 1 if converged, 0 otherwise
e(order) order of basis function
e(rank) rank of e(V)

Macros
e(cmd) npregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(basis) bsplines, splines, or polynomials
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(knots) number of knots selected
e(datasignaturevars) variables used in calculation of checksum
e(datasignature) the checksum
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(properties) b V
e(marginsok) predictions allowed by margins
e(marginsprop) signals to the margins command
e(marginsnotok) predictions disallowed by margins
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Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of estimators
e(V modelbased) model-based variance
e(ilog) iteration log (up to 20 iterations)

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Overview
Polynomials
Piecewise polynomial splines
B-splines
Model selection

Cross-validation
Generalized cross-validation
Mallows’s Cp
AIC and BIC

Overview

The regression model of outcome yi given the k-dimensional vector of covariates xi was defined
in (1) and (2) of Remarks and examples and is repeated here:

yi = g (xi) + εi (1)

E (εi|xi) = 0 (2)

where εi is the error term. The covariates may include discrete and continuous variables. Equations (1)
and (2) imply that

E (yi|xi) = g (xi)

As discussed in Remarks and examples, series estimators have the form of ordinary least squares.
Thus, we can write the estimate of the mean function as

Ê (yi|xi) = z (xi) β̂ (5)

where z(xi) is a known q-dimensional vector for which every one of the q terms is a function of
the k-dimensional vector of covariates xi. Let n be the sample size. If we define Z as the n × q

matrix formed by the z(xi) for each individual i, then the q-dimensional coefficient vector β̂ is the
ordinary least-squares vector that comes from regressing the n× 1 outcome vector y on Z and has
the known form

β̂ = (Z′Z)
−1

(Z′y) (6)

Each one of the series estimators has a different form for z(xi). Below, we define z(xi) for
polynomials, piecewise polynomial splines, and B-splines.
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Polynomials

For a polynomial of order 1 with k continuous covariates, xi ≡ (xi1, xi2, . . . , xik), z(xi) is

z (xi) = (xi1, xi2, . . . , xik) (P1)

For notational convenience, we will refer to the polynomial above as P1, which also corresponds to
the name we gave to the equation. More formally, we could have written (xi1, xi2, . . . , xik) ≡ P1.
We will maintain this notational convention below.

A polynomial of order 2 with k continuous covariates includes P1 and second-order terms:

z (xi) =
(
P1, x2

i1, xi1xi2, . . . , xi1xik, xi2xi3, . . . , x
2
ik

)
(P2)

A third-order polynomial with k continuous covariates includes the terms in P2 (which already
includes P1) and third-order terms:

z (xi) =
(
P2, x3

i1, x
2
i1xi2, . . . , x

2
i1xik, xi1xi2xi3, . . . , x

3
ik

)
(P3)

This recursive relationship continues. Thus, fourth-order polynomials includes the terms in P3 (which
already includes P1 and P2) plus fourth-order terms.

For the polynomials above and all series estimators below, discrete covariates enter the model in
levels, and each level is interacted with all other covariates in the model.

Piecewise polynomial splines

Piecewise polynomial splines are formed by a polynomial and functions of the form

max(xik − t1k, 0)

In the expression above, t1k is a constant that is called a knot. The subscript of t1k indicates that
it is the first knot of the continuous covariate xk. The max(·) function is 0 when xik < t1k and
is xik − t1k otherwise. npregress series selects a set of knots for each one of the continuous
covariates.

The regressors for npregress series using a piecewise polynomial spline of order 3 with one
continuous covariate, x1, and k knots, t11 < t21 < · · · < tk1, are given by

z (xi1) =

{
xi1, x

2
i1, x

3
i1, max (xi1 − t11, 0)

3
, max (xi1 − t21, 0)

3
, . . . ,

max (xi1 − tk1, 0)
3

}
(S1)

Equivalently, for another continuous covariate, x2, and k knots, t12 < t22 < · · · < tk2, we have

z (xi2) =

{
xi2, x

2
i2, x

3
i2, max (xi2 − t12, 0)

3
, max (xi2 − t22, 0)

3
, . . . ,

max (xi2 − tk2, 0)
3

}
(S2)
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To get z (xi1, xi2) for x1 and x2 and k knots, we include all terms in S1 and S2 as well as all
the terms that result from the interaction of their terms. We write it succinctly as

z (xi1, xi2) = {S1, S2, (S1)(S2)} (S12)

The description above refers to the default third-order piecewise polynomial spline. Below, we
describe the cases for piecewise polynomial splines of order 1 and order 2. Going back to the one
covariate case, if we want a piecewise polynomial spline of order 1 with k knots, we have

z (xi1) = {xi1, max (xi1 − t11, 0) , max (xi1 − t21, 0) , . . . , max (xi1 − tk1, 0)}

And for order 2 with k knots and one covariate, we have

z (xi1) =
{
xi1, x

2
i1, max (xi1 − t11, 0)

2
, max (xi1 − t21, 0)

2
, . . . , max (xi1 − tk1, 0)

2
}

If we have more than one covariate, the logic of interacting the expressions for each covariate is
the same as the logic we used for the third-order piecewise polynomial spline in (S12).

To construct z (xi), continuous covariates are rescaled to be between 0 and 1 with the expression

{xi − min(xi)}
{

1

max(xi)− min(xi)

}

This rescaling is used to construct the piecewise polynomial spline and B-spline bases.

B-splines

To construct a B-spline basis, we need to define knots that are on the interior of the range of the
covariates and knots that are at the upper and lower limits of the range or outside the range. The
number of knots that are not in the interior differs depending on the order of the B-spline. For a
B-spline of order 1 with k interior knots, t1, t2, . . . , tk, we need 4 additional knots. The set of knots
for a first-order B-spline is therefore

t−1, t0, t1, . . . , tk, tk+1, tk+2

We added t−1, t0, tk+1, and tk+2 to the interior knots. By convention, t−1 = t0 and tk+1 = tk+2.

For a B-spline of order 2 with k interior knots, we need 6 additional knots. The set of knots is

t−2, t−1, t0, t1, . . . , tk, tk+1, tk+2, tk+3

For a B-spline of order 3, the set of knots is

t−3, t−2, t−1, t0, t1, . . . , tk, tk+1, tk+2, tk+3, tk+4
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We first define a first-order B-spline for one continuous covariate x with k interior knots. Let tj
denote an n× 1 vector for which all elements take the value of the jth knot tj . The B-spline basis
is formed by k + 2 functions of the form

Bj,1 =
(x− tj)

tj+1 − tj
1 (tj ≤ x < tj+1) +

(tj+2 − x)

tj+2 − tj+1
1 (tj+1 ≤ x < tj+2) (7)

j = −1, 0, 1, 2, . . . , k

Above, we use the indicator function 1(·), which is 1 when the condition inside the parentheses
is satisfied and is 0 otherwise. Also, any term for which tj+1 = tj or tj+2 = tj+1 is considered to
be a vector of 0s.

The function z (x) used to estimate g (x) is given by

z (x) = (B−1,1, B0,1, B1,1, . . . , Bk,1)

We now define a second-order B-spline for one continuous covariate x with k interior knots. The
basis is constructed using the relationship given by

Bj,2 =
(x− tj)

tj+2 − tj
Bj,1 +

(tj+3 − x)

tj+3 − tj+1
Bj+1,1

j = −2,−1, 0, 1, 2, . . . , k

where Bj,1 and Bj+1,1 come from (7) above. Thus, second-order B-splines are a function of first-order
B-splines, and as we will see below, third-order B-splines are a function of second-order B-splines.
This recursion continues into higher orders, but npregress series stops at B-splines of order 3.

The function z (x) for the second-order B-spline is given by

z (x) = (B−2,2, B−1,2, B0,2, B1,2, . . . , Bk,2)

The terms of the basis for a third-order B-spline are given by

Bj,3 =
(x− tj)

tj+3 − tj
Bj,2 +

(tj+4 − x)

tj+4 − tj+1
Bj+1,2

j = −3,−2,−1, 0, 1, 2, . . . , k

and the function z (x) for the third-order B-spline is

z (x) = (B−3,3, B−2,3, B−1,3, B0,3, B1,3, . . . , Bk,3) (B1)

As was the case with piecewise polynomial splines, when there is more than one covariate, you
include all functions of the form (B1) and their interactions to form expressions like the one in
(S12).



16 npregress series — Nonparametric series regression

Model selection
Below, we define the criteria used for model selection. In the case of B-splines and piecewise

polynomial splines, npregress series selects the number of knots to be used for estimation. In
the case of a polynomial basis, npregress series selects the order of the polynomial.

Let us first define the squared residuals, e2i , where ei = yi− ĝ (xi) and ĝ(·) is the mean function
estimate defined in (5). We denote the residuals for the regressions below as ei (tk) instead of ei
to signal that the estimates we obtain are a function of the set of knots, tk, used. In the case of
polynomials, tk will refer to the degree of the polynomial instead of knots.

Cross-validation

The cross-validation criterion, CV (tk), is defined by

CV (tk) =
1

n

n∑
i=1

ei (tk)
2

(1− hii)
2 (8)

In (8), hii are the diagonal elements of the matrix Z (Z′Z)Z′, where Z is defined in (6) above
and n is the size of the estimation sample.

npregress series computes CV (tk) for different sets of knots, t1, t2, . . . , tk, . . . , where
t1 ⊂ t2 ⊂ . . . ⊂ tk ⊂ . . . , and then selects the model with the smallest value for the cross-validation
criterion.

Generalized cross-validation

The generalized cross-validation criterion, GCV (tk), is given by

GCV (tk) =
1

n

n∑
i=1

ei (tk)
2

{1− (K/n)}2

where K is the number of estimated parameters and the other arguments are equivalent to those
defined in (8). As with cross-validation, GCV (tk) is computed for a set of models with an increasing
number of nested knots, in the case of piecewise polynomial splines and B-splines, and of polynomial
order in the case of polynomials. The minimum of the sequence is the selected model.

Mallows’s Cp

Mallows (tk) =
1

n

n∑
i=1

ei (tk)
2

(
1 +

2K

n

)

As with cross-validation, Mallows (tk) is computed for a set of models with an increasing number
of nested knots, and the minimum of the sequence is the selected model.
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AIC and BIC

See Methods and formulas in [R] estat ic.
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