
Title stata.com

makespline — Spline generation

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

makespline generates a set of variables that form B-spline, piecewise polynomial spline, and
restricted cubic spline basis functions from a list of existing variables. B-spline and piecewise
polynomial spline bases may be first, second, or third order, with knots at percentiles of the data
or uniformly spaced over the range of the variables. Restricted cubic splines, also known as natural
splines, may only be of third order.

Quick start
Generate variables from x1 and x2 that form third-order B-spline basis functions, with one knot at

the median of each variable
makespline bspline x1 x2

Same as above, but with three knots at the 25th, 50th, and 75th percentiles
makespline bspline x1 x2, knots(3)

Same as above, but use second-order B-splines
makespline bspline x1 x2, knots(3) order(2)

Generate variables that form a linear spline for x1 with knots at 10 and 20
makespline piecewise x1, knotslist(10 20) order(1)

Same as above, but do not rescale x1 before creating spline variables
makespline piecewise x1, knotslist(10 20) order(1) norescalevars

Generate variables that form third-order piecewise polynomial splines for x1 and x2, with knots at
their 25th, 50th, and 75th percentiles

makespline piecewise x1 x2, knots(3)

Same as above, but with three knots at evenly spaced points over the range of x1 and of x2
makespline piecewise x1 x2, knots(3) uniformknots

Specify values of knots in matrix K to generate variables forming restricted cubic splines
makespline rcs x1 x2, knotsmat(K)

Generate variables that form a linear spline for x1 without rescaling the values of x1
makespline linear x1

Menu
Data > Create or change data > Other variable-creation commands > Spline generation

1

http://stata.com

2 makespline — Spline generation

Syntax

makespline basis varlist
[

if
] [

in
] [

weight
] [

, options
]

basis Description

bspline B-spline
piecewise piecewise polynomial spline
rcs restricted cubic spline
linear linear spline—piecewise basis of order 1 without rescaling variables

options Description

Main

bsepsilon(#) specify the distance (#) from the variable’s boundary for B-spline
knot placement; default is bsepsilon(0.01)

local generate first-order polynomial spline variables centered around
adjacent knots

harrell place knots according to percentiles in Harrell (2001); only for
rcs basis

order(#) use a spline basis of order #; default is order(3)

knots(#) use a spline basis function with # knots
knotslist(knotvals) use knots specified in knotvals
knotsmat(matname) use knots in matrix matname
distinct(#) set minimum number of distinct values required for variables

used to construct splines to #; default is distinct(10)

replace replace existing variables having the same names as the new basis
and rescaled variables, if they exist

norescalevars do not rescale variables before generating spline basis
uniformknots place knots at evenly spaced points over the range of each

variable; default is placement at percentiles
float set type for generated variables to float instead of double
basis(stub | newvarlist) store elements of spline basis function using stub or newvarlist
rescale(stub | newvarlist) store rescaled values of variables using stub or newvarlist

collect is allowed; see [U] 11.1.10 Prefix commands.
fweights, aweights, and iweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

bsepsilon(#) specifies the distance from the boundary of the variable where B-spline knots may
be placed. The default is bsepsilon(0.01).

local specifies that a basis function for a first-order piecewise polynomial be generated with variables
centered around adjacent knots. When splines are generated for only one variable and used in
estimation, the regression coefficients measure slopes for the intervals defined by knots.

harrell specifies that knots be placed according to the percentiles recommended in Harrell (2001,
23). This option may be used only with basis rcs and when specifying 3 to 7 knots.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight

makespline — Spline generation 3

order(#) specifies that a spline of order # be used as the basis. order() may be 1, 2, or 3 for
basis bspline and basis piecewise. order() may only be 3 for basis rcs. For basis linear
or when the local option is specified, order() may only be 1. The default is order(3), cubic
splines.

knots(#) specifies that a spline or B-spline basis function with # interior knots be used. The number
of knots must be an integer greater than or equal to 1. The maximum number of knots is either
4,096 or two-thirds of the sample size, whichever is smaller. Also, the number of knots must be
less than the number of distinct values in the variable used to generate the basis function. The
default is knots(1) if exact knot values are not specified using knotslist() or knotsmat().
For basis rcs, the default is knots(3), and the number of knots must be 3 or greater.

knotslist(knotvals) specifies in knotvals the values of knots to be used for each variable. The
knot values must be specified in the order of varlist, and a backslash (\) must be used to separate
knots for different variables. For example, if splines are generated for x1 and x2, the knots may
be specified as knotslist(20 40 60 \ 5 10 15).

knotsmat(matname) specifies that, in matname, the knots for each variable be the values in each
row. The number of knots should be the same for each variable, and there must be as many rows
as there are variables. If rows of matname are not labeled with varnames, then rows are assumed
to be in the order of varlist.

distinct(#) specifies the minimum number of distinct values required for the variables used to
construct the basis functions. Intuitively, using discrete variables for continuous interpolation is
difficult to justify. # specifies the number of distinct values necessary for a variable to be considered
continuous. The default is distinct(10).

replace specifies that the variables generated to form the basis function be replaced. If
basis(stub | newvarlist) or rescale(stub | newvarlist) are specified, the variables named with
stub, or those listed in newvarlist, are replaced. Otherwise, variables with the default names are
replaced.

norescalevars specifies that the original values of the variables in varlist be used to generate the
basis function. By default, variables are first rescaled to [0, 1]. norescalevars may not be used
with basis bspline or basis linear.

uniformknots specifies that knots be placed at evenly spaced points over the range of each variable.
The default is placement at percentiles of each of the specified variables.

float specifies that variables be generated as floats. Because of numerical precision and stability,
the default is double.

basis(stub | newvarlist) specifies that the elements of the basis function be generated with the
specified names.

When stub is specified, this prefix is used to generate enumerated variables for each element of
the basis function.

When newvarlist is specified, variables with these names are generated for the elements of the
basis function.

rescale(stub | newvarlist) specifies that the rescaled variables used to generate the basis function
be stored with the specified names. This option applies only to basis piecewise and basis rcs.

When stub is specified, this prefix is used to generate enumerated variables for the rescaled
variables.

When newvarlist is specified, variables with these names are generated for the rescaled variables.

4 makespline — Spline generation

Remarks and examples stata.com

makespline generates new variables that form B-splines, piecewise polynomial splines, and
restricted cubic splines from existing variables. Splines allow for different low-order polynomials in
different regions of the original variables, and they approximate a smooth function by continuously
connecting these low-order polynomials. Knots define the boundaries of the regions.

The standard piecewise polynomial variables created by makespline piecewise allow the
functions to be linear, quadratic, or cubic in each region. makespline linear provides a convenient
method for creating linear splines from the original variables, without rescaling. This is useful when
you wish to directly interpret regression coefficients in the metric of the original variables. The terms
in the standard piecewise polynomial spline function can be highly collinear and may be numerically
unstable when used in estimation. B-splines, which can be created by makespline bspline, avoid
this problem by creating orthogonal spline terms. For an introduction to piecewise polynomial splines
and B-splines, see Piecewise polynomial splines and B-splines in [R] npregress intro. makespline
rcs creates restricted cubic splines, also known as natural splines, in which the function is linear
before the first knot, cubic between adjacent knots, and linear again after the last knot. This can
improve performance in the tails over the standard cubic spline.

In addition to selecting the type of spline, makespline allows you to specify the location of
knots—the locations where the function changes. You can specify the number of knots you wish to
allow, and makespline will place the knots based on percentiles of the data or uniformly spaced
across the range of values in the data. Alternatively, you can specify the exact values at which you
wish the knots to be placed.

Regardless of the type of spline, we can refer to our newly created variables as a spline basis
function. A basis is a collection of terms that can approximate a smooth function arbitrarily well. A
basis function, such as one of the spline functions created by makespline, is a subset of the basis
terms that can be used to approximate the mean function.

The basis function variables generated by makespline are useful for nonparametric and semi-
parametric estimation. For instance, makespline can be used when we want to fit models such as

y = x1β + g (x2,x3, . . . ,xk) + ε (1)

In the expression above, the outcome y, the covariates x1, . . . ,xk, and the unobservable ε are n× 1
vectors of covariates. The function g(·) is unknown and x1 enters the model linearly. These types
of models are commonly used when we are interested in estimating the effect of x1 on the mean
of y. We are agnostic about the functional form in which the controls, x2, . . . ,xk, enter the model,
but to get a precise estimate of the effect of x1, we need a reliable approximation of g(·). We may
use makespline to generate the basis functions that best approximate g(·) and then use the basis
functions to fit the model in (1).

For instance, we can generate basis functions with basis as the stub name:

makespline bspline x2-x5, basis(basis)

This would generate a third-order B-spline basis function for each of the variables in x2-x5, with
knots at the medians of x2-x5. Each of the basis functions would consist of five variables; see
Methods and formulas in [R] npregress series for details.

Once we have these basis functions, we can fit the model in (1) by typing

regress y x1 c.(basis*)##c.(basis*)

where c.(basis*)##c.(basis*) specifies that the terms in the basis functions be included in the
model on their own as well as interacted with each of the other terms.

http://stata.com
https://www.stata.com/manuals/rnpregressintro.pdf#rnpregressintroRemarksandexamplesPiecewisepolynomialsplinesandB-splines
https://www.stata.com/manuals/rnpregressintro.pdf#rnpregressintro
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesMethodsandformulasB-splines
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseries

makespline — Spline generation 5

Above, we are assuming that we constructed a good approximation of the unknown function g(·).
We could go further and select from among these spline basis terms by using a technique such as lasso
for prediction, described in [LASSO] lasso, or, if we are interested in inferences on estimated effects,
a technique such as the partialing-out or double-selection lasso method, described in [LASSO] Lasso
inference intro.

Let’s say we are interested in getting a reliable estimate of the effect of x1 on the mean of the
outcome. We would type

poregress y x1, controls(c.(basis*)##c.(basis*))

The method used by the above command is partialing-out lasso, which selects from the elements of
the basis function to provide an optimal approximation of g(·) while accounting for the implied model
selection error. The result is an estimate of the effect of x1 on the outcome with reliable standard
errors.

Of course, the model does not have to be like the one presented in (1). It could be

y = g (x1,x2, . . . ,xk) + ε

or
y = g (x1) + g (x2) + · · ·+ g (xk) + ε

or we might instead be interested in using the basis functions for visualization.

Example 1: Generating and naming B-spline basis functions

Below, we generate a third-order B-spline basis function with one knot placed at the median. The
basis function is constructed from the variable price.

. sysuse auto
(1978 automobile data)

. makespline bspline price

The basis function consists of these five variables:

. describe _*

Variable Storage Display Value
name type format label Variable label

_bsp_1_1 double %10.0g B-spline basis term 1 for price
_bsp_1_2 double %10.0g B-spline basis term 2 for price
_bsp_1_3 double %10.0g B-spline basis term 3 for price
_bsp_1_4 double %10.0g B-spline basis term 4 for price
_bsp_1_5 double %10.0g B-spline basis term 5 for price

https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro

6 makespline — Spline generation

The default naming convention is to give the elements of the basis function a name that starts with
bsp and two subscripts. The first subscript enumerates the basis functions, and the second subscript

enumerates the elements within the basis function. For example, if we created basis functions for two
variables, we would obtain the following:

. makespline bspline price mpg, replace

. describe _*

Variable Storage Display Value
name type format label Variable label

_bsp_1_1 double %10.0g B-spline basis term 1 for price
_bsp_1_2 double %10.0g B-spline basis term 2 for price
_bsp_1_3 double %10.0g B-spline basis term 3 for price
_bsp_1_4 double %10.0g B-spline basis term 4 for price
_bsp_1_5 double %10.0g B-spline basis term 5 for price
_bsp_2_1 double %10.0g B-spline basis term 1 for mpg
_bsp_2_2 double %10.0g B-spline basis term 2 for mpg
_bsp_2_3 double %10.0g B-spline basis term 3 for mpg
_bsp_2_4 double %10.0g B-spline basis term 4 for mpg
_bsp_2_5 double %10.0g B-spline basis term 5 for mpg

If we want to change the stub name bsp to autobasis, we could use the basis() option as
follows:

. makespline bspline price mpg, basis(autobasis)

. describe auto*

Variable Storage Display Value
name type format label Variable label

autobasis_1_1 double %10.0g B-spline basis term 1 for price
autobasis_1_2 double %10.0g B-spline basis term 2 for price
autobasis_1_3 double %10.0g B-spline basis term 3 for price
autobasis_1_4 double %10.0g B-spline basis term 4 for price
autobasis_1_5 double %10.0g B-spline basis term 5 for price
autobasis_2_1 double %10.0g B-spline basis term 1 for mpg
autobasis_2_2 double %10.0g B-spline basis term 2 for mpg
autobasis_2_3 double %10.0g B-spline basis term 3 for mpg
autobasis_2_4 double %10.0g B-spline basis term 4 for mpg
autobasis_2_5 double %10.0g B-spline basis term 5 for mpg

Alternatively, we could provide names for each of the variables that form a basis function. For
example,

. makespline bspline mpg, basis(mpg1 mpg2 mpg3 mpg4 mpg5)

. describe mpg1-mpg5

Variable Storage Display Value
name type format label Variable label

mpg1 double %10.0g B-spline basis term 1 for mpg
mpg2 double %10.0g B-spline basis term 2 for mpg
mpg3 double %10.0g B-spline basis term 3 for mpg
mpg4 double %10.0g B-spline basis term 4 for mpg
mpg5 double %10.0g B-spline basis term 5 for mpg

makespline — Spline generation 7

Example 2: Generating and naming piecewise polynomial spline basis functions

Below, we generate a third-order piecewise polynomial spline with one knot at the median and
show the variables we generated:

. makespline piecewise mpg

. describe *_sp*

Variable Storage Display Value
name type format label Variable label

_rs_sp_1 double %10.0g mpg rescaled to [0,1]
_sp_1_1 double %10.0g Piecewise polynomial basis term 1

for mpg

The only syntactical difference is that, after makespline, we specify piecewise instead of
bspline to be the basis. makespline generates two variables in this case. They are the elements
that are necessary to construct a basis function.

The default naming convention is to give the elements of the spline function a name that starts
with sp and has two subscripts. The first subscript enumerates the piecewise polynomial spline for
a given variable, and the second subscript denotes the knot number. The rescaled variable starts with
rs sp followed by a subscript denoting the element in the variable list.

Again, we may use a stub to modify the names that precede the subscripts, or we may specify a
name for each new variable. Below, we also specified the names for the rescaled variables:

. makespline piecewise mpg price, basis(mpgsp pricesp) rescale(mpgrs pricers)

. describe mpgsp mpgrs pricesp pricers

Variable Storage Display Value
name type format label Variable label

mpgsp double %10.0g Piecewise polynomial basis term 1
for mpg

mpgrs double %10.0g mpg rescaled to [0,1]
pricesp double %10.0g Piecewise polynomial basis term 1

for price
pricers double %10.0g price rescaled to [0,1]

The logic behind the variables generated is that they consist of all the elements needed to
approximate the unknown function g(·) of the specified variables nonparametrically. In this case, a
third-order piecewise polynomial spline approximation of g(·) consists of the levels, square, and cube
of mpgsp, mpgrs, pricesp, and pricers. Specifically, to include the fully interacted basis functions
in a model, we would need to include the term below in our specification:

c.(c.mpgrs##c.mpgrs##c.mpgrs mpgsp)##c.(c.pricers##c.pricers##c.pricers pricesp)

makespline simplifies this task by returning a local macro with the terms needed to fit g(·). The
local macro has the name r(regressors). In this case, it expands to the following:

. display "‘r(regressors)’"
c.(c.mpgrs##c.mpgrs##c.mpgrs mpgsp)##c.(c.pricers##c.pricers##c.pricers pricesp)

Note that when you generate basis functions for more than one variable, as we did above,
r(regressors) fully interacts these basis functions. These fully interacted basis functions can
be included when fitting a model by adding ‘r(regressors)’ to your list of covariates.

8 makespline — Spline generation

Example 3: Using makespline in semiparametric estimation

As we mentioned previously, basis functions are particularly useful for approximating unknown
functions. For example, say we want to obtain the average marginal effect of x1 on the conditional
mean of the continuous outcome y. We have two controls, x2 and x3, but it is unclear whether they
enter the model linearly or with another functional form.

To approximate the unknown function of x2 and x3, we construct two B-spline basis functions
with eight knots each. We use the simulated dataset and then the makespline bspline command:

. use https://www.stata-press.com/data/r18/splines, clear
(Simulated data)

. makespline bspline x2 x3, knots(8)

This yields basis functions with 12 elements. Once you fully interact the two basis functions, you
get 168 regressors. Using all of them to approximate the unknown function would not be a sound
idea. Thus, we will use poregress to perform partialing-out lasso linear regression. This estimator
will select from the 168 covariates to provide a good approximation to the unknown function and at
the same time provide a reliable estimate of the marginal effect of interest.

Rather than interact the basis terms manually, we can simply refer to the macro r(regressors),
which contains the full interaction of the basis functions:

. poregress y x1, controls(‘r(regressors)’)

Estimating lasso for y using plugin
Estimating lasso for x1 using plugin

Partialing-out linear model Number of obs = 5,000
Number of controls = 168
Number of selected controls = 19
Wald chi2(1) = 3535.78
Prob > chi2 = 0.0000

Robust
y Coefficient std. err. z P>|z| [95% conf. interval]

x1 2.951242 .049632 59.46 0.000 2.853965 3.048519

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

We obtain an average marginal effect of 2.95.

A researcher does not know the true value of the effect; however, we do. These are simulated
data. The model is given by

y = 3x1 + 3sin {3 (x2 − x3)}+ ε

The unknown function of x2 and x3 is complex, yet we obtained a precise estimate of the average
marginal effect.

makespline — Spline generation 9

Example 4: Using makespline for estimation and graphing

It is common to use linear splines to create a graph after estimation. The knots of a regressor
define a piecewise polynomial that can be visualized conditional on the values of other covariates.

Below, we study the effect of mileage in miles per gallon (mpg) on car prices (price). We regress
price on mpg, three linear polynomial basis terms defined by knots at the quartiles of mpg, and a
dummy variable, foreign (1 if cars are foreign).

We first generate the variables that form the polynomial basis and then fit the regression.

. sysuse auto, clear
(1978 automobile data)

. makespline linear mpg, knots(3) basis(mpg)

. regress price mpg mpg_* i.foreign

Source SS df MS Number of obs = 74
F(5, 68) = 13.49

Model 316201619 5 63240323.8 Prob > F = 0.0000
Residual 318863777 68 4689173.19 R-squared = 0.4979

Adj R-squared = 0.4610
Total 635065396 73 8699525.97 Root MSE = 2165.4

price Coefficient Std. err. t P>|t| [95% conf. interval]

mpg -1330.299 213.0425 -6.24 0.000 -1755.419 -905.1798
mpg_1_1 1698.953 622.5153 2.73 0.008 456.7432 2941.163
mpg_1_2 -622.9298 651.5686 -0.96 0.342 -1923.115 677.2551
mpg_1_3 139.4188 277.0762 0.50 0.616 -413.4783 692.3158

foreign
Foreign 1676.381 609.4723 2.75 0.008 460.1983 2892.564

_cons 28796.47 3449.408 8.35 0.000 21913.28 35679.65

The regression line for our model is given by the following command:

generate double xb = _b[_cons] + _b[1.foreign]*foreign + ///
mpg*_b[mpg] + (mpg>18)*(mpg-18)*_b[mpg_1_1] + ///

(mpg>20)*(mpg-20)*_b[mpg_1_2] + ///
(mpg>25)*(mpg-25)*_b[mpg_1_3]

The effect of mpg changes at the knots. If mpg is less than or equal to 18, it is b[mpg]; if it is
greater than 18 but less than or equal to 20, it is (b[mpg] + b[mpg 1 1]); if it is greater than 20
but less than or equal to 25, it is (b[mpg] + b[mpg 1 1] + b[mpg 1 2]); and if it is greater
than 25, it is (b[mpg] + b[mpg 1 1] + b[mpg 1 2] + b[mpg 1 3]).

We can plot regression lines for foreign and domestic cars. We first generate the predictions for
foreign and domestic cars.

. generate xb_domestic = _b[_cons] + mpg*_b[mpg]
> + (mpg>18)*(mpg-18)*_b[mpg_1_1]
> + (mpg>20)*(mpg-20)*_b[mpg_1_2]
> + (mpg>25)*(mpg-25)*_b[mpg_1_3]

. generate xb_foreign = _b[_cons] + _b[1.foreign] + mpg*_b[mpg]
> + (mpg>18)*(mpg-18)*_b[mpg_1_1]
> + (mpg>20)*(mpg-20)*_b[mpg_1_2]
> + (mpg>25)*(mpg-25)*_b[mpg_1_3]

Then we plot both regression lines referencing the placement of the knots with vertical lines. In
the graph, we also include the values of the dependent variable. We can inspect graphically how the
effect of mpg differs across the regions defined by the knots.

10 makespline — Spline generation

. twoway line xb_domestic mpg,
> lcolor(blue) lpattern(dash) sort ||
> line xb_foreign mpg,
> lcolor(red) lpatter(dash_dot) sort ||
> scatter price mpg if foreign==0, mcolor(blue%30) ||
> scatter price mpg if foreign==1, mcolor(red%30)
> xline(18 20 25)
> title(Fitted values for domestic and foreign cars)
> subtitle(Spline regression with knots at quartiles of mpg)

0

5000

10000

15000

10 20 30 40
Mileage (mpg)

xb_domestic
xb_foreign
Price
Price

Spline regression with knots at quartiles of mpg

Fitted values for domestic and foreign cars

Stored results
makespline stores the following in r():

Scalars
r(N knots) number of knots
r(local) 1 if local was specified, 0 otherwise
r(bsepsilon) distance from variable’s boundary for B-spline knot placement

Macros
r(basis) spline type used to generate basis function
r(regressors) regressors formed from basis functions
r(basisnames#) variable names of basis function for variable #
r(wtype) weight type
r(wexp) weight expression

Matrices
r(minmax) minimum and maximum of all variables
r(knots) matrix of knots

makespline — Spline generation 11

Methods and formulas
See Methods and formulas in [R] npregress series for piecewise polynomial spline and B-spline

computation.

When the local option is specified, let Vi, i = 1, . . . , n, be the variables to be created; ki,
i = 1, . . . , n− 1, be the corresponding knots; and V be the original variable rescaled to be in [0, 1].
Then

V1 = min(V, k1)

Vi = max
{

min(V, ki), ki−1

}
− ki−1 i = 2, . . . , n− 1

Vn = max(V, kn−1)− kn−1

When the rcs basis is specified, let ki, i = 1, . . . , n, be the knot values; Vi, i = 1, . . . , n − 1,
be the variables to be created; and V be the original variable rescaled to be in [0, 1]. Then

V1 = V

Vi+1 =
(V − ki)3+ − (kn − kn−1)

−1{(V − kn−1)
3
+(kn − ki)− (V − kn)3+(kn−1 − ki)}

(kn − k1)2

i = 1, . . . , n− 2

where

(u)+ =

{
u, if u > 0

0, if u ≤ 0

When the harrell option is specified, the knots are placed using the percentiles recommended
in Harrell (2001, 23). These percentiles are based on the chosen number of knots as follows:

No.
of knots Percentiles

3 10 50 90
4 5 35 65 95
5 5 27.5 50 72.5 95
6 5 23 41 59 77 95
7 2.5 18.33 34.17 50 65.83 81.67 97.5

References
Chetverikov, D., D. Kim, and D. Wilhelm. 2018. Nonparametric instrumental-variable estimation. Stata Journal 18:

937–950.

de Boor, C. 2001. A Practical Guide to Splines. Rev. ed. New York: Springer.

Eubank, R. L. 1999. Nonparametric Regression and Spline Smoothing. 2nd ed. New York: Dekker.

Hansen, B. E. 2009. University of Wisconsin–Madison, ECON 718, NonParametric Econometrics, Spring 2009, course
notes. Last visited on 2019/01/15. https://www.ssc.wisc.edu/∼bhansen/718/718.htm.

. 2018. Econometrics. https://www.ssc.wisc.edu/∼bhansen/econometrics/Econometrics.pdf.

Harrell, F. E., Jr. 2001. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression,
and Survival Analysis. New York: Springer.

Li, Q., and J. S. Racine. 2007. Nonparametric Econometrics: Theory and Practice. Princeton, NJ: Princeton University
Press.

https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesMethodsandformulas
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseries
http://www.stata-journal.com/article.html?article=st0547
https://www.ssc.wisc.edu/~bhansen/718/718.htm
https://www.ssc.wisc.edu/~bhansen/econometrics/Econometrics.pdf

12 makespline — Spline generation

Schoenberg, I. J., ed. 1969. Approximations with Special Emphasis on Spline Functions. New York: Academic Press.

Schumaker, L. L. 2007. Spline Functions: Basic Theory. 3rd ed. Cambridge: Cambridge University Press.

Also see
[R] npregress series — Nonparametric series regression

[R] npregress series postestimation — Postestimation tools for npregress series

[R] npregress intro — Introduction to nonparametric regression

[R] kdensity — Univariate kernel density estimation

[R] lpoly — Kernel-weighted local polynomial smoothing

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp
LLC. Other brand and product names are registered trademarks or trademarks of their
respective companies. Copyright c© 1985–2023 StataCorp LLC, College Station, TX,
USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseries
https://www.stata.com/manuals/rnpregressseriespostestimation.pdf#rnpregressseriespostestimation
https://www.stata.com/manuals/rnpregressintro.pdf#rnpregressintro
https://www.stata.com/manuals/rkdensity.pdf#rkdensity
https://www.stata.com/manuals/rlpoly.pdf#rlpoly
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

