Postestimation commands
manovatest
Stored results
predict
test
Methods and formulas
margins
Remarks and examples
Also see

Postestimation commands

The following postestimation commands are of special interest after manova:

Command	Description
manovatest	multivariate tests after manova
screeplot	plot eigenvalues

The following standard postestimation commands are also available:

Command	Description
contrast	contrasts and ANOVA-style joint tests of estimates
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE) cataloging estimation results
estimates	table of estimation results etable point estimates, standard errors, testing, and inference for linear combinations of coefficients
margins	marginal means, predictive margins, marginal effects, and average marginal effects graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
predict	predictions and their SEs, residuals, etc. predictnl
point estimates, standard errors, testing, and inference for generalized predictions	
pwcompare	pairwise comparisons of estimates
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

predict

Description for predict

predict creates a new variable containing predictions such as fitted values, standard errors, residuals, and differences between the linear predictions.

Menu for predict

Statistics $>$ Postestimation

Syntax for predict

predict [type] newvar [if] [in] [, equation(eqno[, eqno]) statistic]
statistic Description

Main

$\mathrm{xb} \quad \mathbf{x}_{j} \mathbf{b}$, fitted values; the default
stdp standard error of the fitted value
residuals residuals
difference difference between the linear predictions of two equations
stddp standard error of the fitted values for differences
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

Options for predict

\qquad Main
equation (eqno [, eqno]) specifies the equation to which you are referring.
equation() is filled in with one eqno for the xb , stdp, and residuals options. equation(\#1) would mean that the calculation is to be made for the first equation (that is, for the first dependent variable), equation(\#2) would mean the second, and so on. You could also refer to the equations by their names. equation (income) would refer to the equation named income and equation(hours), to the equation named hours.

If you do not specify equation(), results are the same as if you had specified equation(\#1).
difference and stddp refer to between-equations concepts. To use these options, you must specify two equations, for example, equation(\#1,\#2) or equation(income,hours). When two equations must be specified, equation() is required. With equation(\#1,\#2), difference computes the prediction of equation(\#1) minus the prediction of equation(\#2).
xb , the default, calculates the fitted values-the prediction of $\mathbf{x}_{j} \mathbf{b}$ for the specified equation.
stdp calculates the standard error of the prediction for the specified equation (the standard error of the estimated expected value or mean for the observation's covariate pattern). The standard error of the prediction is also referred to as the standard error of the fitted value.
residuals calculates the residuals.
difference calculates the difference between the linear predictions of two equations in the system. stddp calculates the standard error of the difference in linear predictions ($\mathbf{x}_{1 j} \mathbf{b}-\mathbf{x}_{2 j} \mathbf{b}$) between equations 1 and 2.
For more information on using predict after multiple-equation estimation commands, see $[R]$ predict.

margins

Description for margins

margins estimates margins of responses for linear predictions, fitted values, and differences between the linear predictions.

Menu for margins

Statistics $>$ Postestimation

Syntax for margins

statistic Description

default	linear predictions for each equation
xb	$\mathbf{x}_{j} \mathbf{b}$, fitted values
difference	difference between the linear predictions of two equations
residuals	not allowed with margins
stdp	not allowed with margins
stddp	not allowed with margins

xb defaults to the first equation.
Statistics not allowed with margins are functions of stochastic quantities other than e(b).
For the full syntax, see [R] margins.

manovatest

Description of manovatest

manovatest provides multivariate tests involving terms or linear combinations of the underlying design matrix from the most recently fit manova. The four multivariate test statistics are Wilks's lambda, Pillai's trace, Lawley-Hotelling trace, and Roy's largest root. The format of the output is similar to that shown by manova; see [MV] manova.

Menu for manovatest

Statistics $>$ Multivariate analysis $>$ MANOVA, multivariate regression, and related $>$ Multivariate tests after MANOVA

Syntax for manovatest

```
manovatest term [term ...] [/ term [term ...]] [, ytransform(matname)]
```



```
manovatest, showorder
```

where term is a term from the termlist in the previously run manova.
collect is allowed with manovatest; see [U] 11.1.10 Prefix commands.

Options for manovatest

ytransform(matname) specifies a matrix for transforming the y variables (the depvarlist from manova) as part of the test. The multivariate tests are based on $\left(\mathbf{A E A}^{\prime}\right)^{-1}\left(\mathbf{A H A}^{\prime}\right)$. By default, \mathbf{A} is the identity matrix. ytransform() is how you specify an \mathbf{A} matrix to be used in the multivariate tests. Specifying ytransform() provides the same results as first transforming the y variables with $\mathbf{Y A}^{\prime}$, where \mathbf{Y} is the matrix formed by binding the y variables by column and \mathbf{A} is the matrix stored in matname; then performing manova on the transformed y 's; and finally running manovatest without ytransform().

The number of columns of matname must equal the number of variables in the depvarlist from manova. The number of rows must be less than or equal to the number of variables in the depvarlist from manova. matname should have columns in the same order as the depvarlist from manova. The column and row names of matname are ignored.
When ytransform() is specified, a listing of the transformations is presented before the table containing the multivariate tests. You should examine this table to verify that you have applied the transformation you desired.
test (matname) is required with the second syntax of manovatest. The rows of matname specify linear combinations of the underlying design matrix of the MANOVA that are to be jointly tested. The columns correspond to the underlying design matrix (including the constant if it has not been suppressed). The column and row names of matname are ignored.
A listing of the constraints imposed by the test () option is presented before the table containing the multivariate tests. You should examine this table to verify that you have applied the linear combinations you desired. Typing manovatest, showorder allows you to examine the ordering of the columns for the design matrix from the MANOVA.
showorder causes manovatest to list the definition of each column in the design matrix. showorder is not allowed with any other option or when terms are specified.

test

Description for test

In addition to the standard syntax of test (see [R] test), test after manova has two additionally allowed syntaxes; see below. test performs Wald tests of expressions involving the coefficients of the underlying regression model. Simple and composite linear hypotheses are possible.

Menu for test

Statistics $>$ Multivariate analysis $>$ MANOVA, multivariate regression, and related $>$ Wald test after MANOVA

Syntax for test

In addition to the standard syntax of test (see [R] test), test after manova also allows the following.

```
test, test(matname) [ mtest[(opt)] matvlc(matname)] syntax A
test, showorder
syntax B
```

syntax A test expression involving the coefficients of the underlying multivariate regression model; you provide information as a matrix
syntax B show underlying order of design matrix, which is useful when constructing the matname argument of the test () option

Options for test

\qquad Main
test (matname) is required with syntax A of test. The rows of matname specify linear combinations of the underlying design matrix of the MANOVA that are to be jointly tested. The columns correspond to the underlying design matrix (including the constant if it has not been suppressed). The column and row names of matname are ignored.
A listing of the constraints imposed by the test () option is presented before the table containing the tests. You should examine this table to verify that you have applied the linear combinations you desired. Typing test, showorder allows you to examine the ordering of the columns for the design matrix from the MANOVA.
matname should have as many columns as the number of dependent variables times the number of columns in the basic design matrix. The design matrix is repeated for each dependent variable.
showorder causes test to list the definition of each column in the design matrix. showorder is not allowed with any other option.

Options

mtest $[(o p t)]$ specifies that tests be performed for each condition separately. opt specifies the method for adjusting p-values for multiple testing. Valid values for opt are

```
bonferroni Bonferroni's method
holm Holm's method
sidak Šidák's method
noadjust no adjustment is to be made
```

Specifying mtest without an argument is equivalent to specifying mtest(noadjust).

The following option is available with test after manova but is not shown in the dialog box: matvlc(matname), a programmer's option, saves the variance-covariance matrix of the linear combinations involved in the suite of tests. For the test of $H_{0}: \mathbf{L b}=\mathbf{c}$, what is returned in matname is $\mathbf{L V L}$, where \mathbf{V} is the estimated variance-covariance matrix of \mathbf{b}.

Remarks and examples

stata.com
Several postestimation tools are available after manova. We demonstrate these tools by extending examples $1,2,4$, and 8 of [MV] manova.

> Example 1: test and lincom

Example 1 of [MV] manova presented a balanced one-way MANOVA on the rootstock data.

```
. use https://www.stata-press.com/data/r18/rootstock
(Table 6.2. Rootstock data, Rencher and Christensen (2012))
```

. manova y1 y2 y3 y4 = rootstock
(output omitted)
test provides Wald tests on expressions involving the underlying coefficients of the model, and lincom provides linear combinations along with standard errors and confidence intervals.

```
. test [y3]3.rootstock = ([y3]1.rootstock + [y3]2.rootstock)/2
( 1) - . 5*[y3]1b.rootstock - .5*[y3]2.rootstock + [y3]3.rootstock = 0
        F( 1, 42) = 5.62
        Prob > F = 0.0224
. lincom [y3]4.rootstock - [y1]4.rootstock
( 1) - [y1]4.rootstock + [y3]4.rootstock = 0
\begin{tabular}{r|rrrrrr}
\hline & Coefficient & Std. err. & t & \(\mathrm{P}>|\mathrm{t}|\) & [95\% conf. interval] \\
\hline\((1)\) & .2075001 & .1443917 & 1.44 & 0.158 & -.0838941 & .4988943 \\
\hline
\end{tabular}
```

If the equation portion of the expression is omitted, the first equation (first dependent variable) is assumed.

The manovatest postestimation command provides multivariate tests of terms or linear combinations of the underlying design matrix from the most recent MANOVA model.

Example 2: manovatest

In example 2 of [MV] manova, a one-way MANOVA on the metabolic dataset was shown.

```
. use https://www.stata-press.com/data/r18/metabolic
(Table 4.5. Metabolic comparisons of rabbits, Rencher (1998))
. manova y1 y2 = group
(output omitted)
```

manovatest can test terms from the preceding manova. Here we test the group term from our one-way MANOVA:

```
. manovatest group
```

Source	$\begin{aligned} & \mathrm{W}=\text { Wilks' lambda } \\ & \mathrm{P}=\text { Pillai's trace } \end{aligned}$			$\begin{aligned} & \mathrm{L}=\text { Lawley-Hotelling trace } \\ & \mathrm{R}=\text { Roy's largest root } \end{aligned}$			
		atistic	df	F (df1,	df2)	F	Prob>F
group	W	0.1596	3	6.0	32.0	8.02	0.0000
		1.2004		6.0	34.0	8.51	0.0000
		3.0096		6.0	30.0	7.52	0.0001
	R	1.5986		3.0	17.0	9.06	0.0008
Residual			17				

Using manovatest to test model terms is not interesting here. It merely repeats information already presented by manova. Later we will see useful applications of term testing via manovatest.
manovatest can also be used to test linear combinations of the underlying design matrix of the mANOVA model. Whereas the mANOVA indicates that there are differences in the groups, it does not indicate the nature of those differences. Rencher discusses three linear contrasts of interest for this example: group one (the control) versus the rest, group four versus groups two and three, and group two versus group three. The test () option of manovatest allows us to test these hypotheses.

Because we did not use the noconstant option with our manova, the underlying parameterization of the design matrix has the last column corresponding to the constant in the model, whereas the first four columns correspond to the four groups of rabbits. The showorder option of manovatest illustrates this point. The tests on the three contrasts of interest follow.

```
. manovatest, showorder
Order of columns in the design matrix
    1: (group==1)
    2: (group==2)
    3: (group==3)
    4: (group==4)
    5: _cons
. matrix c1 = (3,-1,-1,-1,0)
. manovatest, test(c1)
Test constraint
(1) 3*1.group - 2.group - 3.group - 4.group = 0
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \mathrm{W}=\mathrm{Wilks} \\
& \mathrm{P}=\mathrm{Pill} \mathrm{i}
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{L}=\mathrm{La} \\
& \mathrm{R}=\mathrm{Ro}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{y} \text {-Hot } \\
& \text { larg }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ing tr } \\
& \text { root }
\end{aligned}
\] & \\
\hline Source & Statistic & df & F (df 1 , & df2 & F & Prob>F \\
\hline manovatest & W 0.4063 & 1 & 2.0 & 16.0 & 11.69 & 0.0007 \\
\hline & P 0.5937 & & 2.0 & 16.0 & 11.69 & 0.0007 \\
\hline & L 1.4615 & & 2.0 & 16.0 & 11.69 & 0.0007 \\
\hline & R 1.4615 & & 2.0 & 16.0 & 11.69 & 0.0007 \\
\hline Residual & & 17 & & & & \\
\hline
\end{tabular}
                                    e = exact, a = approximate, u = upper bound on F
. matrix c2 = (0, -1, -1,2,0)
```

```
. manovatest, test(c2)
Test constraint
(1) - 2.group - 3.group + 2*4.group = 0
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \mathrm{W}=\text { Wilks } \\
& \mathrm{P}=\text { Pillai }
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{L}=\text { Law } \\
& \mathrm{R}=\text { Roy }
\end{aligned}
\] & \[
\begin{array}{r}
\mathrm{y} \text {-Hote } \\
\text { large }
\end{array}
\] & \[
\begin{aligned}
& \text { ng tr } \\
& \text { root }
\end{aligned}
\] & \\
\hline Source & Statistic & df & F (df1, & df2) & F & Prob>F \\
\hline manovatest & W 0.9567 & 1 & 2.0 & 16.0 & 0.36 & 0.7018 \\
\hline & P 0.0433 & & 2.0 & 16.0 & 0.36 & 0.7018 \\
\hline & L 0.0453 & & 2.0 & 16.0 & 0.36 & 0.7018 \\
\hline & R 0.0453 & & 2.0 & 16.0 & 0.36 & 0.7018 \\
\hline Residual & & 17 & & & & \\
\hline
\end{tabular}
```

$\mathrm{e}=$ exact, $\mathrm{a}=$ approximate, $\mathrm{u}=$ upper bound on F
. matrix c3 $=(0,1,-1,0,0)$
. manovatest, test(c3)
Test constraint
(1) 2 .group -3. group $=0$
$\mathrm{W}=$ Wilks' lambda $\mathrm{L}=$ Lawley-Hotelling trace
$P=$ Pillai's trace $\quad R=$ Roy's largest root

Source	Statistic		df	F (df1,	df2)	F	Prob>F
manovatest	W	0.4161	1	2.0	16.0	11.23	0.0009
	P	0.5839		2.0	16.0	11.23	0.0009
	L	1.4033		2.0	16.0	11.23	0.0009
	R	1.4033		2.0	16.0	11.23	0.0009
Residual			17				

```
e = exact, a = approximate, u = upper bound on F
```

Because there is only 1 degree of freedom for each of the hypotheses, the F tests are exact (and identical for the four multivariate methods). The first test indicates that the mean vector for the control group is significantly different from the mean vectors for the other three groups. The second test, with a p-value of 0.7018 , fails to reject the null hypothesis that group four equals groups two and three. The third test, with a p-value of 0.0009 , indicates differences between the mean vectors of groups two and three.

Rencher also tests using weighted orthogonal contrasts. manovatest can do these tests as well.

```
. matrix c1w = (14,-7,-5,-2,0)
. manovatest, test(c1w)
Test constraint
(1) 14*1.group - 7*2.group - 5*3.group - 2*4.group = 0
                            W = Wilks' lambda L = Lawley-Hotelling trace
                    P = Pillai's trace R = Roy's largest root
\begin{tabular}{r|ccccccc} 
Source & Statistic & df & \(F(d f 1\), & \(d f 2)\) & \(=\) & \(F\) & Prob \(>F\) \\
\hline manovatest & W & 0.3866 & 1 & 2.0 & 16.0 & 12.700 .0005 e \\
& P & 0.6134 & & 2.0 & 16.0 & 12.70 & 0.0005 e \\
& L & 1.5869 & & 2.0 & 16.0 & 12.70 & 0.0005 e \\
& R & 1.5869 & & 2.0 & 16.0 & 12.70 & 0.0005 e \\
\cline { 2 - 7 } Residual & & 17 & & & \\
\hline
\end{tabular}
    e = exact, a = approximate, u = upper bound on F
. matrix c2w = (0,-7,-5,12,0)
```

```
. manovatest, test(c2w)
Test constraint
(1) -7*2.group - 5*3.group + 12*4.group = 0
```



```
\(\mathrm{e}=\) exact, \(\mathrm{a}=\) approximate, \(\mathrm{u}=\) upper bound on F
```

These two weighted contrasts do not lead to different conclusions compared with their unweighted counterparts.

- Technical note

manovatest, test (matname) displays the linear combination (labeled "Test constraint") indicated by matname. You should examine this listing to make sure that the matrix you specify in test () provides the test you want.

The margins postestimation command provides, among other things, tables of predicted means and confidence intervals that are based on the most recently fit model.

> Example 3: Margins, contrasts, and predictions

Example 4 of [MV] manova presented a two-way MANOVA model on the jaw data.

```
. use https://www.stata-press.com/data/r18/jaw
(Table 4.6. Two-way unbalanced data for fractures of the jaw, Rencher (1998))
. manova y1 y2 y3 = gender fracture gender#fracture
    (output omitted)
```

The interaction term, gender\#fracture, was significant. margins may be used to examine the interaction; see [R] margins.
. margins gender\#fracture, predict(equation(y1))
Adjusted predictions
Number of obs = 27
Expression: Linear prediction, predict(equation(y1))

. margins gender\#fracture, predict(equation(y2))
Adjusted predictions Number of obs $=27$
Expression: Linear prediction, predict(equation(y2))

. margins gender\#fracture, predict(equation(y3))
Adjusted predictions Number of obs $=27$
Expression: Linear prediction, predict(equation(y3))

	Margin	lta-metho std. err.	t	$P>\|t\|$	[95\% con	interval]
gender\# fracture						
One compou..	61.16667	2.038648	30.00	0.000	56.92707	65.40627
Two compou..	62.25	1.765521	35.26	0.000	58.5784	65.9216
Male \# One simple..	58.16667	2.038648	28.53	0.000	53.92707	62.40627
Female \# One compou..	43	4.993647	8.61	0.000	32.61514	53.38486
Female \# Two compou..	64	2.496823	25.63	0.000	58.80757	69.19243
Female \# One simple..	63.5	3.531041	17.98	0.000	56.1568	70.8432

The first margins table shows the predicted mean (marginal mean), standard error, z statistic, p-value, and confidence interval of y1 (age of patient) for each combination of fracture and gender. The second and third margins tables provide this information for y2 (blood lymphocytes) and y3 (blood polymorphonuclears). These three tables of predictions are the same as those you would obtain from margins after running anova for each of the three dependent variables separately.

The predicted y2 value is larger than the predicted y3 value for females with one compound fracture. For the other five combinations of gender and fracture, the relationship is reversed. There is only 1 observation for the combination of female and one compound fracture.

There are nine possible contrasts if we contrast women with men for every fracture type and every dependent variable. We will use contrast to estimate all nine contrasts and apply Scheffé's adjustment for multiple comparisons.
. contrast gender@fracture\#_eqns, mcompare(scheffe)
Contrasts of marginal linear predictions
Margins: asbalanced

	df	F	$\mathrm{P}>\mathrm{F}$	Scheffe $\mathrm{P}>\mathrm{F}$
gender@fracture\#_eqns				
One compound fracture 1	1	2.51	0.1278	0.9733
One compound fracture 2	1	12.98	0.0017	0.2333
One compound fracture 3	1	11.34	0.0029	0.3137
Two compound fractures 1	1	0.38	0.5424	1.0000
Two compound fractures 2	1	0.07	0.7889	1.0000
Two compound fractures 3	1	0.33	0.5732	1.0000
One simple fracture 1	1	1.08	0.3107	0.9987
One simple fracture 2	1	0.54	0.4698	0.9999
One simple fracture 3	1	1.71	0.2050	0.9929
Joint	9	2.57	0.0361	
Denominator				

Note: Scheffe-adjusted p-values are reported for tests on individual contrasts only.

	Number of comparisons
gender@fracture\#_eqns	9

	Contrast	Std. err.	Scheffe [95\% conf. interval]	
gender@fracture\#_eqns (Female vs base)	-17.5	11.03645	-68.42869	33.42869
One compound fracture 1				
(Female vs base)	20.5	5.69092	-5.76126	46.76126
One compound fracture 2				
(Female vs base)	-18.16667	5.393755	-43.05663	6.723297
One compound fracture 3				
(Female vs base)	3.875	6.257079	-24.99885	32.74885
Two compound fractures 1				
(Female vs base)	.875	3.226449	-14.01373	15.76373
Two compound fractures 2				
(Female vs base)				

Women do not differ significantly from men in any of the nine comparisons.

Let's examine the residuals with the predict command:

```
. predict y1res, residual equation(y1)
. predict y2res, residual equation(y2)
. predict y3res, residual equation(y3)
. list gender fracture y1res y2res y3res
```

	gender	fracture	y1res	y2res	y3res
1.	Male	One compound fracture	2.5	-. 5	-. 1666667
2.	Male	One compound fracture	2.5	7.5	-6.166667
3.	Male	One compound fracture	8.5	-. 5	2.833333
4.	Male	One compound fracture	-4.5	-2.5	3.833333
5.	Male	One compound fracture	-14.5	-4.5	2.833333
6.	Male	One compound fracture	5.5	. 5	-3.166667
7.	Male	Two compound fractures	-3.875	-5.375	1.75
8.	Male	Two compound fractures	-4.875	-. 375	1.75
9.	Male	Two compound fractures	-1.875	-2.375	1.75
10.	Male	Two compound fractures	1.125	6.625	-6.25
11.	Male	Two compound fractures	-2.875	-1.375	6.75
12.	Male	Two compound fractures	25.125	-4.375	-2.25
13.	Male	Two compound fractures	-9.875	-2.375	1.75
14.	Male	Two compound fractures	-2.875	9.625	-5.25
15.	Male	One simple fracture	-13.16667	. 8333333	-4.166667
16.	Male	One simple fracture	6.833333	-2.166667	3.833333
17.	Male	One simple fracture	7.833333	8.833333	-7.166667
18.	Male	One simple fracture	3.833333	-1.166667	1.833333
19.	Male	One simple fracture	9.833333	-4.166667	1.833333
20.	Male	One simple fracture	-15.16667	-2.166667	3.833333
21.	Female	One compound fracture	0	0	$-2.84 \mathrm{e}-14$
22.	Female	Two compound fractures	-8.75	-4.25	4
23.	Female	Two compound fractures	7.25	-8.25	9
24.	Female	Two compound fractures	-9.75	3.75	-5
25.	Female	Two compound fractures	11.25	8.75	-8
26.	Female	One simple fracture	6.5	-3	3.5
27.	Female	One simple fracture	-6.5	3	-3.5

The single observation for a female with one compound fracture has residuals that are within roundoff of zero. With only 1 observation for that cell of the design, this MANOVA model is forced to fit to that point. The largest residual (in absolute value) appears for observation 12, which has an age 25.125 higher than the model prediction for a male with two compound fractures.

Example 4: manovatest

Example 8 of [MV] manova presents a nested MANOVA on the videotrainer data.

```
. use https://www.stata-press.com/data/r18/videotrainer, clear
(Video training)
. manova primary extra = video / store|video / associate|store|video /,
> dropemptycells
    (output omitted)
```

The MANOVA indicated that store was not significant.
You decide to follow the rule of thumb that says to pool terms whose p-values are larger than 0.25 . Wilks's lambda reports a p-value of 0.5775 for the test of storelvideo (see example 8 of [MV] manova). You decide to pool the store and associate terms in the MANOVA to gain power for the test of video. The forward-slash notation of manova is also allowed with manovatest to indicate nonresidual error terms. Here is the multivariate test of video using the pooled store and associate terms and then the multivariate test of the pooled term:
. manovatest video / storelvideo associatelstorelvideo
W = Wilks' lambda L = Lawley-Hotelling trace
P = Pillai's trace $\quad R=$ Roy's largest root

$\mathrm{e}=$ exact, $\mathrm{a}=$ approximate, $\mathrm{u}=$ upper bound on F
manovatest store|video associate|store|video
W = Wilks' lambda L = Lawley-Hotelling trace
P = Pillai's trace $\quad R=$ Roy's largest root

Source	Statistic	df	$F(d f 1$,	$d f 2)=$	F	Prob>F
storelvideo	W	0.3925	10	20.0	58.0	1.730 .0546 e
associatelstorel	P	0.7160		20.0	60.0	1.67
video	L	1.2711		20.0	56.0	1.78
	R	0.9924		10.0	30.0	2.98
	0.0100 a					
Residual		30				

e = exact, a = approximate, $u=$ upper bound on F

Pooling store with associate helps increase the power for the test of video.

You can show the univariate analysis for one of your dependent variables by using the ytransform() option of manovatest:

. manovatest storelvideo associatelstorelvideo, ytransform(primonly)
Transformation of the dependent variables
(1) primary

Source	$\begin{aligned} & \mathrm{W}=\text { Wilks' lambda } \\ & \mathrm{P}=\text { Pillai's trace } \end{aligned}$		$\begin{aligned} & \mathrm{L}=\text { Lawley-Hotelling trace } \\ & \mathrm{R}=\text { Roy's largest root } \end{aligned}$			
	Statistic	df	F (df1,	df2)	F	Prob>F
storelvideo	W 0.6119	10	10.0	30.0	1.90	0.0846
associatelstorel	P 0.3881		10.0	30.0	1.90	0.0846
video	L 0.6344		10.0	30.0	1.90	0.0846
	R 0.6344		10.0	30.0	1.90	0.0846
Residual		30				

$\mathrm{e}=$ exact, $\mathrm{a}=$ approximate, $\mathrm{u}=$ upper bound on F
See the second manova run from example 8 of [MV] manova for an alternate way of pooling the terms by refitting the MANOVA model.

See examples $6,10,11,12$, and 13 of [MV] manova for more examples of manovatest, including examples involving both the test() and the ytransform() options.

Stored results

manovatest stores the following in $r()$:
Scalars $r(d f) \quad$ hypothesis degrees of freedom $r\left(d f _r\right) \quad$ residual degrees of freedom

Matrices
$r(H) \quad$ hypothesis SSCP matrix
$r(E) \quad$ residual-error SSCP matrix
r (stat) multivariate statistics
r (eigvals) eigenvalues of $\mathrm{E}^{-1} \mathrm{H}$
r (aux) $\quad s, m$, and n values
test after manova stores the following in r() :
Scalars
$r(\mathrm{p}) \quad$ two-sided p-value
$r(\mathrm{~F}) \quad F$ statistic
$r(d f) \quad$ hypothesis degrees of freedom
$r\left(d f _r\right) \quad$ residual degrees of freedom
r (drop) $\quad 0$ if no constraints dropped, 1 otherwise
r (dropped_\#) index of \#th constraint dropped
Macros
r (mtmethod) method of adjustment for multiple testing
Matrices
r (mtest) multiple test results

Methods and formulas

See [MV] manova for methods and formulas for the multivariate tests performed by manovatest.

Also see

[MV] manova - Multivariate analysis of variance and covariance
[MV] screeplot - Scree plot of eigenvalues
[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

