heckman postestimation — Postestimation tools for heckman

Postestimation commands Reference

predict Also see margins

Remarks and examples

Postestimation commands

The following postestimation commands are available after heckman:

Command	Description				
contrast	contrasts and ANOVA-style joint tests of estimates				
*estat ic	Akaike's, consistent Akaike's, corrected Akaike's, and Schwarz's Bayesian in- formation criteria (AIC, CAIC, AICc, and BIC)				
estat summarize	summary statistics for the estimation sample				
estat vce	variance-covariance matrix of the estimators (VCE)				
estat (svy)	postestimation statistics for survey data				
estimates	cataloging estimation results				
etable	table of estimation results				
† hausman	Hausman's specification test				
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients				
[†] lrtest	likelihood-ratio test; not available with two-step estimator				
margins	marginal means, predictive margins, marginal effects, and average marginal effects				
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)				
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients				
predict	linear predictions and their SEs, probabilities, etc.				
predictnl	point estimates, standard errors, testing, and inference for generalized predictions				
pwcompare	pairwise comparisons of estimates				
*suest	seemingly unrelated estimation				
test	Wald tests of simple and composite linear hypotheses				
testnl	Wald tests of nonlinear hypotheses				

*estat ic and suest are not appropriate after heckman, twostep.

 $\dagger_{\texttt{hausman}}$ and <code>lrtest</code> are not appropriate with <code>svy</code> estimation results.

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, standard errors, probabilities, expected values, and nonselection hazards.

Menu for predict

Statistics > Postestimation

Syntax for predict

```
After ML or twostep
```

-

```
predict [type] newvar [if] [in] [, statistic <u>nooff</u>set]
```

After ML

predict	type	stub*	if	in	, <u>sc</u> ores
---------	------	-------	----	----	------------------

statistic	Description
Main	
xb	linear prediction; the default
stdp	standard error of the prediction
stdf	standard error of the forecast
<u>xbs</u> el	linear prediction for selection equation
stdpsel	standard error of the linear prediction for selection equation
$\overline{\operatorname{pr}(a,b)}$	$\Pr(y_j \mid a < y_j < b)$
e(<i>a</i> , <i>b</i>)	$E(y_j \mid a < y_j < b)$
ystar(a,b)	$E(y_{i}^{*}), y_{i}^{*} = \max\{a, \min(y_{j}, b)\}$
ycond	$E(y_j y_j \text{ observed})$
yexpected	$E(y_i^*), y_j$ taken to be 0 where unobserved
<u>ms</u> hazard or mills	nonselection hazard (also called the inverse of Mills's ratio)
psel	$\Pr(y_j \text{ observed})$

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing $(a \ge .)$ means $-\infty$, and b missing $(b \ge .)$ means $+\infty$; see [U] 12.2.1 Missing values.

Options for predict

Main

xb, the default, calculates the linear prediction $x_j b$.

- stdp calculates the standard error of the prediction, which can be thought of as the standard error of the predicted expected value or mean for the observation's covariate pattern. The standard error of the prediction is also referred to as the standard error of the fitted value.
- stdf calculates the standard error of the forecast, which is the standard error of the point prediction
 for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
 By construction, the standard errors produced by stdf are always larger than those produced by
 stdp; see Methods and formulas in [R] regress postestimation.
- xbsel calculates the linear prediction for the selection equation.
- stdpsel calculates the standard error of the linear prediction for the selection equation.
- pr(*a*,*b*) calculates $Pr(a < x_j b + u_1 < b)$, the probability that $y_j | x_j$ would be observed in the interval (a, b).

a and *b* may be specified as numbers or variable names; *lb* and *ub* are variable names; pr(20,30) calculates $Pr(20 < x_jb + u_1 < 30)$; pr(*lb*,*ub*) calculates $Pr(lb < x_jb + u_1 < ub)$; and pr(20,*ub*) calculates $Pr(20 < x_jb + u_1 < ub)$.

a missing $(a \ge .)$ means $-\infty$; pr(.,30) calculates $Pr(-\infty < \mathbf{x}_j \mathbf{b} + u_j < 30)$; pr(*lb*,30) calculates $Pr(-\infty < \mathbf{x}_j \mathbf{b} + u_j < 30)$ in observations for which $lb \ge .$ and calculates $Pr(lb < \mathbf{x}_j \mathbf{b} + u_j < 30)$ elsewhere.

b missing $(b \ge .)$ means $+\infty$; pr(20,.) calculates $Pr(+\infty > \mathbf{x}_j \mathbf{b} + u_j > 20)$; pr(20,*ub*) calculates $Pr(+\infty > \mathbf{x}_j \mathbf{b} + u_j > 20)$ in observations for which $ub \ge .$ and calculates $Pr(20 < \mathbf{x}_j \mathbf{b} + u_j < ub)$ elsewhere.

- $\mathbf{e}(a,b)$ calculates $E(\mathbf{x}_j\mathbf{b} + u_1 | a < \mathbf{x}_j\mathbf{b} + u_1 < b)$, the expected value of $y_j|\mathbf{x}_j$ conditional on $y_j|\mathbf{x}_j$ being in the interval (a,b), meaning that $y_j|\mathbf{x}_j$ is truncated. a and b are specified as they are for $\mathbf{pr}(\mathbf{c})$.
- ystar(*a*,*b*) calculates $E(y_j^*)$, where $y_j^* = a$ if $\mathbf{x}_j \mathbf{b} + u_j \leq a$, $y_j^* = b$ if $\mathbf{x}_j \mathbf{b} + u_j \geq b$, and $y_j^* = \mathbf{x}_j \mathbf{b} + u_j$ otherwise, meaning that y_j^* is censored. *a* and *b* are specified as they are for pr().
- ycond calculates the expected value of the dependent variable conditional on the dependent variable being observed, that is, selected; $E(y_i | y_i \text{ observed})$.
- yexpected calculates the expected value of the dependent variable (y_j^*) , where that value is taken to be 0 when it is expected to be unobserved; $y_j^* = \Pr(y_j \text{ observed})E(y_j \mid y_j \text{ observed})$.

The assumption of 0 is valid for many cases where nonselection implies nonparticipation (for example, unobserved wage levels, insurance claims from those who are uninsured) but may be inappropriate for some problems (for example, unobserved disease incidence).

- nshazard and mills are synonyms; both calculate the nonselection hazard—what Heckman (1979) referred to as the inverse of the Mills ratio—from the selection equation.
- psel calculates the probability of selection (or being observed):

 $\Pr(y_j \text{ observed}) = \Pr(\mathbf{z}_j \boldsymbol{\gamma} + u_{2j} > 0).$

scores, not available with twostep, calculates equation-level score variables.

The first new variable will contain $\partial \ln L / \partial (\mathbf{x}_j \boldsymbol{\beta})$.

The second new variable will contain $\partial \ln L / \partial (\mathbf{z}_j \boldsymbol{\gamma})$.

The third new variable will contain $\partial \ln L/\partial (\operatorname{atanh} \rho)$.

The fourth new variable will contain $\partial \ln L / \partial (\ln \sigma)$.

nooffset is relevant when you specify offset(*varname*) for heckman. It modifies the calculations made by predict so that they ignore the offset variable; the linear prediction is treated as $\mathbf{x}_j \mathbf{b}$ rather than as $\mathbf{x}_j \mathbf{b} + \text{offset}_j$.

margins

Description for margins

margins estimates margins of response for linear predictions, probabilities, expected values, and nonselection hazards.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins	[marginlist] [, options	<i>s</i>]		
margins	[marginlist], predic	t(<i>statistic</i>) [<u>pr</u> edi	ct(statistic)	.] [options]

statistic	Description
xb	linear prediction; the default
<u>xbs</u> el	linear prediction for selection equation
pr(<i>a</i> , <i>b</i>)	$\Pr(y_j \mid a < y_j < b)$
e(a,b)	$E(y_i \mid a < y_i < b)$
ystar(a,b)	$E(y_j^*), y_j^* = \max\{a, \min(y_j, b)\}$
* ycond	$E(y_j y_j \text{ observed})$
* yexpected	$E(y_i^*), y_j$ taken to be 0 where unobserved
<u>m</u> hazard or <u>m</u> ills	nonselection hazard (also called the inverse of Mills's ratio)
psel	$\Pr(y_j \text{ observed})$
stdp	not allowed with margins
stdf	not allowed with margins
stdpsel	not allowed with margins

*ycond and yexpected are not allowed with margins after heckman, twostep.

Statistics not allowed with margins are functions of stochastic quantities other than e(b). For the full syntax, see [R] margins.

Remarks and examples

stata.com

```
Example 1
```

The default statistic produced by predict after heckman is the expected value of the dependent variable from the underlying distribution of the regression model. In the wage model of [R] heckman, this is the expected wage rate among all women, regardless of whether they were observed to participate in the labor force:

```
. use https://www.stata-press.com/data/r18/womenwk
```

. heckman wage educ age, select(married children educ age) vce(cluster county) $(output \ omitted)$

```
. predict heckwage
```

```
(option xb assumed; fitted values)
```

It is instructive to compare these predicted wage values from the Heckman model with an ordinary regression model—a model without the selection adjustment:

e educ age						
SS	df	MS	Numbe	er of obs	=	1,343
			- F(2,	1340)	=	227.49
13524.0337	2	6762.0168	7 Prob	> F	=	0.0000
39830.8609	1,340	29.724523	1 R-squ	ared	=	0.2535
			– AdjF	R-squared	=	0.2524
53354.8946	1,342	39.7577456	6 Root	MSE	=	5.452
Coefficient	Std. err.	t	P> t	[95% coi	nf.	interval]
.8965829	.0498061	18.00	0.000	.798876	5	.9942893
.1465739	.0187135	7.83	0.000	.109863	3	.1832848
6.084875	.8896182	6.84	0.000	4.339679	Э	7.830071
	SS 13524.0337 39830.8609 53354.8946 Coefficient .8965829 .1465739	SS df 13524.0337 2 39830.8609 1,340 53354.8946 1,342 Coefficient Std. err. .8965829 .0498061 .1465739 .0187135	SS df MS 13524.0337 2 6762.0168'' 39830.8609 1,340 29.724523'' 53354.8946 1,342 39.7577456' Coefficient Std. err. t .8965829 .0498061 18.00 .1465739 .0187135 7.83	SS df MS Number F(2, F(2, Prob 13524.0337 2 6762.01687 Prob 39830.8609 1,340 29.7245231 R-squ 53354.8946 1,342 39.7577456 Root Coefficient Std. err. t P> t .8965829 .0498061 18.00 0.000 .1465739 .0187135 7.83 0.000	SS df MS Number of obs 13524.0337 2 6762.01687 Prob > F 39830.8609 1,340 29.7245231 R-squared 53354.8946 1,342 39.7577456 Root MSE Coefficient Std. err. t P> t [95% cond-10986] .8965829 .0498061 18.00 0.000 .7988768 .1465739 .0187135 7.83 0.000 .109863	SS df MS Number of obs = 13524.0337 2 6762.01687 Prob > F = 39830.8609 1,340 29.7245231 R-squared = 53354.8946 1,342 39.7577456 Root MSE = Coefficient Std. err. t P> t [95% conf. .8965829 .0498061 18.00 0.000 .7988765 .1465739 .0187135 7.83 0.000 .109863

```
. predict regwage
```

```
(option xb assumed; fitted values)
```

```
. summarize heckwage regwage
```

Variable	Obs	Mean	Std. dev.	Min	Max
heckwage	2,000	21.15532	3.83965	14.6479	32.85949
regwage	2,000	23.12291	3.241911	17.98218	32.66439

Because this dataset was concocted, we know the true coefficients of the wage regression equation to be 1, 0.2, and 1, respectively. We can compute the true mean wage for our sample.

generate tru	1ewage = 1 +	.2*age + 1*e	duc		
summarize tr	ruewage				
Variable	Obs	Mean	Std. dev.	Min	Max
 truewage	2,000	21.3256	3.797904	15	32.8

Whereas the mean of the predictions from heckman is within 18 cents of the true mean wage, ordinary regression yields predictions that are on average about \$1.80 per hour too high because of the selection effect. The regression predictions also show somewhat less variation than the true wages.

The coefficients from heckman are so close to the true values that they are not worth testing. Conversely, the regression equation is significantly off but seems to give the right sense. Would we be led far astray if we relied on the OLS coefficients? The effect of age is off by more than 5 cents per year of age, and the coefficient on education level is off by about 10%. We can test the OLS coefficient on education level against the true value by using test.

```
. test educ = 1
( 1) education = 1
F( 1, 1340) = 4.31
Prob > F = 0.0380
```

The OLS coefficient on education is substantially lower than the true parameter; moreover, the difference from the true parameter is also statistically significant beyond the 5% level. We can perform a similar test for the OLS age coefficient:

```
. test age = .2
(1) age = .2
F( 1, 1340) = 8.15
Prob > F = 0.0044
```

We find even stronger evidence that the OLS regression results are biased away from the true parameters.

4

▷ Example 2

Several other interesting aspects of the Heckman model can be explored with predict. Continuing with our wage model, we can obtain the expected wages for women conditional on participating in the labor force with the ycond option. Let's get these predictions and compare them with actual wages for women participating in the labor force.

. use https://	/www.stata-pro	ess.com/data/	r18/womenwk,	clear	
. heckman wage (output omitted	0.	elect(married	children ed	uc age)	
. predict hcno	lwage, ycond				
. summarize wa	age hcndwage :	if wage != .			
Variable	Obs	Mean	Std. dev.	Min	Max
wage hcndwage	1,343 1,343	23.69217 23.68239	6.305374 3.335087	5.88497 16.18337	45.80979 33.7567

We see that the average predictions from heckman are close to the observed levels but do not have the same mean. These conditional wage predictions are available for all observations in the dataset but can be directly compared only with observed wages, where individuals are participating in the labor force.

What if we were interested in making predictions about mean wages for all women? Here the expected wage is 0 for those who are not expected to participate in the labor force, with expected participation determined by the selection equation. These values can be obtained with the yexpected option of predict. For comparison, a variable can be generated where the wage is set to 0 for nonparticipants.

```
. predict hexpwage, yexpected
. generate wage0 = wage
(657 missing values generated)
. replace wage0 = 0 if wage == .
(657 real changes made)
```

. summarize he	expwage wageO				
Variable	Obs	Mean	Std. dev.	Min	Max
hexpwage wage0	2,000	15.92511 15.90929	5.979336 12.27081	2.492469 0	32.45858 45.80979

Again we note that the predictions from heckman are close to the observed mean hourly wage rate for all women. Why aren't the predictions using ycond and yexpected equal to their observed sample equivalents? For the Heckman model, unlike linear regression, the sample moments implied by the optimal solution to the model likelihood do not require that these predictions match observed data. Properly accounting for the additional variation from the selection equation requires that the model use more information than just the sample moments of the observed wages.

Reference

Heckman, J. J. 1979. Sample selection bias as a specification error. Econometrica 47: 153–161. https://doi.org/10.2307/1912352.

Also see

- [R] heckman Heckman selection model
- [U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

4

For suggested citations, see the FAQ on citing Stata documentation.