
Title stata.com

Epitab — Tables for epidemiologists

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
ir is used with incidence-rate (incidence-density or person-time) data. It calculates point estimates

and confidence intervals for the incidence-rate ratio (IRR) and incidence-rate difference (IRD), along
with attributable or prevented fractions for the exposed and total population. iri is the immediate
form of ir; see [U] 19 Immediate commands. Also see [R] poisson and [ST] stcox for related
commands.

cs is used with cohort study data with equal follow-up time per subject and sometimes with cross-
sectional data. Risk is then the proportion of subjects who become cases. It calculates point estimates
and confidence intervals for the risk difference, risk ratio, and (optionally) the odds ratio, along with
attributable or prevented fractions for the exposed and total population. csi is the immediate form
of cs; see [U] 19 Immediate commands. Also see [R] logistic for related commands.

cc is used with case–control and cross-sectional data. It calculates point estimates and confidence
intervals for the odds ratio, along with attributable or prevented fractions for the exposed and total
population. cci is the immediate form of cc; see [U] 19 Immediate commands. Also see [R] logistic
for related commands.

tabodds is used with case–control and cross-sectional data. It tabulates the odds of failure against
a categorical explanatory variable expvar. If expvar is specified, tabodds performs an approximate
χ2 test of homogeneity of odds and a test for linear trend of the log odds against the numerical code
used for the categories of expvar. Both tests are based on the score statistic and its variance; see
Methods and formulas. When expvar is absent, the overall odds are reported. The variable varcase is
coded 0/1 for individual and simple frequency records and equals the number of cases for binomial
frequency records.

Optionally, tabodds tabulates adjusted or unadjusted odds ratios, using either the lowest levels
of expvar or a user-defined level as the reference group. If adjust(varlist) is specified, it produces
odds ratios adjusted for the variables in varlist along with a (score) test for trend.

mhodds is used with case–control and cross-sectional data. It estimates the ratio of the odds of
failure for two categories of expvar, controlled for specified confounding variables, varsadjust, and
tests whether this odds ratio is equal to one. When expvar has more than two categories but none
are specified with the compare() option, mhodds assumes that expvar is a quantitative variable and
calculates a 1-degree-of-freedom test for trend. It also calculates an approximate estimate of the log
odds-ratio for a one-unit increase in expvar. This is a one-step Newton–Raphson approximation to
the maximum likelihood estimate calculated as the ratio of the score statistic, U , to its variance, V
(Clayton and Hills 1993, 103).

mcc is used with matched case–control data. It calculates McNemar’s χ2; point estimates and
confidence intervals for the difference, ratio, and relative difference of the proportion with the factor;
and the odds ratio and its confidence interval. mcci is the immediate form of mcc; see [U] 19 Immediate
commands. Also see [R] clogit and [R] symmetry for related commands.

1

http://stata.com
https://www.stata.com/manuals/u19.pdf#u19Immediatecommands
https://www.stata.com/manuals/rpoisson.pdf#rpoisson
https://www.stata.com/manuals/ststcox.pdf#ststcox
https://www.stata.com/manuals/u19.pdf#u19Immediatecommands
https://www.stata.com/manuals/rlogistic.pdf#rlogistic
https://www.stata.com/manuals/u19.pdf#u19Immediatecommands
https://www.stata.com/manuals/rlogistic.pdf#rlogistic
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u19.pdf#u19Immediatecommands
https://www.stata.com/manuals/u19.pdf#u19Immediatecommands
https://www.stata.com/manuals/rclogit.pdf#rclogit
https://www.stata.com/manuals/rsymmetry.pdf#rsymmetry


2 Epitab — Tables for epidemiologists

Quick start
Cohort studies

IRR and IRD for the number of cases stored in cases for exposure indicator exposed given time
exposed time

ir cases exposed time

Crude and Mantel–Haenszel combined IRRs with test of homogeneity for strata defined by svar

ir cases exposed time, by(svar)

Same as above, and standardize the IRR by weighting variable wvar1

ir cases exposed time, by(svar) standard(wvar1)

Same as above, but use person-time of the unexposed group as weights
ir cases exposed time, by(svar) estandard

IRR and IRD for 10 cases over 50 person-years in the exposed group and 15 cases over 100 person-years
in the unexposed group

iri 10 15 50 100

Risk difference and ratio with binary indicators case and exposed using cumulative incidence data
cs case exposed [fweight=wvar2]

Add odds ratios and calculate Fisher’s exact p
cs case exposed [fweight=wvar2], or exact

Internally standardized risk ratio for strata defined by svar

cs case exposed [fweight=wvar2], by(svar) istandard

Risk difference and ratio for 12 cases and 55 noncases among exposed subjects and 16 cases and
125 noncases among unexposed subjects

csi 12 16 55 125

Case–control studies

Odds ratios from summary data with binary indicators case and exposed and frequency weight
wvar3

cc case exposed [fweight=wvar3]

Same as above, but stratify analysis by svar and perform Breslow–Day and Tarone’s homogeneity
tests

cc case exposed [fweight=wvar3], by(svar) bd tarone

Odds ratios for 37 exposed cases, 148 unexposed cases, 7 exposed controls, and 137 unexposed
controls

cci 37 148 7 137

Odds of binary event against catvar using summary data with frequency weight wvar4
tabodds event catvar [fweight=wvar4]

Same as above, but report odds ratios with the fourth level of catvar as the reference
tabodds event catvar [fweight=wvar4], or base(4)
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Same as above, but tabulate Mantel–Haenszel adjusted odds ratios adjusting for values of categorical
variable a

tabodds event catvar [fweight=wvar4], base(4) adjust(a)

Graph odds and confidence intervals against categories of catvar
tabodds event catvar [fweight=wvar4], ciplot

Odds ratios for the effect of catvar on event controlling for categorical variable a using summary
data with frequency weight wvar5

mhodds event catvar a [fweight=wvar5]

Same as above, but calculate odds ratios for each level of svar
mhodds event catvar a [fweight=wvar5], by(svar)

Maximum likelihood estimate of odds ratio for a equal to 4 compared with a equal to 1
mhodds event a [fweight=wvar5], compare(4,1)

Statistics on the difference in the proportion with the factor for exposed cases indicated in expcase
and exposed controls indicated in expcontrol using summary data with frequency weight wvar6

mcc expcase expcontrol [fweight=wvar6]

Same as above, but indicate that there are 4 pairs where both cases and controls were exposed, 9
pairs where the case was exposed but the control was not, 3 pairs where the control was exposed
but the case was not, and 14 pairs where neither subject was exposed

mcci 4 9 3 14
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Menu
ir

Statistics > Epidemiology and related > Tables for epidemiologists > Incidence-rate ratio

iri

Statistics > Epidemiology and related > Tables for epidemiologists > Incidence-rate–ratio calculator

cs

Statistics > Epidemiology and related > Tables for epidemiologists > Cohort study risk-ratio etc.

csi

Statistics > Epidemiology and related > Tables for epidemiologists > Cohort study risk-ratio etc. calculator

cc

Statistics > Epidemiology and related > Tables for epidemiologists > Case–control odds ratio

cci

Statistics > Epidemiology and related > Tables for epidemiologists > Case–control odds-ratio calculator

tabodds

Statistics > Epidemiology and related > Tables for epidemiologists > Tabulate odds of failure by category

mhodds

Statistics > Epidemiology and related > Tables for epidemiologists > Ratio of odds of failure for two categories

mcc

Statistics > Epidemiology and related > Tables for epidemiologists > Matched case–control studies

mcci

Statistics > Epidemiology and related > Tables for epidemiologists > Matched case–control calculator
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Syntax
Cohort studies

ir varcase varexposed vartime

[
if
] [

in
] [

weight
] [

, ir options
]

iri #a #b #N1
#N2

[
, iri options

]
cs varcase varexposed

[
if
] [

in
] [

weight
] [

, cs options
]

csi #a #b #c #d
[
, csi options

]
Case–control studies

cc varcase varexposed
[

if
] [

in
] [

weight
] [

, cc options
]

cci #a #b #c #d
[
, cci options

]
tabodds varcase

[
expvar

] [
if
] [

in
] [

weight
] [

, tabodds options
]

mhodds varcase expvar
[

varsadjust
] [

if
] [

in
] [

weight
] [

, mhodds options
]

Matched case–control studies

mcc varexposed case varexposed control

[
if
] [

in
] [

weight
] [

, level(#)
]

mcci #a #b #c #d
[
, level(#)

]
ir options Description

Options

by(varname
[
, missing

]
) stratify on varname

estandard combine external weights with within-stratum statistics
istandard combine internal weights with within-stratum statistics
standard(varname) combine user-specified weights with within-stratum statistics
pool display pooled estimate
nocrude do not display crude estimate
nohom do not display homogeneity test
ird calculate standardized IRD
midp display p-values calculated using mid-p adjustment (unstratified only);

the default
exact display exact p-values without mid-p adjustment (unstratified only)
level(#) set confidence level; default is level(95)

iri options Description

midp display p-values calculated using mid-p adjustment; the default
exact display exact p-values without mid-p adjustment
level(#) set confidence level; default is level(95)

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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cs options Description

Options

by(varlist
[
, missing

]
) stratify on varlist

estandard combine external weights with within-stratum statistics
istandard combine internal weights with within-stratum statistics
standard(varname) combine user-specified weights with within-stratum statistics
pool display pooled estimate
nocrude do not display crude estimate
nohom do not display homogeneity test
rd calculate standardized risk difference
binomial(varname) number of subjects variable
or report odds ratio
woolf use Woolf approximation to calculate SE and CI of the odds ratio
exact calculate Fisher’s exact p
level(#) set confidence level; default is level(95)

csi options Description

or report odds ratio
woolf use Woolf approximation to calculate SE and CI of the odds ratio
exact calculate Fisher’s exact p
level(#) set confidence level; default is level(95)

cc options Description

Options

by(varname
[
, missing

]
) stratify on varname

estandard combine external weights with within-stratum statistics
istandard combine internal weights with within-stratum statistics
standard(varname) combine user-specified weights with within-stratum statistics
pool display pooled estimate
nocrude do not display crude estimate
nohom do not display homogeneity test
bd perform Breslow–Day homogeneity test
tarone perform Tarone’s homogeneity test
binomial(varname) number of subjects variable
cornfield use Cornfield approximation to calculate CI of the odds ratio
woolf use Woolf approximation to calculate SE and CI of the odds ratio
exact calculate Fisher’s exact p
level(#) set confidence level; default is level(95)

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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cci options Description

cornfield use Cornfield approximation to calculate CI of the odds ratio
woolf use Woolf approximation to calculate SE and CI of the odds ratio
exact calculate Fisher’s exact p
level(#) set confidence level; default is level(95)

tabodds options Description

Main

binomial(varname) number of subjects variable
level(#) set confidence level; default is level(95)

or report odds ratio
adjust(varlist) report odds ratios adjusted for the variables in varlist
base(#) reference group of control variable for odds ratio
cornfield use Cornfield approximation to calculate CI of the odds ratio
woolf use Woolf approximation to calculate SE and CI of the odds ratio
graph graph odds against categories
ciplot same as graph option, except include confidence intervals

CI plot

ciopts(rcap options) affect rendition of the confidence bands

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position
cline options affect rendition of the plotted points

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

mhodds options Description

Options

by(varlist
[
, missing

]
) stratify on varlist

binomial(varname) number of subjects variable
compare(v1,v2) override categories of the control variable
level(#) set confidence level; default is level(95)

collect is allowed with ir, iri, cs, csi, cc, cci, tabodds, mhodds, mcc, and mcci; see [U] 11.1.10 Prefix
commands.

fweights are allowed; see [U] 11.1.6 weight.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/g-3rcap_options.pdf#g-3rcap_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3marker_label_options.pdf#g-3marker_label_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3addplot_option.pdf#g-3addplot_option
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
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Options

Options are listed in the order that they appear in the syntax tables above. The commands for
which the option is valid are indicated in parentheses immediately after the option name.

� � �
Options (ir, cs, cc, and mhodds) / Main (tabodds) �

by(varname
[
, missing

]
) (ir, cs, cc, and mhodds) specifies that the tables be stratified on

varname. Missing categories in varname are omitted from the stratified analysis, unless option
missing is specified within by(). Within-stratum statistics are shown and then combined with
Mantel–Haenszel weights. If estandard, istandard, or standard() is also specified (see
below), the weights specified are used in place of Mantel–Haenszel weights.

estandard, istandard, and standard(varname) (ir, cs, and cc) request that within-stratum
statistics be combined with external, internal, or user-specified weights to produce a standardized
estimate. These options are mutually exclusive and can be used only when by() is also specified.
(When by() is specified without one of these options, Mantel–Haenszel weights are used.)

estandard external weights are the person-time for the unexposed (ir), the total number of
unexposed (cs), or the number of unexposed controls (cc).

istandard internal weights are the person-time for the exposed (ir), the total number of exposed
(cs), or the number of exposed controls (cc). istandard can be used to produce, among other
things, standardized mortality ratios (SMRs).

standard(varname) allows user-specified weights. varname must contain a constant within stratum
and be nonnegative. The scale of varname is irrelevant.

pool (ir, cs, and cc) specifies that, in a stratified analysis, the directly pooled estimate also
be displayed. The pooled estimate is a weighted average of the stratum-specific estimates using
inverse-variance weights, which are the inverse of the variance of the stratum-specific estimate.
pool is relevant only if by() is also specified.

nocrude (ir, cs, and cc) specifies that in a stratified analysis the crude estimate—an estimate
obtained without regard to strata—not be displayed. nocrude is relevant only if by() is also
specified.

nohom (ir, cs, and cc) specifies that a χ2 test of homogeneity not be included in the output of
a stratified analysis. This tests whether the exposure effect is the same across strata and can be
performed for any pooled estimate—directly pooled or Mantel–Haenszel. nohom is relevant only
if by() is also specified.

ird (ir) may be used only with estandard, istandard, or standard(). It requests that ir
calculate the standardized IRD rather than the default IRR.

midp (ir without by() and iri), the default, displays mid-p-adjusted p-values for one-sided and
two-sided tests of IRD. The tests of IRD are not available with ir for stratified analysis, so midp
is not allowed in combination with by(). Only one of exact or midp may be specified.

exact (ir without by() and iri) displays exact p-values for one-sided and two-sided tests of
IRD instead of the default mid-p-adjusted p-values. This option produces p-values that are more
conservative than the mid-p-adjusted p-values. When counts of exposed and unexposed cases are
both large, exact and midp give similar results. The tests of IRD are not available with ir for
stratified analysis, so exact is not allowed in combination with by(). Only one of exact or midp
may be specified.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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rd (cs) may be used only with estandard, istandard, or standard(). It requests that cs calculate
the standardized risk difference rather than the default risk ratio.

bd (cc) specifies that Breslow and Day’s χ2 test of homogeneity be included in the output of a
stratified analysis. This tests whether the exposure effect is the same across strata. bd is relevant
only if by() is also specified.

tarone (cc) specifies that Tarone’s χ2 test of homogeneity, which is a correction to the Breslow–Day
test, be included in the output of a stratified analysis. This tests whether the exposure effect is the
same across strata. tarone is relevant only if by() is also specified.

binomial(varname) (cs, cc, tabodds, and mhodds) supplies the number of subjects (cases plus
controls) for binomial frequency records. For individual and simple frequency records, this option
is not used.

or (cs, csi, and tabodds), for cs and csi, reports the calculation of the odds ratio in addition to
the risk ratio if by() is not specified. With by(), or specifies that a Mantel–Haenszel estimate
of the combined odds ratio be made rather than the Mantel–Haenszel estimate of the risk ratio.
In either case, this is the same calculation that would be made by cc and cci. Typically, cc, cci,
or tabodds is preferred for calculating odds ratios. For tabodds, or specifies that odds ratios be
produced; see base() for details about selecting a reference category. By default, tabodds will
calculate odds.

adjust(varlist) (tabodds) specifies that odds ratios adjusted for the variables in varlist be calculated.

base(#) (tabodds) specifies that the #th category of expvar be used as the reference group for
calculating odds ratios. If base() is not specified, the first category, corresponding to the minimum
value of expvar, is used as the reference group.

cornfield (cc, cci, and tabodds) requests that the Cornfield (1956) approximation be used to
calculate the confidence interval of the odds ratio. By default, cc and cci report an exact interval
and tabodds reports a standard-error–based interval, with the standard error coming from the
square root of the variance of the score statistic.

woolf (cs, csi, cc, cci, and tabodds) requests that the Woolf (1955) approximation, also known
as the Taylor expansion, be used for calculating the standard error and confidence interval for the
odds ratio. By default, cs and csi with the or option report the Cornfield (1956) interval; cc
and cci report an exact interval; and tabodds reports a standard-error–based interval, with the
standard error coming from the square root of the variance of the score statistic.

exact (cs, csi, cc, and cci) requests that Fisher’s exact p be calculated rather than the χ2 and
its significance level. We recommend specifying exact whenever samples are small. When the
least-frequent cell contains 1,000 cases or more, there will be no appreciable difference between
the exact significance level and the significance level based on the χ2, but the exact significance
level will take considerably longer to calculate. exact does not affect whether exact confidence
intervals are calculated. Commands always calculate exact confidence intervals where they can,
unless cornfield or woolf is specified.

compare(v1,v2) (mhodds) indicates the categories of expvar to be compared; v1 defines the numerator
and v2, the denominator. When compare() is not specified and there are only two categories,
the second is compared with the first; when there are more than two categories, an approximate
estimate of the odds ratio for a unit increase in expvar, controlled for specified confounding
variables, is given.

level(#) (ir, iri, cs, csi, cc, cci, tabodds, mhodds, mcc, and mcci) specifies the confidence
level, as a percentage, for confidence intervals. The default is level(95) or as set by set level;
see [R] level.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rlevel.pdf#rlevel
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The following options are for use only with tabodds.

� � �
Main �

graph (tabodds) produces a graph of the odds against the numerical code used for the categories
of expvar. All graph options except connect() are allowed. This option is not allowed with the
or option or the adjust() option.

ciplot (tabodds) produces the same plot as the graph option, except that it also includes the
confidence intervals. This option may not be used with either the or option or the adjust()
option.

� � �
CI plot �

ciopts(rcap options) (tabodds) is allowed only with the ciplot option. It affects the rendition
of the confidence bands; see [G-3] rcap options.

� � �
Plot �

marker options (tabodds) affect the rendition of markers drawn at the plotted points, including their
shape, size, color, and outline; see [G-3] marker options.

marker label options (tabodds) specify if and how the markers are to be labeled; see
[G-3] marker label options.

cline options (tabodds) affect whether lines connect the plotted points and the rendition of those
lines; see [G-3] cline options.

� � �
Add plots �

addplot(plot) (tabodds) provides a way to add other plots to the generated graph; see
[G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options (tabodds) are any of the options documented in [G-3] twoway options, excluding
by(). These include options for titling the graph (see [G-3] title options) and options for saving
the graph to disk (see [G-3] saving option).

Remarks and examples stata.com

Remarks are presented under the following headings:

Incidence-rate data
Stratified incidence-rate data
Standardized estimates with stratified incidence-rate data
Cumulative incidence data
Stratified cumulative incidence data
Standardized estimates with stratified cumulative incidence data
Case–control data
Stratified case–control data
Case–control data with multiple levels of exposure
Case–control data with confounders and possibly multiple levels of exposure
Standardized estimates with stratified case–control data
Matched case–control data
Video examples
Glossary

https://www.stata.com/manuals/g-3rcap_options.pdf#g-3rcap_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3marker_label_options.pdf#g-3marker_label_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3addplot_option.pdf#g-3addplot_option
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
https://www.stata.com/manuals/g-3title_options.pdf#g-3title_options
https://www.stata.com/manuals/g-3saving_option.pdf#g-3saving_option
http://stata.com
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To calculate appropriate statistics and suppress inappropriate statistics, the ir, cs, cc, tabodds,
mhodds, and mcc commands, along with their immediate counterparts, are organized in the way
epidemiologists conceptualize data. ir processes incidence-rate data from prospective studies; cs,
cohort study data with equal follow-up time (cumulative incidence); cc, tabodds, and mhodds,
case–control or cross-sectional (prevalence) data; and mcc, matched case–control data. With the
exception of mcc, these commands work with both simple and stratified tables.

Epidemiological data are often summarized in a contingency table from which various statistics are
calculated. The rows of the table reflect cases and noncases or cases and person-time, and the columns
reflect exposure to a risk factor. To an epidemiologist, cases and noncases refer to the outcomes of
the process being studied. For instance, a case might be a person with cancer and a noncase might
be a person without cancer.

A factor is something that might affect the chances of being ultimately designated a case or a
noncase. Thus, a case might be a cancer patient, and the factor might be smoking behavior. A person
is said to be exposed or unexposed to the factor. Exposure can be classified as a dichotomy, smokes
or does not smoke, or as multiple levels, such as number of cigarettes smoked per week.

For an introduction to epidemiological methods, see Walker (1991). For an intermediate treatment,
see Clayton and Hills (1993) and Schneider and Lilienfeld (2015). For other advanced discussions,
see Kleinbaum, Kupper, and Morgenstern (1982) and Lash et al. (2021). For an analysis of incidence
rates, see, for instance, Cummings (2019). For an anthology of writings on epidemiology since World
War II, see Greenland (1987). See Jewell (2004) for a text aimed at graduate students in the medical
professions that uses Stata for much of the analysis. See Dohoo, Martin, and Stryhn (2010) for a
graduate-level text on the principles and methods of veterinary epidemiologic research; Stata datasets
and do-files are available. Also see Dohoo, Martin, and Stryhn (2012) for a text that is a revision of
their veterinary epidemiology text, but examples from human epidemiology are used.

Incidence-rate data

In incidence-rate data from a prospective study, you observe the transformation of noncases into
cases. Starting with a group of noncase subjects, you monitor them to determine whether they become
cases (for example, stricken with cancer). You monitor two populations: those exposed and those
unexposed to the factor (for example, multiple X-rays). A summary of the data is

Exposed Unexposed Total

Cases a b a+ b
Person-time N1 N0 N1 +N0

Example 1: iri

It will be easiest to understand these commands if we start with the immediate forms. Remember,
in the immediate form, we specify the data on the command line rather than specifying names of
variables containing the data; see [U] 19 Immediate commands. We have data (Boice and Monson
[1977]; reported in Lash et al. [2021, 408]) on breast cancer cases and person-years of observation
for women with tuberculosis repeatedly exposed to multiple X-ray fluoroscopies, and those not so
exposed:

X-ray fluoroscopy
Exposed Unexposed

Breast cancer cases 41 15
Person-years 28,010 19,017

https://www.stata.com/manuals/u19.pdf#u19Immediatecommands
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Using iri, the immediate form of ir, we specify the values in the table following the command:

. iri 41 15 28010 19017

Incidence-rate comparison

Exposed Unexposed Total

Cases 41 15 56
Person-time 28010 19017 47027

Incidence rate .0014638 .0007888 .0011908

Point estimate [95% conf. interval]

Inc. rate diff. .000675 .0000749 .0012751
Inc. rate ratio 1.855759 1.005684 3.6093 (exact)
Attr. frac. ex. .4611368 .0056519 .722938 (exact)
Attr. frac. pop .337618

Mid-p-values for tests of incidence-rate difference:
Adj Pr(Exposed cases <= 41) = 0.9823 (lower one-sided)
Adj Pr(Exposed cases >= 41) = 0.0177 (upper one-sided)

Two-sided p-value = 0.0355

iri shows the table, reports the incidence rates for the exposed and unexposed populations, and
then shows the point estimates of the difference and ratio of the two incidence rates along with their
confidence intervals. The incidence rate is simply the frequency with which noncases are transformed
into cases.

Next, iri reports the attributable fraction among the exposed (AFE), an estimate of the proportion
of exposed cases attributable to exposure. We estimate that 46.1% of the 41 breast cancer cases
among the exposed were due to exposure. (Had the IRR been less than 1, iri would have reported
the prevented fraction among the exposed (PFE), an estimate of the net proportion of all potential
cases in the exposed population that was prevented by exposure; see the following technical note.)

After that, the table shows the attributable fraction for the population (AFP), which is the net
proportion of all cases attributable to exposure. This number, of course, depends on the proportion
of cases that are exposed in the base population, which here is taken to be 41/56 and may not be
relevant in all situations. We estimate that 33.8% of the 56 cases were due to exposure. We estimate
that 18.9 cases were caused by exposure; that is, 0.338× 56 = 0.461× 41 = 18.9.

At the bottom of the table, iri reports one- and two-sided tests of the IRD. For the one-sided
test of the number of exposed cases being 41 or greater, the p-value is 0.0177. The two-sided test
is twice the smallest one-sided p-value and is 0.0355. These p-values are calculated using the mid-p
adjustment to exact p-values.
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Exact p-values can be seen by specifying the exact option.

. iri 41 15 28010 19017, exact

Incidence-rate comparison

Exposed Unexposed Total

Cases 41 15 56
Person-time 28010 19017 47027

Incidence rate .0014638 .0007888 .0011908

Point estimate [95% conf. interval]

Inc. rate diff. .000675 .0000749 .0012751
Inc. rate ratio 1.855759 1.005684 3.6093 (exact)
Attr. frac. ex. .4611368 .0056519 .722938 (exact)
Attr. frac. pop .337618

Exact p-values for tests of incidence-rate difference:
Pr(Exposed cases <= 41) = 0.9884 (lower one-sided)
Pr(Exposed cases >= 41) = 0.0238 (upper one-sided)

Two-sided p-value = 0.0477

The exact p-values are slightly larger than those calculated using the mid-p adjustment. This is
always the case. However, when counts of exposed and unexposed cases are both large, they will be
nearly identical. See Methods and formulas below.

Technical note
When the IRR is less than 1, iri (and ir, cs, csi, cc, and cci) substitutes the prevented fraction

for the attributable fraction. Let’s reverse the roles of exposure in the above data, treating as exposed
a person who did not receive the X-ray fluoroscopy. You can think of this as a new treatment for
preventing breast cancer—the suggested treatment being not to use fluoroscopy.
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. iri 15 41 19017 28010

Incidence-rate comparison

Exposed Unexposed Total

Cases 15 41 56
Person-time 19017 28010 47027

Incidence rate .0007888 .0014638 .0011908

Point estimate [95% conf. interval]

Inc. rate diff. -.000675 -.0012751 -.0000749
Inc. rate ratio .5388632 .277062 .9943481 (exact)
Prev. frac. ex. .4611368 .0056519 .722938 (exact)
Prev. frac. pop .1864767

Mid-p-values for tests of incidence-rate difference:
Adj Pr(Exposed cases <= 15) = 0.0177 (lower one-sided)
Adj Pr(Exposed cases >= 15) = 0.9823 (upper one-sided)

Two-sided p-value = 0.0355

The PFE is the net proportion of all potential cases in the exposed population that were prevented by
exposure. We estimate that 46.1% of potential cases among the women receiving the new “treatment”
were prevented by the treatment. (Previously, we estimated that the same percentage of actual cases
among women receiving the X-rays was caused by the X-rays.)

The prevented fraction for the population (PFP), which is the net proportion of all potential cases
in the total population that was prevented by exposure, as with the attributable fraction, depends on
the proportion of cases that are exposed in the base population—here taken as 15/56—so it may
not be relevant in all situations. We estimate that 18.6% of the potential cases were prevented by
exposure.

See Greenland and Robins (1988) for a discussion of how to interpret attributable and prevented
fractions.

Example 2: ir

ir works like iri, except that it obtains the entries in the tables by summing data. You specify
three variables: the first represents the number of cases represented by this observation, the second
indicates whether the observation is for subjects exposed to the factor, and the third records the total
time the subjects in this observation were observed. An observation may reflect one subject or a
group of subjects.

For instance, here is a 2-observation dataset for the table in the previous example:

. use https://www.stata-press.com/data/r18/irxmpl

. list

cases exposed time

1. 41 0 28010
2. 15 1 19017
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If we typed ir cases exposed time, we would obtain the same output that we obtained above.
Another way the data might be recorded is

. use https://www.stata-press.com/data/r18/irxmpl2

. list

cases exposed time

1. 20 0 14000
2. 21 0 14010
3. 15 1 19017

Here the first 2 observations will be automatically summed by ir because both are exposed. Finally,
the data might be individual-level data:

. use https://www.stata-press.com/data/r18/irxmpl3

. list in 1/5

cases exposed time

1. 1 1 10
2. 0 1 8
3. 0 0 9
4. 1 0 2
5. 0 1 1

The first observation represents a woman who got cancer, was exposed, and was observed for 10
years. The second is a woman who did not get cancer, was exposed, and was observed for 8 years,
and so on.

Technical note
ir (and all the other commands) assumes that a subject was exposed if the exposed variable is

nonzero and not missing, assumes the subject was not exposed if the variable is zero, and ignores the
observation if the variable is missing. For ir, the case variable and the time variable are restricted to
nonnegative integers and are summed within the exposed and unexposed groups to obtain the entries
in the table.
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Stratified incidence-rate data

Example 3: ir with stratified data

ir can work with stratified tables, as well as with single tables. For instance, Rothman (1986,
185) discusses data from Rothman and Monson (1973) on mortality by sex and age for patients with
trigeminal neuralgia:

Age through 64 Age 65+
Males Females Males Females

Deaths 14 10 76 121
Person-years 1516 1701 949 2245

Entering the data into Stata, we have the following dataset:

. use https://www.stata-press.com/data/r18/rm
(Rothman and Monson 1973 data)

. list

age male deaths pyears

1. <65 Male 14 1516
2. <65 Female 10 1701
3. 65+ Male 76 949
4. 65+ Female 121 2245

The stratified analysis of the IRR is

. ir deaths male pyears, by(age)

Stratified incidence-rate analysis

Age category IRR [95% conf. interval] M--H weight

<65 1.570844 .6489373 3.952809 4.712465 (exact)
65+ 1.485862 1.100305 1.99584 35.95147 (exact)

Crude 1.099794 .831437 1.449306 (exact)
M--H combined 1.49571 1.141183 1.960377

Test of homogeneity (M--H): chi2(1) = 0.02 Pr>chi2 = 0.8992

The row labeled M--H combined reflects the combined Mantel–Haenszel estimates.

As with the previous example, it is not important that each entry in the table correspond to 1
observation in the data—ir sums the time (pyears) and case (deaths) variables within the exposure
(male) category.

The difference between the unadjusted crude estimate and the Mantel–Haenszel estimate suggests
confounding by age: women in the study are older, and older patients are more likely to die. But we
should not use the Mantel–Haenszel estimate without checking its homogeneity assumption. The χ2

test of homogeneity gives a p-value of 0.8992, so we have no evidence that the exposure effect (the
effect of being male) differs across age categories. We are justified in using the Mantel–Haenszel
estimate.
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Technical note
Stratification is one way to deal with confounding; that is, perhaps sex affects the incidence of

trigeminal neuralgia and so does age, so the table was stratified by age in an attempt to uncover
the sex effect. (We are concerned that age may confound the true association between sex and the
incidence of trigeminal neuralgia because the age distributions are so different for males and females.
If age affects incidence, the difference in the age distributions would induce different incidences for
males and females and thus confound the true effect of sex.)

We do not, however, have to use tables to uncover effects; the estimation alternative when we
have aggregate data is Poisson regression, and we can use the same data on which we ran ir with
poisson. Poisson regression also works with individual-level data.

(Although age in the previous example appears to be a string, it is actually a numeric variable
taking on values 1 and 2. We attached a value label to produce the labels <65 and 65+ to make
ir’s output look better; see [U] 12.6.3 Value labels. Stata’s estimation commands will ignore this
labeling.)

. poisson deaths male age, exposure(pyears) irr

Iteration 0: Log likelihood = -10.836732
Iteration 1: Log likelihood = -10.734087
Iteration 2: Log likelihood = -10.733944
Iteration 3: Log likelihood = -10.733944

Poisson regression Number of obs = 4
LR chi2(2) = 164.01
Prob > chi2 = 0.0000

Log likelihood = -10.733944 Pseudo R2 = 0.8843

deaths IRR Std. err. z P>|z| [95% conf. interval]

male 1.495096 .2060997 2.92 0.004 1.141118 1.95888
age 8.888775 1.934943 10.04 0.000 5.801616 13.61867

_cons .0006805 .0002908 -17.07 0.000 .0002945 .0015724
ln(pyears) 1 (exposure)

Note: _cons estimates baseline incidence rate.

Compare these results with the Mantel–Haenszel estimates produced by ir:

Source IRR 95% conf. interval
Mantel–Haenszel (ir) 1.50 1.14 1.96
poisson 1.50 1.14 1.96

The results from poisson agree with the Mantel–Haenszel estimates to two decimal places. But
poisson also estimates an IRR for age. Here the estimate is not of much interest, because the outcome
variable is total mortality and we already knew that older people have a higher mortality rate. In
other contexts, however, the estimate might be of greater interest.

See [R] poisson for an explanation of the poisson command.

Technical note
Both the model fit above and the preceding table asserted that exposure effects are the same

across age categories and, if they are not, then both of the previous results are equally inappropriate.
The table presented a test of homogeneity, reassuring us that the exposure effects do indeed appear
to be constant. The Poisson-regression alternative can be used to reproduce that test by including
interactions between the age groups and exposure:

https://www.stata.com/manuals/u12.pdf#u12.6.3Valuelabels
https://www.stata.com/manuals/rpoisson.pdf#rpoisson
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. poisson deaths male age male#c.age, exposure(pyears) irr

Iteration 0: Log likelihood = -10.898799
Iteration 1: Log likelihood = -10.726225
Iteration 2: Log likelihood = -10.725904
Iteration 3: Log likelihood = -10.725904

Poisson regression Number of obs = 4
LR chi2(3) = 164.03
Prob > chi2 = 0.0000

Log likelihood = -10.725904 Pseudo R2 = 0.8843

deaths IRR Std. err. z P>|z| [95% conf. interval]

male 1.660688 1.396496 0.60 0.546 .3195218 8.631283
age 9.167973 3.01659 6.73 0.000 4.810583 17.47226

male#c.age
Male .9459 .41539 -0.13 0.899 .3999832 2.236911

_cons .0006412 .0004097 -11.51 0.000 .0001833 .0022434
ln(pyears) 1 (exposure)

Note: _cons estimates baseline incidence rate.

The significance level of the male#c.age effect is 0.899, the same as previously reported by ir.

Here forming the male-times-age interaction was easy because there were only two age groups.
Had there been more groups, the test would have been slightly more difficult—see the following
technical note.

Technical note

A word of caution is in order when applying poisson (or any estimation technique) to more than
two age categories. Say that in our data, we had three age categories, which we will call categories
0, 1, and 2, and that they are stored in the variable agecat. We might think of the categories as
corresponding to age less than 35, 35–64, and 65 and above.

With such data, we might type ir deaths male pyears, by(agecat), but we would not type
poisson deaths male agecat, exposure(pyears) to obtain the equivalent Poisson-regression
estimated results. Such a model might be reasonable, but it is not equivalent because we would be
constraining the age effect in category 2 to be (multiplicatively) twice the effect in category 1.

To poisson (and all of Stata’s estimation commands other than anova), agecat is simply one
variable, and only one estimated coefficient is associated with it. Thus, the model is

Poisson index = P = β0 + β1male+ β2agecat

The expected number of deaths is then eP , and the IRR associated with a variable is eβ ; see [R] poisson.
Thus, the value of the Poisson index when male==0 and agecat==1 is β0+β2, and the possibilities
are

male==0 male==1

agecat==0 β0 β0 + β1
agecat==1 β0 + β2 β0 + β2 + β1
agecat==2 β0 + 2β2 β0 + 2β2 + β1

https://www.stata.com/manuals/rpoisson.pdf#rpoisson
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The age effect for agecat==2 is constrained to be twice the age effect for agecat==1—the
only difference between lines 3 and 2 of the table is that β2 is replaced with 2β2. Under certain
circumstances, such a constraint might be reasonable, but it does not correspond to the assumptions
made in generating the Mantel–Haenszel combined results.

To obtain results equivalent to the Mantel–Haenszel result, we must estimate a separate effect for
each age group, meaning that we must replace 2β2, the constrained effect, with β3, a new coefficient
that is free to take on any value. We can achieve this by creating two new variables and using them
in place of agecat. agecat1 will take on the value 1 when agecat is 1 and 0 otherwise; agecat2
will take on the value 1 when agecat is 2 and 0 otherwise:

. generate agecat1 = (agecat==1)

. generate agecat2 = (agecat==2)

. poisson deaths male agecat1 agecat2 [fweight=pop], exposure(pyears) irr

In Stata, we do not have to generate these variables for ourselves. We could use factor variables:
. poisson deaths male i.agecat [fweight=pop], exposure(pyears) irr

See [U] 11.4.3 Factor variables.

To reproduce the homogeneity test with multiple age categories, we could type

. poisson deaths agecat##male [fweight=pop], exp(pyears) irr

. testparm agecat#male

Poisson regression combined with factor variables generalizes to multiway tables. Suppose that
there are three exposure categories. Assume exposure variable burn takes on the values 1, 2, and 3
for first-, second-, and third-degree burns. The table itself is estimated by typing

. poisson deaths i.burn i.agecat [fweight=pop], exp(pyears) irr

and the test of homogeneity is estimated by typing

. poisson deaths burn##agecat [fweight=pop], exp(pyears) irr

. testparm burn#agecat

Standardized estimates with stratified incidence-rate data
The by() option specifies that the data are stratified and, by default, will produce a Mantel–Haenszel

combined estimate of the IRR. With the estandard, istandard, or standard(varname) options,
you can specify your own weights and obtain standardized estimates of the IRR or IRD.

Example 4: ir with stratified data, using standardized estimates

Lash et al. (2021, 417) report results from Doll and Hill (1966) on age-specific coronary disease
deaths among British male doctors from cigarette smoking:

Smokers Nonsmokers
Age Deaths Person-years Deaths Person-years

35–44 32 52,407 2 18,790
45–54 104 43,248 12 10,673
55–64 206 28,612 28 5,710
65–74 186 12,663 28 2,585
75–84 102 5,317 31 1,462

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
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We have entered these data into Stata:

. use https://www.stata-press.com/data/r18/dollhill3
(Doll and Hill (1966))

. list

agecat smokes deaths pyears

1. 35--44 1 32 52,407
2. 45--54 1 104 43,248
3. 55--64 1 206 28,612
4. 65--74 1 186 12,663
5. 75--84 1 102 5,317

6. 35--44 0 2 18,790
7. 45--54 0 12 10,673
8. 55--64 0 28 5,710
9. 65--74 0 28 2,585

10. 75--84 0 31 1,462

We can obtain the Mantel–Haenszel combined estimate along with the crude estimate for ignoring
stratification of the IRR and 90% confidence intervals by typing

. ir deaths smokes pyears, by(age) level(90)

Stratified incidence-rate analysis

Age category IRR [90% conf. interval] M--H weight

35--44 5.736638 1.704271 33.61646 1.472169 (exact)
45--54 2.138812 1.274552 3.813282 9.624747 (exact)
55--64 1.46824 1.044915 2.110422 23.34176 (exact)
65--74 1.35606 .9626026 1.953505 23.25315 (exact)
75--84 .9047304 .6375194 1.305412 24.31435 (exact)

Crude 1.719823 1.437544 2.0688 (exact)
M--H combined 1.424682 1.194375 1.699399

Test of homogeneity (M--H): chi2(4) = 10.41 Pr>chi2 = 0.0340

Note the presence of heterogeneity revealed by the test; the effect of smoking is not the same across age
categories. Moreover, the listed stratum-specific estimates show an effect that appears to be declining
with age. (Even if the test of homogeneity is not significant, you should always examine estimates
carefully when stratum-specific effects occur on both sides of 1 for ratios and 0 for differences.)

Lash et al. (2021, 422) obtain the standardized IRR and 90% confidence intervals, weighting each
age category by the population of the exposed group, thus producing the standardized mortality ratio
(SMR). This calculation can be reproduced by specifying by(age) to indicate that the table is stratified
and istandard to specify that we want the internally standardized rate. We may also specify that we
would like to see the pooled estimate (weighted average where the weights are based on the variance
of the strata calculations):
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. ir deaths smokes pyears, by(age) level(90) istandard pool

Stratified incidence-rate analysis

Age category IRR [90% conf. interval] Weight

35--44 5.736638 1.704271 33.61646 52407 (exact)
45--54 2.138812 1.274552 3.813282 43248 (exact)
55--64 1.46824 1.044915 2.110422 28612 (exact)
65--74 1.35606 .9626026 1.953505 12663 (exact)
75--84 .9047304 .6375194 1.305412 5317 (exact)

Crude 1.719823 1.437544 2.0688 (exact)
Pooled (direct) 1.355343 1.134356 1.619382
I. standardized 1.417609 1.186541 1.693676

Test of homogeneity (direct): chi2(4) = 10.20 Pr>chi2 = 0.0372

We obtained the simple pooled results because we specified the pool option. Note the significance
of the homogeneity test; it provides the motivation for standardizing the rate ratios.

If we wanted the externally standardized ratio (weights proportional to the population of the
unexposed group), we would substitute estandard for istandard in the above command.

We are not limited to IRRs; ir can also estimate IRDs. Differences may be standardized internally
or externally. We will obtain the internally weighted difference (Lash et al. 2021, 418–419):

. ir deaths smokes pyears, by(age) level(90) istandard ird

Stratified incidence-rate analysis

Age category IRD [90% conf. interval] Weight

35--44 .0005042 .0002877 .0007206 52407
45--54 .0012804 .0006205 .0019403 43248
55--64 .0022961 .0005628 .0040294 28612
65--74 .0038567 .0000521 .0076614 12663
75--84 -.0020201 -.0090201 .00498 5317

Crude .0018537 .001342 .0023654
I. standardized .0013047 .000712 .0018974
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Example 5: ir with user-specified weights

In addition to calculating results by using internal or external weights, ir (and cs and cc) can
calculate results for arbitrary weights. If we wanted to obtain the IRR weighting each age category
equally, we would type

. generate conswgt=1

. ir deaths smokes pyears, by(age) standard(conswgt)

Stratified incidence-rate analysis

Age category IRR [95% conf. interval] Weight

35--44 5.736638 1.463557 49.40468 1 (exact)
45--54 2.138812 1.173714 4.272545 1 (exact)
55--64 1.46824 .9863624 2.264107 1 (exact)
65--74 1.35606 .9081925 2.096412 1 (exact)
75--84 .9047304 .6000757 1.399687 1 (exact)

Crude 1.719823 1.391992 2.14353 (exact)
Standardized 1.155026 .9006199 1.481295

Technical note
estandard and istandard are convenience features; they do nothing different from what you

could accomplish by creating the appropriate weights and using the standard() option. For instance,
we could duplicate the previously shown results of istandard (example before last) by typing

. sort age smokes

. by age: generate wgt=pyears[_N]

. list in 1/4

agecat smokes deaths pyears conswgt wgt

1. 35--44 0 2 18,790 1 52407
2. 35--44 1 32 52,407 1 52407
3. 45--54 0 12 10,673 1 43248
4. 45--54 1 104 43,248 1 43248

. ir deaths smokes pyears, by(age) level(90) standard(wgt) ird
(output omitted )

sort age smokes made the exposed group (smokes = 1) the last observation within each age
category. by age: gen wgt=pyears[ N] created wgt equal to the last observation in each age
category.

Cumulative incidence data
Cumulative incidence data are “follow-up data with denominators consisting of persons rather than

person-time” (Rothman 1986, 172). A group of noncases is monitored for some time, during which
some become cases. Each subject is also known to be exposed or unexposed. A summary of the data
is
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Exposed Unexposed Total

Cases a b a+ b
Noncases c d c+ d

Total a+ c b+ d a+ b+ c+ d

Data of this type are generally summarized using the risk ratio, {a/(a+ c)}/{b/(b+d)}. A ratio
of 2 means that an exposed subject is twice as likely to become a case than is an unexposed subject,
a ratio of one-half means half as likely, and so on. The “null” value—the number corresponding to
no effect—is a ratio of 1. If cross-sectional data are analyzed in this format, the risk ratio becomes
a prevalence ratio.

Example 6: csi

We have data on diarrhea during a 10-day follow-up period among 30 breast-fed infants colonized
with Vibrio cholerae 01 according to antilipopolysaccharide antibody titers in the mother’s breast
milk (Glass et al. [1983]; reported in Lash et al. [2021, 403]):

Antibody level
High Low

Diarrhea 7 12
No diarrhea 9 2

The csi command works much like the iri command. Our sample is small, so we will specify the
exact option.

. csi 7 12 9 2, exact

Exposed Unexposed Total

Cases 7 12 19
Noncases 9 2 11

Total 16 14 30

Risk .4375 .8571429 .6333333

Point estimate [95% conf. interval]

Risk difference -.4196429 -.7240828 -.1152029
Risk ratio .5104167 .2814332 .9257086

Prev. frac. ex. .4895833 .0742914 .7185668
Prev. frac. pop .2611111

1-sided Fisher’s exact P = 0.0212
2-sided Fisher’s exact P = 0.0259

We find that high antibody levels reduce the risk of diarrhea (the risk falls from 0.86 to 0.44). The
difference is just significant at the 2.59% two-sided level. (Had we not specified the exact option,
a χ2 value and its significance level would have been reported in place of Fisher’s exact p. The
calculated χ2 two-sided significance level would have been 0.0173, but this calculation is inferior for
small samples.)
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Technical note
By default, cs and csi do not report the odds ratio, but they will if you specify the or option.

If you want odds ratios, however, use the cc or cci commands—the commands appropriate for
case–control data—because cs and csi calculate the attributable (prevented) fraction with the risk
ratio, even if you specify or:

. csi 7 12 9 2, or exact

Exposed Unexposed Total

Cases 7 12 19
Noncases 9 2 11

Total 16 14 30

Risk .4375 .8571429 .6333333

Point estimate [95% conf. interval]

Risk difference -.4196429 -.7240828 -.1152029
Risk ratio .5104167 .2814332 .9257086

Prev. frac. ex. .4895833 .0742914 .7185668
Prev. frac. pop .2611111

Odds ratio .1296296 .0246233 .7180882 (Cornfield)

1-sided Fisher’s exact P = 0.0212
2-sided Fisher’s exact P = 0.0259

Technical note
As with iri and ir, csi and cs report the AFE, AFP, PFE, or PFP; see the discussion under Incidence-

rate data above. In example 6, we estimated that 49% of potential cases in the exposed population
were prevented by exposure. We also estimated that exposure accounted for a 26% reduction in cases
over the entire population, but that is based on the exposure distribution of the (small) population
(16/30) and probably is of little interest.

Fleiss, Levin, and Paik (2003, 128) report infant mortality by birthweight for 72,730 live white
births in 1974 in New York City:

. csi 618 422 4597 67093

Exposed Unexposed Total

Cases 618 422 1040
Noncases 4597 67093 71690

Total 5215 67515 72730

Risk .1185043 .0062505 .0142995

Point estimate [95% conf. interval]

Risk difference .1122539 .1034617 .121046
Risk ratio 18.95929 16.80661 21.38769

Attr. frac. ex. .9472554 .9404996 .9532441
Attr. frac. pop .5628883

chi2(1) = 4327.92 Pr>chi2 = 0.0000
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In these data, exposed means a premature baby (birthweight ≤2,500 g), and a case is a baby who is
dead at the end of one year. We find that being premature accounts for 94.7% of deaths among the
premature population. We also estimate, paraphrasing from Fleiss, Levin, and Paik (2003, 128), that
56.3% of all white infant deaths in New York City in 1974 could have been prevented if prematurity
had been eliminated. (Moreover, Fleiss, Levin, and Paik put a standard error on the AFP. The formula
is given in Methods and formulas but is appropriate only for the population on which the estimates
are based because other populations may have different probabilities of exposure.)

Example 7: cs

cs works like csi, except that it obtains its information from the data. The data equivalent to
typing csi 7 12 9 2 are

. use https://www.stata-press.com/data/r18/csxmpl, clear

. list

case exp pop

1. 1 1 7
2. 1 0 12
3. 0 1 9
4. 0 0 2

We could then type cs case exp [fweight=pop]. If we had individual-level data, so that each
observation reflected a patient and we had 30 observations, we would type cs case exp.

Stratified cumulative incidence data

Example 8: cs with stratified data

Lash et al. (2021, 419) reprint the following age-specific information for deaths from all causes
for tolbutamide and placebo treatment groups (University Group Diabetes Program 1970):

Age through 54 Age 55 and above
Tolbutamide Placebo Tolbutamide Placebo

Dead 8 5 22 16
Surviving 98 115 76 69
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The data corresponding to these results are

. use https://www.stata-press.com/data/r18/ugdp
(University Group Diabetes Program 1970)

. list

age case exposed pop

1. <55 Surviving Placebo 115
2. <55 Surviving Tolbutamide 98
3. <55 Dead Placebo 5
4. <55 Dead Tolbutamide 8
5. 55+ Surviving Placebo 69

6. 55+ Surviving Tolbutamide 76
7. 55+ Dead Placebo 16
8. 55+ Dead Tolbutamide 22

The order of the observations is unimportant. If we were now to type cs case exposed
[fweight=pop], we would obtain a summary for all the data, ignoring the stratification by age. To
incorporate the stratification, we type

. cs case exposed [fweight=pop], by(age)

Age category Risk ratio [95% conf. interval] M--H weight

<55 1.811321 .6112044 5.367898 2.345133
55+ 1.192602 .6712664 2.11883 8.568306

Crude 1.435574 .8510221 2.421645
M--H combined 1.325555 .797907 2.202132

Test of homogeneity (M--H) chi2(1) = 0.447 Pr>chi2 = 0.5037

Mantel–Haenszel weights are appropriate when the risks may differ according to the strata but
the risk ratio is believed to be the same (homogeneous across strata). Under these assumptions,
Mantel–Haenszel weights are designed to use the information efficiently. They are not intended to
measure a composite risk ratio when the within-stratum risk ratios differ. Then, we want a standardized
ratio (see below).

The risk ratios above appear to differ markedly, but the confidence intervals are also broad because
of the small sample sizes. The test of homogeneity shows that the differences can be attributed to
chance; the use of the Mantel–Haenszel combined test is sensible.
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Technical note
Stratified cumulative incidence tables are not the only way to control for confounding. Another

way is logistic regression. However, logistic regression measures effects with odds ratios, not with
risk ratios. So before we fit a logistic model, let’s use cs to estimate the Mantel–Haenszel odds ratio:

. cs case exposed [fweight=pop], by(age) or

Age category Odds ratio [95% conf. interval] M--H weight

<55 1.877551 .6238165 5.637046 2.168142 (Cornfield)
55+ 1.248355 .6112772 2.547411 6.644809 (Cornfield)

Crude 1.510673 .8381198 2.722012
M--H combined 1.403149 .7625152 2.582015

Test of homogeneity (M--H) chi2(1) = 0.347 Pr>chi2 = 0.5556

Test that combined odds ratio = 1:
Mantel--Haenszel chi2(1) = 1.19

Pr>chi2 = 0.2750

The Mantel–Haenszel odds ratio is 1.40. It measures the association between death and treatment
while adjusting for age. A more general way to adjust for age is logistic regression; the outcome
variable is case, and it is explained by age and exposed. (As in the incidence-rate example, age
may appear to be a string variable in our data—we listed the data in the previous example—but it
is actually a numeric variable taking on values 0 and 1 with value labels disguising that fact; see
[U] 12.6.3 Value labels.)

. logistic case exposed age [fweight=pop]

Logistic regression Number of obs = 409
LR chi2(2) = 22.47
Prob > chi2 = 0.0000

Log likelihood = -142.6212 Pseudo R2 = 0.0730

case Odds ratio Std. err. z P>|z| [95% conf. interval]

exposed 1.404674 .4374454 1.09 0.275 .7629451 2.586175
age 4.216299 1.431519 4.24 0.000 2.167361 8.202223

_cons .0513818 .0170762 -8.93 0.000 .0267868 .0985593

Note: _cons estimates baseline odds.

Compare these results with the Mantel–Haenszel estimates obtained with cs:

Source Odds ratio 95% conf. interval
Mantel–Haenszel (cs) 1.40 0.76 2.58
logistic 1.40 0.76 2.59

They are virtually identical.

Logistic regression has advantages over the stratified-table approach. First, we obtained an estimate
of the age effect: being 55 years or over significantly increases the odds of death. In addition to the
point estimate, 4.22, we have a confidence interval for the effect: 2.17 to 8.20.

A discrete effect at age 55 is not a plausible model of aging. It would be more reasonable to
assume that a 54-year-old patient has a higher probability of death, due merely to age, than does a
53-year-old patient; a 53-year-old, a higher probability than a 52-year-old patient; and so on. If we
had the underlying data, where each patient’s age is presumably known, we could include the actual
age in the model and so better control for the age effect. This would improve our estimate of the
effect of being exposed to tolbutamide.

https://www.stata.com/manuals/u12.pdf#u12.6.3Valuelabels
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See [R] logistic for an explanation of the logistic command. Also see the technical note in
Stratified incidence-rate data concerning categorical variables, which applies to logistic regression as
well as Poisson regression.

Standardized estimates with stratified cumulative incidence data
As with ir, cs can produce standardized estimates, and the method is basically the same, although

the options for which estimates are to be combined or standardized make it confusing. We showed
above that cs can produce Mantel–Haenszel weighted estimates of the risk ratio (the default) or the
odds ratio (obtained by specifying or). cs can also produce standardized estimates of the risk ratio
(the default) or the risk difference (obtained by specifying rd).

Example 9: cs with stratified data, using standardized estimates

To produce an estimate of the internally standardized risk ratio by using our age-specific data on
deaths from all causes for tolbutamide and placebo treatment groups (example above), we type

. cs case exposed [fweight=pop], by(age) istandard

Age category Risk ratio [95% conf. interval] Weight

<55 1.811321 .6112044 5.367898 106
55+ 1.192602 .6712664 2.11883 98

Crude 1.435574 .8510221 2.421645
I. Standardized 1.312122 .7889772 2.182147

We could obtain externally standardized estimates by substituting estandard for istandard.

To produce an estimate of the risk ratio weighting each age category equally, we could type

. generate wgt=1

. cs case exposed [fweight=pop], by(age) standard(wgt)

Age category Risk ratio [95% conf. interval] Weight

<55 1.811321 .6112044 5.367898 1
55+ 1.192602 .6712664 2.11883 1

Crude 1.435574 .8510221 2.421645
Standardized 1.304737 .7844994 2.169967

If we instead wanted the risk difference, we would type

. cs case exposed [fweight=pop], by(age) standard(wgt) rd

Age category Risk diff. [95% conf. interval] Weight

<55 .033805 -.0278954 .0955055 1
55+ .0362545 -.0809204 .1534294 1

Crude .0446198 -.0192936 .1085332
Standardized .0350298 -.0311837 .1012432

If we wanted to weight the less-than-55 age group five times as heavily as the 55-and-over group,
we would create wgt to contain 5 for the first age group and 1 for the second (or 10 for the first
group and 2 for the second—the scale of the weights does not matter).

https://www.stata.com/manuals/rlogistic.pdf#rlogistic
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Case–control data
In case–control data, you select a sample on the basis of the outcome under study; that is, cases and

noncases are sampled at different rates. If you were examining the link between coffee consumption
and heart attacks, for instance, you could select a sample of subjects with and without the heart
problem and then examine their coffee-drinking behavior. A subject who has suffered a heart attack is
called a case just as with cohort study data. A subject who has never suffered a heart attack, however,
is called a control rather than merely a noncase, emphasizing that the sampling was performed with
respect to the outcome.

In case–control data, all hope of identifying the risk (that is, incidence) of the outcome (heart
attacks) associated with the factor (coffee drinking) vanishes, at least without information on the
underlying sampling fractions, but you can examine the proportion of coffee drinkers among the two
populations and reason that, if there is a difference, coffee drinking may be associated with the risk
of heart attacks. Remarkably, even without the underlying sampling fractions, you can also measure
the ratio of the odds of heart attacks if a subject drinks coffee to the odds if a subject does not—the
so-called odds ratio.

What is lost is the ability to compare absolute rates, which is not always the same as comparing
relative rates; see Fleiss, Levin, and Paik (2003, 123).

Example 10: cci

cci calculates the odds ratio and the attributable risk associated with a 2× 2 table. Rothman et al.
(1979; reprinted in Rothman [1986, 161], and Lash et al. [2021, 411]) present case–control data on
the history of chlordiazopoxide use in early pregnancy for mothers of children born with and without
congenital heart defects:

Chlordiazopoxide use
Yes No

Case mothers 4 386
Control mothers 4 1250

. cci 4 386 4 1250, level(90)
Proportion

Exposed Unexposed Total exposed

Cases 4 386 390 0.0103
Controls 4 1250 1254 0.0032

Total 8 1636 1644 0.0049

Point estimate [90% conf. interval]

Odds ratio 3.238342 .7698467 13.59664 (exact)
Attr. frac. ex. .6912 -.2989599 .9264524 (exact)
Attr. frac. pop .0070892

chi2(1) = 3.07 Pr>chi2 = 0.0799

We obtain a point estimate of the odds ratio as 3.24 and a χ2 value, which is a test that the odds
ratio is 1, significant at the 10% level.
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Technical note
The epitab commands can calculate three different confidence intervals for the odds ratio: the

exact, Woolf, and Cornfield intervals. The exact interval, illustrated in example 10, is the default. The
interval is “exact” because it uses an exact sampling distribution—a distribution with no unknown
parameters under the null hypothesis. An exact interval does not use a normal or χ2 approximation.
“Exact” does not describe the coverage probability; the coverage probability of a 90% exact interval
is not exactly 90%. The coverage probability is actually bounded below by 90% (Agresti 2013, 606),
so a 90% exact interval will always cover the odds ratio with probability at least 90% (if the model
is correct).

The Woolf and Cornfield intervals, on the other hand, are approximate. They approximate the
exact sampling distribution with a normal model and are not guaranteed to maintain their nominal
coverage: the coverage probability of a 90% approximate interval fluctuates above and below 90%.
The coverage approaches 90% only in the limit as the sample size increases. Exact intervals are
conservative; approximate intervals can be conservative or anticonservative (Agresti 2013, 607).

If you wish to maintain nominal coverage, then you should use the exact interval. But you will
pay a price for the coverage: the exact interval will usually be wider than the approximate intervals.
Example 10 is no exception:

Method 90% conf. interval Command
exact 0.77 13.60 cci
Woolf 1.01 10.40 cci, woolf
Cornfield 1.07 9.83 cci, cornfield

The exact interval is the widest of the three—so wide that it includes the null value of one—even
though the χ2 test p-value of 0.0799 was significant at the 10% level. The exact interval and χ2 test
come from different models, so we should not expect them to always agree on sharp conclusions
such as statistical significance.

The odds-ratio intervals are all frequentist methods, so we cannot compare them rigorously with
one example. See Brown (1981), Gart and Thomas (1982), and Agresti (1999) for more rigorous
comparisons. Agresti (1999) found that the Woolf interval performed well, even for small samples.

� �
Jerome Cornfield (1912–1979) was born in New York City. He majored in history at New York
University and took courses in statistics at the U.S. Department of Agriculture Graduate School
but otherwise had little formal training. Cornfield held positions at the Bureau of Labor Statistics,
the National Cancer Institute, the National Institutes of Health, Johns Hopkins University, the
University of Pittsburgh, and George Washington University. He worked on many problems in
biomedical statistics, including the analysis of clinical trials, epidemiology (especially case–control
studies), and Bayesian approaches.

Barnet Woolf (1902–1983) was born in London. His parents were immigrants from Lithuania.
Woolf was educated at Cambridge, where he studied physiology and biochemistry, and proposed
methods for linearizing plots in enzyme chemistry that were later rediscovered by others (see
Haldane [1957]). His later career in London, Birmingham, Rothamsted, and Edinburgh included
lasting contributions to nutrition, epidemiology, public health, genetics, and statistics. He was
also active in left-wing causes and penned humorous poems, songs, and revues.� �
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Technical note

By default, cc and cci report exact confidence intervals but an approximate significance test.
You can replace the approximate test with Fisher’s exact test by specifying the exact option. We
recommend specifying exact whenever any cell count is less than 1,000.

. cci 4 386 4 1250, exact level(90)
Proportion

Exposed Unexposed Total exposed

Cases 4 386 390 0.0103
Controls 4 1250 1254 0.0032

Total 8 1636 1644 0.0049

Point estimate [90% conf. interval]

Odds ratio 3.238342 .7698467 13.59664 (exact)
Attr. frac. ex. .6912 -.2989599 .9264524 (exact)
Attr. frac. pop .0070892

1-sided Fisher’s exact P = 0.0964
2-sided Fisher’s exact P = 0.0964

In this table, the one- and two-sided significance values are equal. This is not a mistake, but it does
not happen often. Exact significance values are calculated by summing the probabilities for tables
that have the same marginals (row and column sums) but that are less likely (given an odds ratio
of 1) than the observed table. When considering each possible table, we might ask if the table is in
the same or opposite tail as the observed table. If it is in the same tail, we would count the table
under consideration in the one-sided test and, either way, we would count it in the two-sided test.
Here all the tables more extreme than this table are in the same tail, so the one- and two-sided tests
are the same.

The p-value of 0.0964 is significant at the 10% level, but the exact confidence interval is not (it
includes the null odds ratio of one). It was not surprising that the exact interval disagreed with the
χ2 test; after all, they come from different models. Now, the exact interval and Fisher’s exact test
also disagree, even though they come from the same model!

The test and interval disagree because the exact sampling distribution is asymmetric, and the
test and interval handle the asymmetry differently. The two-sided test, as we have seen, sums the
probabilities of all tables at least as unlikely as the observed table, and in example 10, all the unlikely
tables fall in the same tail of the distribution. The other tail does not contribute to the p-value. The
exact interval, on the other hand, must always use both tails of the distribution, because the interval
inverts two one-sided tests, not one two-sided test (Breslow and Day 1980, 128–129).

Technical note
The reported value of the AFE or PFE is calculated using the odds ratio as a proxy for the risk

ratio. This can be justified only if the outcome is rare in the population. The extrapolation to the
AFP or PFP assumes that the control group is a random sample of the corresponding group in the
underlying population.
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Example 11: cc equivalent to cci

Equivalent to typing cci 4 386 4 1250 would be typing cc case exposed [fweight=pop] with
the following data:

. use https://www.stata-press.com/data/r18/ccxmpl, clear

. list

case exposed pop

1. 1 1 4
2. 1 0 386
3. 0 1 4
4. 0 0 1250

Stratified case–control data

Example 12: cc with stratified data

cc can work with stratified tables. Lash et al. (2021, 429) reprint and discuss data from a
case–control study on infants with congenital heart disease and Down syndrome and healthy controls,
according to maternal spermicide use before conception and maternal age at delivery (Rothman 1982):

Maternal age to 34 Maternal age 35+
Spermicide used not used Spermicide used not used

Down syndrome 3 9 1 3
Controls 104 1059 5 86

The data corresponding to these tables are

. use https://www.stata-press.com/data/r18/downs
(Congenital heart disease and Down syndrome)

. list

case exposed pop age

1. 1 1 3 <35
2. 1 0 9 <35
3. 0 1 104 <35
4. 0 0 1059 <35
5. 1 1 1 35+

6. 1 0 3 35+
7. 0 1 5 35+
8. 0 0 86 35+
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The stratified results for the odds ratio are

. cc case exposed [fweight=pop], by(age) woolf

Maternal age Odds ratio [95% conf. interval] M--H weight

<35 3.394231 .9048403 12.73242 .7965957 (Woolf)
35+ 5.733333 .5016418 65.52706 .1578947 (Woolf)

Crude 3.501529 1.110362 11.04208 (Woolf)
M--H combined 3.781172 1.18734 12.04142

Test of homogeneity (M--H) chi2(1) = 0.14 Pr>chi2 = 0.7105

Test that combined odds ratio = 1:
Mantel--Haenszel chi2(1) = 5.81

Pr>chi2 = 0.0159

For no particular reason, we also specified the woolf option to obtain Woolf approximations to
the within-stratum confidence intervals rather than the default. Had we wanted Tarone’s test of
homogeneity, we would have used

. cc case exposed [fweight=pop], by(age) tarone

Maternal age Odds ratio [95% conf. interval] M--H weight

<35 3.394231 .5812415 13.87412 .7965957 (exact)
35+ 5.733333 .0911619 85.89602 .1578947 (exact)

Crude 3.501529 .8080857 11.78958 (exact)
M--H combined 3.781172 1.18734 12.04142

Test of homogeneity (M--H) chi2(1) = 0.14 Pr>chi2 = 0.7105
Test of homogeneity (Tarone) chi2(1) = 0.14 Pr>chi2 = 0.7092

Test that combined odds ratio = 1:
Mantel--Haenszel chi2(1) = 5.81

Pr>chi2 = 0.0159

Whatever method you choose for calculating confidence intervals, Stata will report a test of
homogeneity, which here is χ2(1) = 0.14 and not significant. That is, the odds of Down syndrome
might vary with maternal age, but we cannot reject the hypothesis that the association between Down
syndrome and spermicide is the same in the two maternal age strata. This is thus a test to reject the
appropriateness of the single, Mantel–Haenszel combined odds ratio—a rejection not justified by
these data.

Technical note
The cc command includes four tests of homogeneity: Mantel–Haenszel (the default); directly

pooled, also known as the Woolf test (available with the pool option); Tarone (available with the
tarone option); and Breslow–Day (available with the bd option). The preferred test is Tarone’s
(Tarone 1985, 94), which corrected an error in the Breslow–Day test; see Breslow (1996, 17–18) for
details of the error and Tarone’s correction.

The other two homogeneity tests, the Mantel–Haenszel and directly pooled, are less useful: they
use the logs of the stratum-specific odds ratios, so they are undefined when any stratum has a zero
cell. The epitab commands deal with the problem differently: cs omits the offending strata, while
cc substitutes the Tarone test. The Tarone test does not use the stratum-specific odds ratios, so it can
still be calculated when there are zero cells.
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None of the tests is appropriate for finely stratified (many strata with only a few observations each)
studies (Lash et al. 2021, 429). If you have fine stratification, one alternative is multilevel logistic
regression; see [ME] melogit.

Technical note
As with cohort study data, an alternative to stratified tables for uncovering effects is logistic

regression. From the logistic point of view, case–control data are no different from cohort study
data—you must merely ignore the estimated intercept. The intercept is meaningless in case–control
data because it reflects the baseline prevalence of the outcome, which you controlled by sampling.

The data we used with cc can be used directly by logistic. (The age variable, which appears
to be a string, is really numeric with an associated value label; see [U] 12.6.3 Value labels. age takes
on the value 0 for the age-less-than-35 group and 1 for the 35+ group.)

. logistic case exposed age [fweight=pop]

Logistic regression Number of obs = 1,270
LR chi2(2) = 8.74
Prob > chi2 = 0.0127

Log likelihood = -81.517532 Pseudo R2 = 0.0509

case Odds ratio Std. err. z P>|z| [95% conf. interval]

exposed 3.787779 2.241922 2.25 0.024 1.187334 12.0836
age 4.582857 2.717352 2.57 0.010 1.433594 14.65029

_cons .0082631 .0027325 -14.50 0.000 .0043218 .0157988

Note: _cons estimates baseline odds.

We compare the results with those presented by cc in the previous example:

Source Odds ratio 95% CI
Mantel–Haenszel (cc) 3.78 1.19 12.04
logistic 3.79 1.19 12.08

As with the cohort study data in example 8, results are virtually identical, and all the same comments
we made previously apply once again.

To demonstrate an advantage of logistic regression, let’s now ask a question that would be difficult
to answer on the basis of a stratified table analysis. We now know that spermicide use appears to
increase the risk of having a baby with Down syndrome, and we know that the mother’s age also
increases the risk. Is the effect of spermicide use statistically different for mothers in the two age
groups?

https://www.stata.com/manuals/memelogit.pdf#memelogit
https://www.stata.com/manuals/u12.pdf#u12.6.3Valuelabels
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. logistic case exposed age c.age#exposed [fweight=pop]

Logistic regression Number of obs = 1,270
LR chi2(3) = 8.87
Prob > chi2 = 0.0311

Log likelihood = -81.451332 Pseudo R2 = 0.0516

case Odds ratio Std. err. z P>|z| [95% conf. interval]

exposed 3.394231 2.289544 1.81 0.070 .9048403 12.73242
age 4.104651 2.774868 2.09 0.037 1.091034 15.44237

exposed#
c.age

1 1.689141 2.388785 0.37 0.711 .1056563 27.0045

_cons .0084986 .0028449 -14.24 0.000 .0044097 .0163789

Note: _cons estimates baseline odds.

The answer is no. The odds ratio and confidence interval reported for exposed now measure the
spermicide effect for an age==0 (age < 35) mother. The odds ratio and confidence interval reported
for c.age#exposed are the (multiplicative) difference in the spermicide odds ratio for an age==1
(age 35+) mother relative to a young mother. The point estimate is that the effect is larger for older
mothers, suggesting grounds for future research, but the difference is not significant.

See [R] logistic for an explanation of the logistic command. Also see the technical note under
Incidence-rate data above concerning Poisson regression, which applies equally to logistic regression.

Case–control data with multiple levels of exposure
In a case–control study, subjects with the disease of interest (cases) are compared with disease-free

individuals (controls) to assess the relationship between exposure to one or more risk factors and
disease incidence. Often exposure is measured qualitatively at several discrete levels or measured on
a continuous scale and then grouped into three or more levels. The data can be summarized as

Exposure level
1 2 . . . k Total

Cases a1 a2 . . . ak M1

Controls c1 c2 . . . ck M0

Total N1 N2 . . . Nk T

An advantage afforded by having multiple levels of exposure is the ability to examine dose–response
relationships. If the association between a risk factor and a disease or outcome is real, we expect
the strength of that association to increase with the level and duration of exposure. A dose–response
relationship provides strong support for a direct or even causal relationship between the risk factor
and the outcome. On the other hand, the lack of a dose–response is usually seen as an argument
against causality.

We can use the tabodds command to tabulate the odds of failure or odds ratios against a categorical
exposure variable. The test for trend calculated by tabodds can serve as a test for dose–response if
the exposure variable is at least ordinal. If the exposure variable has no natural ordering, the trend
test is meaningless and should be ignored. See the technical note at the end of this section for more
information regarding the test for trend.

https://www.stata.com/manuals/rlogistic.pdf#rlogistic
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Before looking at an example, consider three possible data arrangements for case–control and
prevalence studies. The most common data arrangement is individual records, where each subject in
the study has his or her own record. Closely related are frequency records where identical individual
records are included only once, but with a variable giving the frequency with which the record occurs.
The fweight weight option is used for these data to specify the frequency variable. Data can also
be arranged as binomial frequency records where each record contains a variable, D, the number of
cases; another variable, N, the number of total subjects (cases plus controls); and other variables. An
advantage of binomial frequency records is that large datasets can be entered succinctly into a Stata
database.

Example 13: tabodds

Consider the following data from the Ille-et-Vilaine study of esophageal cancer, discussed in
Breslow and Day (1980, chap. 4 and app. I), corresponding to subjects age 55–64 who use from 0
to 9 g of tobacco per day:

Alcohol consumption (g/day)
0–39 40–79 80–119 120+ Total

Cases 2 9 9 5 25
Controls 47 31 9 5 92
Total 49 40 18 10 117

The study included 24 such tables, each representing one of four levels of tobacco use and one of
six age categories. We can create a binomial frequency-record dataset by typing

. input alcohol D N agegrp tobacco

alcohol D N agegrp tobacco
1. 1 2 49 4 1
2. 2 9 40 4 1
3. 3 9 18 4 1
4. 4 5 10 4 1
5. end

where D is the number of esophageal cancer cases and N is the number of total subjects (cases plus
controls) for each combination of six age groups (agegrp), four levels of alcohol consumption in
g/day (alcohol), and four levels of tobacco use in g/day (tobacco).

Both the tabodds and mhodds commands can correctly handle all three data arrangements.
Binomial frequency records require that the number of total subjects (cases plus controls) represented
by each record N be specified with the binomial() option.

We could also enter the data as frequency-weighted data:

. input alcohol case freq agegrp tobacco

alcohol case freq agegrp tobacco
1. 1 1 2 4 1
2. 1 0 47 4 1
3. 2 1 9 4 1
4. 2 0 31 4 1
5. 3 1 9 4 1
6. 3 0 9 4 1
7. 4 1 5 4 1
8. 4 0 5 4 1
9. end
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If you are planning on using any of the other estimation commands, such as poisson or logistic,
we recommend that you enter your data either as individual records or as frequency-weighted records
and not as binomial frequency records, because the estimation commands currently do not recognize
the binomial() option.

We have entered all the esophageal cancer data into Stata as a frequency-weighted record dataset
as previously described. In our data, case indicates the esophageal cancer cases and controls, and
freq is the number of subjects represented by each record (the weight).

We added value labels to the agegrp, alcohol, and tobacco variables in our dataset to ease
interpretation in outputs, but these variables are numeric.

We are interested in the association between alcohol consumption and esophageal cancer. We first
use tabodds to tabulate the odds of esophageal cancer against alcohol consumption:

. use https://www.stata-press.com/data/r18/bdesop, clear
(Ille-et-Vilaine study of esophageal cancer)

. tabodds case alcohol [fweight=freq]

alcohol Cases Controls Odds [95% conf. interval]

0--39 29 386 0.07513 0.05151 0.10957
40--79 75 280 0.26786 0.20760 0.34560

80--119 51 87 0.58621 0.41489 0.82826
120+ 45 22 2.04545 1.22843 3.40587

Test of homogeneity (equal odds): chi2(3) = 158.79
Pr>chi2 = 0.0000

Score test for trend of odds: chi2(1) = 152.97
Pr>chi2 = 0.0000

The test of homogeneity clearly indicates that the odds of esophageal cancer differ by level of alcohol
consumption, and the test for trend indicates a significant increase in odds with increasing alcohol
use. This suggests a strong dose–response relation. The graph option can be used to study the shape
of the relationship of the odds with alcohol consumption. Most of the heterogeneity in these data
can be “explained” by the linear increase in risk of esophageal cancer with increased dosage (alcohol
consumption).

We also could have requested that the odds ratios at each level of alcohol consumption be calculated
by specifying the or option. For example, tabodds case alcohol [fweight=freq], or would
produce odds ratios using the minimum value of alcohol—that is, alcohol = 1 (0–39)—as the
reference group, and the command tabodds case alcohol [fweight=freq], or base(2) would
use alcohol = 2 (40–79) as the reference group.

Although our results appear to provide strong evidence supporting an association between alcohol
consumption and esophageal cancer, we need to be concerned with the possible existence of confounders,
specifically age and tobacco use, in our data. We can again use tabodds to tabulate the odds of
esophageal cancer against age and against tobacco use, independently:
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. tabodds case agegrp [fweight=freq]

agegrp Cases Controls Odds [95% conf. interval]

25--34 1 115 0.00870 0.00121 0.06226
35--44 9 190 0.04737 0.02427 0.09244
45--54 46 167 0.27545 0.19875 0.38175
55--64 76 166 0.45783 0.34899 0.60061
65--74 55 106 0.51887 0.37463 0.71864

75+ 13 31 0.41935 0.21944 0.80138

Test of homogeneity (equal odds): chi2(5) = 96.94
Pr>chi2 = 0.0000

Score test for trend of odds: chi2(1) = 83.37
Pr>chi2 = 0.0000

. tabodds case tobacco [fweight=freq]

tobacco Cases Controls Odds [95% conf. interval]

0--9 78 447 0.17450 0.13719 0.22194
10--19 58 178 0.32584 0.24228 0.43823
20--29 33 99 0.33333 0.22479 0.49428

30+ 31 51 0.60784 0.38899 0.94983

Test of homogeneity (equal odds): chi2(3) = 29.33
Pr>chi2 = 0.0000

Score test for trend of odds: chi2(1) = 26.93
Pr>chi2 = 0.0000

We can see that there is evidence to support our concern that both age and tobacco use are potentially
important confounders. Clearly, before we can make any statements regarding the association between
esophageal cancer and alcohol use, we must examine and, if necessary, adjust for the effect of any
confounder. We will return to this example in the following section.

Technical note
The score test for trend performs a test for linear trend of the log odds against the numerical code

used for the exposure variable. The test depends not only on the relationship between dose level and
the outcome but also on the numeric values assigned to each level or, to be more accurate, to the
distance between the numeric values assigned. For example, the trend test on a dataset with four
exposure levels coded 1, 2, 3, and 4 gives the same results as coding the levels 10, 20, 30, and
40 because the distance between the levels in each case is constant. In the first case, the distance
is 1 unit, and in the second case, it is 10 units. However, if we code the exposure levels as 1, 10,
100, and 1,000, we would obtain different results because the distance between exposure levels is not
constant. Thus, be careful when assigning values to exposure levels. You must determine whether
equally spaced numbers make sense for your data or if other more meaningful values should be used.

Remember that we are testing whether a log-linear relationship exists between the odds and the
exposure variable. For your particular problem, this relationship may not be correct or even make
sense, so you must be careful in interpreting the output of this trend test.
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Case–control data with confounders and possibly multiple levels of exposure

In the esophageal cancer data example introduced earlier, we determined that the apparent association
between alcohol consumption and esophageal cancer could be confounded by age and tobacco use.
You can adjust for the effect of possible confounding factors by stratifying on these factors. This is
the method used by both tabodds and mhodds to adjust for other variables in the dataset. We will
compare and contrast these two commands in the following example.

Example 14: tabodds, adjusting for confounding factors

We begin by using tabodds to tabulate unadjusted odds ratios.

. tabodds case alcohol [fweight=freq], or

alcohol Odds ratio chi2 P>chi2 [95% conf. interval]

0--39 1.000000 . . . .
40--79 3.565271 32.70 0.0000 2.237981 5.679744

80--119 7.802616 75.03 0.0000 4.497054 13.537932
120+ 27.225705 160.41 0.0000 12.507808 59.262107

Test of homogeneity (equal odds): chi2(3) = 158.79
Pr>chi2 = 0.0000

Score test for trend of odds: chi2(1) = 152.97
Pr>chi2 = 0.0000

The alcohol = 1 group (0–39) was used by tabodds as the reference category for calculating
the odds ratios. We could have selected a different group by specifying the base() option; however,
because the lowest dosage level is most often the appropriate reference group, as it is in these data,
the base() option is seldom used.

We use tabodds with the adjust() option to tabulate Mantel–Haenszel age-adjusted odds ratios:

. tabodds case alcohol [fweight=freq], adjust(age)

Mantel--Haenszel odds ratios adjusted for agegrp

alcohol Odds ratio chi2 P>chi2 [95% conf. interval]

0--39 1.000000 . . . .
40--79 4.268155 37.36 0.0000 2.570025 7.088314

80--119 8.018305 59.30 0.0000 4.266893 15.067922
120+ 28.570426 139.70 0.0000 12.146409 67.202514

Score test for trend of odds: chi2(1) = 135.09
Pr>chi2 = 0.0000

We observe that the age-adjusted odds ratios are just slightly higher than the unadjusted ones, so it
appears that age is not as strong a confounder as it first appeared. Even after adjusting for age, the
dose–response relationship, as measured by the trend test, remains strong.
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We now perform the same analysis but this time adjust for tobacco use instead of age.

. tabodds case alcohol [fweight=freq], adjust(tobacco)

Mantel--Haenszel odds ratios adjusted for tobacco

alcohol Odds ratio chi2 P>chi2 [95% conf. interval]

0--39 1.000000 . . . .
40--79 3.261178 28.53 0.0000 2.059764 5.163349

80--119 6.771638 62.54 0.0000 3.908113 11.733306
120+ 19.919526 123.93 0.0000 9.443830 42.015528

Score test for trend of odds: chi2(1) = 135.04
Pr>chi2 = 0.0000

Again we observe a significant dose–response relationship and not much difference between the
adjusted and unadjusted odds ratios. We could also adjust for the joint effect of both age and tobacco
use by specifying adjust(tobacco age), but we will not bother here.

A different approach to analyzing these data is to use the mhodds command. This command
estimates the ratio of the odds of failure for two categories of an exposure variable, controlling
for any specified confounding variables, and it tests whether this odds ratio is equal to one. For
multiple exposures, if two exposure levels are not specified with compare(), then mhodds assumes
that exposure is quantitative and calculates a 1-degree-of-freedom test for trend. This test for trend
is the same one that tabodds reports.

Example 15: mhodds, controlling for confounding factors

We first use mhodds to estimate the effect of alcohol controlled for age:

. mhodds case alcohol agegrp [fweight=freq]

Score test for trend of odds with alcohol

controlling for agegrp

Odds ratio chi2(1) P>chi2 [95% conf. interval]

2.845895 135.09 0.0000 2.385749 3.394792

Note: The Odds ratio estimate is an approximation to the odds ratio
for a one-unit increase in alcohol.

Because alcohol has more than two levels, mhodds estimates and reports an approximate age-
adjusted odds ratio for a one-unit increase in alcohol consumption. The χ2 value reported is identical
to that reported by tabodds for the score test for trend on the previous page.
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We now use mhodds to estimate the effect of alcohol controlled for age, and while we are at it,
we do this by levels of tobacco consumption:

. mhodds case alcohol agegrp [fweight=freq], by(tobacco)

Score test for trend of odds with alcohol

controlling for agegrp

by tobacco

tobacco Odds ratio chi2(1) P>chi2 [95% conf. interval]

0--9 3.579667 75.95 0.0000 2.68710 4.76871
10--19 2.303580 25.77 0.0000 1.66913 3.17920
20--29 2.364135 13.27 0.0003 1.48810 3.75589

30+ 2.217946 8.84 0.0029 1.31184 3.74992

Notes: Only 19 of the 24 strata formed in this analysis contribute information
about the effect of the explanatory variable.
The Odds ratio estimate is an approximation to the odds ratio for a
one-unit increase in alcohol.

Mantel--Haenszel estimate controlling for agegrp and tobacco

Odds ratio chi2(1) P>chi2 [95% conf. interval]

2.751236 118.37 0.0000 2.292705 3.301471

Approximate test of homogeneity of odds ratios: chi2(3) = 5.46
Pr>chi2 = 0.1409

The first table reports estimates of the effect of alcohol for each level of tobacco use, controlling for
age.

From the second table, we find that the effect of alcohol is about ×2.8 when we control for
both age and tobacco use. Again, because alcohol has more than two levels, mhodds estimates
and reports an approximate Mantel–Haenszel age and tobacco-use adjusted odds ratio for a one-unit
increase in alcohol consumption.

The χ2 test for trend reported with the Mantel–Haenszel estimate is again the same one that
tabodds produces if adjust(agegrp tobacco) is specified.
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To instead estimate the effect of tobacco use for each level of alcohol consumption, controlling
for age, we type

. mhodds case tobacco agegrp [fweight=freq], by(alcohol)

Score test for trend of odds with tobacco

controlling for agegrp

by alcohol

alcohol Odds ratio chi2(1) P>chi2 [95% conf. interval]

0--39 2.420650 15.61 0.0001 1.56121 3.75320
40--79 1.427713 5.75 0.0165 1.06717 1.91007

80--119 1.472218 3.38 0.0659 0.97483 2.22339
120+ 1.214815 0.59 0.4432 0.73876 1.99763

Notes: Only 18 of the 24 strata formed in this analysis contribute information
about the effect of the explanatory variable.
The Odds ratio estimate is an approximation to the odds ratio for a
one-unit increase in tobacco.

Mantel--Haenszel estimate controlling for agegrp and alcohol

Odds ratio chi2(1) P>chi2 [95% conf. interval]

1.553437 20.07 0.0000 1.281160 1.883580

Approximate test of homogeneity of odds ratios: chi2(3) = 5.26
Pr>chi2 = 0.1540

From the second table, we find that the effect of tobacco, controlled for both age and alcohol
consumption, is about ×1.6.

Comparisons between particular levels of alcohol and tobacco consumption can be made by
generating a new variable with levels corresponding to all combinations of alcohol and tobacco, as in

. egen alctob = group(alcohol tobacco)

. mhodds case alctob [fweight=freq], compare(16,1)

Maximum likelihood estimate of the odds ratio comparing alctob==16
vs. alctob==1

Odds ratio chi2(1) P>chi2 [95% conf. interval]

93.333333 103.21 0.0000 14.766136 589.938431

which yields an odds ratio of 93 between subjects with the highest levels of alcohol and tobacco and
those with the lowest levels. Similar results can be obtained simultaneously for all levels of alctob
using alctob = 1 as the comparison group by specifying tabodds D alctob, binomial(N) or.
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Standardized estimates with stratified case–control data

Example 16: cc with stratified data, using standardized estimates

You obtain standardized estimates (here for the odds ratio) by using cc just as you obtain standardized
estimates by using ir or cs. Along with the by() option, you specify one of estandard, istandard,
or standard(varname).

Case–control studies can provide standardized rate-ratio estimates when density sampling is used,
or when the disease is rare (Lash et al. 2021, 422). Lash et al. (2021, 429) report the SMR for the
case–control study on infants with congenital heart disease and Down syndrome. We can reproduce
their estimates along with the pooled estimates by typing

. use https://www.stata-press.com/data/r18/downs, clear
(Congenital heart disease and Down syndrome)

. cc case exposed [fweight=pop], by(age) istandard pool

Maternal age Odds ratio [95% conf. interval] Weight

<35 3.394231 .5812415 13.87412 104 (exact)
35+ 5.733333 .0911619 85.89602 5 (exact)

Crude 3.501529 .8080857 11.78958 (exact)
Pooled (direct) 3.824166 1.196437 12.22316
I. Standardized 3.779749 1.180566 12.10141

Test of homogeneity (direct) chi2(1) = 0.14 Pr>chi2 = 0.7109

Using the distribution of the nonexposed subjects in the source population as the standard, we can
obtain an estimate of the standardized rate ratio (SRR):

. cc case exposed [fweight=pop], by(age) estandard

Maternal age Odds ratio [95% conf. interval] Weight

<35 3.394231 .5812415 13.87412 1059 (exact)
35+ 5.733333 .0911619 85.89602 86 (exact)

Crude 3.501529 .8080857 11.78958 (exact)
E. Standardized 3.979006 1.176096 13.46191

Finally, if we wanted to weight the two age groups equally, we could type

. generate wgt=1

. cc case exposed [fweight=pop], by(age) standard(wgt)

Maternal age Odds ratio [95% conf. interval] Weight

<35 3.394231 .5812415 13.87412 1 (exact)
35+ 5.733333 .0911619 85.89602 1 (exact)

Crude 3.501529 .8080857 11.78958 (exact)
Standardized 5.275104 .6233794 44.6385
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Matched case–control data

Matched case–control studies are performed to gain sample-size efficiency and to control for
important confounding factors. In a matched case–control design, each case is matched with a control
on the basis of demographic characteristics, clinical characteristics, etc. Thus, their difference with
respect to the outcome must be due to something other than the matching variables. If the only
difference between them was exposure to the factor, we could attribute any difference in outcome to
the factor.

A summary of the data is

Controls
Cases Exposed Unexposed Total

Exposed a b M1

Unexposed c d M0

Total N1 N0 T = a+ b+ c+ d

Each entry in the table represents the number of case–control pairs. For instance, in a of the pairs,
both members were exposed; in b of the pairs, the case was exposed but the control was not; and so
on. In total, T pairs were observed.

Example 17: mcci

Rothman (1986, 257) discusses data from Jick et al. (1973) on a matched case–control study of
myocardial infarction and drinking six or more cups of coffee per day (persons drinking from one to
five cups per day were excluded):

Controls
Cases 6+ cups 0 cups

6+ cups 8 8
0 cups 3 8

mcci analyzes matched case–control data:

. mcci 8 8 3 8

Controls
Cases Exposed Unexposed Total

Exposed 8 8 16
Unexposed 3 8 11

Total 11 16 27

McNemar’s chi2(1) = 2.27 Prob > chi2 = 0.1317
Exact McNemar significance probability = 0.2266

Proportion with factor
Cases .5925926
Controls .4074074 [95% conf. interval]

difference .1851852 -.0822542 .4526246
ratio 1.454545 .891101 2.374257
rel. diff. .3125 -.0243688 .6493688

odds ratio 2.666667 .6400364 15.6064 (exact)
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The point estimate states that the odds of drinking 6 or more cups of coffee per day is 2.67 times
greater among the myocardial infarction patients. The confidence interval is wide, however, and the
p-value of 0.1317 from McNemar’s test is not statistically significant.

mcc works like the other nonimmediate commands but does not handle stratified data. If you have
stratified matched case–control data, you can use conditional logistic regression to estimate odds
ratios; see [R] clogit.

Matched case–control studies can also be analyzed using mhodds by controlling on the variable
used to identify the matched sets. For example, if the variable set is used to identify the matched
set for each subject,

. mhodds fail xvar set

will do the job. Any attempt to control for further variables will restrict the analysis to the comparison
of cases and matched controls that share the same values of these variables. In general, this would
lead to the omission of many records from the analysis. Similar considerations usually apply when
investigating effect modification by using the by() option. An important exception to this rule is that
a variable used in matching cases to controls may appear in the by() option without loss of data.

Example 18: mhodds with matched case–control data

Let’s use mhodds to analyze matched case–control studies using the study of endometrial cancer
and exposure to estrogen described in Breslow and Day (1980, chap. 5). In this study, there are four
controls matched to each case. Cases and controls are matched on age, marital status, and time living
in the community. The data collected include information on the daily dose of conjugated estrogen
therapy. Breslow and Day created four levels of the dose variable and began by analyzing the 1:1
study formed by using the first control in each set. We examine the effect of exposure to estrogen:

. use https://www.stata-press.com/data/r18/bdendo11, clear
(Endometrial cancer and estrogen exposure)

. describe

Contains data from https://www.stata-press.com/data/r18/bdendo11.dta
Observations: 126 Endometrial cancer and estrogen

exposure
Variables: 13 3 Mar 2022 23:29

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

set byte %8.0g Set number
fail byte %8.0g fail Case or control
gall byte %8.0g Gallbladder dis
hyp byte %8.0g Hypertension
ob byte %8.0g Obesity
est byte %8.0g Estrogen
dos byte %8.0g Ordinal dose
dur byte %8.0g Ordinal duration
non byte %8.0g Nonestrogen drug
duration byte %8.0g Months
age byte %8.0g Years
cest byte %8.0g Conjugated est dose
agegrp byte %9.0g Age group of set

Sorted by: set

https://www.stata.com/manuals/rclogit.pdf#rclogit
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. mhodds fail est set

Mantel--Haenszel estimate of the odds ratio comparing est==1 vs.
est==0
controlling for set

Odds ratio chi2(1) P>chi2 [95% conf. interval]

9.666667 21.12 0.0000 2.944702 31.733072

Note: Only 32 of the 63 strata formed in this analysis contribute
information about the effect of the explanatory variable.

For the 1:1 matched study, the Mantel–Haenszel methods are equivalent to conditional likelihood
methods. The maximum conditional likelihood estimate of the odds ratio is given by the ratio of
the off-diagonal frequencies in the two-way (case–control) table below. The data must be in the
1-observation-per-group format; that is, the matched case and control must appear in 1 observation
(the same format as required by the mcc command; see also [R] clogit).

. keep fail est set

. reshape wide est, i(set) j(fail)
(j = 0 1)

Data Long -> Wide

Number of observations 126 -> 63
Number of variables 3 -> 3
j variable (2 values) fail -> (dropped)
xij variables:

est -> est0 est1

. rename est1 case

. rename est0 control

. label variable case case

. label variable control control

. tabulate case control

control
case 0 1 Total

0 4 3 7
1 29 27 56

Total 33 30 63

The odds ratio is 29/3 = 9.67, which agrees with the value obtained from mhodds. In the more
general 1:m matched study, however, the Mantel–Haenszel methods are no longer equivalent to
maximum conditional likelihood, although they are usually close.

https://www.stata.com/manuals/rclogit.pdf#rclogit
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To illustrate the use of the by() option in matched case–control studies, we look at the effect of
exposure to estrogen, stratified by age3, which codes the sets into three age groups (55–64, 65–74,
and 75+) as follows:

. use https://www.stata-press.com/data/r18/bdendo11, clear
(Endometrial cancer and estrogen exposure)

. generate age3 = agegrp

. recode age3 1/2=1 3/4=2 5/6=3
(124 changes made to age3)

. mhodds fail est set, by(age3)

Mantel--Haenszel estimate of the odds ratio comparing est==1 vs. est==0
controlling for set

by age3

age3 Odds ratio chi2(1) P>chi2 [95% conf. interval]

1 6.000000 3.57 0.0588 0.72235 49.83724
2 15.000000 12.25 0.0005 1.98141 113.55557
3 8.000000 5.44 0.0196 1.00059 63.96252

Note: Only 32 of the 63 strata formed in this analysis contribute information
about the effect of the explanatory variable.

Mantel--Haenszel estimate controlling for set and age3

Odds ratio chi2(1) P>chi2 [95% conf. interval]

9.666667 21.12 0.0000 2.944702 31.733072

Approximate test of homogeneity of odds ratios: chi2(2) = 0.41
Pr>chi2 = 0.8128

There is no further loss of information when we stratify by age3 because age was one of the
matching variables.

The full set of matched controls can be used in the same way. For example, the effect of exposure
to estrogen is obtained (using the full dataset) with

. use https://www.stata-press.com/data/r18/bdendo, clear
(Endometrial cancer and estrogen exposure)

. mhodds fail est set

Mantel--Haenszel estimate of the odds ratio comparing est==1 vs.
est==0
controlling for set

Odds ratio chi2(1) P>chi2 [95% conf. interval]

8.461538 31.16 0.0000 3.437773 20.826746

Note: Only 58 of the 63 strata formed in this analysis contribute
information about the effect of the explanatory variable.
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The effect of exposure to estrogen, stratified by age3, is obtained with

. generate age3 =agegrp

. recode age3 1/2=1 3/4=2 5/6=3
(310 changes made to age3)

. mhodds fail est set, by(age3)

Mantel--Haenszel estimate of the odds ratio comparing est==1 vs. est==0
controlling for set

by age3

age3 Odds ratio chi2(1) P>chi2 [95% conf. interval]

1 3.800000 3.38 0.0660 0.82165 17.57438
2 10.666667 18.69 0.0000 2.78773 40.81376
3 13.500000 9.77 0.0018 1.59832 114.02620

Note: Only 58 of the 63 strata formed in this analysis contribute information
about the effect of the explanatory variable.

Mantel--Haenszel estimate controlling for set and age3

Odds ratio chi2(1) P>chi2 [95% conf. interval]

8.461538 31.16 0.0000 3.437773 20.826746

Approximate test of homogeneity of odds ratios: chi2(2) = 1.41
Pr>chi2 = 0.4943

Video examples

Incidence-rate ratios calculator

Risk ratios calculator

Odds ratios for case–control data

Stratified analysis of case–control data

Odds ratios calculator

Glossary

attributable fraction. An attributable fraction is the reduction in the risk of a disease or other
condition of interest when a particular risk factor is removed.

case–control studies. In case–control studies, cases meeting a fixed criterion are matched to noncases
ex post to study differences in possible covariates. Relative sample sizes are usually fixed at 1:1
or 1:2 but sometimes vary once the survey is complete. In any case, sample sizes do not reflect
the distribution in the underlying population.

cohort studies. In cohort studies, a group that is well defined is monitored over time to track the
transition of noncases to cases. Cohort studies differ from incidence studies in that they can be
retrospective as well as prospective.

https://www.youtube.com/watch?v=6JANRVFxqAw
https://www.youtube.com/watch?v=ZYaYUpgahv4
https://www.youtube.com/watch?v=RKWYNI7AORw
https://www.youtube.com/watch?v=CHTfzJLSbWM
https://www.youtube.com/watch?v=A1c4ElvFHIE
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confounding. In the analysis of contingency tables, factor or interaction effects are said to be
confounded when the effect of one factor is combined with that of another. For example, the
effect of alcohol consumption on esophageal cancer may be confounded with the effects of age,
smoking, or both. In the presence of confounding, it is often useful to stratify on the confounded
factors that are not of primary interest, in the above example, age and smoking.

cross-sectional or prevalence studies. Cross-sectional studies sample distributions of healthy and
diseased subjects in the population at one point in time.

crude estimate. A crude estimate has not been adjusted for the effects of other variables. Disregarding
a stratification variable, for example, yields a crude estimate.

incidence and incidence rate. Incidence is the number of new failures (for example, number of new
cases of a disease) that occur during a specified period in a population at risk (for example, of the
disease).

Incidence rate is incidence divided by the sum of the length of time each individual was exposed
to the risk.

Do not confuse incidence with prevalence. Prevalence is the fraction of a population that has the
disease. Incidence refers to the rate at which people contract a disease, whereas prevalence is the
total number actually sick at a given time.

incidence studies, longitudinal studies, and follow-up studies. Whichever word is used, these studies
monitor a population for a time to track the transition of noncases into cases. Incidence studies
are prospective. Also see cohort studies.

matched case–control study. Also known as a retrospective study, a matched case–control study is
a study in which persons with positive outcomes are each matched with one or more persons with
negative outcomes but with similar characteristics.

odds and odds ratio. The odds in favor of an event are o = p/(1 − p), where p is the probability
of the event. Thus if p = 0.2, the odds are 0.25, and if p = 0.8, the odds are 4.

The log of the odds is ln(o) = logit(p) = ln{p/(1 − p)}, and logistic-regression models, for
instance, fit ln(o) as a linear function of the covariates.

The odds ratio is a ratio of two odds: o1/o0. The individual odds that appear in the ratio are
usually for an experimental group and a control group, or two different demographic groups.

prevented fraction. A prevented fraction is the reduction in the risk of a disease or other condition
of interest caused by including a protective risk factor or public-health intervention.

prospective study. Also known as a prospective longitudinal study, a prospective study is a study
based on observations over the same subjects for a given period.

risk factor. This is a variable associated with an increased or decreased risk of failure.

risk ratio. In a log-linear model, this is the ratio of probability of survival associated with a
one-unit increase in a risk factor relative to that calculated without such an increase, that is,
R(x + 1)/R(x). Given the exponential form of the model, R(x + 1)/R(x) is constant and is
given by the exponentiated coefficient.

SMR. See standardized mortality (morbidity) ratio.

standardized mortality (morbidity) ratio. Standardized mortality (morbidity) ratio (SMR) is the
observed number of deaths divided by the expected number of deaths. It is calculated using
indirect standardization: you take the population of the group of interest—say, by age, sex, and
other factors—and calculate the expected number of deaths in each cell (expected being defined
as the number of deaths that would have been observed if those in the cell had the same mortality
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as some other population). You then take the ratio to compare the observed with the expected
number of deaths. For instance,

(1) (2) (1)×(2) (4)
Population Deaths per 100,000 Expected # Observed

Age of group in general pop. of deaths deaths

25–34 95,965 105.2 100.9 92
34–44 78,280 203.6 159.4 180
44–54 52,393 428.9 224.7 242
55–64 28,914 964.6 278.9 312
Total 763.9 826

SMR = 826/763.9 = 1.08

stratified test. A stratified test is performed separately for each stratum. The stratum-specific results
are then combined into an overall test statistic.

Stored results
ir (without by()) and iri store the following in r():
Scalars

r(ird) IRD
r(lb ird) lower CI bound for IRD
r(ub ird) upper CI bound for IRD
r(irr) IRR
r(lb irr) lower CI bound for IRR
r(ub irr) upper CI bound for IRR
r(afe) AFE
r(lb afe) lower CI bound for AFE
r(ub afe) upper CI bound for AFE
r(afp) AFP
r(p lower midp) lower one-sided p-value with mid-p adjustment
r(p upper midp) upper one-sided p-value with mid-p adjustment
r(p twosided midp) two-sided p-value with mid-p adjustment
r(p lower exact) lower one-sided exact p-value
r(p upper exact) upper one-sided exact p-value
r(p twosided exact) two-sided exact p-value

ir, by() stores the following in r():
Scalars

r(irr) Mantel–Haenszel IRR, if option ird is not specified
r(lb irr) lower CI bound for Mantel–Haenszel IRR
r(ub irr) upper CI bound for Mantel–Haenszel IRR
r(ird) Mantel–Haenszel IRD, if option ird is specified
r(lb ird) lower CI bound for Mantel–Haenszel IRD
r(ub ird) upper CI bound for Mantel–Haenszel IRD
r(crude) crude IRR or, if option ird is specified, crude IRD
r(lb crude) lower CI bound for the crude IRR or IRD
r(ub crude) upper CI bound for the crude IRR or IRD
r(pooled) pooled IRR or, if option ird is specified, pooled IRD
r(lb pooled) lower CI bound for pooled IRR or IRD
r(ub pooled) upper CI bound for pooled IRR or IRD
r(df) degrees of freedom for homogeneity χ2 test
r(chi2 mh) Mantel–Haenszel homogeneity χ2

r(chi2 p) pooled homogeneity χ2, if option pool is specified
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cs and csi store the following in r():

Scalars
r(p) two-sided p-value
r(rd) risk difference
r(lb rd) lower CI bound for risk difference
r(ub rd) upper CI bound for risk difference
r(rr) risk ratio
r(lb rr) lower CI bound for risk ratio
r(ub rr) upper CI bound for risk ratio
r(or) odds ratio
r(lb or) lower CI bound for odds ratio
r(ub or) upper CI bound for odds ratio
r(afe) AFE
r(lb afe) lower CI bound for AFE
r(ub afe) upper CI bound for AFE
r(afp) AFP
r(crude) crude estimate (cs only)
r(lb crude) lower CI bound for crude estimate
r(ub crude) upper CI bound for crude estimate
r(pooled) pooled estimate (cs only)
r(lb pooled) lower CI bound for pooled estimate
r(ub pooled) upper CI bound for pooled estimate
r(chi2 mh) Mantel–Haenszel heterogeneity χ2 (cs only)
r(chi2 p) pooled heterogeneity χ2

r(df) degrees of freedom (cs only)
r(chi2) χ2

r(p exact) 2-sided Fisher’s exact p (exact only)
r(p1 exact) 1-sided Fisher’s exact p (exact only)

cc and cci store the following in r():

Scalars
r(p) two-sided p-value
r(p1 exact) one-sided p-value for Fisher’s exact test
r(p exact) two-sided p-value for Fisher’s exact test
r(or) odds ratio
r(lb or) lower CI bound for odds ratio
r(ub or) upper CI bound for odds ratio
r(afe) AFE
r(lb afe) lower CI bound for AFE
r(ub afe) upper CI bound for AFE
r(afp) AFP
r(crude) crude estimate (cc only)
r(lb crude) lower CI bound for crude estimate
r(ub crude) upper CI bound for crude estimate
r(pooled) pooled estimate (cc only)
r(lb pooled) lower CI bound for pooled estimate
r(ub pooled) upper CI bound for pooled estimate
r(chi2 p) pooled heterogeneity χ2

r(chi2 bd) Breslow–Day χ2

r(df bd) degrees of freedom for Breslow–Day χ2 test
r(chi2 t) Tarone χ2

r(df t) degrees of freedom for Tarone χ2 test
r(df) degrees of freedom
r(chi2) χ2
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tabodds stores the following in r():
Scalars

r(odds) odds
r(lb odds) lower CI bound for odds
r(ub odds) upper CI bound for odds
r(chi2 hom) χ2 for test of homogeneity
r(p hom) p-value for test of homogeneity
r(df hom) degrees of freedom for test of homogeneity
r(chi2 tr) χ2 for score test for trend
r(p trend) p-value for score test for trend

mhodds stores the following in r():
Scalars

r(p) two-sided p-value
r(or) odds ratio
r(lb or) lower CI bound for odds ratio
r(ub or) upper CI bound for odds ratio
r(chi2 hom) χ2 for test of homogeneity
r(df hom) degrees of freedom for test of homogeneity
r(chi2) χ2

Matrices
r(strata table) odds ratios for strata, if by() specified

mcc and mcci store the following in r():
Scalars

r(p exact) two-sided p-value for McNemar’s test
r(or) odds ratio
r(lb or) lower CI bound for odds ratio
r(ub or) upper CI bound for odds ratio
r(D f) difference in proportion with factor
r(lb D f) lower CI bound for difference in proportion
r(ub D f) upper CI bound for difference in proportion
r(R f) ratio of proportion with factor
r(lb R f) lower CI bound for ratio of proportion
r(ub R f) upper CI bound for ratio of proportion
r(RD f) relative difference in proportion with factor
r(lb RD f) lower CI bound for relative difference in proportion
r(ub RD f) upper CI bound for relative difference in proportion
r(chi2) χ2

Methods and formulas
The notation for incidence-rate data is

Exposed Unexposed Total

Cases a b M1

Person-time N1 N0 T

The notation for 2× 2 tables is

Exposed Unexposed Total

Cases a b M1

Controls c d M0

Total N1 N0 T
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The notation for 2× k tables is
Exposure level

1 2 . . . k Total
Cases a1 a2 . . . ak M1

Controls c1 c2 . . . ck M0

Total N1 N2 . . . Nk T

If the tables are stratified, all quantities are indexed by i, the stratum number.

We will refer to Fleiss, Levin, and Paik (2003); Kleinbaum, Kupper, and Morgenstern (1982); and
Rothman (1986) so often that we will adopt the notation F-23 to mean Fleiss, Levin, and Paik (2003)
page 23; KKM-52 to mean Kleinbaum, Kupper, and Morgenstern (1982) page 52; and R-164 to mean
Rothman (1986) page 164.

We usually avoid making the continuity corrections to χ2 statistics, following the advice of
KKM-292: “. . . the use of a continuity correction has been the subject of considerable debate in the
statistical literature . . . . On the basis of our evaluation of this debate and other evidence, we do
not recommend the use of the continuity correction.” Breslow and Day (1980, 133), on the other
hand, argue for inclusion of the correction, but not strongly. Their summary is that for small datasets,
one should use exact statistics. In practice, we believe that the adjustment makes little difference for
reasonably sized datasets.

Methods and formulas are presented under the following headings:
Unstratified incidence-rate data (ir and iri)
Unstratified cumulative incidence data (cs and csi)
Unstratified case–control data (cc and cci)
Unstratified matched case–control data (mcc and mcci)
Stratified incidence-rate data (ir with the by() option)
Stratified cumulative incidence data (cs with the by() option)
Stratified case–control data (cc with by() option, mhodds, tabodds)

Unstratified incidence-rate data (ir and iri)

The IRD is defined as Id = a/N1 − b/N0 (R-164). The standard error of the difference is
sId ≈

√
a/N2

1 + b/N2
0 (R-170), from which confidence intervals are calculated.

The IRR is defined as Ir = (a/N1)/(b/N0) (R-164). Let pl and pu be the exact confidence interval
of the binomial probability for observing a successes in M1 trials (obtained from cii proportions;
see [R] ci). The exact confidence interval for the incidence ratio is then (plN0)/{(1 − pl)N1} to
(puN0)/{(1− pu)N1} (R-166).

The AFE is defined as AFE = (Ir − 1)/Ir for Ir ≥ 1 (KKM-164; R-38); the confidence interval is
obtained by similarly transforming the interval values of Ir. The AFP is AFP = AFE ·a/M1 (KKM-161);
no confidence interval is reported. For Ir < 1, the PFE is defined as PFE = 1− Ir (KKM-166; R-39);
the confidence interval is obtained by similarly transforming the interval values of Ir. The PFP is
PFP = PFE ·N1/T (KKM-165); no confidence interval is reported.

Exact one-sided p-values are calculated as the binomial probabilities (with n =M1 and p = N1/T )
Pr(k ≤ a) and Pr(k ≥ a). Exact p-values tend to be overly conservative, so the mid-p adjustment
(R-155) reduces the exact p-values by subtracting half the probability of the observed result from each
one-sided p-value. That is, one-sided p-values with the mid-p adjustment are the binomial probabilities
Pr(k ≤ a)− Pr(k = a)/2 and Pr(k ≥ a)− Pr(k = a)/2. The two-sided p-value is twice the smallest
one-sided p-value for both the exact and mid-p-adjustment calculations. Rather than using twice the
smallest one-sided p-value for the two-sided p-value, there is an another formula for the two-sided
p-value that is sometimes used. The command bitest uses this alternative; see [R] bitest for details.

https://www.stata.com/manuals/rci.pdf#rci
https://www.stata.com/manuals/rbitest.pdf#rbitest
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Unstratified cumulative incidence data (cs and csi)

The risk difference is defined as Rd = a/N1 − b/N0 (R-164). Its standard error is

sRd
≈
{
ac

N3
1

+
bd

N3
0

}1/2

(R-172), from which confidence intervals are calculated.

The risk ratio is defined as Rr = (a/N1)/(b/N0) (R-165). The standard error of lnRr is

s lnRr
≈
(

c

aN1
+

d

bN0

)1/2

(R-173), from which confidence intervals are calculated.

For Rr ≥ 1, the AFE is calculated as AFE = (Rr − 1)/Rr (KKM-164; R-38); the confidence
interval is obtained by similarly transforming the interval values for Rr. The AFP is calculated as
AFP = AFE · a/M1 (KKM-161); no confidence interval is reported, but F-128 provides{

c+ (a+ d)AFP

bT

}1/2

as the approximate standard error of ln(1− AFP).

For Rr < 1, the PFE is calculated as PFE = 1− Rr (KKM-166; R-39); the confidence interval is
obtained by similarly transforming the interval values forRr. The PFP is calculated as PFP = PFE·N1/T ;
no confidence interval is reported.

The odds ratio, available with the or option, is defined as ψ = (ad)/(bc) (R-165). Several
confidence intervals are available. The default interval for cs and csi is the Cornfield (1956)
approximate interval. If we let zα be the index from a normal distribution for an α significance level,
the Cornfield interval (ψl, ψu) is calculated from

ψl = al(M0 −N1 + al)
/{

(N1 − al)(M1 − al)
}

ψu = au(M0 −N1 + au)
/{

(N1 − au)(M1 − au)
}

where au and al are determined iteratively from

ai+1 = a± zα
(

1

ai
+

1

N1 − ai
+

1

M1 − ai
+

1

M0 −N1 + ai

)−1/2

(Newman 2001, sec. 4.4). ai+1 converges to au using the plus sign and al using the minus sign. a0 is
taken as a. With small numbers, the iterative technique may fail. It is then restarted by decrementing
(al) or incrementing (au) a0. If that fails, a0 is again decremented or incremented and iterations
restarted, and so on, until a terminal condition is met (a0 < 0 or a0 > M1), at which point the value
is not calculated.

The Woolf odds-ratio confidence intervals are available with cs and csi. The Woolf method
(Woolf 1955; R-173; Schlesselman 1982, 176), available with the woolf option, estimates the
standard error of lnψ by

s lnψ =

(
1

a
+

1

b
+

1

c
+

1

d

)1/2
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from which confidence intervals are calculated. The Woolf interval cannot be calculated when there
exists a zero cell. Sometimes the Woolf interval is called the “logit interval” (Breslow and Day 1980,
134).

The χ2 statistic, reported by default, can be calculated as

χ2 =
(ad− bc)2T
M1M0N1N0

(Schlesselman 1982, 179).

Fisher’s exact test, available with the exact option, is calculated as described in [R] tabulate
twoway.

Unstratified case–control data (cc and cci)

cc and cci report by default the same odds ratio, ψ, that is available with the or option in cs and
csi. But cc and cci calculate the confidence interval differently: they default to the exact odds-ratio
interval, not the Cornfield interval, but you can request the Cornfield interval with the cornfield
option. The 1− α exact interval (R,R) is calculated from

α/2 =

∑min(N1,M1)
k=a

(
N1

k

)(
N0

M1−k
)
Rk∑min(N1,M1)

k=max(0,M1−N0)

(
N1

k

)(
N0

M1−k
)
Rk

and

1− α/2 =

∑min(N1,M1)
k=a+1

(
N1

k

)(
N0

M1−k
)
R
k∑min(N1,M1)

k=max(0,M1−N0)

(
N1

k

)(
N0

M1−k
)
R
k

(R-169). The equations invert two one-sided Fisher exact tests.

cc and cci also report the same tests of significance as cs and csi: the χ2 statistic is the default,
and Fisher’s exact test is obtained with the exact option. The odds ratio, ψ, is used as an estimate
of the risk ratio in calculating attributable or prevented fractions. For ψ ≥ 1, the AFE is calculated
as AFE = (ψ − 1)/ψ (KKM-164); the confidence interval is obtained by similarly transforming the
interval values for ψ. The AFP is calculated as AFP = AFE ·a/M1 (KKM-161). No confidence interval
is reported; however, F-152 provides (

a

M1b
+

c

M0d

)1/2

as the standard error of ln(1− AFP).

For ψ < 1, the PFE is calculated as PFE = 1 − ψ (KKM-166); the confidence inter-
val is obtained by similarly transforming the interval values for ψ. The PFP is calculated as
PFP = {(a/M1)PFE}/{(a/M1)PFE + ψ} (KKM-165); no confidence interval is reported.

https://www.stata.com/manuals/rtabulatetwoway.pdf#rtabulatetwoway
https://www.stata.com/manuals/rtabulatetwoway.pdf#rtabulatetwoway
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Unstratified matched case–control data (mcc and mcci)

Referring to the table at the beginning of Matched case–control data under Remarks and examples
above, the columns of the table indicate controls; the rows are cases. Each entry in the table reflects
a pair of a matched case and control.

McNemar’s (1947) χ2 is defined as

χ2 =
(b− c)2

b+ c

(KKM-389).

The proportion of controls with the factor is p1 = N1/T , and the proportion of cases with the
factor is p2 =M1/T .

The difference in the proportions is Pd = p2− p1. An estimate of its standard error when the two
underlying proportions are not hypothesized to be equal is

sPd
≈ {(a+ d)(b+ c) + 4bc}1/2

T 3/2

(F-378), from which confidence intervals are calculated. The confidence interval uses a continuity
correction (F-378, eq. 13.15).

The ratio of the proportions is Pr = p2/p1 (R-276, R-278). The standard error of lnPr is

s lnPr
≈
(
b+ c

M1N1

)1/2

(R-276), from which confidence intervals are calculated.

The relative difference in the proportions is Pe = (b− c)/(b+ d) (F-379). Its standard error is

sPe
≈ (b+ d)−2 {(b+ c+ d)(bc+ bd+ cd)− bcd}1/2

(F-379), from which confidence intervals are calculated.

The odds ratio is ψ = b/c (F-376), and the exact Fisher confidence interval is obtained by
transforming into odds ratios the exact binomial confidence interval for the binomial parameter from
observing b successes in b + c trials (R-264). Binomial confidence limits are obtained from cii
proportions (see [R] ci) and are transformed by p/(1− p).

The exact McNemar significance probability is a two-tailed exact test of H0 : ψ = 1. The p-value,
calculated from the binomial distribution, is

min

1, 2

min(b,c)∑
k=0

(
b+ c

k

)(
1

2

)b+c
(Agresti 2013, 416).� �

Quinn McNemar (1900–1986) was born in West Virginia and attended college there and in
Pennsylvania. After a brief spell of high school teaching, he began graduate study of psychology
at Stanford and then joined the faculty. McNemar’s text Psychological Statistics, first published
in 1949, was widely influential, and he made many substantive and methodological contributions
to the application of statistics in psychology.� �

https://www.stata.com/manuals/rci.pdf#rci
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Stratified incidence-rate data (ir with the by() option)

Statistics presented for each stratum are calculated independently according to the formulas in
Unstratified incidence-rate data (ir and iri) above. Within strata, the Mantel–Haenszel style weight is
Wi = biN1i/Ti, and the Mantel–Haenszel combined incidence-rate ratio (Rothman and Boice 1982)
is

Imh =

∑
i aiN0i/Ti∑

iWi

(R-196). The standard error for the log of the incidence-rate ratio was derived by Greenland and
Robins (1985, 63) and appears in R-213:

s lnImh
≈

{ ∑
iM1iN1iN0i/T

2
i(∑

i aiN0i/Ti
)(∑

i biN1i/Ti
)}1/2

The confidence interval is calculated first on the log scale and then is transformed.

For standardized rates, let wi be the user-specified weight within stratum i. The standardized rate
difference (the ird option) and rate ratio are defined as

SRD =

∑
i wi(R1i −R0i)∑

i wi

SRR =

∑
i wiR1i∑
i wiR0i

(R-229). The standard error of SRD is

sSRD ≈

{
1

(
∑
i wi)

2

∑
i

w2
i

(
ai
N2

1i

+
bi
N2

0i

)}1/2

(R-231), from which confidence intervals are calculated. The standard error of ln(SRR) is

s ln(SRR) ≈
{∑

i w
2
i ai/N

2
1i

(
∑
i wiR1i)2

+

∑
i w

2
i bi/N

2
0i

(
∑
i wiR0i)2

}1/2

(R-231), from which confidence intervals are calculated.

Internally and externally standardized measures are calculated using wi = N1i and wi = N0i,
respectively, and are obtained with the istandard and estandard options, respectively.

Directly pooled estimates are available with the pool option. The directly pooled estimate is a
weighted average of stratum-specific estimates; each weight, wi, is inversely proportional to the
variance of the estimate for stratum i. The variances for rate differences come from the formulas in
Unstratified incidence-rate data (ir and iri), while the variances of log rate-ratios are estimated by
(1/ai+1/bi) (R-184). Ratios are averaged in the log scale before being exponentiated. The standard
error of the directly pooled estimate is calculated as 1/

√∑
wi, from which confidence intervals are

calculated (R-183–185); the calculation for ratios again uses the log scale.

For rate differences, the χ2 test of homogeneity is calculated as
∑

(Rdi− R̂d)2/var(Rdi), where
Rdi are the stratum-specific rate differences and R̂d is the directly pooled estimate. The number of
degrees of freedom is one less than the number of strata (R-222).

For rate ratios, the same calculation is made, except that it is made on a logarithmic scale
using ln(Rri) (R-222), and ln(R̂d) may be the log of either the directly pooled estimate or the
Mantel–Haenszel estimate.
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Stratified cumulative incidence data (cs with the by() option)

Statistics presented for each stratum are calculated independently according to the formulas in
Unstratified cumulative incidence data (cs and csi) above. The Mantel–Haenszel χ2 test (Mantel and
Haenszel 1959) is

χ2
mh =

{∑
i(ai −N1iM1i/Ti)

}2∑
i(N1iN0iM1iM0i)/

{
T 2
i (Ti − 1)

}
(R-206).

For the odds ratio (available with the or option), the Mantel–Haenszel weight is Wi = bici/Ti,
and the combined odds ratio (Mantel and Haenszel 1959) is

ψmh =

∑
i aidi/Ti∑
iWi

(R-195). The standard error (Robins, Breslow, and Greenland 1986) is

s lnψmh
≈

{ ∑
i PiRi

2
(∑

iRi
)2 +

∑
i PiSi +QiRi

2
∑
iRi

∑
i Si

+

∑
iQiSi

2
(∑

i Si
)2
}1/2

where
Pi = (ai + di)/Ti

Qi = (bi + ci)/Ti

Ri = aidi/Ti

Si = bici/Ti

(R-220).

For the risk ratio (the default), the Mantel–Haenszel-style weight is Wi = biN1i/Ti, and the
combined risk ratio (Rothman and Boice 1982) is

Rmh =

∑
i aiN0i/Ti∑

iWi

(R-196). The standard error (Greenland and Robins 1985) is

s lnRmh
≈

{∑
i(M1iN1iN0i − aibiTi)/T 2

i(∑
i aiN0i/Ti

)(∑
i biN1i/Ti

)}1/2

(R-216), from which confidence intervals are calculated.

For standardized rates, let wi be the user-specified weight within stratum i. The standardized
rate difference (SRD, the rd option) and rate ratios (SRR, the default) are defined as in Stratified
incidence-rate data (ir with the by() option), where the individual risks are defined R1i = ai/N1i

and R0i = bi/N0i. The standard error of SRD is

sSRD ≈

[
1

(
∑
i wi)

2

∑
i

w2
i

{
ai(N1i − ai)

N3
1i

+
bi(N0i − bi)

N3
0i

}]1/2
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(R-231), from which confidence intervals are calculated. The standard error of ln(SRR) is

s ln(SRR) ≈
{∑

i w
2
i ai(N1i − ai)/N3

1i

(
∑
i wiR1i)2

+

∑
i w

2
i bi(N0i − bi)/N3

0i

(
∑
i wiR0i)2

}1/2

(R-231), from which confidence intervals are calculated.

Internally and externally standardized measures are calculated using wi = N1i and wi = N0i,
respectively, and are obtained with the istandard and estandard options, respectively.

Directly pooled estimates of the odds ratio are available when you specify both the pool and or
options. The directly pooled estimate is a weighted average of stratum-specific log odds-ratios; each
weight, wi, is inversely proportional to the variance of the log odds-ratio for stratum i. The variances
of the log odds-ratios are estimated by Woolf’s method, described under Unstratified cumulative
incidence data (cs and csi). The standard error of the directly pooled log odds-ratio is calculated
as 1/

√∑
wi, from which confidence intervals are calculated and then exponentiated (Kahn and

Sempos 1989, 113–115).

Direct pooling is also available for risk ratios and risk differences; the variance formulas may be
found in Unstratified cumulative incidence data (cs and csi). The directly pooled risk ratio is provided
when the pool option is specified. The directly pooled risk difference is provided only when you
specify the pool and rd options, and one of the estandard, istandard, and standard() options.

For risk differences, the χ2 test of homogeneity is calculated as
∑

(Rdi− R̂d)2/var(Rdi), where
Rdi are the stratum-specific risk differences and R̂d is the directly pooled estimate. The number of
degrees of freedom is one less than the number of strata (R-222).

For risk and odds ratios, the same calculation is made, except that it is made in the log scale using
ln(Rri) or ln(ψi) (R-222), and ln(R̂d) may be the log of either the directly pooled estimate or the
Mantel–Haenszel estimate.

Stratified case–control data (cc with by() option, mhodds, tabodds)

Statistics presented for each stratum are calculated independently according to the formulas in
Unstratified cumulative incidence data (cs and csi) above. The combined odds ratio, ψmh, and the
test that ψmh = 1 (χ2

mh) are calculated as described in Stratified cumulative incidence data (cs with
the by() option) above.

For standardized weights, let wi be the user-specified weight within stratum i. The standardized
odds ratio (the standard() option) is calculated as

SOR =

∑
i wiai/ci∑
i wibi/di

(Greenland 1986, 473). The standard error of ln(SOR) is

s ln(SOR) =

{∑
i(wiai/ci)

2( 1
ai

+ 1
bi

+ 1
ci

+ 1
di
)(∑

i wiai/ci
)2

}1/2

from which confidence intervals are calculated. The internally and externally standardized odds ratios
are calculated using wi = ci and wi = di, respectively.
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The directly pooled estimate of the odds ratio (the pool option) is calculated as described in
Stratified cumulative incidence data (cs with the by() option) above.

The directly pooled and Mantel–Haenszel χ2 tests of homogeneity are calculated as
∑{

ln(Rri)−
ln(R̂r)

}2
/var

{
ln(Rri)

}
, where Rri are the stratum-specific odds ratios and R̂r is the pooled estimate

(Mantel–Haenszel or directly pooled). The number of degrees of freedom is one less than the number
of strata (R-222).

The Breslow–Day χ2 test of homogeneity is available with the bd option. Let ψ̂ be the Mantel–
Haenszel estimate of the common odds ratio, and let Ai(ψ̂) be the fitted count for cell a; Ai(ψ̂) is
found by solving the quadratic equation

A(M0 −N1 +A) = (ψ̂)(M1 −A)(N1 −A)

and choosing the root that makes all cells in stratum i positive. Let Var(ai; ψ̂) be the estimated
variance of ai conditioned on the margins and on an odds ratio of ψ̂:

Var(ai; ψ̂) =

{
1

Ai(ψ̂)
+

1

M1i −Ai(ψ̂)
+

1

N1i −Ai(ψ̂)
+

1

M0i −N1i +Ai(ψ̂)

}−1

The Breslow–Day χ2 statistic is then ∑
i

{ai −Ai(ψ̂)}2

Var(ai; ψ̂)

The Tarone χ2 test of homogeneity (the tarone option) is calculated as∑
i

{ai −Ai(ψ̂)}2

Var(ai; ψ̂)
−
{
∑
i ai −

∑
iAi(ψ̂)}2∑

iVar(ai; ψ̂)

Tarone (1985) provides this correction to the Breslow–Day statistic to ensure that its distribution
is asymptotically χ2. Without the correction, the Breslow–Day statistic does not necessarily follow
a χ2 distribution because it is based on the Mantel–Haenszel estimate, ψ̂, which is an inefficient
estimator of the common odds ratio.

When the exposure variable has multiple levels, mhodds calculates an approximate estimate of
the log odds-ratio for a one-unit increase in exposure as the ratio of the score statistic, U , to its
variance, V (Clayton and Hills 1993, 103), which are defined below. This is a one-step Newton-
Raphson approximation to the maximum likelihood estimate. Within-stratum estimates are combined
with Mantel–Haenszel weights.

By default, both tabodds and mhodds produce test statistics and confidence intervals based on
score statistics (Clayton and Hills 1993). tabodds reports confidence intervals for the odds of the
ith exposure level, unless the adjust() or or option is specified. The confidence interval for oddsi,
i = 1, . . . , k, is given by

oddsi · exp
(
±z
√
1/ai + 1/ci

)
The score χ2 test of homogeneity of odds is calculated as

χ2
k−1 =

T (T − 1)

M1M0

k∑
i=1

(ai − Ei)2

Ni

where Ei = (M1Ni)/T .



Epitab — Tables for epidemiologists 61

Let li denote the value of the exposure at the ith level. The score χ2 test for trend of odds is
calculated as

χ2
1 =

U2

V

where

U =
M1M0

T

( k∑
i=1

aili
M1
−

k∑
i=1

cili
M0

)
and

V =
M1M0

T

{∑k
i=1Nil

2
i − (

∑k
i=1Nili)

2/T

T − 1

}
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John Snow (1813–1858) was born in York, England. From age 14, he worked as an apprentice
and assistant to surgeons in northeast England and Yorkshire. In 1836, Snow moved to London;
he was admitted to the Royal College of Surgeons in 1838 and the Royal College of Physicians
in 1850. He made outstanding contributions to the adoption of anesthesia and is considered one
of the originators of modern epidemiology. Snow died following a stroke in 1858.

Snow calculated dosages for ether and chloroform. He personally administered chloroform to
Queen Victoria for the births of her last two children, which helped obstetric anesthesia gain
wider acceptance.

Snow was skeptical of the miasma theory that cholera was caused by foul air. His essay On
the Mode of Communication of Cholera was first published in 1849 and then greatly enlarged
in 1855 with the results of his very detailed investigation of the role of water supply in the
epidemic of 1854 in the Soho district of London. Snow identified the source of the outbreak
as the public water pump on Broad Street (now Broadwick Street), leading the local council
to remove the pump handle. It was later discovered that the well had been dug very close to
an old cesspit. He also mapped the clustering of cholera cases around the pump and related
mortality to water sources, clearly showing higher deathrates in areas supplied by the Southwark
and Vauxhall Waterworks Company, which was taking water from sewage-polluted sections of
the River Thames. Snow is widely regarded as a pioneer in public health, epidemiology, and
medical geography.� �

� �
Janet Elizabeth Lane-Claypon (1877–1967) was a pioneer in the use of cohort and case–control
studies. She was born in Lincolnshire county, England, and began her studies at the London
School of Medicine for Women in 1898. From 1907 to 1912, she was at the Lister Institute of
Preventive Medicine, where she was a colleague of Major Greenwood. By the end of her studies,
she had obtained a doctorate in both physiology and medicine.

In 1912, Lane-Claypon published one of the first retrospective cohort studies, examining the
weight gain of babies fed cow’s milk versus babies fed breast milk. Using statistical techniques,
she determined that babies fed breast milk gained weight faster; she later employed that knowledge
to become a public health advocate for breast feeding.

She also conducted one of the first case–control studies, examining risk factors associated with
breast cancer. Her study included 500 women without breast cancer and 500 women with breast
cancer. To obtain what was at the time a remarkably large sample, she coordinated data collection
from nine different hospitals. Carefully controlling for variables including occupation and infant
mortality, she determined that factors like age at first pregnancy, age at menopause, and number
of children all influence the incidence of breast cancer; these factors are still considered to be
among the prime determinants.

In conjunction with the Ministry of Health, in 1926 Lane-Claypon published one of the first
studies to contain long-term follow-up results. In that study, she followed patients who had
undergone surgery for breast cancer for up to 10 years after the operation. As is still the case
today, her study showed that the sooner the cancer was treated, the better the woman’s chance
for long-term survival. Notably, her study was also among the first to consider survivorship bias.� �

https://www.stata.com/giftshop/bookmarks/series8/snow/
https://www.stata.com/giftshop/bookmarks/series5/claypon/
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