
Title stata.com

trace — Debug Stata programs

Description Syntax Options Remarks and examples Also see

Description
set trace on traces the execution of programs for debugging. set trace off turns off tracing

after it has been set on.

set tracedepth specifies how many levels to descend in tracing nested programs. The default
is 32000, which is equivalent to ∞.

set traceexpand indicates whether the lines before and after macro expansion are to be shown.
The default is on.

set tracesep indicates whether to display a horizontal separator line that displays the name of
the subroutine whenever a subroutine is entered or exited. The default is on.

set traceindent indicates whether displayed lines of code should be indented according to the
nesting level. The default is on.

set tracenumber indicates whether the nesting level should be displayed at the beginning of
the line. Lines in the main program are preceded with 01; lines in subroutines called by the main
program, with 02; etc. The default is off.

set tracehilite causes the specified pattern to be highlighted in the trace output.

Syntax
Whether to trace execution of programs

set trace
{
on | off

}
Show # levels in tracing nested programs

set tracedepth #

Whether to show the lines after macro expansion

set traceexpand
{
on | off

} [
, permanently

]
Whether to display horizontal separator lines

set tracesep
{
on | off

} [
, permanently

]
Whether to indent lines according to nesting level

set traceindent
{
on | off

} [
, permanently

]

1

http://stata.com


2 trace — Debug Stata programs

Whether to display nesting level

set tracenumber
{
on | off

} [
, permanently

]
Highlight pattern in trace output

set tracehilite "pattern"
[
, word

]
Options

permanently specifies that, in addition to making the change right now, the traceexpand, tracesep,
traceindent, and tracenumber settings be remembered and become the default settings when
you invoke Stata.

word highlights only tokens that are delimited by nonalphanumeric characters. These would include
tokens at the beginning or end of each line that are delimited by nonalphanumeric characters.

Remarks and examples stata.com

The set trace commands are extremely useful for debugging your programs.

Example 1

Stata does not normally display the lines of your program as it executes them. With set trace
on, however, it does:

. program list simple

simple:
1. args msg
2. if ‘"‘msg’"’=="hello" {
3. display "you said hello"
4. }
5. else display "you did not say hello"
6. display "good-bye"

. set trace on

. simple
begin simple

- args msg
- if ‘"‘msg’"’=="hello" {
= if ‘""’=="hello" {

display "you said hello"
}

- else display "you did not say hello"
you did not say hello

- display "good-bye"
good-bye

end simple

. set trace off

Lines that are executed are preceded by a dash. The line is shown before macro expansion, just as
it was coded. If the line has any macros, it is shown again, this time preceded by an equal sign and
with the macro expanded, showing the line exactly as Stata sees it.

In our simple example, Stata substituted nothing for ‘msg’, as we can see by looking at the
macro-expanded line. Because nothing is not equal to “hello”, Stata skipped the display of “you said
hello”, so a dash did not precede this line.

http://stata.com


trace — Debug Stata programs 3

Stata then executed lines 5 and 6. (They are not reshown preceded by an equal sign because they
contained no macros.)

To suppress the printing of the macro-expanded lines, type set traceexpand off.

To suppress the printing of the trace separator lines,

begin simple

end simple

type set tracesep off.

The output from our program is interspersed with the lines that caused the output. This can be
greatly useful when our program has an error. For instance, we have written a more useful program
called myprog. Here is what happens when we run it:

. myprog mpg, prefix("new")
invalid syntax
r(198);

We did not expect this, and, look as we will at our program code, we cannot spot the error. Our
program contains many lines of code, however, so we have no idea even where to look. By setting
trace on, we can quickly find the error:

. set trace on

. myprog mpg, prefix("new")
begin myprog

- version 18.0 // (or version 18.5 for StataNow)
- syntax varname, [Prefix(string)]
- local newname "‘prefix’‘varname’
= local newname "new

invalid syntax
end myprog

r(198);

The error was close to the top—we omitted the closing quote in the definition of the local newname
macro.

Technical note
If you are looking for a command similar to set trace for use in Mata, see mata set matalnum

in [M-3] mata set.

Example 2

set tracedepth, set tracesep, set traceindent, and set tracenumber are useful when
debugging nested programs. Imagine that we have a program called myprog1, which calls myprog2,
which then calls a modified version of our simple program from example 1.

With the default settings, we get:

. program list _all

simple2:
1. args msg
2. if ‘"‘msg’"’=="hello" {
3. display "you said hello"
4. }

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(198)
https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(198)
https://www.stata.com/manuals/m-3mataset.pdf#m-3mataset


4 trace — Debug Stata programs

5. else {
6. display "you did not say hello"
7. }

myprog2:
1. args msg
2. simple2 ‘"‘msg’"’
3. display "good"

myprog1:
1. args msg
2. myprog2 ‘"‘msg’"’
3. display "bye"

. set trace on

. myprog1 hello
begin myprog1

- args msg
- myprog2 ‘"‘msg’"’
= myprog2 ‘"hello"’

begin myprog2
- args msg
- simple2 ‘"‘msg’"’
= simple2 ‘"hello"’

begin simple2
- args msg
- if ‘"‘msg’"’=="hello" {
= if ‘"hello"’=="hello" {
- display "you said hello"

you said hello
- }
- else {

display "you did not say hello"
}

end simple2
- display "good"

good
end myprog2

- display "bye"
bye

end myprog1

. set trace off

To see the nesting level for each line, you could use set tracenumber on.
. set trace on

. set tracenumber on

. myprog1 hello
begin myprog1

01 - args msg
01 - myprog2 ‘"‘msg’"’

= myprog2 ‘"hello"’
begin myprog2

02 - args msg
02 - simple2 ‘"‘msg’"’

= simple2 ‘"hello"’
begin simple2

03 - args msg
03 - if ‘"‘msg’"’=="hello" {

= if ‘"hello"’=="hello" {
03 - display "you said hello"
you said hello
03 - }
03 - else {



trace — Debug Stata programs 5

03 display "you did not say hello"
03 }

end simple2
02 - display "good"
good

end myprog2
01 - display "bye"
bye

end myprog1

. set tracenumber off

. set trace off

If you are interested only in seeing a trace of the first two nesting levels, you could set
tracedepth 2.

. set trace on

. set tracedepth 2

. myprog1 hello
begin myprog1

- args msg
- myprog2 ‘"‘msg’"’
= myprog2 ‘"hello"’

begin myprog2
- args msg
- simple2 ‘"‘msg’"’
= simple2 ‘"hello"’

you said hello
- display "good"

good
end myprog2

- display "bye"
bye

end myprog1

. set tracedepth 32000

. set trace off

By setting tracedepth to 2, the trace of simple2 is not shown.

Finally, if you did not want each nested level to be indented in the trace output, you could set
traceindent off.

. set trace on

. set traceindent off

. myprog1 hello
begin myprog1

- args msg
- myprog2 ‘"‘msg’"’
= myprog2 ‘"hello"’

begin myprog2
- args msg
- simple2 ‘"‘msg’"’
= simple2 ‘"hello"’

begin simple2
- args msg
- if ‘"‘msg’"’=="hello" {
= if ‘"hello"’=="hello" {
- display "you said hello"
you said hello
- }
- else {



6 trace — Debug Stata programs

display "you did not say hello"
}

end simple2
- display "good"
good

end myprog2
- display "bye"
bye

end myprog1

. set traceindent on

. set trace off

� �
Grace Murray Hopper (1906–1992) was a mathematician, computer scientist, and programmer.
She was born in New York City and received a BA in mathematics and physics from Vassar
College. Hopper went on to teach at Vassar while earning an MA and a PhD in mathematics
from Yale. She joined the Navy during World War II and remained in the Naval Reserve during
a long career in academia and private industry. In 1967, she was recalled to active duty to direct
the Navy’s Programming Languages Group.

Hopper is best known for developing the first compiler. She also worked extensively to develop
programming languages and effective programming techniques. Known as “Grandma COBOL”,
Hopper led a team that developed some of the first compiler-based programming languages
during the 1950s, work that would lead to the development of COBOL. Hopper is also credited
with coining the term “debugging” after her team removed a moth from the Mark II computer
she was testing. The moth is still on display at the U.S. Naval Surface Warfare Center Museum.

Among many honors, Hopper was awarded the first ever “computer sciences man of the year”
award in 1969. She was the first person from the United States and the first woman to become a
Distinguished Fellow of the British Computer Society. She also received the National Medal of
Technology and IEEE Emanuel R. Piore Award. In 1997, the U.S. Navy commissioned the USS
Hopper in her honor.� �

Also see
[P] program — Define and manipulate programs

[R] query — Display system parameters

[R] set — Overview of system parameters

[U] 18 Programming Stata

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp
LLC. Other brand and product names are registered trademarks or trademarks of their
respective companies. Copyright c© 1985–2023 StataCorp LLC, College Station, TX,
USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/rquery.pdf#rquery
https://www.stata.com/manuals/rset.pdf#rset
https://www.stata.com/manuals/u18.pdf#u18ProgrammingStata
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

