
Title stata.com

nlsur — Estimation of nonlinear systems of equations

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

nlsur fits a system of nonlinear equations by feasible generalized nonlinear least squares (FGNLS).
With the interactive version of the command, you enter the system of equations on the command line
or in the dialog box by using substitutable expressions. If you have a system that you use regularly,
you can write a substitutable expression program and use the second syntax to avoid having to
reenter the system every time. The function evaluator program version gives you the most flexibility
in exchange for increased complexity; with this version, your program is given a vector of parameters
and a variable list, and your program computes the system of equations.

When you write a substitutable expression program or a function evaluator program, the first five
letters of the name must be nlsur. sexp prog and func prog refer to the name of the program without
the first five letters. For example, if you wrote a function evaluator program named nlsurregss,
you would type nlsur regss @ . . . to estimate the parameters.

Quick start
Two-parameter exponential model regressing y1 on x using the default FGNLS estimator

nlsur (y1 = {b1}*{b2}^x)

Add the variables() option to allow for missing values of y1 and x

nlsur (y1 = {b1}*{b2}^x), variables(y1 x)

Two-equation, two-parameter exponential model
nlsur (y1 = {b1}*{b2}^x) (y2 = {g1}*{g2}^x), variables(y1 y2 x)

Same as above, but use the iterative FGNLS estimator
nlsur (y1 = {b1}*{b2}^x) (y2 = {g1}*{g2}^x), variables(y1 y2 x) ifgnls

Specify starting values for parameters b1 and g2

nlsur (y1 = {b1=.5}*{b2}^x) (y2 = {g1}*{g2=1}^x), variables(y1 y2 x)

Same as above
nlsur (y1 = {b1}*{b2}^x) (y2 = {g1}*{g2}^x), variables(y1 y2 x) ///

initial(b1 .5 g2 1)

Same as above, but specify starting values using the matrix i

matrix i = (.5,0,0,1)
nlsur (y1 = {b1}*{b2}^x) (y2 = {g1}*{g2}^x), variables(y1 y2 x) ///

initial(i)

1

http://stata.com

2 nlsur — Estimation of nonlinear systems of equations

Menu
Statistics > Linear models and related > Multiple-equation models > Nonlinear seemingly unrelated regression

Syntax

Interactive version

nlsur (depvar 1 = <sexp 1>) (depvar 2 = <sexp 2>) . . .
[

if
] [

in
] [

weight
] [

, options
]

Programmed substitutable expression version

nlsur sexp prog : depvar 1 depvar 2 . . .
[

varlist
] [

if
] [

in
] [

weight
] [

, options
]

Function evaluator program version

nlsur func prog @ depvar 1 depvar 2 . . .
[

varlist
] [

if
] [

in
] [

weight
]
,

nequations(#)
{
parameters(namelist) | nparameters(#)

} [
options

]
where

depvar j is the dependent variable for equation j;

<sexp> j is the substitutable expression for equation j;

sexp prog is a substitutable expression program; and

func prog is a function evaluator program.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange

nlsur — Estimation of nonlinear systems of equations 3

options Description

Model

fgnls use two-step FGNLS estimator; the default
ifgnls use iterative FGNLS estimator
nls use NLS estimator
variables(varlist) variables in model
initial(initial values) initial values for parameters
∗nequations(#) number of equations in model (function evaluator program version only)
∗parameters(namelist) parameters in model (function evaluator program version only)
∗nparameters(#) number of parameters in model

(function evaluator program version only)
sexp options options for substitutable expression program
func options options for function evaluator program

SE/Robust

vce(vcetype) vcetype may be gnr, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

title(string) display string as title above the table of parameter estimates
title2(string) display string as subtitle
display options control columns and column formats and line width

Optimization

optimization options control the optimization process; seldom used

coeflegend display legend instead of statistics
∗You must specify nequations(#) and one of parameters(namelist) or nparameters(#) or both.
bootstrap, by, collect, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

fgnls requests the two-step FGNLS estimator; this is the default.

ifgnls requests the iterative FGNLS estimator. For the nonlinear systems estimator, this is equivalent
to maximum likelihood estimation.

nls requests the nonlinear least-squares (NLS) estimator.

variables(varlist) specifies the variables in the system. nlsur ignores observations for which any
of these variables has missing values. If you do not specify variables(), nlsur issues an error
message if the estimation sample contains any missing values.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

4 nlsur — Estimation of nonlinear systems of equations

initial(initial values) specifies the initial values to begin the estimation. You can specify a 1× k
matrix, where k is the total number of parameters in the system, or you can specify a parameter
name, its initial value, another parameter name, its initial value, and so on. For example, to
initialize alpha to 1.23 and delta to 4.57, you would type

. nlsur . . . , initial(alpha 1.23 delta 4.57) . . .

Initial values declared using this option override any that are declared within substitutable expres-
sions. If you specify a matrix, the values must be in the same order in which the parameters are
declared in your model. nlsur ignores the row and column names of the matrix.

nequations(#) specifies the number of equations in the system.

parameters(namelist) specifies the names of the parameters in the system. The names of the
parameters must adhere to the naming conventions of Stata’s variables; see [U] 11.3 Naming
conventions. If you specify both parameters() and nparameters(), the number of names in
the former must match the number specified in the latter.

nparameters(#) specifies the number of parameters in the system. If you do not specify names with
the parameters() option, nlsur names them b1, b2, . . . , b#. If you specify both parameters()
and nparameters(), the number of names in the former must match the number specified in the
latter.

sexp options refer to any options allowed by your sexp prog.

func options refer to any options allowed by your func prog.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (gnr), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce option.

vce(gnr), the default, uses the conventionally derived variance estimator for nonlinear models fit
using Gauss–Newton regression.

� � �
Reporting �

level(#); see [R] Estimation options.

title(string) specifies an optional title that will be displayed just above the table of parameter
estimates.

title2(string) specifies an optional subtitle that will be displayed between the title specified in
title() and the table of parameter estimates. If title2() is specified but title() is not,
title2() has the same effect as title().

display options: noci, nopvalues, cformat(% fmt), pformat(% fmt), sformat(% fmt), and nol-
stretch; see [R] Estimation options.

https://www.stata.com/manuals/u11.pdf#u11.3Namingconventions
https://www.stata.com/manuals/u11.pdf#u11.3Namingconventions
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions

nlsur — Estimation of nonlinear systems of equations 5

� � �
Optimization �

optimization options: iterate(#),
[
no
]
log, trace, eps(#), ifgnlsiterate(#), ifgnlseps(#),

delta(#), noconstants, and hasconstants(namelist).

iterate() specifies the maximum number of iterations to use for NLS at each round of FGNLS
estimation. This option is different from ifgnlsiterate(), which controls the maximum
rounds of FGNLS estimation to use when the ifgnls option is specified.

log and nolog specify whether to show the iteration log; see set iterlog in [R] set iter.

trace specifies that the iteration log should include the current parameter vector.

eps(#) specifies the convergence criterion for successive parameter estimates and for the residual
sum of squares (RSS). The default is eps(1e-5) (0.00001). eps() also specifies the convergence
criterion for successive parameter estimates between rounds of iterative FGNLS estimation when
ifgnls is specified.

ifgnlsiterate(#) specifies the maximum number of FGNLS iterations to perform. The default
is the number set using set maxiter, which is 300 by default. To use this option, you must
also specify the ifgnls option.

ifgnlseps(#) specifies the convergence criterion for successive estimates of the error covariance
matrix during iterative FGNLS estimation. The default is ifgnlseps(1e-10). To use this option,
you must also specify the ifgnls option.

delta(#) specifies the relative change in a parameter, δ, to be used in computing the numeric
derivatives. The derivative for parameter βi is computed as

{fi (xi, β1, β2, . . . , βi + d, βi+1, . . .)− fi (xi, β1, β2, . . . , βi, βi+1, . . .)} /d

where d = δ(|βi|+ δ). The default is delta(4e-7).

noconstants indicates that none of the equations in the system includes constant terms. This
option is generally not needed, even if there are no constant terms in the system; though in
rare cases without this option, nlsur may claim that there is one or more constant terms even
if there are none.

hasconstants(namelist) indicates the parameters that are to be treated as constant terms in the
system of equations. The number of elements of namelist must equal the number of equations
in the system. The ith entry of namelist specifies the constant term in the ith equation. If an
equation does not include a constant term, specify a period (.) instead of a parameter name.
This option is seldom needed with the interactive and programmed substitutable expression
versions, because in those cases nlsur can almost always find the constant terms automatically.

The following options are available with nlsur but are not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Substitutable expression programs
Function evaluator programs

https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com

6 nlsur — Estimation of nonlinear systems of equations

Introduction

nlsur fits a system of nonlinear equations by FGNLS. It can be viewed as a nonlinear variant of
Zellner’s seemingly unrelated regression model (Zellner 1962; Zellner and Huang 1962; Zellner 1963)
and is therefore commonly called nonlinear SUR or nonlinear SURE. The model is also discussed
in textbooks such as Davidson and MacKinnon (1993) and Greene (2012, 305–306). Formally, the
model fit by nlsur is

yi1 = f1(xi,β) + ui1

yi2 = f2(xi,β) + ui2
... =

...
yiM = fM (xi,β) + uiM

for i = 1, . . . , N observations and m = 1, . . . ,M equations. The errors for the ith observation,
ui1, ui2, . . . , uiM , may be correlated, so fitting the m equations jointly may lead to more efficient
estimates. Moreover, fitting the equations jointly allows us to impose cross-equation restrictions on
the parameters. Not all elements of the parameter vector β and data vector xi must appear in all the
equations, though each element of β must appear in at least one equation for β to be identified. For this
model, iterative FGNLS estimation is equivalent to maximum likelihood estimation with multivariate
normal disturbances.

The syntax you use with nlsur closely mirrors that used with nl. In particular, you use substitutable
expressions with the interactive and programmed substitutable expression versions to define the functions
in your system. See [R] nl for more information on substitutable expressions. Here we reiterate the
three rules that you must follow:

1. Parameters of the model are bound in braces: {b0}, {param}, etc.

2. Initial values for parameters are given by including an equal sign and the initial value
inside the braces: {b0=1}, {param=3.571}, etc. If you do not specify an initial value, that
parameter is initialized to zero. The initial() option overrides initial values in substitutable
expressions.

3. Linear combinations of variables can be included using the notation {eqname:varlist}, for
example, {xb: mpg price weight}, {score: w x z}, etc. Parameters of linear combinations
are initialized to zero.

Example 1: Interactive version using two-step FGNLS estimator

We have data from an experiment in which two closely related types of bacteria were placed
in a Petri dish, and the number of each type of bacteria were recorded every hour. We suspect a
two-parameter exponential growth model can be used to model each type of bacteria, but because
they shared the same dish, we want to allow for correlation in the error terms. We want to fit the
system of equations

p1 = β1β2
t + u1

p2 = γ1γ2
t + u2

where p1 and p2 are the two populations and t is time, and we want to allow for nonzero correlation
between u1 and u2. We type

https://www.stata.com/manuals/rnl.pdf#rnl

nlsur — Estimation of nonlinear systems of equations 7

. use https://www.stata-press.com/data/r18/petridish

. nlsur (p1 = {b1}*{b2}^t) (p2 = {g1}*{g2}^t)
(obs = 25)

Calculating NLS estimates:
Iteration 0: Residual SS = 335.5286
Iteration 1: Residual SS = 333.8583
Iteration 2: Residual SS = 219.9233
Iteration 3: Residual SS = 127.9355
Iteration 4: Residual SS = 14.86765
Iteration 5: Residual SS = 8.628459
Iteration 6: Residual SS = 8.281268
Iteration 7: Residual SS = 8.28098
Iteration 8: Residual SS = 8.280979
Iteration 9: Residual SS = 8.280979

Calculating FGNLS estimates:
Iteration 0: Scaled RSS = 49.99892
Iteration 1: Scaled RSS = 49.99892
Iteration 2: Scaled RSS = 49.99892

FGNLS regression

Equation Obs Parms RMSE R-sq Constant

1 p1 25 2 .4337019 0.9734* (none)
2 p2 25 2 .3783479 0.9776* (none)

* Uncentered R-sq

Coefficient Std. err. z P>|z| [95% conf. interval]

/b1 .3926631 .064203 6.12 0.000 .2668275 .5184987
/b2 1.119593 .0088999 125.80 0.000 1.102149 1.137036
/g1 .5090441 .0669495 7.60 0.000 .3778256 .6402626
/g2 1.102315 .0072183 152.71 0.000 1.088167 1.116463

The header of the output contains a summary of each equation, including the number of observations
and parameters and the root mean squared error of the residuals. nlsur checks to see whether each
equation contains a constant term, and if an equation does contain a constant term, an R2 statistic is
presented. If an equation does not have a constant term, an uncentered R2 is instead reported. The
R2 statistic for each equation measures the percentage of variance explained by the nonlinear function
and may be useful for descriptive purposes, though it does not have the same formal interpretation
in the context of FGNLS as it does with NLS estimation. As we would expect, β2 and γ2 are both
greater than one, indicating the two bacterial populations increased in size over time.

The model we fit in the next three examples is in fact linear in the parameters, so it could be fit
using the sureg command. However, we will fit the model using nlsur so that we can focus on the
mechanics of using the command. Moreover, using nlsur will obviate the need to generate several
variables as well as the need to use the constraint command to impose parameter restrictions.

Example 2: Interactive version using iterative FGNLS estimator—the translog production
function

Greene (1997, sec. 15.6) discusses the transcendental logarithmic (translog) cost function and
provides cost and input price data for capital, labor, energy, and materials for the U.S. economy. One
way to fit the translog production function to these data is to fit the system of three equations

8 nlsur — Estimation of nonlinear systems of equations

sk = βk + δkk ln
(
pk
pm

)
+ δkl ln

(
pl
pm

)
+ δke ln

(
pe
pm

)
+ u1

sl = βl + δkl ln
(
pk
pm

)
+ δll ln

(
pl
pm

)
+ δle ln

(
pe
pm

)
+ u2

se = βe + δke ln
(
pk
pm

)
+ δle ln

(
pl
pm

)
+ δee ln

(
pe
pm

)
+ u3

where sk is capital’s cost share, sl is labor’s cost share, and se is energy’s cost share; pk, pl, pe, and
pm are the prices of capital, labor, energy, and materials, respectively; the u’s are regression error
terms; and the β’s and δ’s are parameters to be estimated. There are three cross-equation restrictions
on the parameters: δkl, δke, and δle each appear in two equations. To fit this model by using the
iterative FGNLS estimator, we type

. use https://www.stata-press.com/data/r18/mfgcost
(Manufacturing cost)

. nlsur (s_k = {bk} + {dkk}*ln(pk/pm) + {dkl}*ln(pl/pm) + {dke}*ln(pe/pm))
> (s_l = {bl} + {dkl}*ln(pk/pm) + {dll}*ln(pl/pm) + {dle}*ln(pe/pm))
> (s_e = {be} + {dke}*ln(pk/pm) + {dle}*ln(pl/pm) + {dee}*ln(pe/pm)),
> ifgnls
(obs = 25)

Calculating NLS estimates:
Iteration 0: Residual SS = .0009989
Iteration 1: Residual SS = .0009989

Calculating FGNLS estimates:
Iteration 0: Scaled RSS = 65.45197
Iteration 1: Scaled RSS = 65.45197

(output omitted)
FGNLS iteration 10:
Iteration 0: Scaled RSS = 75
Iteration 1: Scaled RSS = 75
Parameter change = 4.08e-06
Covariance matrix change = 6.26e-10

FGNLS regression

Equation Obs Parms RMSE R-sq Constant

1 s_k 25 4 .0031722 0.4776 bk
2 s_l 25 4 .0053963 0.8171 bl
3 s_e 25 4 .00177 0.6615 be

Coefficient Std. err. z P>|z| [95% conf. interval]

/bk .0568925 .0013454 42.29 0.000 .0542556 .0595294
/dkk .0294833 .0057956 5.09 0.000 .0181241 .0408425
/dkl -.0000471 .0038478 -0.01 0.990 -.0075887 .0074945
/dke -.0106749 .0033882 -3.15 0.002 -.0173157 -.0040341
/bl .253438 .0020945 121.00 0.000 .2493329 .2575432

/dll .0754327 .0067572 11.16 0.000 .0621889 .0886766
/dle -.004756 .002344 -2.03 0.042 -.0093501 -.0001619
/be .0444099 .0008533 52.04 0.000 .0427374 .0460823

/dee .0183415 .0049858 3.68 0.000 .0085694 .0281135

We draw your attention to the iteration log at the top of the output. When iterative FGNLS estimation
is used, the final scaled RSS will equal the product of the number of observations in the estimation
sample and the number of equations; see Methods and formulas for details. Because the RSS is

nlsur — Estimation of nonlinear systems of equations 9

scaled by the error covariance matrix during each round of FGNLS estimation, the scaled RSS is not
comparable from one FGNLS iteration to the next.

Technical note
You may have noticed that we mentioned having data for four factors of production, yet we fit only

three share equations. Because the four shares sum to one, we must drop one of the equations to avoid
having a singular error covariance matrix. The iterative FGNLS estimator is equivalent to maximum
likelihood estimation, and thus it is invariant to which one of the four equations we choose to drop.
The (linearly restricted) parameters of the fourth equation can be obtained using the lincom command.
Nonlinear functions of the parameters, such as the elasticities of substitution, can be computed using
nlcom.

Substitutable expression programs
If you fit the same model repeatedly or you want to share code with colleagues, you can write

a substitutable expression program to define your system of equations and avoid having to retype
the system every time. The first five letters of the program’s name must be nlsur, and the program
must set the r-class macro r(n eq) to the number of equations in your system. The first equation’s
substitutable expression must be returned in r(eq 1), the second equation’s in r(eq 2), and so on.
You may optionally set r(title) to label your output; that has the same effect as specifying the
title() option.

Example 3: Programmed substitutable expression version

We return to our translog cost function, for which a substitutable expression program is
program nlsurtranslog, rclass

version 18.0

syntax varlist(min=7 max=7) [if]

tokenize ‘varlist’
args sk sl se pk pl pe pm

local pkpm ln(‘pk’/‘pm’)
local plpm ln(‘pl’/‘pm’)
local pepm ln(‘pe’/‘pm’)

return scalar n_eq = 3

return local eq_1 "‘sk’= {bk} + {dkk}*‘pkpm’ + {dkl}*‘plpm’ + {dke}*‘pepm’"
return local eq_2 "‘sl’= {bl} + {dkl}*‘pkpm’ + {dll}*‘plpm’ + {dle}*‘pepm’"
return local eq_3 "‘se’= {be} + {dke}*‘pkpm’ + {dle}*‘plpm’ + {dee}*‘pepm’"

return local title "4-factor translog cost function"

end

We made our program accept seven variables, for the three dependent variables sk, sl, and se,
and the four factor prices pk, pl, pm, and pe. The tokenize command assigns to macros ‘1’, ‘2’,
. . . , ‘7’ the seven variables stored in ‘varlist’, and the args command transfers those numbered
macros to macros ‘sk’, ‘sl’, . . . , ‘pm’. Because we knew our substitutable expressions were
going to be somewhat long, we created local macros to hold the log price ratios. These are simply
macros that hold strings such as ln(pk/pm), not variables, and they will save us some repetitious
typing when we define our substitutable expressions. Our program returns the number of equations
in r(n eq), and we defined our substitutable expressions in eq 1, eq 2, and eq 3. We do not bind
the expressions in parentheses as we do with the interactive version of nlsur. Finally, we put a title
in r(title) to label our output.

10 nlsur — Estimation of nonlinear systems of equations

Our syntax command also accepts an if clause, and that is how nlsur indicates the estimation
sample to our program. In this application, we can safely ignore it because our program does not
compute initial values. However, had we used commands such as summarize or regress to obtain
initial values, then we would need to restrict those commands to analyze only the estimation sample.
In those cases, typically, you simply need to include ‘if’ with the commands you are using. For
example, instead of the command

summarize ‘depvar’, meanonly

you would use

summarize ‘depvar’ ‘if’, meanonly

We can check our program by typing

. nlsurtranslog s_k s_l s_e pk pl pe pm

. return list

scalars:
r(n_eq) = 3

macros:
r(title) : "4-factor translog cost function"
r(eq_3) : "s_e= {be} + {dke}*ln(pk/pm) + {dle}*ln(pl/pm) + {.."
r(eq_2) : "s_l= {bl} + {dkl}*ln(pk/pm) + {dll}*ln(pl/pm) + {.."
r(eq_1) : "s_k= {bk} + {dkk}*ln(pk/pm) + {dkl}*ln(pl/pm) + {.."

Now that we know that our program works, we fit our model by typing

. nlsur translog: s_k s_l s_e pk pl pe pm, ifgnls
(obs = 25)

Calculating NLS estimates:
Iteration 0: Residual SS = .0009989
Iteration 1: Residual SS = .0009989

Calculating FGNLS estimates:
Iteration 0: Scaled RSS = 65.45197
Iteration 1: Scaled RSS = 65.45197

FGNLS iteration 2:
Iteration 0: Scaled RSS = 73.28311
Iteration 1: Scaled RSS = 73.28311
Iteration 2: Scaled RSS = 73.28311
Parameter change = 6.54e-03
Covariance matrix change = 1.00e-06

(output omitted)
FGNLS iteration 10:
Iteration 0: Scaled RSS = 75
Iteration 1: Scaled RSS = 75
Parameter change = 4.08e-06
Covariance matrix change = 6.26e-10

FGNLS regression

Equation Obs Parms RMSE R-sq Constant

1 s_k 25 4 .0031722 0.4776 bk
2 s_l 25 4 .0053963 0.8171 bl
3 s_e 25 4 .00177 0.6615 be

nlsur — Estimation of nonlinear systems of equations 11

4-factor translog cost function

Coefficient Std. err. z P>|z| [95% conf. interval]

/bk .0568925 .0013454 42.29 0.000 .0542556 .0595294
/dkk .0294833 .0057956 5.09 0.000 .0181241 .0408425
/dkl -.0000471 .0038478 -0.01 0.990 -.0075887 .0074945
/dke -.0106749 .0033882 -3.15 0.002 -.0173157 -.0040341
/bl .253438 .0020945 121.00 0.000 .2493329 .2575432

/dll .0754327 .0067572 11.16 0.000 .0621889 .0886766
/dle -.004756 .002344 -2.03 0.042 -.0093501 -.0001619
/be .0444099 .0008533 52.04 0.000 .0427374 .0460823

/dee .0183415 .0049858 3.68 0.000 .0085694 .0281135

Because we set r(title) in our substitutable expression program, the coefficient table has a title
attached to it. The estimates are identical to those we obtained in example 2.

Technical note
nlsur accepts frequency and analytic weights as well as pweights (sampling weights) and

iweights (importance weights). You do not need to modify your substitutable expressions in any
way to perform weighted estimation, though you must make two changes to your substitutable
expression program. The general outline of a sexp prog program is

program nlsur name, rclass

version 18.0
syntax varlist [fw aw pw iw] [if]

// Obtain initial values incorporating weights. For example,
summarize varname [‘weight’‘exp’] ‘if’
. . .
// Return n_eqn and substitutable expressions
return scalar n_eq = #
return local eq_1 = . . .
. . .

end

First, we wrote the syntax statement to accept a weight expression. Here we allow all four types
of weights, but if you know that your estimator is valid, say, for only frequency weights, then you
should modify the syntax line to accept only fweights. Second, if your program computes starting
values, then any commands you use must incorporate the weights passed to the program; you do that
by including [‘weight’‘exp’] when calling those commands.

Function evaluator programs

Although substitutable expressions are extremely flexible, there are some problems for which the
nonlinear system cannot be defined using them. You can use the function evaluator program version of
nlsur in these cases. We present two examples, a simple one to illustrate the mechanics of function
evaluator programs and a more complicated one to illustrate the power of nlsur.

12 nlsur — Estimation of nonlinear systems of equations

Example 4: Function evaluator program version

Here we write a function evaluator program to fit the translog cost function used in examples 2
and 3. The function evaluator program is

program nlsurtranslog2

version 18.0

syntax varlist(min=7 max=7) [if], at(name)

tokenize ‘varlist’
args sk sl se pk pl pe pm

tempname bk dkk dkl dke bl dll dle be dee
scalar ‘bk’ = ‘at’[1,1]
scalar ‘dkk’ = ‘at’[1,2]
scalar ‘dkl’ = ‘at’[1,3]
scalar ‘dke’ = ‘at’[1,4]
scalar ‘bl’ = ‘at’[1,5]
scalar ‘dll’ = ‘at’[1,6]
scalar ‘dle’ = ‘at’[1,7]
scalar ‘be’ = ‘at’[1,8]
scalar ‘dee’ = ‘at’[1,9]

local pkpm ln(‘pk’/‘pm’)
local plpm ln(‘pl’/‘pm’)
local pepm ln(‘pe’/‘pm’)

quietly {
replace ‘sk’ = ‘bk’ + ‘dkk’*‘pkpm’ + ‘dkl’*‘plpm’ + ///

‘dke’*‘pepm’ ‘if’
replace ‘sl’ = ‘bl’ + ‘dkl’*‘pkpm’ + ‘dll’*‘plpm’ + ///

‘dle’*‘pepm’ ‘if’
replace ‘se’ = ‘be’ + ‘dke’*‘pkpm’ + ‘dle’*‘plpm’ + ///

‘dee’*‘pepm’ ‘if’
}

end

Unlike the substitutable expression program we wrote in example 3, nlsurtranslog2 is not
declared as r-class because we will not be returning any stored results. We are again expecting seven
variables: three shares and four factor prices, and nlsur will again mark the estimation sample with
an if expression.

Our function evaluator program also accepts an option named at(), which will receive a parameter
vector at which we are to evaluate the system of equations. All function evaluator programs must
accept this option. Our model has nine parameters to estimate, and we created nine temporary scalars
to hold the elements of the ‘at’ matrix.

Because our model has three equations, the first three variables passed to our program are the
dependent variables that we are to fill in with the function values. We replaced only the observations
in our estimation sample by including the ‘if’ qualifier in the replace statements. Here we could
have ignored the ‘if’ qualifier because nlsur will skip over observations not in the estimation
sample and we did not perform any computations requiring knowledge of the estimation sample.
However, including the ‘if’ is good practice and may result in a slight speed improvement if the
functions of your model are complicated and the estimation sample is much smaller than the dataset
in memory.

We could have avoided creating temporary scalars to hold our individual parameters by writing
the replace statements as, for example,

replace ‘sk’ = ‘at’[1,1] + ‘at’[1,2]*‘pkpm’ + ‘at’[1,3]*‘plpm’ + ‘at’[1,4]*‘pepm’ ‘if’

You can use whichever method you find more appealing, though giving the parameters descriptive
names reduces the chance for mistakes and makes debugging easier.

nlsur — Estimation of nonlinear systems of equations 13

To fit our model by using the function evaluator program version of nlsur, we type

. nlsur translog2 @ s_k s_l s_e pk pl pe pm, ifgnls nequations(3)
> parameters(bk dkk dkl dke bl dll dle be dee)
> hasconstants(bk bl be)
(obs = 25)

Calculating NLS estimates:
Iteration 0: Residual SS = .0009989
Iteration 1: Residual SS = .0009989

Calculating FGNLS estimates:
Iteration 0: Scaled RSS = 65.45197
Iteration 1: Scaled RSS = 65.45197

FGNLS iteration 2:
Iteration 0: Scaled RSS = 73.28311
Iteration 1: Scaled RSS = 73.28311
Iteration 2: Scaled RSS = 73.28311
Parameter change = 6.54e-03
Covariance matrix change = 1.00e-06

FGNLS iteration 3:
Iteration 0: Scaled RSS = 74.7113
Iteration 1: Scaled RSS = 74.7113
Parameter change = 2.58e-03
Covariance matrix change = 3.96e-07

FGNLS iteration 4:
Iteration 0: Scaled RSS = 74.95356
Iteration 1: Scaled RSS = 74.95356
Parameter change = 1.02e-03
Covariance matrix change = 1.57e-07

FGNLS iteration 5:
Iteration 0: Scaled RSS = 74.99261
Iteration 1: Scaled RSS = 74.99261
Parameter change = 4.07e-04
Covariance matrix change = 6.25e-08

FGNLS iteration 6:
Iteration 0: Scaled RSS = 74.99883
Iteration 1: Scaled RSS = 74.99883
Parameter change = 1.62e-04
Covariance matrix change = 2.49e-08

FGNLS iteration 7:
Iteration 0: Scaled RSS = 74.99981
Iteration 1: Scaled RSS = 74.99981
Iteration 2: Scaled RSS = 74.99981
Parameter change = 6.45e-05
Covariance matrix change = 9.91e-09

FGNLS iteration 8:
Iteration 0: Scaled RSS = 74.99997
Iteration 1: Scaled RSS = 74.99997
Iteration 2: Scaled RSS = 74.99997
Iteration 3: Scaled RSS = 74.99997
Parameter change = 2.57e-05
Covariance matrix change = 3.95e-09

FGNLS iteration 9:
Iteration 0: Scaled RSS = 75
Iteration 1: Scaled RSS = 75
Iteration 2: Scaled RSS = 75
Parameter change = 1.02e-05
Covariance matrix change = 1.57e-09

FGNLS iteration 10:
Iteration 0: Scaled RSS = 75

14 nlsur — Estimation of nonlinear systems of equations

Iteration 1: Scaled RSS = 75
Parameter change = 4.08e-06
Covariance matrix change = 6.26e-10

FGNLS regression

Equation Obs Parms RMSE R-sq Constant

1 s_k 25 . .0031722 0.4776 bk
2 s_l 25 . .0053963 0.8171 bl
3 s_e 25 . .00177 0.6615 be

Coefficient Std. err. z P>|z| [95% conf. interval]

/bk .0568925 .0013454 42.29 0.000 .0542556 .0595294
/dkk .0294833 .0057956 5.09 0.000 .0181241 .0408425
/dkl -.0000471 .0038478 -0.01 0.990 -.0075887 .0074945
/dke -.0106749 .0033882 -3.15 0.002 -.0173157 -.0040341
/bl .253438 .0020945 121.00 0.000 .2493329 .2575432

/dll .0754327 .0067572 11.16 0.000 .0621889 .0886766
/dle -.004756 .002344 -2.03 0.042 -.0093501 -.0001619
/be .0444099 .0008533 52.04 0.000 .0427374 .0460823

/dee .0183415 .0049858 3.68 0.000 .0085694 .0281135

When we use the function evaluator program version, nlsur requires us to specify the number of
equations in nequations(), and it requires us to specify either the names for each of our parameters
or the number of parameters in the model. Here we used the parameters() option to name our
parameters; the order in which we specified them in this option is the same as the order in which we
extracted them from the ‘at’ matrix in our program. Had we instead specified nparameters(9),
our parameters would have been labeled /b1, /b2, . . . , /b9 in the output.

nlsur has no way of telling how many parameters appear in each equation, so the Parms column
in the header contains missing values. Moreover, the function evaluator program version of nlsur
does not attempt to identify constant terms, so we used the hasconstant option to tell nlsur which
parameter in each equation is a constant term.

The estimates are identical to those we obtained in examples 2 and 3.

Technical note
As with substitutable expression programs, if you intend to do weighted estimation with a function

evaluator program, you must modify your func prog program’s syntax statement to accept weights.
Moreover, if you use any statistical commands when computing your nonlinear functions, then you
must include the weight expression with those commands.

nlsur — Estimation of nonlinear systems of equations 15

Example 5: Fitting the basic AIDS model using nlsur

Deaton and Muellbauer (1980) introduce the almost ideal demand system (AIDS), and Poi (2012)
presents a set of commands and several extensions for fitting the AIDS automatically. Here we show
how to fit the basic AIDS model, which is a common example of a nonlinear system of equations, by
manually using nlsur. The dataset food.dta contains household expenditures, expenditure shares,
and log prices for four broad food groups. For a four-good demand system, we need to fit the following
system of three equations:

w1 = α1 + γ11 lnp1 + γ12 lnp2 + γ13 lnp3 + β1 ln
{

m

P (p)

}
+ u1

w2 = α2 + γ12 lnp1 + γ22 lnp2 + γ23 lnp3 + β2 ln
{

m

P (p)

}
+ u2

w3 = α3 + γ13 lnp1 + γ23 lnp2 + γ33 lnp3 + β3 ln
{

m

P (p)

}
+ u3

where wk denotes a household’s fraction of expenditures on good k, lnpk denotes the logarithm of
the price paid for good k, m denotes a household’s total expenditure on all four goods, the u’s are
regression error terms, and

lnP (p) = α0 +

4∑
i=1

αi lnpi +
1

2

4∑
i=1

4∑
j=1

γij lnpi lnpj

The parameters for the fourth good’s share equation can be recovered from the following constraints
that are imposed by economic theory:

4∑
i=1

αi = 1

4∑
i=1

βi = 0 γij = γji and

4∑
i=1

γij = 0 for all j

Our model has a total of 12 unrestricted parameters. We will not estimate α0 directly. Instead, we
will set it equal to 5; see Deaton and Muellbauer (1980) for a discussion of why treating α0 as fixed
is acceptable.

16 nlsur — Estimation of nonlinear systems of equations

Our function evaluator program is
program nlsuraids

version 18.0

syntax varlist(min=8 max=8) if, at(name)

tokenize ‘varlist’
args w1 w2 w3 lnp1 lnp2 lnp3 lnp4 lnm

tempname a1 a2 a3 a4
scalar ‘a1’ = ‘at’[1,1]
scalar ‘a2’ = ‘at’[1,2]
scalar ‘a3’ = ‘at’[1,3]
scalar ‘a4’ = 1 - ‘a1’ - ‘a2’ - ‘a3’

tempname b1 b2 b3
scalar ‘b1’ = ‘at’[1,4]
scalar ‘b2’ = ‘at’[1,5]
scalar ‘b3’ = ‘at’[1,6]

tempname g11 g12 g13 g14
tempname g21 g22 g23 g24
tempname g31 g32 g33 g34
tempname g41 g42 g43 g44
scalar ‘g11’ = ‘at’[1,7]
scalar ‘g12’ = ‘at’[1,8]
scalar ‘g13’ = ‘at’[1,9]
scalar ‘g14’ = -‘g11’-‘g12’-‘g13’

scalar ‘g21’ = ‘g12’
scalar ‘g22’ = ‘at’[1,10]
scalar ‘g23’ = ‘at’[1,11]
scalar ‘g24’ = -‘g21’-‘g22’-‘g23’

scalar ‘g31’ = ‘g13’
scalar ‘g32’ = ‘g23’
scalar ‘g33’ = ‘at’[1,12]
scalar ‘g34’ = -‘g31’-‘g32’-‘g33’

scalar ‘g41’ = ‘g14’
scalar ‘g42’ = ‘g24’
scalar ‘g43’ = ‘g34’
scalar ‘g44’ = -‘g41’-‘g42’-‘g43’

quietly {
tempvar lnpindex
gen double ‘lnpindex’ = 5 + ‘a1’*‘lnp1’ + ‘a2’*‘lnp2’ + ///

‘a3’*‘lnp3’ + ‘a4’*‘lnp4’
forvalues i = 1/4 {

forvalues j = 1/4 {
replace ‘lnpindex’ = ‘lnpindex’ + ///

0.5*‘g‘i’‘j’’*‘lnp‘i’’*‘lnp‘j’’
}

}
replace ‘w1’ = ‘a1’ + ‘g11’*‘lnp1’ + ‘g12’*‘lnp2’ + ///

‘g13’*‘lnp3’ + ‘g14’*‘lnp4’ + ///
‘b1’*(‘lnm’ - ‘lnpindex’)

replace ‘w2’ = ‘a2’ + ‘g21’*‘lnp1’ + ‘g22’*‘lnp2’ + ///
‘g23’*‘lnp3’ + ‘g24’*‘lnp4’ + ///
‘b2’*(‘lnm’ - ‘lnpindex’)

replace ‘w3’ = ‘a3’ + ‘g31’*‘lnp1’ + ‘g32’*‘lnp2’ + ///
‘g33’*‘lnp3’ + ‘g34’*‘lnp4’ + ///
‘b3’*(‘lnm’ - ‘lnpindex’)

}

end

The syntax statement accepts eight variables: three expenditure share variables, all four log-price
variables, and a variable for log expenditures (lnm). Most of the code simply extracts the parameters

nlsur — Estimation of nonlinear systems of equations 17

from the ‘at’ matrix. Although we are estimating only 12 parameters, to calculate the price index
term and the expenditure share equations, we need the restricted parameters as well. Notice how we
impose the constraints on the parameters. We then created a temporary variable to hold lnP (p), and
we filled the three dependent variables with the predicted expenditure shares.

To fit our model, we type
. use https://www.stata-press.com/data/r18/food
(Four food groups)

. nlsur aids @ w1 w2 w3 lnp1 lnp2 lnp3 lnp4 lnexp,
> parameters(a1 a2 a3 b1 b2 b3
> g11 g12 g13 g22 g32 g33)
> neq(3) ifgnls
(obs = 4,048)

Calculating NLS estimates:
Iteration 0: Residual SS = 126.9713
Iteration 1: Residual SS = 125.669
Iteration 2: Residual SS = 125.669
Iteration 3: Residual SS = 125.669
Iteration 4: Residual SS = 125.669

Calculating FGNLS estimates:
Iteration 0: Scaled RSS = 12080.14
Iteration 1: Scaled RSS = 12080.14
Iteration 2: Scaled RSS = 12080.14
Iteration 3: Scaled RSS = 12080.14

FGNLS iteration 2:
Iteration 0: Scaled RSS = 12143.99
Iteration 1: Scaled RSS = 12143.99
Iteration 2: Scaled RSS = 12143.99
Parameter change = 1.97e-04
Covariance matrix change = 2.94e-06

FGNLS iteration 3:
Iteration 0: Scaled RSS = 12144
Iteration 1: Scaled RSS = 12144
Parameter change = 2.18e-06
Covariance matrix change = 3.47e-08

FGNLS regression

Equation Obs Parms RMSE R-sq Constant

1 w1 4,048 . .1333175 0.9017* (none)
2 w2 4,048 . .1024166 0.8480* (none)
3 w3 4,048 . .053777 0.7906* (none)

* Uncentered R-sq

Coefficient Std. err. z P>|z| [95% conf. interval]

/a1 .3163958 .0073871 42.83 0.000 .3019175 .3308742
/a2 .2712501 .0056938 47.64 0.000 .2600904 .2824097
/a3 .1039898 .0029004 35.85 0.000 .0983051 .1096746
/b1 .0161044 .0034153 4.72 0.000 .0094105 .0227983
/b2 -.0260771 .002623 -9.94 0.000 -.0312181 -.0209361
/b3 .0014538 .0013776 1.06 0.291 -.0012463 .004154

/g11 .1215838 .0057186 21.26 0.000 .1103756 .1327921
/g12 -.0522943 .0039305 -13.30 0.000 -.0599979 -.0445908
/g13 -.0351292 .0021788 -16.12 0.000 -.0393996 -.0308588
/g22 .0644298 .0044587 14.45 0.000 .0556909 .0731687
/g32 -.0011786 .0019767 -0.60 0.551 -.0050528 .0026957
/g33 .0424381 .0017589 24.13 0.000 .0389909 .0458854

18 nlsur — Estimation of nonlinear systems of equations

To get the restricted parameters for the fourth share equation, we can use lincom. For example,
to obtain α4, we type

. lincom 1 - [a1]_cons - [a2]_cons - [a3]_cons

(1) - [a1]_cons - [a2]_cons - [a3]_cons = -1

Coefficient Std. err. z P>|z| [95% conf. interval]

(1) .3083643 .0052611 58.61 0.000 .2980528 .3186758

For more information on lincom, see [R] lincom.

Stored results
nlsur stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k #) number of parameters for equation #
e(k eq) number of equation names in e(b)
e(k eq model) number of equations in overall model test
e(n eq) number of equations
e(mss #) model sum of squares for equation #
e(rss #) RSS for equation #
e(rmse #) root mean squared error for equation #
e(r2 #) R2 for equation #
e(ll) Gaussian log likelihood (iflgs version only)
e(N clust) number of clusters
e(rank) rank of e(V)
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) nlsur
e(cmdline) command as typed
e(method) fgnls, ifgnls, or nls
e(depvar) names of dependent variables
e(depvar #) dependent variable for equation #
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(title 2) secondary title in estimation output
e(clustvar) name of cluster variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(type) 1 = interactively entered expression

2 = substitutable expression program
3 = function evaluator program

e(sexpprog) substitutable expression program
e(sexp #) substitutable expression for equation #
e(params) names of all parameters
e(params #) parameters in equation #
e(funcprog) function evaluator program
e(rhs) contents of variables()
e(constants) identifies constant terms
e(properties) b V
e(predict) program used to implement predict

https://www.stata.com/manuals/rlincom.pdf#rlincom

nlsur — Estimation of nonlinear systems of equations 19

Matrices
e(b) coefficient vector
e(init) initial values vector
e(Sigma) error covariance matrix (Σ̂)
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Write the system of equations for the ith observation as

yi = f(xi,β) + ui (1)

where yi and ui are 1×M vectors, for i = 1, . . . , N ; f is a function that returns a 1×M vector;
xi represents all the exogenous variables in the system; and β is a 1× k vector of parameters. The
generalized nonlinear least-squares system estimator is defined as

β̂ ≡ argminβ

N∑
i=1

{yi − f(xi,β)}Σ−1 {yi − f(xi,β)}′

where Σ = E(u′iui) is an M ×M positive-definite weight matrix. Let T be the Cholesky decom-
position of Σ−1; that is, TT′ = Σ−1. Postmultiply (1) by T:

yiT = f(xi,β)T+ uiT (2)

Because E(T′u′iuiT) = I, we can “stack” the columns of (2) and write

y1T1 = f(x1,β)T1 + ũ11

y1T2 = f(x1,β)T2 + ũ12

... =
...

y1TM = f(x1,β)TM + ũ1M

... =
...

yNT1 = f(xN ,β)T1 + ũN1

yNT2 = f(xN ,β)T2 + ũN2

... =
...

yNTM = f(xN ,β)TM + ũNM

(3)

20 nlsur — Estimation of nonlinear systems of equations

where Tj denotes the jth column of T. By construction, all ũij are independently distributed with
unit variance. As a result, by transforming the model in (1) to that shown in (3), we have reduced the
multivariate generalized nonlinear least-squares system estimator to a univariate nonlinear least-squares
problem; and the same parameter estimation technique used by nl can be used here. See [R] nl for
the details. Moreover, because the ũij all have variance 1, the final scaled RSS reported by nlsur is
equal to NM .

To make the estimator feasible, we require an estimate Σ̂ of Σ. nlsur first sets Σ̂ = I. Although
not efficient, the resulting estimate, β̂NLS, is consistent. If the nls option is specified, estimation is
complete. Otherwise, the residuals

ûi = yi − f(xi, β̂NLS)

are calculated and used to compute

Σ̂ =
1

N

N∑
i=1

û′iûi

With Σ̂ in hand, a new estimate β̂ is then obtained.

If the ifgnls option is specified, the new β̂ is used to recompute the residuals and obtain a new
estimate of Σ̂, from which β̂ can then be reestimated. Iterations stop when the relative change in
β̂ is less than eps(), the relative change in Σ̂ is less than ifgnlseps(), or if ifgnlsiterate()
iterations have been performed.

If the vce(robust) and vce(cluster clustvar) options were not specified, then

V (β̂) =

(
N∑
i=1

X′iΣ̂
−1

Xi

)−1

where the M × k matrix Xi has typical element Xist, the derivative of the sth element of f with
respect to the tth element of β, evaluated at xi and β̂. As a practical matter, once the model is
written in the form of (3), the variance–covariance matrix can be calculated via a Gauss–Newton
regression; see Davidson and MacKinnon (1993, chap. 6).

If robust is specified, then

VR(β̂) =

(
N∑
i=1

X′iΣ̂
−1

Xi

)−1 N∑
i=1

X′iΣ̂
−1

û′iûiΣ̂
−1

Xi

(
N∑
i=1

X′iΣ̂
−1

Xi

)−1

The cluster–robust variance matrix is

VC(β̂) =

(
N∑
i=1

X′iΣ̂
−1

Xi

)−1 NC∑
c=1

wcw
′
c

(
N∑
i=1

X′iΣ̂
−1

Xi

)−1

https://www.stata.com/manuals/rnl.pdf#rnl

nlsur — Estimation of nonlinear systems of equations 21

where NC is the number of clusters and

wc =
∑
j∈Ck

X′jΣ̂
−1

û′j

with Ck denoting the set of observations in the kth cluster. In evaluating these formulas, we use the
value of Σ̂ used in calculating the final estimate of β̂. That is, we do not recalculate Σ̂ after we
obtain the final value of β̂.

The RSS for the jth equation, RSSj , is

RSSj =

N∑
i=1

(ŷij − yij)2

where ŷij is the predicted value of the ith observation on the jth dependent variable; the total sum
of squares (TSS) for the jth equation, TSSj , is

TSSj =

N∑
i=1

(
yij − yj

)2
if there is a constant term in the jth equation, where yj is the sample mean of the jth dependent
variable, and

TSSj =

N∑
i=1

y2ij

if there is no constant term in the jth equation; and the model sum of squares (MSS) for the jth
equation, MSSj , is TSSj − RSSj .

The R2 for the jth equation is MSSj/TSSj . If an equation does not have a constant term, then the
reported R2 for that equation is “uncentered” and based on the latter definition of TSSj .

Under the assumption that the ui are independent and identically distributed N(0, Σ̂), the log
likelihood for the model is

lnL = −MN

2
{1 + ln(2π)} − N

2
ln
∣∣∣Σ̂∣∣∣

The log likelihood is reported only when the ifgnls option is specified.

References
Canette, I. 2011. A tip to debug your nl/nlsur function evaluator program. The Stata Blog: Not Elsewhere Classified.

http://blog.stata.com/2011/12/05/a-tip-to-debug-your-nlnlsur-function-evaluator-program/.

Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. New York: Oxford University
Press.

Deaton, A. S., and J. Muellbauer. 1980. An almost ideal demand system. American Economic Review 70: 312–326.

Greene, W. H. 1997. Econometric Analysis. 3rd ed. Upper Saddle River, NJ: Prentice Hall.

. 2012. Econometric Analysis. 7th ed. Upper Saddle River, NJ: Prentice Hall.

http://blog.stata.com/2011/12/05/a-tip-to-debug-your-nlnlsur-function-evaluator-program/
http://blog.stata.com/2011/12/05/a-tip-to-debug-your-nlnlsur-function-evaluator-program/
http://www.stata.com/bookstore/eie.html
http://www.stata.com/bookstore/ea.html

22 nlsur — Estimation of nonlinear systems of equations

Poi, B. P. 2012. Easy demand-system estimation with quaids. Stata Journal 12: 433–446.

Zellner, A. 1962. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias.
Journal of the American Statistical Association 57: 348–368. https://doi.org/10.2307/2281644.

. 1963. Estimators for seemingly unrelated regression equations: Some exact finite sample results. Journal of the
American Statistical Association 58: 977–992. https://doi.org/10.2307/2283326.

Zellner, A., and D. S. Huang. 1962. Further properties of efficient estimators for seemingly unrelated regression
equations. International Economic Review 3: 300–313. https://doi.org/10.2307/2525396.

Also see
[R] nlsur postestimation — Postestimation tools for nlsur

[R] nl — Nonlinear least-squares estimation

[R] demandsys — Estimation of flexible demand systems

[R] gmm — Generalized method of moments estimation

[R] ml — Maximum likelihood estimation

[R] mlexp — Maximum likelihood estimation of user-specified expressions

[R] reg3 — Three-stage estimation for systems of simultaneous equations

[R] sureg — Zellner’s seemingly unrelated regression

[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

http://www.stata-journal.com/article.html?article=st0268
https://doi.org/10.2307/2281644
https://doi.org/10.2307/2283326
https://doi.org/10.2307/2525396
https://www.stata.com/manuals/rnlsurpostestimation.pdf#rnlsurpostestimation
https://www.stata.com/manuals/rnl.pdf#rnl
https://www.stata.com/manuals/rdemandsys.pdf#rdemandsys
https://www.stata.com/manuals/rgmm.pdf#rgmm
https://www.stata.com/manuals/rml.pdf#rml
https://www.stata.com/manuals/rmlexp.pdf#rmlexp
https://www.stata.com/manuals/rreg3.pdf#rreg3
https://www.stata.com/manuals/rsureg.pdf#rsureg
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands

