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Description

exlogistic fits an exact logistic regression model, which produces more accurate inference in
small samples than the standard maximum-likelihood–based logistic regression estimator. It can also
better deal with completely determined outcomes. exlogistic with the group() option conditions
on the number of positive outcomes within stratum and is an alternative to the conditional (fixed-effects)
logistic regression estimator.

Unlike Stata’s other estimation commands, exlogistic must perform hypothesis tests during
estimation rather than after estimation with standard postestimation commands.

Quick start
Exact logistic regression of y on x1, x2, and x3

exlogistic y x1 x2 x3

Same as above, but condition on values of x3 to save time and memory
exlogistic y x1 x2, condvars(x3)

Same as above, and allow more memory for computing the conditional distribution of sufficient
statistics

exlogistic y x1 x2, condvars(x3) memory(100m)

Using data stored in binomial form with ys successes out of n trials
exlogistic ys x1 x2 x3, binomial(n)

Report coefficients rather than odds ratios
exlogistic y x1 x2 x3, coef

Report conditional scores tests
exlogistic y x1 x2 x3, test(score)

Fit a model with strata identified by svar

exlogistic y x1 x2 x3, group(svar)

Menu
Statistics > Exact statistics > Exact logistic regression
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2 exlogistic — Exact logistic regression

Syntax
exlogistic depvar indepvars

[
if
] [

in
] [

weight
] [

, options
]

depvar can be specified as a zero or nonzero variable or the number of positive outcomes within
each trial. For a zero or nonzero variable, zero indicates failure and nonzero indicates success. To
specify depvar as the number of positive outcomes, you must also specify binomial(varname | #).

options Description

Model

condvars(varlistc) condition on variables in varlistc
group(varname) groups or strata are stratified by unique values of varname
binomial(varname | #) data are in binomial form and the number of trials is contained

in varname or in #
estconstant estimate constant term; do not condition on the number of

successes
noconstant suppress constant term

Options

memory(#
[
b | k | m | g

]
) set limit on memory usage; default is memory(10m)

saving(filename
[
, replace

]
) save the joint conditional distribution to filename

Reporting

level(#) set confidence level; default is level(95)

coef report estimated coefficients
test(testopt) report p-value for observed sufficient statistic, conditional scores

test, or conditional probabilities test
mue(varlistm) compute the median unbiased estimates for varlistm
midp use the mid-p-value rule[
no
]
log display or suppress the enumeration log; default is to display

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

indepvars, varlistc, and varlistm may contain factor variables; see [U] 11.4.3 Factor variables.
by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.
fweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

condvars(varlistc) specifies variables whose parameter estimates are not of interest to you. You
can save substantial computer time and memory by moving such variables from indepvars to
condvars(). Understand that you will get the same results for x1 and x3 whether you type

. exlogistic y x1 x2 x3 x4

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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or

. exlogistic y x1 x3, condvars(x2 x4)

group(varname) specifies the variable defining the strata, if any. A constant term is assumed for
each stratum identified in varname, and the sufficient statistics for indepvars are conditioned on
the observed number of successes within each group. This makes the fitted model equivalent to
that fit by clogit, Stata’s conditional logistic regression command (see [R] clogit). group() may
not be specified with estconstant or noconstant.

binomial(varname | #) indicates that the data are in binomial form and depvar contains the number
of successes. varname contains the number of trials for each observation. If all observations have
the same number of trials, you can instead specify the number as an integer. The number of trials
must be a positive integer at least as great as the number of successes. If binomial() is not
specified, the data are assumed to be Bernoulli, meaning that depvar equaling zero or nonzero
records one failure or success.

estconstant estimates the constant term. By default, the models are assumed to have an intercept
(constant), but the value of the intercept is not calculated. That is, the conditional distribution of
the sufficient statistics for the indepvars is computed given the number of successes in depvar,
thus conditioning out the constant term of the model. Use estconstant if you want the estimate
of the intercept reported. estconstant may not be specified with group().

noconstant; see [R] Estimation options. noconstant may not be specified with group().

� � �
Options �

memory(#
[
b | k | m | g

]
) sets a limit on the amount of memory exlogistic can use when computing

the conditional distribution of the parameter sufficient statistics. The default is memory(10m),
where m stands for megabyte, or 1,048,576 bytes. The following are also available: b stands for
byte; k stands for kilobyte, which is equal to 1,024 bytes; and g stands for gigabyte, which is
equal to 1,024 megabytes. The minimum setting allowed is 1m, and the maximum is 2048m or
2g, but do not attempt to use more memory than is available on your computer. Also see the first
technical note under example 4 on counting the conditional distribution.

saving(filename
[
, replace

]
) saves the joint conditional distribution to filename. This distribution

is conditioned on those variables specified in condvars(). Use replace to replace an existing
file with filename. A Stata data file is created containing all the feasible values of the parameter
sufficient statistics. The variable names are the same as those in indepvars, in addition to a variable
named f containing the feasible value frequencies (sometimes referred to as the condition
numbers).

� � �
Reporting �

level(#); see [R] Estimation options. The level() option will not work on replay because
confidence intervals are based on estimator-specific enumerations. To change the confidence level,
you must refit the model.

coef reports the estimated coefficients rather than odds ratios (exponentiated coefficients). coef may
be specified when the model is fit or upon replay. coef affects only how results are displayed and
not how they are estimated.

test(sufficient | score | probability) reports the p-value associated with the observed sufficient
statistics, the conditional scores tests, or the conditional probabilities tests, respectively. The default
is test(sufficient). If factor variables are included in the specification, the conditional scores
test and the conditional probabilities test are applied to each term providing conditional inference
for several parameters simultaneously. All the statistics are computed at estimation time regardless

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rclogit.pdf#rclogit
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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of which is specified. Each statistic may thus also be displayed when replaying results after
estimation without having to refit the model; see [R] exlogistic postestimation.

mue(varlistm) specifies that median unbiased estimates (MUEs) be reported for the specified variables.
By default, the conditional maximum likelihood estimates (CMLEs) are reported, except for those
parameters for which the CMLEs are infinite. Specify mue( all) if you want MUEs for all the
indepvars.

midp instructs exlogistic to use the mid-p-value rule when computing the MUEs, p-values, and
confidence intervals. This adjustment is for the discreteness of the distribution and halves the value
of the discrete probability of the observed statistic before adding it to the p-value. The mid-p-value
rule cannot be applied to MUEs whose corresponding parameter CMLE is infinite.

log and nolog specify whether to display the enumeration log, which shows the progress of computing
the conditional distribution of the sufficient statistics. The enumeration log is displayed by default
unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

display options: noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
and sformat(% fmt); see [R] Estimation options.

Note that the maximum widths for cformat(), pformat(), and sformat() differ from those
widths listed in [R] Estimation options. The maximum width for each format is 9 for exlogistic.

The following option is available with exlogistic but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples stata.com

Exact logistic regression is the estimation of the logistic model parameters by using the conditional
distribution of the parameter sufficient statistics. The estimates are referred to as the conditional
maximum likelihood estimates (CMLEs). This technique was first introduced by Cox and Snell (1989)
as an alternative to using maximum likelihood estimation, which can perform poorly for small sample
sizes. For stratified data, exact logistic regression is a small-sample alternative to conditional logistic
regression. See [R] logit, [R] logistic, and [R] clogit to obtain maximum likelihood estimates (MLEs)
for the logistic model and the conditional logistic model. For a comprehensive overview of exact
logistic regression, see Mehta and Patel (1995).

Let Yi denote a Bernoulli random variable where we observe the outcome Yi = yi, i = 1, . . . , n.
Associated with each independent observation is a 1 × p vector of covariates, xi. We will denote
πi = Pr (Yi | xi) and let the logit function model the relationship between Yi and xi,

log
(

πi
1− πi

)
= θ + xiβ

where the constant term θ and the p × 1 vector of regression parameters β are unknown. The
probability of observing Yi = yi, i = 1, . . . , n, is

Pr(Y = y) =

n∏
i=1

πyii (1− πi)1−yi

where Y = (Y1, . . . , Yn) and y = (y1, . . . , yn). The MLEs for θ and β maximize the log of this
function.

https://www.stata.com/manuals/rexlogisticpostestimation.pdf#rexlogisticpostestimation
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
https://www.stata.com/manuals/rlogit.pdf#rlogit
https://www.stata.com/manuals/rlogistic.pdf#rlogistic
https://www.stata.com/manuals/rclogit.pdf#rclogit
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The sufficient statistics for θ and βj , j = 1, . . . , p, are M =
∑n
i=1 Yi and Tj =

∑n
i=1 Yixij ,

respectively, and we observe M = m and Tj = tj . By default, exlogistic tallies the conditional

distribution of T = (T1, . . . , Tp) given M = m. This distribution will have a size of
(
n

m

)
. (It

would have a size of 2n without conditioning on M = m.) Denote one of these vectors T(k) =

(t
(k)
1 , . . . , t

(k)
p ), k = 1, . . . , N , with combinatorial coefficient (frequency) ck,

∑N
k=1 ck =

(
n
m

)
.

For each independent variable xj , j = 1, . . . , p, we reduce the conditional distribution further by
conditioning on all other observed sufficient statistics Tl = tl, l 6= j. The conditional probability of
observing Tj = tj has the form

Pr(Tj = tj | Tl = tl, l 6= j,M = m) =
c etjβj∑
k cke

t
(k)
j
βj

where the sum is over the subset of T vectors such that (T (k)
1 = t1, . . . , T

(k)
j = t

(k)
j , . . . , T

(k)
p = tp)

and c is the combinatorial coefficient associated with the observed t. The CMLE for βj maximizes
the log of this function.

Specifying nuisance variables in condvars() will reduce the size of the conditional distribution by
conditioning on their observed sufficient statistics as well as conditioning on M = m. This reduces
the amount of memory consumed at the cost of not obtaining regression estimates for those variables
specified in condvars().

Inferences from MLEs rely on asymptotics, and if your sample size is small, these inferences may
not be valid. On the other hand, inferences from the CMLEs are exact in that they use the conditional
distribution of the sufficient statistics outlined above.

For small datasets, the dependent variable can be completely determined by the data. Here the MLEs
and the CMLEs are unbounded. When this occurs, exlogistic will compute the MUE, the regression
estimate that places the observed sufficient statistic at the median of the conditional distribution.

Example 1

One example presented by Mehta and Patel (1995) is data from a prospective study of perinatal
infection and human immunodeficiency virus type 1 (HIV-1). We use a variation of this dataset. There
was an investigation (Hutto et al. 1991) into whether the blood serum levels of glycoproteins CD4
and CD8 measured in infants at 6 months of age might predict their development of HIV infection.
The blood serum levels are coded as ordinal values 0, 1, and 2.

. use https://www.stata-press.com/data/r18/hiv1
(Prospective study of perinatal infection of HIV-1)

. list in 1/5

hiv cd4 cd8

1. Positive 0 0
2. Negative 0 0
3. Positive 0 2
4. Positive 1 0
5. Negative 1 0
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We first obtain the MLEs from logistic so that we can compare the estimates and associated statistics
with the CMLEs from exlogistic.

. logistic hiv cd4 cd8, coef

Logistic regression Number of obs = 47
LR chi2(2) = 15.75
Prob > chi2 = 0.0004

Log likelihood = -20.751687 Pseudo R2 = 0.2751

hiv Coefficient Std. err. z P>|z| [95% conf. interval]

cd4 -2.541669 .8392231 -3.03 0.002 -4.186517 -.8968223
cd8 1.658586 .821113 2.02 0.043 .0492344 3.267938

_cons .5132389 .6809007 0.75 0.451 -.8213019 1.84778

. exlogistic hiv cd4 cd8, coef

Enumerating sample-space combinations:
Observation 1: Enumerations = 2
Observation 2: Enumerations = 3

(output omitted )
Observation 46: Enumerations = 601
Observation 47: Enumerations = 326

Exact logistic regression Number of obs = 47
Model score = 13.34655
Pr >= score = 0.0006

hiv Coefficient Suff. 2*Pr(Suff.) [95% conf. interval]

cd4 -2.387632 10 0.0004 -4.699633 -.8221807
cd8 1.592366 12 0.0528 -.0137905 3.907876

exlogistic produced a log showing how many records are generated as it processes each
observation. The primary purpose of the log is to provide feedback because generating the distribution
can be time consuming, but we also see from the last entry that the joint distribution for the sufficient
statistics for cd4 and cd8 conditioned on the total number of successes has 326 unique values (but

a size of
(
47

14

)
= 341,643,774,795).

The statistics for logistic are based on asymptotics: for a large sample size, each Z statistic
will be approximately normally distributed (with a mean of zero and a standard deviation of one)
if the associated regression parameter is zero. The question is whether a sample size of 47 is large
enough.

On the other hand, the p-values computed by exlogistic are from the conditional distributions
of the sufficient statistics for each parameter given the sufficient statistics for all other parameters.
In this sense, these p-values are exact. By default, exlogistic reports the sufficient statistics for
the regression parameters and the probability of observing a more extreme value. These are single-
parameter tests for H0: βcd4 = 0 and H0: βcd8 = 0 versus the two-sided alternatives. The conditional
scores test, located in the coefficient table header, is testing that both H0: βcd4 = 0 and H0: βcd8 = 0.
We find these p-values to be in fair agreement with the Wald and likelihood-ratio tests from logistic.

The confidence intervals for exlogistic are computed from the exact conditional distributions.
The exact confidence intervals are asymmetrical about the estimate and are wider than the normal-based
confidence intervals from logistic.

Both estimation techniques indicate that the incidence of HIV infection decreases with increasing
CD4 blood serum levels and increases with increasing CD8 blood serum levels. The constant term is

https://www.stata.com/manuals/rlogistic.pdf#rlogistic
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missing from the exact logistic coefficient table because we conditioned out its observed sufficient
statistic when tallying the joint distribution of the sufficient statistics for the cd4 and cd8 parameters.

The test() option provides two other test statistics used in exact logistic regression: the con-
ditional scores test, test(score), and the conditional probabilities test, test(probability). For
comparison, we display the individual parameter conditional scores tests.

. exlogistic, test(score) coef

Exact logistic regression Number of obs = 47
Model score = 13.34655
Pr >= score = 0.0006

hiv Coefficient Score Pr>=Score [95% conf. interval]

cd4 -2.387632 12.88022 0.0003 -4.699633 -.8221807
cd8 1.592366 4.604816 0.0410 -.0137905 3.907876

For the probabilities test, the probability statistic is computed from (1) in Methods and formulas
with β = 0. For this example, the p-value for the conditional probabilities tests matches the conditional
scores tests, so they are not displayed here.

Technical note
Typically, the value of θ, the constant term, is of little interest, as well as perhaps some of the

parameters in β, but we need to include all parameters in the model to correctly specify it. By
conditioning out the nuisance parameters, we can reduce the size of the joint conditional distribution
that is used to estimate the regression parameters of interest. The condvars() option allows you to
specify a varlist of nuisance variables. By default, exlogistic conditions on the sufficient statistic
of θ, which is the number of successes. You can save computation time and computer memory by
using the condvars() option because infeasible values of the sufficient statistics associated with the
variables in condvars() can be omitted from consideration before all n observations are processed.

Specifying some of your independent variables in condvars() will not change the estimated
regression coefficients of the remaining independent variables. For instance, in example 1, if we
instead type

. exlogistic hiv cd4, condvars(cd8) coef

the regression coefficient for cd4 (as well as all associated inference) will be identical.

Technical note
If you fit a clogit (see [R] clogit) model to the HIV data from example 1, you will find that

the estimates differ from those with exlogistic. (To fit the clogit model, you will have to create
a group variable that includes all observations.) The regression estimates will be different because
clogit conditions on the constant term only, whereas the estimates from exlogistic condition on
the sufficient statistic of the other regression parameter as well as the constant term.

https://www.stata.com/manuals/rclogit.pdf#rclogit
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Example 2

The HIV data presented in table IV of Mehta and Patel (1995) are in a binomial form, where the
variable hiv contains the HIV cases that tested positive and the variable n contains the number of
individuals with the same CD4 and CD8 levels, the binomial number-of-trials parameter. Here depvar
is hiv, and we use the binomial(n) option to identify the number-of-trials variable.

. use https://www.stata-press.com/data/r18/hiv_n
(Prospective study of perinatal infection of HIV-1; binomial form)

. list

cd4 cd8 hiv n

1. 0 2 1 1
2. 1 2 2 2
3. 0 0 4 7
4. 1 1 4 12
5. 2 2 1 3

6. 1 0 2 7
7. 2 0 0 2
8. 2 1 0 13

Further, the cd4 and cd8 variables are coded with ordinal values (0, 1, 2). Another approach is to
specify these variables as factor variables in the model so that indicators for all but the base level of
cd4 and of cd8 will be included in the model. Similar to Mehta and Patel (1995), we will estimate
the odds ratio of level 0 versus 2 and level 1 versus 2 by typing ib2.cd4 and ib2.cd8, indicating
that 2 is the base level.

. exlogistic hiv ib2.cd4 ib2.cd8, binomial(n) test(probability)
> saving(dist, replace) nolog
note: saving distribution to file dist.dta.
note: CMLE estimate for 0.cd4 is +inf; computing MUE.
note: CMLE estimate for 1.cd4 is +inf; computing MUE.
note: CMLE estimate for 0.cd8 is -inf; computing MUE.
note: CMLE estimate for 1.cd8 is -inf; computing MUE.

Exact logistic regression Number of obs = 47
Binomial variable: n Model prob. = 0.0000

Pr <= prob. = 0.0011

hiv Odds ratio Prob. Pr<=Prob. [95% conf. interval]

cd4 0.0007 0.0055
0 18.82831* 0.0072 0.0072 1.714079 +inf
1 11.53732* 0.0064 0.0105 1.575285 +inf

cd8 0.0053 0.0323
0 .1056887* 0.0290 0.0290 0 1.072531
1 .0983388* 0.0242 0.0242 0 .9837203

(*) median unbiased estimates (MUE)

. matrix list e(sufficient)

e(sufficient)[1,6]
0. 1. 2b. 0. 1. 2b.

cd4 cd4 cd4 cd8 cd8 cd8
r1 5 8 0 6 4 0

. display e(n_possible)
1091475
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Because we included cd4 and cd8 as factor variables, we obtained a conditional probabilities test for
cd4, simultaneously testing both 0.cd4 and 1.cd4, and for cd8, simultaneously testing both 0.cd8
and 1.cd8. The p-values for the two terms are 0.0055 and 0.0323, respectively.

This example also illustrates instances where the dependent variable is completely determined by
the independent variables and CMLEs are infinite. If we try to obtain MLEs, logistic will omit each
variable and then terminate with a no-data error, error number 2000.

. use https://www.stata-press.com/data/r18/hiv_n, clear
(Prospective study of perinatal infection of HIV-1; binomial form)

. expand n
(39 observations created)

. capture logistic hiv ib2.cd4 ib2.cd8

The previous exlogistic command generated the joint conditional distribution of T0.cd4, T1.cd4,
T0.cd8, and T1.cd8 given M = 14 (the number of individuals that tested positive), and for reference,
we listed the observed sufficient statistics that are stored in the matrix e(sufficient). Below, we
take that distribution and further condition on T1.cd4 = 8, T0.cd8 = 6, and T1.cd8 = 4, giving the
conditional distribution of T0.cd4. Here we see that the observed sufficient statistic T0.cd4 = 5 is last
in the sorted listing or, equivalently, T0.cd4 is at the domain boundary of the conditional probability
distribution. When this occurs, the conditional probability distribution is monotonically increasing in
β0.cd4 and a maximum does not exist.

. use dist, clear

. keep if _1_cd4==8 & _0_cd8==6 & _1_cd8==4
(4,139 observations deleted)

. list, sep(0)

_f_ _0_cd4 _1_cd4 _0_cd8 _1_cd8 _2b_cd4 _2b_cd8

1. 1668667 0 8 6 4 0 0
2. 18945542 1 8 6 4 0 0
3. 55801053 2 8 6 4 0 0
4. 55867350 3 8 6 4 0 0
5. 17423175 4 8 6 4 0 0
6. 1091475 5 8 6 4 0 0

When the CMLEs are infinite, the MUEs are computed (Hirji, Tsiatis, and Mehta 1989). For the 0.cd4

estimate, we compute the value β0.cd4 such that

Pr(T0.cd4 ≥ 5 | β0.cd4 = β0.cd4, T1.cd4 = 8, T0.cd8 = 6, T1.cd8 = 4,M = 14) = 1/2

using (1) in Methods and formulas.

The output is in agreement with example 1: there is an increase in risk of HIV infection for a CD4
blood serum level of 0 relative to a level of 2 and for a level of 1 relative to a level of 2; there is a
decrease in risk of HIV infection for a CD8 blood serum level of 0 relative to a level of 2 and for a
level of 1 relative to a level of 2.

We also displayed e(n possible). This is the combinatorial coefficient associated with the
observed sufficient statistics. The same value is found in the f variable of the conditional distribution

dataset listed above. The size of the distribution is
(
47

14

)
= 341,643,774,795. This can be verified

by summing the f variable of the generated conditional distribution dataset.
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. use dist, clear

. summarize _f_, meanonly

. di %15.1f r(sum)
341643774795.0

Example 3

One can think of exact logistic regression as a covariate-adjusted exact binomial. To demonstrate
this point, we will use exlogistic to compute a binomial confidence interval for m successes of n
trials by fitting the constant-only model, and we will compare it with the confidence interval computed
by ci proportions (see [R] ci). We will use the saving() option to retain the dataset containing
the feasible values for the constant term sufficient statistic, namely, the number of successes, m,

given n trials and their associated combinatorial coefficients
(
n

m

)
, m = 0, 1, . . . , n.

. input y

y
1. 1
2. 0
3. 1
4. 0
5. 1
6. 1
7. end

. ci proportions y

Binomial exact
Variable Obs Proportion Std. err. [95% conf. interval]

y 6 .6666667 .1924501 .2227781 .9567281

. exlogistic y, estconstant nolog coef saving(binom)
note: saving distribution to file binom.dta.

Exact logistic regression
Number of obs = 6

y Coefficient Suff. 2*Pr(Suff.) [95% conf. interval]

_cons .6931472 4 0.6875 -1.24955 3.096017

We use the postestimation command estat predict to transform the estimated constant term and
its confidence bounds by using the inverse logit function, invlogit() (see [FN] Mathematical
functions). The standard error for the estimated probability is computed using the delta method.

https://www.stata.com/manuals/rci.pdf#rci
https://www.stata.com/manuals/fnmathematicalfunctions.pdf#fnMathematicalfunctionsinvlogit()
https://www.stata.com/manuals/fnmathematicalfunctions.pdf#fnMathematicalfunctions
https://www.stata.com/manuals/fnmathematicalfunctions.pdf#fnMathematicalfunctions


exlogistic — Exact logistic regression 11

. estat predict

y Predicted Std. err. [95% conf. interval]

Probability 0.6667 0.1925 0.2228 0.9567

. use binom, replace

. list, sep(0)

_f_ _cons_

1. 1 0
2. 6 1
3. 15 2
4. 20 3
5. 15 4
6. 6 5
7. 1 6

Examining the listing of the generated data, the values contained in the variable cons are the

feasible values of M , and the values contained in the variable f are the binomial coefficients
(

6
m

)
with total

6∑
m=0

(
6
m

)
= 26 = 64. In the coefficient table, the sufficient statistic for the constant term,

labeled Suff., is m = 4. This value is located at record 5 of the dataset. Therefore, the two-tailed
probability of the sufficient statistic is computed as 0.6875 = 2(15 + 6 + 1)/64.

The constant term is the value of θ that maximizes the probability of observing M = 4; see (1)
of Methods and formulas:

Pr(M = 4|θ) = 15e4α

1 + 6eα + 15e2α + 20e3α + 15e4α + 6e5α + e6α

The maximum is at the value θ = log2, which is demonstrated in the figure below.
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The lower and upper confidence bounds are the values of θ such that Pr(M ≥ 4|θ) = 0.025
and Pr(M ≤ 4|θ) = 0.025, respectively. These probabilities are plotted in the figure below for
θ ∈ [−2, 4].
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Example 4

This example demonstrates the group() option, which allows the analysis of stratified data. Here
the logistic model is

log
(

πik
1− πik

)
= θk + xkiβ

where k indexes the s strata, k = 1, . . . , s, and θk is the strata-specific constant term whose sufficient
statistic is Mk =

∑nk

i=1 Yki.

Mehta and Patel (1995) use a case–control study to demonstrate this model, which is useful in
comparing the estimates from exlogistic and clogit. This study was intended to determine the role
of birth complications in people with schizophrenia (Garsd 1988). Siblings from seven families took
part in the study, and each individual was classified as normal or schizophrenic. A birth complication
index is recorded for each individual that ranges from 0, an uncomplicated birth, to 15, a very
complicated birth. Some of the frequencies contained in variable f are greater than 1, and these count
different births at different times where the individual has the same birth complications index, found
in variable BCindex.
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. use https://www.stata-press.com/data/r18/schizophrenia, clear
(Case-control study on birth complications for people with schizophrenia)

. list, sepby(family)

family BCindex schizo f

1. 1 6 0 1
2. 1 7 0 1
3. 1 3 0 2
4. 1 2 0 3
5. 1 5 0 1
6. 1 0 0 1
7. 1 15 1 1

8. 2 2 1 1
9. 2 0 0 1

10. 3 2 0 1
11. 3 9 1 1
12. 3 1 0 1

13. 4 2 1 1
14. 4 0 0 4

15. 5 3 1 1
16. 5 6 0 1
17. 5 0 1 1

18. 6 3 0 1
19. 6 0 1 1
20. 6 0 0 2

21. 7 2 0 1
22. 7 6 1 1
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. exlogistic schizo BCindex [fw=f], group(family) test(score) coef

Enumerating sample-space combinations:
Observation 1: Enumerations = 2
Observation 2: Enumerations = 3
Observation 3: Enumerations = 4
Observation 4: Enumerations = 5
Observation 5: Enumerations = 6
Observation 6: Enumerations = 7

(output omitted )
Observation 21: Enumerations = 72
Observation 22: Enumerations = 40

Exact logistic regression Number of obs = 29
Group variable: family Number of groups = 7

Obs per group:
min = 2
avg = 4.1
max = 10

Model score = 6.328033
Pr >= score = 0.0167

schizo Coefficient Score Pr>=Score [95% conf. interval]

BCindex .3251178 6.328033 0.0167 .0223423 .7408832

The asymptotic alternative for this model can be estimated using clogit (equivalently, xtlogit,
fe) and is listed below for comparison. We must expand the data because clogit will not accept
frequency weights if they are not constant within the groups.

. expand f
(7 observations created)

. clogit schizo BCindex, group(family) nolog
note: multiple positive outcomes within groups encountered.

Conditional (fixed-effects) logistic regression Number of obs = 29
LR chi2(1) = 5.20
Prob > chi2 = 0.0226

Log likelihood = -6.2819819 Pseudo R2 = 0.2927

schizo Coefficient Std. err. z P>|z| [95% conf. interval]

BCindex .3251178 .1678981 1.94 0.053 -.0039565 .654192

Both techniques compute the same regression estimate for the BCindex, which might not be too
surprising because both estimation techniques condition on the total number of successes in each group.
The difference lies in the p-values and confidence intervals. The p-value testing H0 : βBCindex = 0
is approximately 0.0167 for the exact conditional scores test and 0.053 for the asymptotic Wald test.
Moreover, the exact confidence interval is asymmetric about the estimate and does not contain zero.

Technical note
The memory() option limits the amount of memory that exlogistic will consume when computing

the conditional distribution of the parameter sufficient statistics. memory() is independent of the data
maximum memory setting (see set max memory in [D] memory), and it is possible for exlogistic
to exceed the memory limit specified in set max memory without terminating. By default, a log
is provided that displays the number of enumerations (the size of the conditional distribution)

https://www.stata.com/manuals/dmemory.pdf#dmemory
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after processing each observation. Typically, you will see the number of enumerations increase,
and then at some point they will decrease as the multivariate shift algorithm (Hirji, Mehta, and
Patel 1987) determines that some of the enumerations cannot achieve the observed sufficient statistics
of the conditioning variables. When the algorithm is complete, however, it is necessary to store the
conditional distribution of the parameter sufficient statistics as a dataset. It is possible, therefore, to
get a memory error when the algorithm has completed if there is not enough memory to store the
conditional distribution.

Technical note
Computing the conditional distributions and reported statistics requires data sorting and numerical

comparisons. If there is at least one single-precision variable specified in the model, exlogistic
will make comparisons with a relative precision of 2−5. Otherwise, a relative precision of 2−11 is
used. Be careful if you use recast to promote a single-precision variable to double precision (see
[D] recast). You might try listing the data in full precision (maybe %20.15g; see [D] format) to make
sure that this is really what you want. See [D] Data types for information on precision of numeric
storage types.

Stored results
exlogistic stores the following in e():

Scalars
e(N) number of observations
e(k groups) number of groups
e(n possible) number of distinct possible outcomes where sum(sufficient) equals observed

e(sufficient)
e(n trials) binomial number-of-trials parameter
e(sum y) sum of depvar
e(k indvars) number of independent variables
e(k condvars) number of conditioning variables
e(condcons) conditioned on the constant(s) indicator
e(midp) mid-p-value rule indicator
e(eps) relative difference tolerance

Macros
e(cmd) exlogistic
e(cmdline) command as typed
e(title) title in estimation output
e(depvar) name of dependent variable
e(indvars) independent variables
e(condvars) conditional variables
e(groupvar) group variable
e(binomial) binomial number-of-trials variable
e(fvvarlist) independent factor variables
e(level) confidence level
e(wtype) weight type
e(wexp) weight expression
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b
e(estat cmd) program used to implement estat
e(marginsnotok) predictions disallowed by margins

https://www.stata.com/manuals/drecast.pdf#drecast
https://www.stata.com/manuals/dformat.pdf#dformat
https://www.stata.com/manuals/ddatatypes.pdf#dDatatypes
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Matrices
e(b) coefficient vector
e(mue indicators) indicator for elements of e(b) estimated using MUE instead of CMLE
e(se) e(b) standard errors (CMLEs only)
e(ci) matrix of e(level) confidence intervals for e(b)
e(sum y groups) sum of e(depvar) for each group
e(N g) number of observations in each group
e(sufficient) sufficient statistics for e(b)
e(p sufficient) p-value for e(sufficient)
e(scoretest) conditional scores tests for indepvars
e(p scoretest) p-values for e(scoretest)
e(probtest) conditional probabilities tests for indepvars
e(p probtest) p-value for e(probtest)
e(scoretest m) conditional scores tests for model terms
e(p scoretest m) p-value for e(scoretest m)
e(probtest m) conditional probabilities tests for model terms
e(p probtest m) p-value for e(probtest m)

Functions
e(sample) marks estimation sample

Methods and formulas
Methods and formulas are presented under the following headings:

Sufficient statistics
Conditional distribution and CMLE
MUEs and exact confidence intervals
Conditional hypothesis tests
Sufficient-statistic p-value

Sufficient statistics

Let {Y1, Y2, . . . , Yn} be a set of n independent Bernoulli random variables, each of which can
realize two outcomes, {0, 1}. For each i = 1, . . . , n, we observe Yi = yi, and associated with each
observation is the covariate row vector of length p, xi = (xi1, . . . , xip). Denote β = (β1, . . . , βp)

T to
be the column vector of regression parameters and θ to be the constant. The sufficient statistic for βj is
Tj =

∑n
i=1 Yixij , j = 1, . . . , p, and for θ is M =

∑n
i=1 Yi. We observe Tj = tj , tj =

∑n
i=1 yixij ,

and M = m, m =
∑n
i=1 yi. The probability of observing (Y1 = y1, Y2 = y2, . . . , Yn = yn) is

Pr(Y1 = y1, . . . , Yn = yn | β,X) =
exp(mθ + tβ)∏n

i=1{1 + exp(θ + xiβ)}

where t = (t1, . . . , tp) and X = (xT1 , . . . ,x
T
n )
T .

The joint distribution of the sufficient statistics T is obtained by summing over all possible binary
sequences Y1, . . . , Yn such that T = t and M = m. This probability function is

Pr(T1 = t1, . . . , Tp = tp,M = m | β,X) =
c(t,m) exp(mθ + tβ)∏n
i=1{1 + exp(θ + xiβ)}

where c(t,m) is the combinatorial coefficient of (t,m) or the number of distinct binary sequences
Y1, . . . , Yn such that T = t and M = m (Cox and Snell 1989).
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Conditional distribution and CMLE
Without loss of generality, we will restrict our discussion to computing the CMLE of β1. If we

condition on observing M = m and T2 = t2, . . . , Tp = tp, the probability function of (T1 | β1, T2 =
t2, . . . , Tp = tp,M = m) is

Pr(T1 = t1 | β1, T2 = t2, . . . , Tp = tp,M = m) =
c(t,m)et1β1∑

u c(u, t2, . . . , tp,m)euβ1
(1)

where the sum in the denominator is over all possible values of T1 such that M = m and
T2 = t2, . . . , Tp = tp and c(u, t2, . . . , tp,m) is the combinatorial coefficient of (u, t2, . . . , tp,m)

(Cox and Snell 1989). The CMLE for β1 is the value β̂1 that maximizes the log of (1). This optimization
task is carried out by ml, using the conditional frequency distribution of (T1 | T2 = t2, . . . , Tp =
tp,M = m) as a dataset. Generating the joint conditional distribution is efficiently computed using
the multivariate shift algorithm described by Hirji, Mehta, and Patel (1987).

Difficulties in computing β̂1 arise if the observed (T1 = t1, . . . , Tp = tp,M = m) lies on
the boundaries of the distribution of (T1 | T2 = t2, . . . , Tp = tp,M = m), where the conditional
probability function is monotonically increasing (or decreasing) in β1. Here the CMLE is plus infinity if
it is on the upper boundary, Pr(T1 ≤ t1| T2 = t2, . . . , Tp = tp,M = m) = 1, and is minus infinity
if it is on the lower boundary of the distribution, Pr(T1 ≥ t1| T2 = t2, . . . , Tp = tp,M = m) = 1.
This concept is demonstrated in example 2. When infinite CMLEs occur, the MUE is computed.

MUEs and exact confidence intervals
The MUE is computed using the technique outlined by Hirji, Tsiatis, and Mehta (1989). First, we

find the values of β(u)
1 and β(l)

1 such that

Pr(T1 ≤ t1 | β1 = β
(u)
1 , T2 = t2, . . . , Tp = tp,M = m) =

Pr(T1 ≥ t1 | β1 = β
(l)
1 , T2 = t2, . . . , Tp = tp,M = m) = 1/2

(2)

The MUE is then β1 =
(
β
(l)
1 + β

(u)
1

)
/2. However, if T1 is equal to the minimum of the domain of

the conditional distribution, β(l) does not exist and β1 = β(u). If T1 is equal to the maximum of the
domain of the conditional distribution, β(u) does not exist and β1 = β(l).

Confidence bounds for β are computed similarly, except that we substitute α/2 for 1/2 in (2),
where 1− α is the confidence level. Here β(l)

1 would then be the lower confidence bound and β(u)
1

would be the upper confidence bound (see example 3).

Conditional hypothesis tests

To test H0: β1 = 0 versus H1 : β1 6= 0, we obtain the exact p-value from
∑
u∈E f1(u)−f1(t1)/2

if the mid-p-value rule is used and
∑
u∈E f1(u) otherwise. Here E is a critical region, and we define

f1(u) = Pr(T1 = u | β1 = 0, T2 = t2, . . . , Tp = tp,M = m) for ease of notation. There are two
popular ways to define the critical region: the conditional probabilities test and the conditional scores
test (Mehta and Patel 1995). The critical region when using the conditional probabilities test is all
values of the sufficient statistic for β1 that have a probability less than or equal to that of the observed
t1, Ep = {u : f1(u) ≤ f1(t1)}. The critical region of the conditional scores test is defined as all
values of the sufficient statistic for β1 such that its score is greater than or equal to that of t1,

Es =
{
u : (u− µ1)

2/σ2
1 ≥ (t1 − µ1)

2/σ2
1

}
Here µ1 and σ2

1 are the mean and variance of (T1 | β1 = 0, T2 = t2, . . . , Tp = tp,M = m).
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The score statistic is defined as

{
∂`(β)

∂β

}2 [
−E

{
∂2`(β)

∂β2

}]−1
evaluated at H0: β = 0, where ` is the log of (1). The score test simplifies to (t−E [T |β])2/var(T |β)
(Hirji 2006), where the mean and variance are computed from the conditional distribution of the
sufficient statistic with β = 0 and t is the observed sufficient statistic.

Sufficient-statistic p-value

The p-value for testing H0 : β1 = 0 versus the two-sided alternative when (T1 = t1|T2 =
t2, . . . , Tp = tp) is computed as 2×min(pl, pu), where

pl =

∑
u≤t1 c(u, t2, . . . , tp,m)∑
u c(u, t2, . . . , tp,m)

pu =

∑
u≥t1 c(u, t2, . . . , tp,m)∑
u c(u, t2, . . . , tp,m)

It is the probability of observing a more extreme T1.
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