
Title stata.com

Java integration — Java integration for Stata

Description Syntax Option Remarks and examples Also see

Description
java creates an instance of a Java environment for executing Java code within Stata. In this

environment, Java code does not need to be compiled or bundled into a Java Archive (JAR) file. This
allows Java code to be executed interactively, in do-files, and in ado-files. Stata’s datasets, matrices,
macros, scalars, and more can be accessed using the Java-Stata API Specification.

java
[
:
]

creates a Java environment in which Java code can be executed in a Read-Evaluate-
Print-Loop environment, similar to JShell in Java 9 and later versions.

java: istmt executes one Java simple statement or several simple statements separated by semi-
colons.

java clear clears all instances of the Java environment. This means that the global environment
and all environments associated with ado-files will be destroyed.

Syntax
Syntax is presented under the following headings:

Calling Java from Stata
Instance commands

Calling Java from Stata

Enter Java environment

java
[

varlist
] [

if
] [

in
] [

, shared(keyname)
] [

:
]

Execute Java simple statements

java
[

varlist
] [

if
] [

in
] [

, shared(keyname)
]
: istmt

Clear all instances of the Java environment

java clear

A colon (:) tells the Java instances to exit the interactive mode if an error is encountered.

istmt is either one Java simple statement or several simple statements separated by semicolons.

1

http://stata.com
https://www.stata.com/java/api18
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange

2 Java integration — Java integration for Stata

Instance commands
The following commands can be issued inside the Java environment:

Exit the Java session

end

Show help information about the rest of the Java instance commands

/help

Set or display the class-path for the environment. When called without an argument, the current
class-path will be displayed. The class-path must be set before calling anything depending on it;
otherwise, you must call /reset.

/cp
[

jar file | path
]

Read a Java file, and execute the source in Stata’s Java environment

/open file | path

Show all imported packages

/imports

Reset the instance as if it were completely new

/reset

Show all active and inactive variables

/vars

Show all method declarations and unresolved references if they exist

/methods

Show all type declarations and unresolved references if they exist

/types

Show all source snippets given in the current Java environment

/list

Option

shared(keyname) specifies that a shareable instance of Java, named keyname, be invoked. This
allows you to share an instance across ado-files. keyname must be a valid Stata name.

Java integration — Java integration for Stata 3

Remarks and examples stata.com

Remarks are presented under the following headings:
How the environment works
Invoking Java interactively
Executing Java in a do-file
Executing Java in an ado-file
Executing Java files
Stata Function Interface examples
Using JAR dependencies

How the environment works
java provides utilities for integrating Java with Stata. java creates an instance of the Java

environment that allows you to execute Java code interactively or in do-files and ado-files.

The java environment has different behavior based on how it is used. When used interactively
or in do-files, class definitions and instance variables share a global instance of the environment.
So a class defined in a do-file can also be referenced interactively or from another do-file. On the
other hand, class definitions and instance variables that are defined in ado-files get their own unique
instance of the environment by default. The shared() option can be used to override that default
behavior. By limiting the scope of the environment associated with ado-files, you can make each
ado-file behave autonomously without worry of class definitions and instance variables colliding in
other ado-files.

Each java environment automatically imports java.util.*, java.io.*, com.stata.sfi.*,
and com.stata.sfi.util* when initialized. Other packages can be imported in the usual way by
using import statements in your code.

For information on Java versions supported by this integration, see [P] Java utilities.

Invoking Java interactively

To invoke Java interactively, you must type either java or java:. Including a colon tells the Java
instances to exit the interactive mode if an error is encountered.

When you execute single statements, a semicolon at the end of the statement is optional. When
you execute multiple or complex statements, semicolons are required to delimit the statements.

Below, we demonstrate the two syntaxes:
. java

java (type end to exit and /help for help)
java> int x = 1
x ==> 1

java> int y = 2; x + y;
y ==> 2
$1 ==> 3

java> end

You may have noticed $1 ==> 3 in the output. When you execute a statement that returns some
value without assigning it to a result, it will store the value in a temporary variable for you. You can
access those variables by their names, for example, int z = $1 + 2.

To exit your interactive session, type end. This will exit your session; however, it will not get rid
of your work. If you go back into Java, you will be able to access your work. Let’s try going back
into our environment and looking at the variables we have set.

http://stata.com
https://www.stata.com/manuals/pjavautilities.pdf#pJavautilities

4 Java integration — Java integration for Stata

. java
java (type end to exit and /help for help)

java> /vars
| int x = 1
| int y = 2
| int $1 = 3

java> end

You can also enter interactive mode for a single statement with the syntax java: istmt, for example,
java: /vars.

If you wish to reset your environment, you can type java: /reset to reset that instance.
Alternatively, you can type java clear to clear all Java instances you have, including the ones in
ado-files you may have loaded.

Executing Java in a do-file

Java code and Stata code can be executed in the same do-file. To do this, wrap your Java code in
java

[
:
]

and end, similar to Python and Mata.

For example, we have the following do-file that calculates the mean of two Stata macros:
begin java_ex1.do

local x = 10
local y = 2

java:
double mean = (‘x’ + ‘y’) / 2;
Macro.setLocal("mean", String.valueOf(mean));

end

di ‘mean’
end java_ex1.do

First, we define two local macros in Stata, x and y. Inside the Java block, we do basic arithmetic
to compute the mean of the two local macros. Then, we use the Stata Function Interface package to
set the value of the new mean macro in Stata. Macro substitution is a convenient way to pass values
from Stata to Java.

Below, we run this do-file:
. do java_ex1

. local x = 10

. local y = 2

. java:
java (type end to exit and /help for help)

java> double mean = (‘x’ + ‘y’)/2;
mean ==> 6.0

java> Macro.setLocal("mean", String.valueOf(mean));
$2 ==> 0

java> end

. di ‘mean’
6

.
end of do-file

Executing Java in do-files uses the same Java instance as the Command window. We call this the
global instance. That means anything you do in this do-file will carry over to the Command window
and other do-files.

https://www.stata.com/java/api18/com/stata/sfi/package-summary.html

Java integration — Java integration for Stata 5

Executing Java in an ado-file

Unlike do-files, ado-files will get their own instance of Java. This means that anything you do
with Java in an ado-file is bound to it by default. However, if you use the shared() option, you
will be able to access the same instance across multiple ado-files.

Java blocks may be placed in an ado-file but must be placed outside the ado program itself.
Functions defined in the java block may be called from the ado-file using the java: istmt syntax.

For example, we have the following ado-file that prints the value of x:

begin java_program.ado
program java_program

version 18.0 // (or version 18.5 for StataNow)
java: printX();

end

java:
int x = 123;
void printX() {

System.out.println("x: " + x);
}
end

end java_program.ado

To run this program in Stata, we simply type

. java_program
x: 123

After running java program.ado, if we type java: x in the Command window, we will not
see a value of 123. This is because x is defined only in the context of the ado-file it was defined in.
If you ran the example shown in Invoking Java interactively, then x would be 1; otherwise, it will
not be defined.

Executing Java files

Executing Java files in Stata is a little bit different from the traditional way, in which you would
normally include dependencies and have a single entry point. With the Java integration, we allow you
to run any Java file as if it were passed in line by line into the environment; Stata will search along
the ado-path for the specified file. This could mean you simply define classes to use, or you could
even set up a dependency in your class-path and do real work in your Java file.

Let’s take this example that defines a class called Addition, which takes two arguments in its
constructor and can return the sum of the two.

https://www.stata.com/manuals/psysdir.pdf#psysdir

6 Java integration — Java integration for Stata

begin Addition.java
class Addition {

int x, y;

public Addition(int x, int y) {
this.x = x;
this.y = y;

}

public int result() {
return x + y;

}

@Override
public String toString() {

return "Addition{" +
"x=" + x +
", y=" + y +
’}’;

}

}
end Addition.java

Below, we will open and use our new class:

. java:
java (type end to exit and /help for help)

java> /open Addition.java

java> Addition addition = new Addition(4, 6);
addition ==> Addition{x=4, y=6}

java> int sum = addition.result();
sum ==> 10

java> end

Notice that the Addition class was declared in the file, but by running this file with /open, we
declare it in whatever scope calls it. In our case, running /open in the Command window results in
the Addition class being defined in the global instance.

Stata Function Interface examples

Integrating Java code with Stata requires use of the Java-Stata API Specification. This package
provides tools to interact with Stata’s datasets, matrices, macros, scalars, and more.

https://www.stata.com/java/api18

Java integration — Java integration for Stata 7

For example, if we want to print a list of all the variables in Stata in auto.dta, we can type

. sysuse auto, clear
(1978 automobile data)

. java:
java (type end to exit and /help for help)

java> int parsedVariables = Data.getParsedVarCount();
parsedVariables ==> 12

java> for (int v = 1; v <= parsedVariables; v++) {
...> /* Get the real index of parsed vars for varlist support */
...> int varIndex = Data.mapParsedVarIndex(v);
...> System.out.println(Data.getVarName(varIndex));
...> }

make
price
mpg
rep78
headroom
trunk
weight
length
turn
displacement
gear_ratio
foreign

java> end

To interpret varlist, if, and in qualifiers, we can make use of a few notable functions in the
com.stata.sfi.Data class.

To interpret varlist, we must first get a count of the variables set to be used in the environ-
ment. For this, we use Data.getParsedVarCount(). From there, we create an association between
variables 1 through N in the environment and their location in the dataset as a whole. We can
use Data.mapParsedVarIndex(v), with v being the 1-based index starting with the first vari-
able you passed into the environment with varlist. For example, if you call java mpg price:,
Data.mapParsedVarIndex(1) will return the index in the dataset where the mpg variable is located,
which would be 3. Alternatively, Data.mapParsedVarIndex(2) will return the index in the dataset
where the price variable is located, which would be 2. We need this function because any of the
functions in com.stata.sfi.Data that take an index as an argument refer to the entire dataset. For
example:

. java mpg price:
java (type end to exit and /help for help)

java> int parsedVariables = Data.getParsedVarCount();
parsedVariables ==> 2

java> for (int v = 1; v <= parsedVariables; v++) {
...> int varIndex = Data.mapParsedVarIndex(v);
...> SFIToolkit.displayln(Data.getVarName(varIndex));
...> }

mpg
price

java> end

8 Java integration — Java integration for Stata

To interpret if, use the Data.isParsedIfTrue(int obs) method. If it returns false, you should
not process the observation.

To interpret in, use the Data.getObsParsedIn1() and Data.getObsParsedIn2() methods.
For example, if you type java in 10/50:, then the return values of Data.getObsParsedIn1()
and Data.getObsParsedIn2() will be 10 and 50, respectively. From there, you can set up a loop
to iterate over only those observations, like so:

. sysuse auto, clear

. java in 1/50:
java> long obsStart = Data.getObsParsedIn1();
java> long obsEnd = Data.getObsParsedIn2();
java> for (long i = obsStart; i <= obsEnd; i++) {
...> ...
...> }

java> end

Using JAR dependencies

To set up dependencies in the environment’s class-path, you will use the /cp instance command.
Say you have a JAR file named myjar.jar in your ado-path. You can run the instance command
/cp myjar.jar to include it in the class-path. After you include it, you may run code that uses
that dependency. There is one caveat. If you try to run code that uses the dependency before adding
it to the class-path, the class loader will try to load your nonexistent dependency and will require
a /reset to reload it. Alternatively, you may provide an absolute path or a path relative to your
current Stata working directory to search for dependencies.

Technical note

Note that the Stata version statement affects only the Stata command interpreter and does not
affect the execution or behavior of the Java Virtual Machine.

Also see
[P] Java intro — Introduction to Java in Stata

[P] Java plugin — Introduction to Java plugins

[P] Java utilities — Java utilities

[P] javacall — Call a Java plugin

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp
LLC. Other brand and product names are registered trademarks or trademarks of their
respective companies. Copyright c© 1985–2023 StataCorp LLC, College Station, TX,
USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/pversion.pdf#pversion
https://www.stata.com/manuals/pjavaintro.pdf#pJavaintro
https://www.stata.com/manuals/pjavaplugin.pdf#pJavaplugin
https://www.stata.com/manuals/pjavautilities.pdf#pJavautilities
https://www.stata.com/manuals/pjavacall.pdf#pjavacall
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

