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Description

meta meregress performs multilevel meta-regression. You can think of multilevel meta-regression
as an extension of meta-regression, where effect sizes are nested within a higher grouping variable,
such as district or region, and thus may be correlated. These groups may themselves be nested within
another higher grouping variable, and so on. The dependencies among the observations within a group
are accounted for by the inclusion of random effects at different levels of hierarchy.

If you wish to fit multilevel meta-analysis models with random intercepts only, see [META] meta
multilevel for an alternative command with a simpler syntax.

meta meregress performs random-effects (RE) multilevel meta-regression with various covariance
structures and estimation methods for the random effects, which include random intercepts and random
coefficients. meta meregress is a stand-alone command in that it does not require you to declare
your data as meta data using meta set or meta esize.

Quick start
Perform standard RE meta-analysis by expressing it as a two-level meta-analysis model of the effect-size

y with random intercepts by trial and effect-size standard errors se

meta meregress y || trial:, essevariable(se)

As above, but perform an RE meta-regression on continuous moderator x
meta meregress y x || trial:, essevariable(se)

As above, but specify effect-size variances (var) instead of the effect-size standard errors
meta meregress y x || trial:, esvarvariable(var)

Perform a three-level meta-analysis of effect-size y with random intercepts by region and by trial
nested within region

meta meregress y || region: || trial:, essevariable(se)

As above, but perform a three-level meta-regression on moderator x, add a random slope on x at the
region level, and request the ML instead of the default REML estimation method

meta meregress y x || region: x || trial:, essevariable(se) mle

As above, but add a random slope on x at the trial-within-region level and specify an exchangeable
covariance structure between the random slopes and intercepts at the trial-within-region level and
an unstructured covariance structure between the random slopes and intercepts at the region level

meta meregress y x || region: x, covariance(unstructured) ///
|| trial: x, covariance(exchangeable) essevariable(se) mle
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Perform a three-level meta-regression of y on x1 and x2 with random slopes for x1 and x2 at the
region level, and specify a custom covariance structure for the random effects at the region
level

matrix A = (.5,.,.a .,1,. .a,.,1)
meta meregress y x1 x2 || region: x1 x2, covariance(custom A) ///

|| trial:, essevariable(se)

Menu
Statistics > Meta-analysis

Syntax
meta meregress depvar fe equation || re equation

[
|| re equation

[
. . .
] ]
,{

essevariable(varname) | esvarvariable(varname)
} [

options
]

where the syntax of fe equation is[
indepvars

] [
if
] [

in
] [

, fe options
]

and the syntax of re equation is

levelvar:
[

varlist
] [

, re options
]

levelvar is a variable identifying the group structure for the random effects at that level. A random
intercept is included in each re equation unless option noconstant is specified and a random
coefficient (also known as a random slope) associated with each variable in varlist is also added to
the model.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
constraints(constraints) apply specified linear constraints

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
collinear keep collinear variables
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options Description

Model
∗essevariable(varname) specify effect-size (sampling) standard errors
∗esvarvariable(varname) specify effect-size (sampling) variances
reml fit model via restricted maximum likelihood; the default
mle fit model via maximum likelihood

Reporting

level(#) set confidence level; default is level(95)

stddeviations show random-effects parameter estimates as standard deviations
and correlations; the default

variance show random-effects parameter estimates as variances and
covariances

estmetric show parameter estimates as stored in e(b)

nohomtest suppress output for homogeneity test
noretable suppress random-effects table
nofetable suppress fixed-effects table
noheader suppress output header
nogroup suppress table summarizing groups
nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

EM options

emiterate(#) number of EM iterations; default is emiterate(20)

emtolerance(#) EM convergence tolerance; default is emtolerance(1e-10)

emonly fit model exclusively using EM
emlog show EM iteration log
emdots show EM iterations as dots

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics
∗Either essevariable() or esvarvariable() is required.

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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vartype Description

independent one unique standard-deviation parameter per random effect, all
correlations 0; the default

exchangeable equal standard deviations for random effects and one common
pairwise correlation

identity equal standard deviations for random effects; all correlations 0
unstructured all standard deviations and correlations to be distinctly estimated
custom matname custom matrix matname with fixed, free, and patterned

standard deviations and correlations

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, or custom.

independent allows for a distinct standard deviation for each random effect within a random-effects
equation and assumes that all correlations are 0. This is the default covariance structure.

exchangeable specifies one common standard deviation for all random effects and one common
pairwise correlation.

identity is short for “multiple of the identity”; that is, all standard deviations are equal and all
correlations are 0.

unstructured allows for all standard deviations and correlations to be distinct. If there are q
random-effects terms, the unstructured covariance matrix will have q(q+1)/2 unique parameters.

custom matname specifies constraints for standard deviations (diagonal elements of matname)
and correlations (off-diagonal elements of matname) of the random effects. Three types of
specifications are allowed within matname:

1. A nonmissing value # that fixes the corresponding element at # during estimation.

2. One of .a, .b, etc., assigned to at least two diagonal or two off-diagonal elements
to restrict the respective standard deviations or correlations to be the same during
estimation.

3. A missing value . that allows the corresponding element to be freely estimated.

For example, assume that an re equation in the model is || levelvar : x1 x2 x3 and
therefore there are four random effects (one random intercept and three random slopes) at the
levelvar level. Below, we describe the effect of specifying covariance(custom matname)
with

matname =


x1 x2 x3 cons

1.2
0.5 .a
.b . .a
.b .c .c .
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Let the uj’s be the random slopes of xj, j ∈ {1, 2, 3} and u0 be the random intercept. The
above specification fixes the standard deviation of u1 at 1.2 and the correlation between u1 and
u2 at 0.5 during estimation. It also restricts the standard deviations of u2 and u3 to be equal
(set equal to .a), the correlation between u1 and u3 to be the same as the correlation between
u1 and u0 (both set equal to .b), and the correlation between u2 and u0 to be identical to
the correlation between u3 and u0 (both set equal to .c). Furthermore, it allows the standard
deviation of u0 and the correlation between u2 and u3 to be freely estimated.

essevariable(varname) specifies a variable that stores the standard errors of the effect sizes in vari-
able varname, also known as sampling standard errors. You must specify one of essevariable()
or esvarvariable().

esvarvariable(varname) specifies a variable that stores the variances of the effect sizes in variable
varname, also known as sampling variances. You must specify one of esvarvariable() or
essevariable().

reml and mle specify the statistical method for fitting the model.

reml, the default, specifies that the model be fit using restricted maximum likelihood (REML), also
known as residual maximum likelihood.

mle specifies that the model be fit using maximum likelihood (ML).

constraints(constraints); see [R] Estimation options.

� � �
Reporting �

level(#); see [R] Estimation options.

stddeviations, the default, displays the random-effects parameter estimates as standard deviations
and correlations.

variance displays the random-effects parameter estimates as variances and covariances.

estmetric; see [ME] mixed.

nohomtest suppresses the homogeneity test based on the QM statistic from the output.

noretable, nofetable, noheader, and nogroup; see [ME] mixed.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
EM options �

emiterate(#), emtolerance(#), emonly, emlog, and emdots; see [ME] mixed.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] Maximize. Those that require special mention
for meta meregress are listed below.

For the technique() option, the default is technique(nr). The bhhh algorithm is not available.

matsqrt, the default, and matlog; see [ME] mixed.
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The following options are available with meta meregress but are not shown in the dialog box:

collinear specifies that meta meregress not omit collinear variables from the random-effects
equation. Usually, there is no reason to leave collinear variables in place; in fact, doing so usually
causes the estimation to fail because of the matrix singularity caused by the collinearity. However,
with certain models (for example, a random-effects model with a full set of contrasts), the variables
may be collinear, yet the model is fully identified because of restrictions on the random-effects
covariance structure. In such cases, using the collinear option allows the estimation to take
place with the random-effects equation intact.

coeflegend; see [R] Estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:
Introduction

Standard meta-analysis as a two-level model
Three-level random-intercepts model
Three-level model with random slopes
Using meta meregress

Examples of using meta meregress
Example 1: Standard meta-analysis as a two-level model
Example 2: Three-level meta-analysis
Example 3: Assessing multilevel heterogeneity
Example 4: Likelihood-ratio tests and information criteria
Example 5: Three-level meta-regression with random slopes
Example 6: Random-effects covariance structures
Example 7: Sensitivity multilevel meta-regression

Introduction

Multilevel meta-regression is a statistical technique used to study the relationship between effect
sizes and covariates, where effect sizes may be correlated because of the clustered or multilevel
(hierarchical) structure of the data. The multilevel structure can arise, for example, when we consider
a meta-analysis that explores the impact of a new teaching technique on math testing scores. Studies
may be conducted in separate school districts with potentially multiple studies in each school district.
Each study reports an effect size that quantifies the difference between the two groups of students
(those who received the new teaching technique and those who did not), such as mean difference of
testing scores between the two groups. We are interested not only in synthesizing the overall effect
of the new teaching technique but also in assessing the variability (heterogeneity) among the effect
sizes at the district level (level 3) and among the studies within each district (level 2, also known as
the studies-within-district level).

Results of studies conducted within the same school district are more likely to be similar and
thus dependent given that, for example, the students therein are exposed to the same socioeconomical
factors. This dependence is usually accounted for by including random effects at various levels of
hierarchy in the model. By properly accounting for the dependence among the effect sizes, we can
produce more accurate inference compared with performing a standard meta-analysis that ignores the
hierarchical structure and the dependence among the effect sizes.

The standard meta-analysis can be viewed as a two-level meta-analysis model where the subjects
or participants within studies are the level-1 observations and studies (or more precisely effect sizes
reported by the studies) are the level-2 observations. The within-study standard errors or variances
are assumed known; see Standard meta-analysis as a two-level model.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesStandardmeta-analysisasatwo-levelmodel
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In the school example above, studies are the level-2 observations. However, this is not always the
case in multilevel meta-analysis applications. For example, we may have a four-level meta-analysis
with runs (level 2) nested within experiments (level 3) nested within studies (level 4); see McCurdy
et al. (2020) for another example. Here studies actually define level 4 and runs define level 2. Thus,
the terms “within-study standard errors” and “within-study variances” may not always be appropriate
to refer to the variability at the lowest level of hierarchy, which is described by the standard errors
or variances of the effect sizes. In our four-level example, the terms “within-run standard errors” and
“within-run variances” would be more appropriate. To avoid any confusion, we will use the terms
“sampling standard errors” and “sampling variances” to refer, respectively, to the standard errors and
the variances of the effect sizes.

Multilevel meta-regression differs from standard meta-regression in two major aspects. First, a
hierarchical (grouping) structure is assumed to be present in the data, and it is a main interest to
decompose the total heterogeneity among the effect sizes across the different levels of hierarchy.
Second, random slopes for moderators may be included in the model at different grouping levels.
Recall that a standard meta-regression model incorporates only random intercepts.

Multilevel meta-regression is analogous to a multilevel mixed-effects model (Raudenbush and
Bryk 2002), which is used when individual data are available, but in multilevel meta-regression, the
outcome of interest is an effect size. And, because we do not have individual participant data, there
are no covariates that are recorded at the lowest observation level. Also, the sampling variances, the
variability at the lowest level, are assumed to be known. Having the known sampling variance allows
us to include random intercepts at level 2. However, to include random slopes at level 2, the data
must include repeated measures at this level; in the example of schools at level 2, we would need
multiple effect sizes for each school to include random slopes at the school level. At level 3 and
higher, the data will naturally have multiple lower-level groups nested within higher-level groups, so
both random intercepts and random slopes can be included.

The covariates in multilevel meta-regression are known as moderators. Examples of moderators
include study publication year, study test environment, and drug administration method. For a
comprehensive introduction to multilevel meta-regression, see Goldstein et al. (2000); Thompson,
Turner, and Warn (2001); Konstantopoulos (2011); Cheung (2014); and Sera et al. (2019).

Standard meta-analysis as a two-level model

The standard RE meta-analysis model (see [META] meta summarize) may be viewed as a special
two-level meta-analysis where the subjects or the within-study observations (level 1) are nested within
studies (level 2). These levels are

Level 1 (within studies): θ̂j = θj + εj

Level 2 (between studies): θj = θ + uj
(1)

where εj ∼ N
(
0, σ̂2

j

)
and uj ∼ N

(
0, τ2

)
. Here σ̂2

j is the sampling variance (effect-size variance)
for the jth study, which is assumed known (it is assumed to be estimated with adequate accuracy
within each study, hence the hat notation). τ2 is the variance of the random effects (the uj’s), also
known as the between-study variance. The sampling errors (the εj’s) and the random effects (the
uj’s) are assumed to be independent. Similarly, the classical RE meta-regression (see [META] meta
regress) can be obtained by incorporating moderators into (1) as follows:

https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
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Level 1 (within studies): θ̂j = θj + εj

Level 2 (between studies): θj = β0 + β1x1,j + · · ·+ βp−1xp−1,j + uj

= xjβ+ uj

where β = (β0, β1, . . . , βp−1)
′ is a p× 1 vector of unknown regression (fixed-effects) coefficients.

Three-level random-intercepts model

Next we will discuss extensions of (1) to higher levels of hierarchy. Given its prevalence in practice,
we will start by mathematically describing the three-level random-intercepts meta-analysis model with
a single observation per level-2 group (level-2 groups have no repeated measures). The model can
be expressed as

Level 1 (within studies): θ̂jk = θjk + εjk

Level 2: θjk = θj + u
(2)
jk

Level 3: θj = θ + u
(3)
j

(2)

where j = 1, 2, . . . ,M , k = 1, 2, . . . ,mj , u
(3)
j ∼ N(0, τ23 ), u

(2)
jk ∼ N(0, τ22 ), and εjk ∼ N(0, σ̂2

jk),
with the σ̂2

jk’s being known as sampling variances (or more generally within-level-2 variances). The

u
(3)
j ’s, u(2)jk ’s, and εjk’s are independent, and τ23 and τ22 are the random-effects variances at the third

and second levels, respectively. Model (2) assumes that there is one effect-size observation per group
at level 2. This is the most common setting in practice. For the general setting that accounts for
multiple observations per group at level 2, see Three-level model with random slopes.

In a single-equation notation, (2) can be written as

θ̂jk = θ + u
(3)
j + u

(2)
jk + εjk

When we include a 1 × p vector of moderators, xjk = (1, x1,jk, . . . , xp−1,jk), the three-level
meta-analysis model described in (2) becomes a three-level meta-regression model

θ̂jk = β0 + β1x1,jk + · · ·+ βp−1xp−1,jk + u
(3)
j + u

(2)
jk + εjk

= xjkβ+ u
(3)
j + u

(2)
jk + εjk

(3)

Model (3) includes only random intercepts. It does not include any random slopes for moderators
xjk. The above model can be extended to more than three levels of hierarchy; see Sera et al. (2019)
for details. If you would like to fit a model like (3) or its higher-level analogs, you can use the meta
multilevel command, which has a simpler syntax than meta meregress.

Three-level model with random slopes

Incorporating random slopes at any level of hierarchy (other than level 1, where observations
or individual participants are not available) requires repeated measures to be available at that level.
For example, it is not possible to include random slopes at level 2 in meta-analysis for any of
the moderators in (3) because there is one observation per group at that level. In that case, if you
attempt to include random slopes at level 2, meta meregress will produce estimates of their standard
deviations that are practically 0. If you are familiar with the concept of random slopes in the context
of multilevel meta-analysis, then you may skip the rest of this section and go to Using meta meregress.
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Below, we modify the notation used in (3) to introduce a third subscript, r, that accounts for the
repeated measures at level 2. Assume there are ql random effects (1 random intercept and ql − 1
random slopes) at level l = 2 and l = 3; random slopes may then be introduced into (3) by writing

θ̂jkr = xjkrβ+ z
(3)
jkru

(3)
j + z

(2)
jkru

(2)
jk + εjkr (4)

where j = 1, 2, . . . ,M , k = 1, 2, . . . ,mj , and r = 1, 2, . . . ,mjk. The subscript r was not needed
in (3), because mjk was assumed to equal 1. Here xjkr = (1, x1,jkr, . . . , xp−1,jkr) is a 1×p vector
of moderators associated with β, and z

(3)
jkr is a 1× q3 vector of moderators associated with the level-3

q3 × 1 vector of random effects u
(3)
j (1 intercept and q3 − 1 slopes), where u

(3)
j ∼ N(0,Σ(3)).

Similarly, z
(2)
jkr is a 1 × q2 vector of moderators associated with the level-2 (within-level-3) q2 × 1

vector of random effects u
(2)
jk , where u

(2)
jk ∼ N(0,Σ(2)). The εjkr’s are the within-level-2 error

terms following a N(0, σ̂2
jkr) distribution. Σ(3) and Σ(2) are the random-effects covariance matrices

at levels 3 and 2, respectively.

The above model can be extended to more than three levels of hierarchy with the possibility to
include random slopes at any level l > 1; see Sera et al. (2019) for details.

Using meta meregress

meta meregress fits various multilevel meta-regression models. Suppose variable es records
effect sizes and variable se records the sampling standard errors for effect sizes.

Standard meta-analysis model as a two-level model. The standard RE meta-analysis model can
be expressed as a two-level meta-analysis model. Suppose variable study stores study IDs; we can
then fit a standard RE meta-analysis model using

. meta meregress es || study:, essevariable(se)

Recall that in meta-analysis, the sampling standard errors are treated as known. We specify them in
the essevariable() option. If you have variances instead, you can specify them in the esvarvari-
able() option. The above specification should produce the same results as if we had typed meta
set es se followed by meta summarize, nostudies; see [META] meta summarize and example 1.

Two-level meta-regression. Suppose we have two moderators, x1 and x2. If we assume that the
effects of moderators are constant across studies, we can fit a standard RE meta-regression as a
two-level meta-regression without random coefficients (random slopes) for moderators:

. meta meregress es x1 x2 || study:, essevariable(se)

The above specification produces the same results as if we had typed meta set es se followed by
meta regress x1 x2; see [META] meta regress and example 1.

Alternatively, we can allow the effects of moderators to vary across studies by including random
slopes for the moderators:

. meta meregress es x1 x2 || study: x1, essevariable(se)

Recall that this is possible only if there are multiple observations (effect sizes) per study; otherwise,
the estimated standard deviations of the random slopes will be estimated as zeros. In other words,
in the context of standard meta-regression (where one effect size per study is reported), the above
specification will produce a zero estimate for the standard deviation of random slopes; see Three-level
model with random slopes for more details.

https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqthreelvlint
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We can include random slopes for all or a subset of moderators by specifying the desired subset
in the random-effects equation (the || study: equation in our example).

Three-level meta-analysis model. Suppose we have schools (level 2) and each school records
repeated observations on effect sizes. Also, suppose that the schools are nested within districts (level 3).
We can incorporate potential dependence among the effect sizes within schools and within districts
by fitting a three-level meta-analysis model with district as the top (third) level:

. meta meregress es || district: || school:, essevariable(se)

Three-level meta-regression. Continuing with our three-level school data, if we also have mod-
erators, say, x1 and x2, we can incorporate them in our three-level meta-analysis model in various
ways.

We can specify them only in the fixed-effects equation, assuming their effects do not vary across
districts or schools within districts:

. meta meregress es x1 x2 || district: || school:, essevariable(se)

We can specify them in all equations to allow them to vary within all levels:
. meta meregress es x1 x2 || district: x1 x2 || school: x1 x2, essevariable(se)

Or, if there is only one effect size reported per school, then we can eliminate the random slopes from
the school level:

. meta meregress es x1 x2 || district: x1 || school:, essevariable(se)

For illustration, in the above we included random slopes only for x1.

Three-level meta-regression with various covariance structures. In the presence of random
slopes, we can specify various covariance structures to model the dependencies between random
effects at a specific level. By default, the random effects are assumed to be independent. This default
is chosen out of computational feasibility, in case the model includes many random slopes. In practice,
you will often want to verify that this assumption is reasonable for your data. You can do this by
specifying other covariance structures such as exchangeable, unstructured, or custom matname
in the covariance() option. For instance, we now assume an unstructured (completely unrestricted)
covariance for the random effects at the district level:

. meta meregress es x1 x2 || district: x1, covariance(unstructured)
|| school:, essevariable(se)

In some applications, you may need to fix or constrain some elements of the random-effects
variance–covariance matrix. This is also useful to perform sensitivity analysis; see example 7. You
can do this by using the custom matname covariance structure.

Covariance structure custom matname provides a flexible way to restrict specific random-effects
standard deviations and correlations during estimation while allowing the remaining parameters to
be freely estimated. This option can be seen as a generalization of option tau2() in [META] meta
regress and thus can be used to perform sensitivity analysis; see covariance(custom matname).

Similarly, we can build other models. With more levels, we can specify different covariance
structures at different levels of hierarchy:

. meta meregress es x1 x2 || state: x1 x2, covariance(unstructured)
|| district: x2 , covariance(exchangeable) || school: , essevariable(se)

By default, meta meregress uses the REML method to estimate model parameters. This method
produces unbiased estimates of the random-effects covariance parameters by accounting for the loss
of degrees of freedom from estimating the fixed-effects vector β. You can specify the mle option to
instead estimate parameters using ML.

https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexsens
https://www.stata.com/manuals/metametaregress.pdf#metametaregressSyntaxreopts
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/meta.pdf#metametameregressOptionscustomcov
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Examples of using meta meregress

Examples are presented under the following headings:
Example 1: Standard meta-analysis as a two-level model
Example 2: Three-level meta-analysis
Example 3: Assessing multilevel heterogeneity
Example 4: Likelihood-ratio tests and information criteria
Example 5: Three-level meta-regression with random slopes
Example 6: Random-effects covariance structures
Example 7: Sensitivity multilevel meta-regression

Example 1: Standard meta-analysis as a two-level model

Recall the pupil IQ data (Raudenbush and Bryk 1985; Raudenbush 1984) described in Effects of
teacher expectancy on pupil IQ (pupiliq.dta) of [META] meta. Here we will use its declared version
(declared with meta set) to illustrate how to specify a standard meta-analysis model as a two-level
random-intercepts model.

. use https://www.stata-press.com/data/r18/pupiliqset
(Effects of teacher expectancy on pupil IQ; set with -meta set-)

. meta query, short
-> meta set stdmdiff se , studylabel(studylbl) eslabel(Std. mean diff.)

Effect-size label: Std. mean diff.
Effect-size type: Generic

Effect size: stdmdiff
Std. err.: se

Model: Random effects
Method: REML

In these data, the effect sizes are standardized mean differences stored in variable stdmdiff, with
their respective standard errors stored in variable se. To perform standard meta-analysis, we type the
following, suppressing the individual study results for brevity:

. meta summarize, nostudies

Effect-size label: Std. mean diff.
Effect size: stdmdiff

Std. err.: se
Study label: studylbl

Meta-analysis summary Number of studies = 19
Random-effects model Heterogeneity:
Method: REML tau2 = 0.0188

I2 (%) = 41.84
H2 = 1.72

theta: Overall Std. mean diff.

Estimate Std. err. z P>|z| [95% conf. interval]

theta .0836946 .0516536 1.62 0.105 -.0175447 .1849338

Test of homogeneity: Q = chi2(18) = 35.83 Prob > Q = 0.0074

The overall effect-size estimate is 0.0837 with the standard error of 0.052, and the estimated
between-study variance tau2 is 0.0188.

The standard meta-analysis model for this dataset can be expressed as

stdmdiffj = θ + uj + εj (5)

with uj ∼ N(0, τ2) and εj ∼ N(0, se2j ). This model can be fit using meta meregress as follows.

https://www.stata.com/manuals/metameta.pdf#metametaRemarksandexamplespupiliqdta
https://www.stata.com/manuals/metameta.pdf#metametaRemarksandexamplespupiliqdta
https://www.stata.com/manuals/metameta.pdf#metameta
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We specify the response variable and the fixed-effects portion of the model by typing the outcome
variable (stdmdiff) and some independent variables (moderators) of interest (in this example, there
are no moderators) after the command meta meregress. We then type || study: to specify random
effects at the study level. We did not specify any variables after the colon (:), because we wanted
to incorporate only random intercepts; see example 5 for random slopes. We also specify the variable
containing the sampling standard errors using option essevariable().

. meta meregress stdmdiff || study:, essevariable(se)

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -33.419194 (not concave)
Iteration 1: Log restricted-likelihood = -10.213945 (not concave)
Iteration 2: Log restricted-likelihood = -3.8361073
Iteration 3: Log restricted-likelihood = -3.7393756
Iteration 4: Log restricted-likelihood = -3.7365412
Iteration 5: Log restricted-likelihood = -3.7365412

Computing standard errors ...

Multilevel REML meta-analysis Number of obs = 19
Group variable: study Number of groups = 19

Obs per group:
min = 1
avg = 1.0
max = 1

Wald chi2(0) = .
Log restricted-likelihood = -3.7365412 Prob > chi2 = .

stdmdiff Coefficient Std. err. z P>|z| [95% conf. interval]

_cons .0836939 .0516531 1.62 0.105 -.0175444 .1849322

Test of homogeneity: Q_M = chi2(18) = 35.83 Prob > Q_M = 0.0074

Random-effects parameters Estimate

study: Identity
sd(_cons) .1372184

The output shows information about the optimization algorithm, the iteration log, and the method
(REML) used for estimating τ2. There are 19 observations (effect sizes) and 19 groups (studies) with
one observation per group, which is the case for standard meta-analysis. The reported model Wald
test is missing because we do not have moderators in our model.

The first table displays the fixed-effect parameter estimate from the two-level meta-analysis. Here
the fixed-effect parameter is a constant term denoted by cons, which represents θ in (5) and theta
in the output from meta summarize. The estimate of θ is 0.0837 with a standard error of 0.052 and
the 95% CI of [−0.0175, 0.1849]. The test of homogeneity, which tests that all effect sizes are equal,
reports the QM statistic of 35.83 with a p-value of 0.0074. The second table shows the estimated
value of τ (standard deviation of the random effects uj’s) labeled as sd( cons) in the output.

The results for the fixed-effect parameter are virtually identical. meta summarize reported an
estimate of the variance of the random intercepts τ̂2 = 0.0188, whereas meta meregress reports
the standard deviation (τ̂ = 0.1372) by default. We can display the variance by specifying the option
variance on replay. We also use options noheader and nofetable to suppress the header and the
fixed-effects table.

https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexrandslope
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqtwolvliq
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. meta meregress, variance noheader nofetable

Random-effects parameters Estimate

study: Identity
var(_cons) .0188289

Alternatively, we could have used estat sd, variance to obtain the same output; see [META] estat
sd and example 6.

Similarly, we can fit a standard meta-regression model as a two-level random-intercepts regression
model. First, we use meta regress ([META] meta regress) to fit a standard meta-regression model:

. meta regress weeks

Effect-size label: Std. mean diff.
Effect size: stdmdiff

Std. err.: se

Random-effects meta-regression Number of obs = 19
Method: REML Residual heterogeneity:

tau2 = .01117
I2 (%) = 29.36

H2 = 1.42
R-squared (%) = 40.70

Wald chi2(1) = 7.51
Prob > chi2 = 0.0061

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

weeks -.0157453 .0057447 -2.74 0.006 -.0270046 -.0044859
_cons .1941774 .0633563 3.06 0.002 .0700013 .3183535

Test of residual homogeneity: Q_res = chi2(17) = 27.66 Prob > Q_res = 0.0490

https://www.stata.com/manuals/metaestatsd.pdf#metaestatsd
https://www.stata.com/manuals/metaestatsd.pdf#metaestatsd
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexcovstruct
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
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Next we fit this same model using meta meregress. We simply list the moderator (weeks) in
the fixed-effects portion of the model after the outcome variable stdmdiff.

. meta meregress stdmdiff weeks || study:, essevariable(se) variance

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -31.596287 (not concave)
Iteration 1: Log restricted-likelihood = -8.6658459 (not concave)
Iteration 2: Log restricted-likelihood = -1.1427859 (not concave)
Iteration 3: Log restricted-likelihood = -.71416907
Iteration 4: Log restricted-likelihood = -.71388211
Iteration 5: Log restricted-likelihood = -.71388211

Computing standard errors ...

Multilevel REML meta-regression Number of obs = 19
Group variable: study Number of groups = 19

Obs per group:
min = 1
avg = 1.0
max = 1

Wald chi2(1) = 7.51
Log restricted-likelihood = -.71388211 Prob > chi2 = 0.0061

stdmdiff Coefficient Std. err. z P>|z| [95% conf. interval]

weeks -.0157453 .0057447 -2.74 0.006 -.0270046 -.0044859
_cons .1941769 .0633561 3.06 0.002 .0700012 .3183527

Test of homogeneity: Q_M = chi2(17) = 27.66 Prob > Q_M = 0.0490

Random-effects parameters Estimate

study: Identity
var(_cons) .011166

The estimates for the fixed-effects coefficients (reported in the first table) and τ2 (labeled var( cons)
in the second table above) are almost the same as from meta regress.

Example 2: Three-level meta-analysis

Consider a dataset from Cooper et al. (2003) on schools that modified their calendars without
prolonging the school year. A version of this dataset was also analyzed by Konstantopoulos (2011)
and will be used below. The dataset consists of 56 studies that were conducted in 11 school districts.

Some schools adopted modified calendars that feature shorter breaks more frequently throughout
the year (for example, 12 weeks of school followed by 4 weeks off), as opposed to the traditional
calendar with a longer summer break and shorter winter and spring breaks. The studies compared the
academic achievement of students on a traditional calendar with those on a modified calendar. The
effect size (stmdiff) was the standardized mean difference with positive values indicating higher
achievement, on average, in the group on the modified calendar. The standard error (se) of stmdiff
was also reported by each study. Let’s first describe our dataset:
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. use https://www.stata-press.com/data/r18/schoolcal, clear
(Effect of modified school calendar on student achievement)

. describe

Contains data from https://www.stata-press.com/data/r18/schoolcal.dta
Observations: 56 Effect of modified school

calendar on student achievement
Variables: 8 19 Jan 2023 21:44

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

district int %12.0g District ID
school byte %9.0g School ID
study byte %12.0g Study ID
stdmdiff double %10.0g Standardized difference in means

of achievement test scores
var double %10.0g Within-study variance of stdmdiff
year int %12.0g Year of the study
se double %10.0g Within-study standard-error of

stdmdiff
year_c byte %9.0g Year of the study centered around

1990

Sorted by: district

Because the schools are nested within districts, we fit a three-level random-intercepts model. This
model can also be fit using command meta multilevel; see example 1 of [META] meta multilevel.
The model can be expressed as

stdmdiffjk = θ + u
(3)
j + u

(2)
jk + εjk (6)

with u
(3)
j ∼ N(0, τ23 ), u

(2)
jk ∼ N(0, τ22 ), and εjk ∼ N(0, se2jk). Here there is one observation

(effect size) reported per school (level-2 group). Fitting a three-level model requires that you specify
two random-effects equations: one for level 3 (identified by variable district) and one for level 2
(identified by variable school). This model can be fit using meta meregress as follows:

https://www.stata.com/manuals/metametamultilevel.pdf#metametamultilevelRemarksandexamplesmuregexthree
https://www.stata.com/manuals/metametamultilevel.pdf#metametamultilevel
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. meta meregress stdmdiff || district: || school:, essevariable(se)

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -104.8525 (not concave)
Iteration 1: Log restricted-likelihood = -49.423271 (not concave)
Iteration 2: Log restricted-likelihood = -25.793841 (not concave)
Iteration 3: Log restricted-likelihood = -21.310018
Iteration 4: Log restricted-likelihood = -9.1236345
Iteration 5: Log restricted-likelihood = -8.2625776
Iteration 6: Log restricted-likelihood = -7.9588561
Iteration 7: Log restricted-likelihood = -7.9587239
Iteration 8: Log restricted-likelihood = -7.9587239

Computing standard errors ...

Multilevel REML meta-analysis Number of obs = 56

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

district 11 3 5.1 11
school 56 1 1.0 1

Wald chi2(0) = .
Log restricted-likelihood = -7.9587239 Prob > chi2 = .

stdmdiff Coefficient Std. err. z P>|z| [95% conf. interval]

_cons .1847132 .0845559 2.18 0.029 .0189866 .3504397

Test of homogeneity: Q_M = chi2(55) = 578.86 Prob > Q_M = 0.0000

Random-effects parameters Estimate

district: Identity
sd(_cons) .2550724

school: Identity
sd(_cons) .1809324

We first store the results of the model so we can use them later in example 4 to perform
likelihood-ratio tests.

. estimates store main_model

As in example 1, our fixed-effects equation contains only the dependent variable (effect sizes
stdmdiff). But we have two random-effects equations. The first represents random intercepts [the
u
(3)
j ’s in (6)] at the district level (level 3), and the second represents random intercepts [the u(2)jk ’s

in (6)] at the school level (level 2). The order in which these are specified (from left to right) is
important—meta meregress assumes that school is nested within district. Below, we describe
each portion of the output in detail.

The output first displays information about the optimization, including an iteration log. The top
of the header shows the method (REML) used for estimation and also displays the total number of
observations, which is 56 in our example.

The information on groups at different levels of hierarchy is displayed as a table with one row
for each grouping (level of hierarchy). For example, there are 11 groups (districts) at the district

https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexlric
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexuniv
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqschoolint
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqschoolint
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level. Each group contains somewhere between 3 to 11 level-2 groups (schools). You can suppress
this table with the nogroup or the noheader option, which will also suppress the rest of the header.

The second table displays the fixed-effects coefficients. In our example, there is only an intercept
corresponding to the term θ in (6). The value of θ̂ is 0.185 with a 95% CI of [0.019, 0.35]. This
means that, on average, students following the modified school calendar achieved higher scores than
those who did not.

The third table displays the random-effects parameters, traditionally known as variance components
in the context of multilevel or mixed-effects models. The variance-component estimates are now
organized and labeled according to each level. By default, meta meregress reports standard deviations
of the random intercepts (and correlations if they existed in the model) at each level. But you can
instead specify the variance option to report variances (and covariances if they existed in the model).
We have τ̂3 = 0.255 and τ̂2 = 0.181. These values are the building blocks for assessing heterogeneity
across different hierarchical levels and are typically interpreted in that context; see example 3 and
Higgins–Thompson heterogeneity statistics in Methods and formulas in [META] estat heterogeneity
(me) for details. In general, the higher the value of τl, the more heterogeneity is expected among the
groups within level l.

Example 3: Assessing multilevel heterogeneity

Continuing with example 2, let’s use the postestimation command estat heterogeneity to
quantify the multilevel heterogeneity among the effect sizes captured by the three-level meta-analysis
model.

. estat heterogeneity

Method: Cochran
Joint:

I2 (%) = 90.50

Method: Higgins--Thompson
district:

I2 (%) = 63.32

school:
I2 (%) = 31.86

Total:
I2 (%) = 95.19

Cochran’s I2Q quantifies the amount of heterogeneity jointly for all levels of hierarchy. It is a direct
extension to the multilevel setting of the classical I2 statistic based on the DerSimonian–Laird method
and thus has the same interpretation. For instance, I2Q = 90.50% means that 90.50% of the variability
among the effect sizes is due to true heterogeneity in our data as opposed to the sampling variability.
See Heterogeneity measures in Methods and formulas in [META] meta summarize and Residual
heterogeneity measures in Methods and formulas in [META] meta regress for details.

The value of the Cochran statistic is the same for all multilevel models with the same fixed-effects
structure. This is because its computation is based on the Cochran multivariate Q statistic, which is
calculated based only on the fixed-effects model; see Cochran heterogeneity statistic in Methods and
formulas in [META] estat heterogeneity (me) for details.

Unlike the Cochran I2Q statistic, the multilevel Higgins–Thompson I2 statistics (Nakagawa and
Santos 2012) provide ways to assess the contribution of each level of hierarchy to the total heterogeneity,
in addition to their joint contribution. For example, between-schools heterogeneity or heterogeneity
within districts (level-2 heterogeneity) is the lowest, accounting for about 32% of the total variation in

https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqschoolint
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexhet
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)MethodsandformulasHiggins--Thompsonheterogeneitystatistics
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)Methodsandformulas
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexthree
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulasHeterogeneitymeasures
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulas
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https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulasResidualheterogeneitymeasures
https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulasResidualheterogeneitymeasures
https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulas
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)MethodsandformulasCochranheterogeneitystatistic
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)Methodsandformulas
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)Methodsandformulas
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our data, whereas between-districts heterogeneity (level-3 heterogeneity) accounts for about 63% of
the total variation. This is a direct consequence of the estimate of τ23 being greater than that of τ22 in
example 2. See Higgins–Thompson heterogeneity statistics in Methods and formulas in [META] estat
heterogeneity (me) for details.

Example 4: Likelihood-ratio tests and information criteria

Suppose we wish to test whether there is a nonnegligible amount of heterogeneity within districts
(that is, heterogeneity between the schools within a district). This amounts to testing H0: τ

2
2 = 0.

We need to fit a model with τ22 = 0 and compare it with the model from example 2. This is a
two-level model with district as the second level of hierarchy (we eliminate the school level).
We fit this model and store its results under the name school effect. Recall that we had already
saved our results for the three-level model in example 2 under the name main model. So we can
use the lrtest command to conduct a likelihood-ratio test of our H0.

. quietly meta meregress stdmdiff || district: , essevariable(se)

. estimates store school_effect

. lrtest main_model school_effect

Likelihood-ratio test
Assumption: school_effect nested within main_model

LR chi2(1) = 48.52
Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Note: LR tests based on REML are valid only when the fixed-effects
specification is identical for both models.

Because the null hypothesis value of τ22 is at the boundary of the parameter space, the asymptotic
distribution of the test statistic is a mixture of the χ2

0 (a point mass at zero) and χ2
1 distributions

(Verbeke and Molenberghs 2000; Self and Liang 1987; and Gutierrez, Carter, and Drukker 2001),
with each having an equal weight of 0.5. To elaborate on the first note reported by lrtest, the exact
p-value can therefore be computed as

p = 0.5× P (χ2
0 > 48.52) + 0.5× P (χ2

1 > 48.52) = 0.5× P (χ2
1 > 48.52)

which is half of what is reported above. The second equality holds because the χ2 distribution with zero
degrees of freedom, χ2

0, places all probability mass at zero, and therefore 0.5×P (χ2
0 > 48.52) = 0.

This updated p-value computation does not affect our conclusion regarding the test result, which is
that we reject the hypothesis that schools are homogeneous within districts.

Similarly, we may also wish to test whether there is a nonnegligible amount of heterogeneity
between districts, which amounts to testing H0: τ

2
3 = 0. This is equivalent to fitting a standard RE

meta-analysis where all 56 effect sizes are assumed independent. Hence, we use variable study as
the grouping level in our model specification. Had we used school, the model would have clustered
our 56 effect sizes into 11 groups, which would violate the independence assumption.

https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexthree
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)MethodsandformulasHiggins--Thompsonheterogeneitystatistics
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)Methodsandformulas
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexthree
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. quietly meta meregress stdmdiff || study: , essevariable(se)

. estimates store dist_effect

. lrtest main_model dist_effect

Likelihood-ratio test
Assumption: dist_effect nested within main_model

LR chi2(1) = 17.77
Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Note: LR tests based on REML are valid only when the fixed-effects
specification is identical for both models.

The results of the test provide strong evidence that there is significant between-districts heterogeneity.
Similar discussion applies to the computation of the exact p-value as above.

We can compare our models using information criteria by using the estimates stats command.
We use option all to request AICc and CAIC in addition to the default AIC and BIC. We also use
option n() to use n− p = 55 instead of n = 56 as the number of observations in the computation
of BIC, AICc, and CAIC because our models used REML estimation.

. estimates stats main_model dist_effect school_effect, all n(55)

Information criteria

Model N ll(null) ll(model) df

main_model 55 . -7.958724 3
dist_effect 55 . -16.8455 2

school_eff~t 55 . -32.21648 2

Model AIC BIC AICc CAIC

main_model 21.91745 27.93945 22.38804 30.93945
dist_effect 37.691 41.70566 37.92177 43.70566

school_eff~t 68.43295 72.44762 68.66372 74.44762

Legend: AIC is Akaike’s information criterion.
BIC is Bayesian information criterion.
AICc is corrected Akaike’s information criterion.
CAIC is consistent Akaike’s information criterion.

All measures of information criteria favor the three-level model main model.

Example 5: Three-level meta-regression with random slopes

For illustration purposes, we will use variable year c to conduct a three-level meta-regression
and include random slopes (corresponding to variable year c) at the district level. We will not
include random slopes at the school level, because there is only one observation (effect size) per
school; otherwise, we will get an estimate that is practically zero for the standard deviation of the
random slope of year c at the school level; see Three-level model with random slopes. The model
can be described as follows:

stdmdiffjk = β0 + β1year cjk + u
(3)
0j + u

(3)
1j year cjk + u

(2)
jk + εjk (7)

https://www.stata.com/manuals/restimatesstats.pdf#restimatesstats
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesThree-levelmodelwithrandomslopes
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with (u
(3)
0j , u

(3)
1j )
′ ∼ N(0,Σ(3)), u(2)jk ∼ N(0, τ22 ), and εjk ∼ N(0, varjk). By default, the 2 × 2

matrix Σ(3) is assumed diagonal, which means that the u(3)0j ’s and u(3)1j ’s are assumed independent.
Other covariance structures can be specified with the covariance() option; see example 6.

. meta meregress stdmdiff year_c || district: year_c || school:,
> esvarvariable(var)

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -101.95646 (not concave)
Iteration 1: Log restricted-likelihood = -94.506522 (not concave)
Iteration 2: Log restricted-likelihood = -27.473266 (not concave)
Iteration 3: Log restricted-likelihood = -9.8063483
Iteration 4: Log restricted-likelihood = -7.2135276
Iteration 5: Log restricted-likelihood = -7.210109 (not concave)
Iteration 6: Log restricted-likelihood = -7.2100808 (not concave)
Iteration 7: Log restricted-likelihood = -7.2100609 (not concave)
Iteration 8: Log restricted-likelihood = -7.2098538
Iteration 9: Log restricted-likelihood = -7.2095961
Iteration 10: Log restricted-likelihood = -7.2095347
Iteration 11: Log restricted-likelihood = -7.2095302
Iteration 12: Log restricted-likelihood = -7.2095301

Computing standard errors ...

Multilevel REML meta-regression Number of obs = 56

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

district 11 3 5.1 11
school 56 1 1.0 1

Wald chi2(1) = 0.55
Log restricted-likelihood = -7.2095301 Prob > chi2 = 0.4577

stdmdiff Coefficient Std. err. z P>|z| [95% conf. interval]

year_c .0096026 .0129302 0.74 0.458 -.0157402 .0349453
_cons .1609574 .0823083 1.96 0.051 -.0003639 .3222787

Test of homogeneity: Q_M = chi2(54) = 550.26 Prob > Q_M = 0.0000

Random-effects parameters Estimate

district: Independent
sd(year_c) .033531
sd(_cons) .0643482

school: Identity
sd(_cons) .1808125

The estimate of the regression coefficient of variable year c is 0.010 with a 95% CI of
[−0.016, 0.035]. We do not see any evidence for the association between stdmdiff and year c

(p = 0.458). The estimates of the standard deviations of u(3)1j and u(3)0j (at the district level) are
labeled in the output as sd(year c) and sd( cons) and are estimated to be 0.034 and 0.064,
respectively. These values are the estimates of the square root of the diagonal elements of Σ(3).
The covariance structure at the district level is labeled as Independent, which is the default

https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexcovstruct
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assumption. You may display the 2× 2 matrix Σ(3) using the estat recovariance command; see
example 6. The estimate of τ2 is 0.181.

Although year c did not explain the heterogeneity, we continue to include it as a moderator in
our subsequent examples (example 6 and example 7) for illustration purposes.

Example 6: Random-effects covariance structures

Continuing with example 5, we will explore different random-effects covariance structures for
Σ(3) instead of the default independent structure. The default independent covariance structure is
chosen out of computational feasibility. In multilevel modeling, it is important to start with an
unrestricted covariance first, whenever feasible. It is also important to have meaningful baseline
values for the moderators to make variance components interpretable. Here we include year c,
which is centered on 1990, instead of year, so that the intercept can be interpreted as the expected
value in 1990 and the variance components can also be interpreted relative to this year. Let’s specify
the covariance(unstructured) option first. This assumes that all random effects have distinct
standard deviations and correlations. We suppress the header and the iteration log and display results
with 3 decimal points using the noheader, nolog, and cformat(%9.3f) options, which we store
in the local macro ‘options’ for syntactical convenience.

. local options noheader nolog cformat(%9.3f)

. meta meregress stdmdiff year_c || district: year_c,
> covariance(unstructured) || school:, esvarvariable(var) ‘options’

stdmdiff Coefficient Std. err. z P>|z| [95% conf. interval]

year_c 0.007 0.010 0.71 0.479 -0.013 0.028
_cons 0.160 0.076 2.12 0.034 0.012 0.308

Test of homogeneity: Q_M = chi2(54) = 550.26 Prob > Q_M = 0.0000

Random-effects parameters Estimate

district: Unstructured
sd(year_c) 0.028
sd(_cons) 0.082

corr(year_c,_cons) 1.000

school: Identity
sd(_cons) 0.180

The random-effects covariance structure at the district level is now labeled Unstructured:.
The correlation between the random slope and the random intercept is labeled as corr(year c,
cons). The estimated correlation value is 1 because, as we mentioned in example 5, variable year c

did not explain any heterogeneity and was included here for illustration purposes only.

Instead of specifying one of the standard covariance structures (independent, identity, ex-
changeable, or unstructured), you may request a custom covariance structure where you can fix
specific standard deviations or correlations while allowing others to be estimated. For example, the
following matrix A fixes the correlation between u(3)0j and u(3)1j at 0.5 and allows for their standard
deviations to be estimated from the data. See covariance(custom matname) for details.

https://www.stata.com/manuals/metaestatrecovariance.pdf#metaestatrecovariance
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexcovstruct
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexcovstruct
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. matrix A = (. ,.5 \ .5 ,.)

. meta meregress stdmdiff year_c || district: year_c, covariance(custom A)
> || school:, esvarvariable(var) ‘options’

stdmdiff Coefficient Std. err. z P>|z| [95% conf. interval]

year_c 0.007 0.011 0.67 0.500 -0.014 0.028
_cons 0.170 0.082 2.08 0.038 0.010 0.330

Test of homogeneity: Q_M = chi2(54) = 550.26 Prob > Q_M = 0.0000

Random-effects parameters Estimate

district: Custom
sd(year_c) 0.026
sd(_cons) 0.116

corr(year_c,_cons) 0.500*

school: Identity
sd(_cons) 0.180

(*) fixed during estimation

Note the asterisk that is appended next to the corr(year c, cons) value to emphasize that it was
fixed during estimation.

You may additionally wish to constrain the two standard deviations of the random intercept and
random slope to be the same (both specified equal to .a):

. matrix B = (.a ,.5 \ .5 ,.a)

. meta meregress stdmdiff year_c || district: year_c, covariance(custom B)
> || school:, esvarvariable(var) ‘options’

stdmdiff Coefficient Std. err. z P>|z| [95% conf. interval]

year_c 0.010 0.012 0.79 0.427 -0.014 0.034
_cons 0.154 0.076 2.02 0.043 0.005 0.304

Test of homogeneity: Q_M = chi2(54) = 550.26 Prob > Q_M = 0.0000

Random-effects parameters Estimate

district: Custom
sd(year_c _cons) 0.033

corr(year_c,_cons) 0.500*

school: Identity
sd(_cons) 0.181

(*) fixed during estimation

We can display the random-effects covariance matrices Σ(3) (at the district level) and Σ(2)

(at the school level), which is a scalar in our example, using the estat recovariance command
([META] estat recovariance). This is particularly useful if we specify a complicated custom covariance
structure in our model using the covariance(custommatname) option (think 3×3 or larger covariance
matrices).

https://www.stata.com/manuals/metaestatrecovariance.pdf#metaestatrecovariance
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. estat recovariance

Random-effects covariance matrix for level district

year_c _cons

year_c .0010852
_cons .0005426 .0010852

Fixed parameter: corr(year_c,_cons)=.5.

Random-effects covariance matrix for level school

_cons

_cons .0326401

To see the corresponding correlation matrix, specify the correlation option.

You may also use estat sd ([META] estat sd) to display the variance-components parameters as
variances and covariances (instead of the default standard deviations and correlations). This will also
group together any parameters that were constrained to be the same.

. estat sd, variance

Random-effects parameters Estimate

district: Custom
var(year_c _cons) .0010852
cov(year_c,_cons) .0005426

school: Identity
var(_cons) .0326401

Note: corr(year_c,_cons)=.5 at district
level fixed during estimation.

Example 7: Sensitivity multilevel meta-regression

It is quite common in multilevel meta-regression to produce unstable estimates, especially when
the number of observations is small relative to the number of parameters to be estimated. In this case,
our goal may shift toward assessing the impact of different magnitudes of random-effects covariance
parameters on the estimates of regression coefficients to evaluate the robustness of our results.

Continuing with (7) from example 5, we can investigate the effect of no correlation, moderate
correlation (0.4), and high correlation (0.8) between the random intercepts (the u(3)0j ’s) and the random

slopes (the u(3)1j ’s) at the district level on the regression coefficient estimates. We will allow
for the random-effects standard deviations to be estimated from the data. Thus, our fixed custom
random-effects covariance matrices for the three scenarios are

. matrix Sigma1 = (.,0\0,.)

. matrix Sigma2 = (.,.4\.4,.)

. matrix Sigma3 = (.,.8\.8,.)

We fit the first model using the correlations of 0 and store the estimation results as corr0.

. quietly meta meregress stdmdiff year_c
> || district: year_c, covariance(custom Sigma1)
> || school:, esvarvariable(var)

. estimates store corr0

https://www.stata.com/manuals/metaestatsd.pdf#metaestatsd
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Next we fit the model with correlations of 0.4 and store results as corr4 and the model with
correlations of 0.8 and store results as corr8. For brevity, we suppressed the output from all commands
by running them quietly.

. quietly meta meregress stdmdiff year_c
> || district: year_c, covariance(custom Sigma2)
> || school:, esvarvariable(var)

. estimates store corr4

. quietly meta meregress stdmdiff year_c
> || district: year_c, covariance(custom Sigma3)
> || school:, esvarvariable(var)

. estimates store corr8

We compare the estimates side by side by using estimates table:

. estimates table corr0 corr4 corr8,
> keep(stdmdiff:year_c stdmdiff:_cons) b(%8.3f) se(%8.3f)

Variable corr0 corr4 corr8

year_c 0.006 0.007 0.007
0.011 0.011 0.011

_cons 0.181 0.172 0.164
0.090 0.083 0.078

Legend: b/se

As the correlation between the random intercepts and the random slopes at the district level
increases, the coefficient estimate for cons decreases. Also, the estimate becomes more precise
(has a smaller standard error) as the correlation increases. Note also how the various magnitudes of
correlations had little to no impact on the estimation of year c (all values are near 0) because, as we
saw in example 5, variable year c did not explain any heterogeneity and should have been excluded
from the model.

Stored results
meta meregress stores the following in e():

Scalars
e(N) total number of observations
e(k) number of parameters
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(ll) log (restricted) likelihood
e(rank) rank of e(V)
e(ic) number of iterations
e(df m) model degrees of freedom
e(chi2) model χ2 Wald test statistic
e(p) p-value for model test
e(Q M) multilevel Cochran QM residual homogeneity test statistic
e(df Q M) degrees of freedom for residual homogeneity test
e(p Q M) p-value for residual homogeneity test
e(converged) 1 if converged, 0 otherwise

https://www.stata.com/manuals/restimatestable.pdf#restimatestable
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Macros
e(cmd) meta meregress
e(cmdline) command as typed
e(method) REML or ML
e(title) title in estimation output
e(chi2type) Wald; type of model χ2 test
e(depvar) name of dependent variable
e(ivars) grouping variables
e(indepvars) names of independent variables (moderators)
e(esvarvariable) variable containing sampling variances (when esvarvariable() is specified)
e(essevariable) variable containing sampling standard errors (when essevariable() is specified)
e(redim) random-effects dimensions
e(vartypes) variance-structure types
e(revars) random-effects covariates
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(emonly) emonly, if specified
e(ml method) type of ml method
e(opt) type of optimization
e(optmetric) matsqrt or matlog; random-effects matrix parameterization
e(properties) b V
e(predict) program used to implement predict
e(estat cmd) program used to implement estat
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(cov cust #) custom random-effects covariance matrix (when covariance(custom matname)

is specified)
e(Cns) constraints matrix
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

When the esvarvariable() option is specified, meta meregress creates a system variable,
meta mereg se, that contains the sampling standard errors.

Methods and formulas
Methods and formulas are presented under the following headings:

Three-level meta-regression

Methods for estimating Σ(2) and Σ(3)

Random-effects covariance structures
Multilevel meta-analysis
Residual homogeneity test
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For an overview of the statistical models behind multilevel meta-regression, see Konstantopou-
los (2011) and Sera et al. (2019).

Three-level meta-regression

The model for the three-level meta-regression can be expressed as

θ̂jkr = xjkrβ+ z
(3)
jkru

(3)
j + z

(2)
jkru

(2)
jk + εjkr

for j = 1, 2, . . . ,M , k = 1, 2, . . . ,mj , and r = 1, 2, . . . ,mjk. In this case,
xjkr = (1, x1,jkr, . . . , xp−1,jkr) is a 1× p vector of moderators and β is the corresponding p× 1
vector of unknown fixed-effects parameters. z

(3)
jkr is a 1× q3 vector of moderators associated with the

level-3 q3×1 vector of random effects u
(3)
j (1 intercept and q3−1 slopes), where u

(3)
j ∼ N(0,Σ(3)).

Similarly, z
(2)
jkr is a 1 × q2 vector of moderators associated with the level-2 (within-level-3) q2 × 1

vector of random effects u
(2)
jk , where u

(2)
jk ∼ N(0,Σ(2)). εjkr ∼ N(0, σ̂2

jkr) with the σ̂2
jkr’s being

the sampling variances.

Define the mjk × p matrix Xjk = (x′jk1,x
′
jk2, . . . ,x

′
jkmjk

)′ and the mjk × 1 vectors θ̂jk =

(θ̂jk1, θ̂jk2, . . . , θ̂jkmjk
)′ and εjk =

(
εjk1, εjk2, . . . , εjkmjk

)′
. The above model can now be written

as
θ̂jk = Xjkβ+ Z

(3)
jk u

(3)
j + Z

(2)
jk u

(2)
jk + εjk

where mjk × q3 matrix Z
(3)
jk = (z

(3)′
jk1 , z

(3)′
jk2 , . . . , z

(3)′
jkmjk

)′ and mjk × q2 matrix Z
(2)
jk =

(z
(2)′
jk1 , z

(2)′
jk2 , . . . , z

(2)′
jkmjk

)′. The εjk’s have an mjk-variate normal distribution with zero mean vec-
tor and a diagonal mjk × mjk covariance matrix Var(εjk) = Λjk with diagonal elements σ̂2

jkr,
r = 1, 2, . . . ,mjk. The covariance matrices (the Λjk’s) are treated as known and do not require
estimation. The Λjk’s reduce to σ̂2

j in the case of standard meta-analysis; see Methods and formulas
of [META] meta summarize.

Let mj. =
∑mj

k=1mjk be the number of observations belonging to the jth level-3 group and define

the mj.×p matrix Xj = (X′j1,X
′
j2, . . . ,X

′
jmj

)′ and the mj.×1 vectors θ̂j = (θ̂
′
j1, θ̂

′
j2, . . . , θ̂

′
jmj

)′

and εj = (ε′j1, ε
′
j2, . . . , ε

′
jmj

)′ with mj. ×mj. covariance matrix Var(εj) = Λj = ⊕
mj

k=1Λjk, where
⊕ is the Kronecker sum. The previous model can now be expressed as

θ̂j = Xjβ+ Z
(3)
j u

(3)
j + Z

(2)
j u

(2)
j + εj

where mj. × mjq2 block-diagonal matrix Z
(2)
j = ⊕mj

k=1Z
(2)
jk , mj. × q3 matrix Z

(3)
j =

(Z
(3)′

j1 ,Z
(3)′

j2 , . . . ,Z
(3)′

jmj
), and mjq2 × 1 vector of random effects at level 2 u

(2)
j =

(u
(2)′
j1 ,u

(2)′
j2 , . . . ,u

(2)′
jmj

)′ ∼ N(0, Imj
⊗Σ(2)), where ⊗ is the Kronecker product.

We may eliminate the explicit reference to specific levels of hierarchy and express the previous
model more compactly as

θ̂j = Xjβ+ Zjuj + εj

where mj.× (q3+mjq2) matrix Zj = (Z
(3)
j ,Z

(2)
j ) and (q3+mjq2)×1 vector uj = (u

(3)′
j ,u

(2)′
j )′,

with a (q3 +mjq2)× (q3 +mjq2) covariance matrix Σj ,

Σj = Var (uj) =
[

Σ(3) 0
0 Imj

⊗Σ(2)

]
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Note that Σj depends on j only through its dimension. In other words, if estimates for Σ(2) and
Σ(3) are available, then estimates for Σj , j = 1, 2, . . . ,M are also available.

Let Σ̂j be an estimate of the random-effects covariance matrix Σj (to be discussed later), and let
Wj = (ZjΣ̂jZ

′
j + Λj)

−1. The vector of fixed-effects regression coefficients β can be estimated as

β̂ =

 M∑
j=1

X′jWjXj

−1 M∑
j=1

X′jWj θ̂j

The corresponding covariance matrix is given by

Var(β̂) =

 M∑
j=1

X′jWjXj

−1

In the following section, we outline the estimation of the random-effects covariance matrices Σ(2)

and Σ(3) (and thus of Σj) for the ML and REML methods.

Methods for estimating Σ(2) and Σ(3)

The two estimators described below do not have a closed-form solution, and an iterative algorithm
is needed to estimate Σ(2) and Σ(3).

The joint log-likelihood function of β, Σ(2), and Σ(3) for a random-effects multivariate meta-
regression can be expressed as

lnLML

(
β,Σ(2),Σ(3)

)
= −1

2

n ln(2π) +
M∑
j=1

ln |Vj |+
M∑
j=1

(
θ̂j −Xjβ

)′
V−1j

(
θ̂j −Xjβ

)
where Vj = ZjΣjZ

′
j + Λj , |Vj | is the determinant of Vj , and n =

∑M
j=1

∑mj

k=1mjk is the total

number of observations θ̂jkr.

The random-effects covariance matrices Σ(2) and Σ(3) are estimated by maximizing the profile
log-likelihood function obtained by treating β as known and plugging β̂ into lnLML(β, Σ) in place
of β (Pinheiro and Bates [2000, chap. 2]):

lnLML

(
Σ(2), Σ(3)

)
= −1

2

n ln(2π) +
M∑
j=1

ln |Vj |+
M∑
j=1

(
θ̂j −Xjβ̂

)′
V−1j

(
θ̂j −Xjβ̂

)
The MLE of Σ(2) and Σ(3) does not incorporate the uncertainty about the unknown regression

coefficients β and thus can be negatively biased.

The REML estimator of Σ(2) and Σ(3) maximizes the restricted log-likelihood function

lnLREML

(
Σ(2), Σ(3)

)
= lnLML

(
Σ(2), Σ(3)

)
− 1

2
ln

∣∣∣∣∣∣
M∑
j=1

X′jV
−1
j Xj

∣∣∣∣∣∣+ p

2
ln(2π)
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The REML method estimates Σ(2) and Σ(3) by accounting for the uncertainty in the estimation
of β, which leads to a nearly unbiased estimate of Σ(2) and Σ(3). The optimization of the above
log-likelihood functions can be done using the machinery of the mixed-effects models to obtain the
estimates β̂, Σ(2), and Σ(3). For details, see Pinheiro and Bates (2000) and Methods and formulas
of [ME] mixed. When there are only two levels of hierarchy in the model and no random slopes,
that is, in the context of standard meta-analysis, the above ML and REML estimators reduce to their
counterparts as reported by meta regress.

Random-effects covariance structures

Several covariance structures may be assumed for the ql × ql random-effects covariance matrix
Σ(l) at a specific level of hierarchy l. The default covariance structure is independent, which
assumes there are ql standard deviations to be estimated corresponding to the ql random effects at
level l. Other covariance structures are exchangeable, identity, unstructured, and custom
matname. Structures that allow the random effects to be correlated (unstructured, exchangeable,
and potentially custom matname) should be used only when adequate observations are available in
order to produce stable estimates of the correlations.

For example, when there are 3 random effects at level l (ql = 3), the covariance structures are

independent Σ(l) =

σ110 σ22
0 0 σ33



exchangeable Σ(l) =

σ11σ21 σ11
σ21 σ21 σ11



identity Σ(l) =

σ110 σ11
0 0 σ11


unstructured Σ(l) =

σ11σ21 σ22
σ31 σ32 σ33


For the custom covariance structure, see covariance(custom matname).

Multilevel meta-analysis

The formulas presented so far are derived for the general case of multilevel meta-regression.
Methods and formulas for the special case of multilevel meta-analysis (when no moderators are
included) can be obtained by taking xjkr = 1, z

(3)
jkr = 1, z

(2)
jkr = 1, and p = 1. This model can be

expressed as
θ̂jkr = β0 + u

(3)
j + u

(2)
jk + εjkr

where j = 1, 2, . . . ,M , k = 1, 2, . . . ,mj , and r = 1, 2, . . . ,mjk. When there are only two levels of
hierarchy in the model, the REML and ML estimators reduce to the classical REML and ML estimators
described in [META] meta summarize for constant-only models.
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Residual homogeneity test

Consider a test of residual homogeneity, which mathematically translates to H0: Σ(l) = 0ql×ql , l =
2, 3, for the multilevel meta-regression. This test is based on the multivariate residual weighted sum
of squares, QM, defined as

QM =

M∑
j=1

(
θ̂j −Xjβ̂f

)′
Λ−1j

(
θ̂j −Xjβ̂f

)

where β̂f is a fixed-effects estimator obtained by fitting a standard fixed-effects meta-regression (see

[META] meta regress) of the θ̂jkr’s on the moderators defining the Xj matrix.

Under the null hypothesis of residual homogeneity, QM follows a χ2 distribution with n − p
degrees of freedom (Seber and Lee 2003, sec. 2.4). The QM statistic reduces to the classical residual
homogeneity test statistic, Qres, when there are two levels of hierarchy and no random slopes in
the model (see Residual homogeneity test in Methods and formulas in [META] meta regress). It also
reduces to the classical homogeneity statistic Q when no moderators are included (see Homogeneity
test in Methods and formulas in [META] meta summarize).
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