
Title stata.com

solvenl() — Solve systems of nonlinear equations

Description Syntax Remarks and examples Conformability
Diagnostics References Also see

Description

The solvenl() suite of functions finds solutions to systems of nonlinear equations.

solvenl init() initializes the problem and returns S, a structure that contains information regarding
the problem, including default values. If you declare a storage type for S, declare it to be a
transmorphic scalar.

The solvenl init *(S, . . .) functions allow you to modify those default values and specify other
aspects of your problem, including whether your problem refers to finding a fixed point or a zero
starting value to use, etc.

solvenl solve(S) solves the problem. solvenl solve() returns a vector that represents either
a fixed point of your function or a vector at which your function is equal to a vector of zeros.

The solvenl result *(S) functions let you access other information associated with the solution
to your problem, including whether a solution was achieved, the final Jacobian matrix, and diagnostics.

Aside: The solvenl init *(S, . . .) functions have two modes of operation. Each has an optional
argument that you specify to set the value and that you omit to query the value. For instance, the
full syntax of solvenl init startingvals() is

void solvenl_init_startingvals(S, real colvector ivals)
real colvector solvenl_init_startingvals(S)

The first syntax sets the parameter values and returns nothing. The second syntax returns the previously
set (or default, if not set) parameter values.

All the solvenl init *(S, . . .) functions work the same way.

1

http://stata.com

2 solvenl() — Solve systems of nonlinear equations

Syntax

S = solvenl init()

(varies) solvenl init type(S
[
, { "fixedpoint" | "zero" }

]
)

(varies) solvenl init startingvals(S
[
, real colvector ivals

]
)

(varies) solvenl init numeq(S
[
, real scalar nvars

]
)

(varies) solvenl init technique(S
[
, "technique"

]
)

(varies) solvenl init conv iterchng(S
[
, real scalar itol

]
)

(varies) solvenl init conv nearzero(S
[
, real scalar ztol

]
)

(varies) solvenl init conv maxiter(S
[
, real scalar maxiter

]
)

(varies) solvenl init evaluator(S
[
, &evaluator()

]
)

(varies) solvenl init argument(S, real scalar k
[
, X

]
)

(varies) solvenl init narguments(S
[
, real scalar K

]
)

(varies) solvenl init damping(S
[
, real scalar damp

]
)

(varies) solvenl init iter log(S
[
, { "on" | "off" }

]
)

(varies) solvenl init iter dot(S
[
, { "on" | "off" }

]
)

(varies) solvenl init iter dot indent(S
[
, real scalar indent

]
)

(varies) solvenl init deriv usemin(S
[
, { "off" | "on" }

]
)

(varies) solvenl init deriv min(S
[
, real rowvector min

]
)

real colvector solvenl solve(S)

real scalar solvenl solve(S)

real scalar solvenl result converged(S)

real scalar solvenl result conv iter(S)

real scalar solvenl result conv iterchng(S)

real scalar solvenl result conv nearzero(S)

real colvector solvenl result values(S)

real matrix solvenl result Jacobian(S)

real scalar solvenl result error code(S)

real scalar solvenl result return code(S)

string scalar solvenl result error text(S)

void solvenl dump(S)

solvenl() — Solve systems of nonlinear equations 3

S, if it is declared, should be declared as

transmorphic S

and technique optionally specified in solvenl init technique() is one of the following:

technique Description

gaussseidel Gauss–Seidel
dampedgaussseidel Damped Gauss–Seidel
broydenpowell Broyden–Powell

* newtonraphson Newton–Raphson

* newton may also be abbreviated as nr.

For fixed-point problems, allowed techniques are gaussseidel and dampedgaussseidel. For zero-
finding problems, allowed techniques are broydenpowell and newtonraphson. solvenl *() exits
with an error message if you specify a technique that is incompatible with the type of evaluator
you declared by using solvenl init type(). The default technique for fixed-point problems
is dampedgaussseidel with a damping parameter of 0.1. The default technique for zero-finding
problems is broydenpowell.

Remarks and examples stata.com

Remarks are presented under the following headings:
Introduction
A fixed-point example
A zero-finding example
Writing a fixed-point problem as a zero-finding problem and vice versa
Gauss–Seidel methods
Newton-type methods
Convergence criteria
Exiting early
Functions

solvenl init()
solvenl init type()
solvenl init startingvals(()
solvenl init numeq()
solvenl init technique()
solvenl init conv iterchng()
solvenl init conv nearzero()
solvenl init conv maxiter()
solvenl init evaluator()
solvenl init argument() and solvenl init narguments()
solvenl init damping()
solvenl init iter log()
solvenl init iter dot()
solvenl init iter dot indent()
solvenl init deriv usemin() and solvenl init deriv min()
solvenl solve() and solvenl solve()
solvenl result converged()
solvenl result conv iter()
solvenl result conv iterchng()
solvenl result conv nearzero()
solvenl result values()
solvenl result Jacobian()
solvenl result error code(), . . . return code(), and . . . error text()
solvenl dump()

http://stata.com

4 solvenl() — Solve systems of nonlinear equations

Introduction

Let x denote a k × 1 vector and let F : Rk → Rk denote a function that represents a system of
equations. The solvenl() suite of functions can be used to find fixed-point solutions x∗ = F(x∗),
and it can be used to find a zero of the function, that is, a vector x∗ such that F(x∗) = 0.

Four solution methods are available: Gauss–Seidel (GS), damped Gauss–Seidel (dGS), Newton’s
method (also known as the Newton–Raphson method), and the Broyden–Powell (BP) method. The
first two methods are used to find fixed points, and the latter two are used to find zeros. However,
as we discuss below, fixed-point problems can be rewritten as zero-finding problems, and many
zero-finding problems can be rewritten as fixed-point problems.

Solving systems of nonlinear equations is inherently more difficult than minimizing or maximizing
a function. The set of first-order conditions associated with an optimization problem satisfies a set
of integrability conditions, while solvenl *() works with arbitrary systems of nonlinear equations.
Moreover, while one may be tempted to approach a zero-finding problem by defining a function

f (x) = F(x)′F(x)

and minimizing f (x), there is a high probability that the minimizer will find a local minimum for
which F(x) 6= 0 (Press et al. 2007, 476). Some problems may have multiple solutions.

A fixed-point example

We want to solve the system of equations

x = 5
3 −

2
3y

y = 10
3 −

2
3x

First, we write a program that takes two arguments: a column vector representing the values at which
we are to evaluate our function and a column vector into which we are to place the function values.

: void function myfun(real colvector from, real colvector values)
> {
> values[1] = 5/3 - 2/3*from[2]
> values[2] = 10/3 - 2/3*from[1]
> }

Our invocation of solvenl *() proceeds as follows:
: S = solvenl_init()

: solvenl_init_evaluator(S, &myfun())

: solvenl_init_type(S, "fixedpoint")

: solvenl_init_technique(S, "gaussseidel")

: solvenl_init_numeq(S, 2)

: solvenl_init_iter_log(S, "on")

: x = solvenl_solve(S)
Iteration 1: 3.3333333
Iteration 2: .83333333

(output omitted)
: x

1

1 -.9999999981
2 4

solvenl() — Solve systems of nonlinear equations 5

In our equation with x on the left-hand side, x did not appear on the right-hand side, and similarly for
the equation with y. However, that is not required. Fixed-point problems with left-hand-side variables
appearing on the right-hand side of the same equation can be solved, though they typically require
more iterations to reach convergence.

A zero-finding example

We wish to solve the following system of equations (Burden, Faires, and Burden 2016, 657) for the
three unknowns x, y, and z:

10− x ey − z = 0

12− x e2y − 2z = 0

15− x e3y − 3z = 0

We will use Newton’s method. We cannot use x = y = z = 0 as initial values because the Jacobian
matrix is singular at that point; we will instead use x = y = z = 0.2. Our program is

: void function myfun2(real colvector x, real colvector values)
> {
> values[1] = 10 - x[1]*exp(x[2]*1) - x[3]*1
> values[2] = 12 - x[1]*exp(x[2]*2) - x[3]*2
> values[3] = 15 - x[1]*exp(x[2]*3) - x[3]*3
> }

: S = solvenl_init()

: solvenl_init_evaluator(S, &myfun2())

: solvenl_init_type(S, "zero")

: solvenl_init_technique(S, "newton")

: solvenl_init_numeq(S, 3)

: solvenl_init_startingvals(S, J(3,1,.2))

: solvenl_init_iter_log(S, "on")

: x = solvenl_solve(S)
Iteration 0: function = 416.03613
Iteration 1: function = 63.014451 delta X = 1.2538445
Iteration 2: function = 56.331397 delta X = .70226488
Iteration 3: function = 48.572941 delta X = .35269647
Iteration 4: function = 37.434106 delta X = .30727054
Iteration 5: function = 19.737501 delta X = .38136739
Iteration 6: function = .49995202 delta X = .2299557
Iteration 7: function = 1.164e-08 delta X = .09321045
Iteration 8: function = 4.154e-16 delta X = .00011039

: x
1

1 8.771286448
2 .2596954499
3 -1.372281335

Writing a fixed-point problem as a zero-finding problem and vice versa

Earlier, we solved the system of equations

x = 5
3 −

2
3y

y = 10
3 −

2
3x

6 solvenl() — Solve systems of nonlinear equations

by searching for a fixed point. We can rewrite this system as

x− 5
3 + 2

3y = 0

y− 10
3 + 2

3x = 0

and then use BP or Newton’s method to find the solution. In general, we simply rewrite x∗ = F(x∗)
as x∗ − F(x∗) = 0.

Similarly, we may be able to rearrange the constituent equations of a system of the form F(x) = 0
so that each variable is an explicit function of the other variables in the system. If that is the case,
then GS or dGS can be used to find the solution.

Gauss–Seidel methods

Let xi−1 denote the previous iteration’s values or the initial values, and let xi denote the current
iteration’s values. The Gauss–Jacobi method simply iterates on xi = F(xi−1) by evaluating each
equation in order. The Gauss–Seidel method implemented in solvenl *() instead uses the new,
updated values of xi that are available for equations 1 through j − 1 when evaluating equation j at
iteration i.

For damped Gauss–Seidel, again let xi denote the values obtained from evaluating F(xi−1). However,
after evaluating F, dGS calculates the new parameter vector that is carried over to the next iteration as

x#
i = (1− δ)xi + δxi−1

where δ is the damping factor. Not fully updating the parameter vector at each iteration helps
facilitate convergence in many problems. The default value of δ for method dGS is 0.1, representing
just a small amount of damping, which is often enough to achieve convergence. You can use
solvenl init damping() to change δ; the current implementation uses the same value of δ for
all iterations. Increasing the damping factor generally slows convergence by requiring more iterations.

Newton-type methods

Newton’s method for solving F(x) = 0 is based on the approximation

F(xi) ≈ F(xi−1) + J(xi−1)× (xi − xi−1)

where J(xi−1) is the Jacobian matrix of F(xi−1). Rearranging and incorporating a step-length
parameter α, we have the iteration

xi = xi−1 − αJ−1(xi−1)× F(xi−1)

We calculate J numerically by using the deriv() (see [M-5] deriv()) suite of functions. In fact, we
do not calculate the inverse of J; we instead use LU decomposition to solve for xi − xi−1.

To speed up convergence, we define the function f (x) = F(x)′F(x) and then choose α between 0 and
1 such that f(xi) is minimized. We use a golden-section line search with a maximum of 20 iterations
to find α.

https://www.stata.com/manuals/m-5deriv.pdf#m-5deriv()

solvenl() — Solve systems of nonlinear equations 7

Because we must compute a k × k Jacobian matrix at each iteration, Newton’s method can be slow.
The BP method, similar to quasi-Newton methods for optimization, instead builds and updates an
approximation B to the Jacobian matrix at each iteration. The BP update is

Bi = Bi−1 +
yi −Bi−1di

d′idi
d′i

where di = xi − xi−1 and yi = F(xi) − F(xi−1). Our initial estimate of the Jacobian matrix is
calculated numerically at the initial values by using deriv(). Other than how the Jacobian matrix is
updated, the BP method is identical to Newton’s method, including the use of a step-length parameter
determined by using a golden-section line search at each iteration.

Convergence criteria

solvenl *() stops if more than maxiter iterations are performed, where maxiter is c(maxiter)
by default and can be changed by using solvenl init conv maxiter(). Convergence is not
declared after maxiter iterations unless one of the following convergence criteria is also met.

Let xi denote the proposed solution at iteration i, and let xi−1 denote the proposed solution at the
previous iteration. Then the parameters have converged when mreldif(xi,xi−1) < itol, where itol
is 1e-9 by default and can be changed by using solvenl init conv iterchng(). Techniques
GS and dGS use only this convergence criterion.

For BP and Newton’s method, let f (xi) = F(xi)
′F(xi). Then convergence is declared if

mreldif(xi,xi−1) < itol or f (xi) < ztol, where ztol is 1e-9 by default and can be changed
by using solvenl init conv nearzero().

Exiting early

In some applications, you might have a condition that indicates your problem either has no solution
or has a solution that you know to be irrelevant. In these cases, you can return a column vector
with zero rows. solvenl() will then exit immediately and return an error code indicating you have
requested an early exit.

To obtain this behavior, include the following code in your evaluator:

: void function myfun(real colvector from, real colvector values)
>
> ...
> if (condition)
> values = J(0, 1, .)
> return
>
> values[1] = 5/3 - 2/3*from[2]
> values[2] = 10/3 - 2/3*from[1]
> ...
>

Then if condition is true, solvenl() exits, solvenl result error code() returns error code 27,
and solvenl result converged() returns 0 (indicating a solution has not been found).

8 solvenl() — Solve systems of nonlinear equations

Functions

solvenl init()

solvenl init()

solvenl init() is used to initialize the solver. Store the returned result in a variable name of
your choosing; we use the letter S. You pass S as the first argument to the other solvenl() suite
of functions.

solvenl init() sets all solvenl init *() values to their defaults. You can use the query form
of the solvenl init *() functions to determine their values. Use solvenl dump() to see the
current state of the solver, including the current values of the solvenl init *() parameters.

solvenl init type()

void solvenl init type(S, { "fixedpoint" | "zero" })
string scalar solvenl init type(S)

solvenl init type(S, type) specifies whether to find a fixed point or a zero of the function.
type may be fixedpoint or zero.

If you specify solvenl init type(S, "fixedpoint") but have not yet specified a technique,
then technique is set to dampedgaussseidel.

If you specify solvenl init type(S, "zero") but have not yet specified a technique, then
technique is set to broydenpowell.

solvenl init type(S) returns "fixedpoint" or "zero" depending on how the solver is currently
set.

solvenl init startingvals()

void solvenl init startingvals(S, real colvector ivals)

real colvector solvenl init startingvals(S)

solvenl init startingvals(S, ivals) sets the initial values for the solver to ivals. By default,
ivals is set to the zero vector.

solvenl init startingvals(S) returns the currently set initial values.

solvenl init numeq()

void solvenl init numeq(S, real scalar k)

real scalar solvenl init numeq(S)

solvenl init numeq(S, k) sets the number of equations in the system to k.

solvenl init numeq(S) returns the currently specified number of equations.

solvenl() — Solve systems of nonlinear equations 9

solvenl init technique()

void solvenl init technique(S, technique)

string scalar solvenl init technique(S)

solvenl init technique(S, technique) specifies the solver technique to use. For more infor-
mation, see technique above.

If you specify techniques gaussseidel or dampedgaussseidel but have not yet called
solvenl init type(), solvenl *() assumes you are solving a fixed-point problem until you
specify otherwise.

If you specify techniques broydenpowell or newtonraphson but have not yet called
solvenl init type(), solvenl *() assumes you have a zero-finding problem until you specify
otherwise.

solvenl init technique(S) returns the currently set solver technique.

solvenl init conv iterchng()

void solvenl init conv iterchng(S, itol)

real scalar solvenl init conv iterchng(S)

solvenl init conv iterchng(S, itol) specifies the tolerance used to determine whether succes-
sive estimates of the solution have converged. Convergence is declared when mreldif(x(i), x(i−1)) <
itol. For more information, see Convergence criteria above. The default is 1e-9.

solvenl init conv iterchng(S) returns the currently set value of itol.

solvenl init conv nearzero()

void solvenl init conv nearzero(S, ztol)

real scalar solvenl init conv nearzero(S)

solvenl init conv nearzero(S, ztol) specifies the tolerance used to determine whether the
proposed solution to a zero-finding problem is sufficiently close to 0 based on the squared Euclidean
distance. For more information, see Convergence criteria above. The default is 1e-9.

solvenl init conv nearzero(S) returns the currently set value of ztol.

solvenl init conv nearzero() only applies to zero-finding problems. solvenl *() simply
ignores this criterion when solving fixed-point problems.

10 solvenl() — Solve systems of nonlinear equations

solvenl init conv maxiter()

void solvenl init conv maxiter(S, maxiter)

real scalar solvenl init conv maxiter(S)

solvenl init conv maxiter(S,maxiter) specifies the maximum number of iterations to perform.
Even if maxiter iterations are performed, convergence is not declared unless one of the other convergence
criteria is also met. For more information, see Convergence criteria above. The default maxiter is the
number set using set maxiter, which is 300 by default.

solvenl init conv maxiter(S) returns the currently set value of maxiter.

solvenl init evaluator()

void solvenl init evaluator(S, pointer(real function)
scalar fptr)

pointer(real function) scalar solvenl init evaluator(S)

solvenl init evaluator(S, fptr) specifies the function to be called to evaluate F(x). You must
use this function. If your function is named myfcn(), then you specify
solvenl init evaluator(S, &myfcn()).

solvenl init evaluator(S) returns a pointer to the function that has been set.

solvenl init argument() and solvenl init narguments()

void solvenl init argument(S, real scalar k, X)

void solvenl init narguments(S, real scalar K)

pointer scalar solvenl init argument(S, real scalar k)

real scalar solvenl init narguments(S)

solvenl init argument(S, k, X) sets the kth extra argument of the evaluator function as X,
where k can be 1, 2, or 3. If you need to pass more items to your evaluator, collect them into a
structure and pass the structure. X can be anything, including a pointer, a view matrix, or simply a
scalar. No copy of X is made; it is passed by reference. Any changes you make to X elsewhere in
your program will be reflected in what is passed to your evaluator function.

solvenl init narguments(S, K) sets the number of extra arguments to be passed to your
evaluator function. Use of this function is optional; initializing an additional argument by using
solvenl init argument() automatically sets the number of arguments.

solvenl init argument(S, k) returns a pointer to the previously set kth additional argument.

solvenl init narguments(S) returns the number of extra arguments that are passed to the
evaluator function.

https://www.stata.com/manuals/rsetiter.pdf#rsetiter

solvenl() — Solve systems of nonlinear equations 11

solvenl init damping()

void solvenl init damping(S, real scalar d)

real scalar solvenl init damping(S)

solvenl init damping(S, d) sets the damping parameter used by the damped Gauss–Seidel
technique to d, where 0 ≤ d < 1. That is, d = 0 corresponds to no damping, which is equivalent to
plain Gauss–Seidel. As d approaches 1, more damping is used. The default is d = 0.1. If the dGS
technique is not being used, this parameter is ignored.

solvenl init damping(S) returns the currently set damping parameter.

solvenl init iter log()

void solvenl init iter log(S, {"on" | "off"})
string scalar solvenl init iter log(S)

solvenl init iter log(S, onoff) specifies whether an iteration log should or should not be
displayed. onoff may be "on" or "off". By default, an iteration log is displayed unless set iterlog
is set to "off"; see [R] set iter.

solvenl init iter log(S) returns the current status of the iteration log indicator.

solvenl init iter dot()

void solvenl init iter dot(S, {"on" | "off"})
string scalar solvenl init iter dot(S)

solvenl init iter dot(S, onoff) specifies whether an iteration dot should or should not be
displayed. onoff may be "on" or "off". By default, an iteration dot is not displayed.

Specifying solvenl init iter dot(S, on) results in the display of a single dot without a new
line after each iteration is completed. This option can be used to create a compact status report when
a full iteration log is too detailed but some indication of activity is warranted.

solvenl init iter dot(S) returns the current status of the iteration dot indicator.

solvenl init iter dot indent()

void solvenl init iter dot indent(S, real scalar indent)

string scalar solvenl init iter dot indent(S)

solvenl init iter dot indent(S, indent) specifies how many spaces from the left edge
iteration dots should begin. This option is useful if you are writing a program that calls solvenl()
and if you want to control how the iteration dots appear to the user. By default, the dots start at the
left edge (indent = 0). If you do not turn on iteration dots with solvenl init iter dot(), this
option is ignored.

solvenl init iter dot indent(S) returns the current amount of indentation.

https://www.stata.com/manuals/rsetiter.pdf#rsetiter

12 solvenl() — Solve systems of nonlinear equations

solvenl init deriv usemin() and solvenl init deriv min()

void solvenl init deriv usemin(S, { "off" | "on" })
void solvenl init deriv min(S, real rowvector min)

string scalar solvenl init deriv usemin(S)

real rowvector solvenl init deriv min(S)

solvenl init deriv usemin(S, { "off" | "on" }) specifies whether to use the minimum values
of step sizes for computing numerical derivatives. The default is "off", meaning minimum values
will not be used. If you specify "on", minimum values will be used; when minimum values are not
specified by solvenl init deriv min(), default minimum values are 1e-6 and 1e-4 for first-
and second-order derivatives, respectively.

solvenl init deriv min(S, min) sets the minimum values of step sizes used for computing
numerical derivatives. min is a row vector with two columns; the first column specifies the minimum for
first-order derivatives, and the second column specifies the minimum for second-order derivatives. If
there is a missing value in the row vector, the default values of 1e-6 for first-order derivatives and 1e-4
for second-order derivatives are used. If this function is used, solvenl init deriv usemin() is
automatically set to "on".

solvenl init deriv usemin(S) returns the current value "off" or "on", indicating whether
to use minimum values of the step size.

solvenl init deriv min(S) returns the current value min.

These functions only work with techniques broydenpowell or newtonraphson.

solvenl solve() and solvenl solve()

real colvector solvenl solve(S)

void solvenl solve(S)

solvenl solve(S) invokes the solver and returns the resulting solution. If an error occurs, sol-
venl solve() aborts with error.

solvenl solve(S) also invokes the solver. Rather than returning the solution, this function returns
an error code if something went awry. If the solver did find a solution, this function returns 0. See
below for a list of the possible error codes.

Before calling either of these functions, you must have defined your problem. At a minimum, this
involves calling the following functions:

solvenl init()

solvenl init numeq()

solvenl init evaluator()

solvenl init type() or solvenl init technique()

solvenl() — Solve systems of nonlinear equations 13

solvenl result converged()

real scalar solvenl result converged(S)

solvenl result converged(S) returns 1 if the solver found a solution to the problem and 0
otherwise.

solvenl result conv iter()

real scalar solvenl result conv iter(S)

solvenl result conv iter(S) returns the number of iterations required to obtain the solution.
If a solution was not found or the solver has not yet been called, this function returns missing.

solvenl result conv iterchng()

real scalar solvenl result conv iterchng(S)

solvenl result conv iterchng(S) returns the final tolerance achieved for the parameters if
a solution has been reached. Otherwise, this function returns missing. For more information, see
Convergence criteria above.

solvenl result conv nearzero()

real scalar solvenl result conv nearzero(S)

solvenl result conv nearzero(S) returns the final distance the solution lies from zero if a
solution has been reached. Otherwise, this function returns missing. This function also returns missing
if called after either GS or dGS was used because this criterion does not apply. For more information,
see Convergence criteria above.

solvenl result values()

real colvector solvenl result values(S)

solvenl result values(S) returns the column vector representing the fixed- or zero-point of
the function if a solution was found. Otherwise, it returns a 0× 1 vector of missing values.

solvenl result Jacobian()

real matrix solvenl result Jacobian(S)

solvenl result Jacobian(S) returns the last-calculated Jacobian matrix if BP or Newton’s
method was used to find a solution. The Jacobian matrix is returned even if a solution was not found
because we have found the Jacobian matrix to be useful in pinpointing problems. This function returns
a 1× 1 matrix of missing values if called after either GS or dGS was used.

14 solvenl() — Solve systems of nonlinear equations

solvenl result error code(), . . . return code(), and . . . error text()

real scalar solvenl result error code(S)

real scalar solvenl result return code(S)

string scalar solvenl result error text(S)

solvenl result error code(S) returns the unique solvenl *() error code generated or zero
if there was no error. Each error that can be produced by the system is assigned its own unique code.

solvenl result return code(S) returns the appropriate return code to be returned to the user
if an error was produced.

solvenl result error text(S) returns an appropriate textual description to be displayed if an
error was produced.

The error codes, return codes, and error text are listed below.

solvenl() — Solve systems of nonlinear equations 15

Error Return
code code Error text

0 0 (no error encountered)

1 0 (problem not yet solved)

2 111 did not specify function

3 198 invalid number of equations specified

4 504 initial value vector has missing values

5 503 initial value vector length does not equal number of equations declared

6 430 maximum iterations reached; convergence not achieved

7 416 missing values encountered when evaluating function

8 3498 invalid function type

9 3498 function type . . . cannot be used with technique . . .

10 3498 invalid log option

11 3498 invalid solution technique

12 3498 solution technique technique cannot be used with function
type { "fixedpoint" | "zero" }

13 3498 invalid iteration change criterion

14 3498 invalid near-zeroness criterion

15 3498 invalid maximum number of iterations criterion

16 3498 invalid function pointer

17 3498 invalid number of arguments

18 3498 optional argument out of range

19 3498 could not evaluate function at initial values

20 3498 could not calculate Jacobian at initial values

21 3498 iterations found local minimum of F′F; convergence not achieved

22 3498 could not calculate Jacobian matrix

23 198 damping factor must be in [0, 1)

24 198 must specify a function type, technique, or both

25 3498 invalid solvenl init iter dot() option

26 3498 solvenl init iter dot indent() must be a nonnegative integer less than 78

27 498 the function evaluator requested that solvenl solve() exit immediately

16 solvenl() — Solve systems of nonlinear equations

solvenl dump()

void solvenl dump(S)

solvenl dump(S) displays the current status of the solver, including initial values, convergence
criteria, results, and error messages. This function is particularly useful while debugging.

Conformability

All functions’ inputs are 1× 1 and return 1× 1 or void results except as noted below:

solvenl init startingvals(S, ivals):
S: transmorphic

ivals: k× 1
result: void

solvenl init startingvals(S):
S: transmorphic

result: k× 1

solvenl init argument(S, k, X):
S: transmorphic

k: 1× 1
X: anything

result: void

solvenl init argument(S, k):
S: transmorphic
k: 1× 1

result: anything

solvenl init deriv min(S, min):
S: transmorphic

min: 1× 2
result: void

solvenl init deriv min(S):
S: transmorphic

result: 1× 2

solvenl solve(S):
S: transmorphic

result: k× 1
solvenl result values(S):

S: transmorphic
result: k× 1

solvenl result Jacobian(S):
S: transmorphic

result: k× k

solvenl() — Solve systems of nonlinear equations 17

Diagnostics

All functions abort with an error if used incorrectly.

solvenl solve() aborts with an error if it encounters difficulties. solvenl solve() does not;
instead, it returns a nonzero error code.

The solvenl result *() functions return missing values if the solver encountered difficulties or
else has not yet been invoked.

References
Burden, R. L., D. J. Faires, and A. M. Burden. 2016. Numerical Analysis. 10th ed. Boston: Cengage.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical Recipes: The Art of Scientific
Computing. 3rd ed. New York: Cambridge University Press.

Also see
[M-4] Mathematical — Important mathematical functions

[R] set iter — Control iteration settings

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/m-4mathematical.pdf#m-4Mathematical
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

