
Title stata.com

qrd() — QR decomposition

Description Syntax Remarks and examples Conformability
Diagnostics Also see

Description

qrd(A, Q, R) calculates the QR decomposition of A: m × n, returning results in Q and R.

hqrd(A, H, tau, R1) calculates the QR decomposition of A: m × n but, rather than returning Q and
R, returns the Householder vectors in H and the scale factors tau—from which Q can be formed—and
returns in R1 an upper-triangular matrix that is a submatrix of R when m ≥ n or an upper-trapezoidal
matrix when m < n; see Remarks and examples below for its definition. Doing this saves calculation
and memory, and other routines allow you to manipulate these matrices:

1. hqrdmultq(H, tau, X, transpose) returns QX or Q′X on the basis of the Q implied by
H and tau. QX is returned if transpose = 0, and Q′X is returned otherwise.

2. hqrdmultq1t(H, tau, X) returns Q′1X on the basis of the Q1 implied by H and tau. This
function requires m ≥ n.

3. hqrdq(H, tau) returns the Q matrix implied by H and tau. This function is rarely used.

4. hqrdq1(H, tau) returns the Q1 matrix implied by H and tau. This function requires m ≥
n and is rarely used.

5. hqrdr(H) returns the full R matrix. This function is rarely used. (It may surprise you that
hqrdr() is a function of H and not R1. R1 also happens to be stored in H, and there is
other useful information there as well.)

6. hqrdr1(H) returns the R1 matrix. This function is rarely used.

7. hqrdmultq(H, tau, X, transpose, transform) and hqrdmultq1t(H, tau, X, transform)
do the same things as hqrdmultq(H, tau, X, transpose) and hqrdmultq1t(H, tau,
X). The difference is that the transform argument allows you to transform the input matrices.
transform can be specified as 0 or 1. When transform is specified as 1, the functions will
transform H, tau, and X all to complex matrices if any of these matrices is complex. Not
specifying transform is equivalent to specifying transform = 0; in this case, the storage type
of the input matrices does not change.

hqrd(A, tau, R1) does the same thing as hqrd(A, H, tau, R1), except that it overwrites H into
A and so conserves even more memory.

qrdp(A, Q, R, p) is similar to qrd(A, Q, R): it returns the QR decomposition of A in Q and R.
The difference is that this routine allows for pivoting. New argument p specifies whether a column
is available for pivoting, and on output, p is overwritten with a permutation vector that records the
pivoting actually performed. On input, p can be specified as . (missing)—meaning all columns are
available for pivoting—or p can be specified as a 1 × n row vector containing 0s and 1s, with 1
meaning the column is fixed and so may not be pivoted.

hqrdp(A, H, tau, R1, p) is a generalization of hqrd(A, H, tau, R1) just as qrdp() is a
generalization of qrd().

1

http://stata.com

2 qrd() — QR decomposition

hqrdp(A, tau, R1, p) does the same thing as hqrdp(A, H, tau, R1, p), except that hqrdp()
overwrites H into A.

hqrdp la() is the interface to the LAPACK routine that performs the QR calculation; it is used by
all the above routines. Direct use of hqrdp la() is not recommended.

Syntax

void qrd(numeric matrix A, Q, R)

void hqrd(numeric matrix A, H, tau, R1)

void hqrd(numeric matrix A, tau, R1)

numeric matrix hqrdmultq(numeric matrix H, rowvector tau,
numeric matrix X, real scalar transpose)

numeric matrix hqrdmultq(numeric matrix H, rowvector tau, numeric matrix X,
real scalar transpose, real scalar transform)

numeric matrix hqrdmultq1t(numeric matrix H, rowvector tau,
numeric matrix X)

numeric matrix hqrdmultq1t(numeric matrix H, rowvector tau,
numeric matrix X, real scalar transform)

numeric matrix hqrdq(numeric matrix H, numeric matrix tau)

numeric matrix hqrdq1(numeric matrix H, numeric matrix tau)

numeric matrix hqrdr(numeric matrix H)

numeric matrix hqrdr1(numeric matrix H)

void qrdp(numeric matrix A, Q, R, real rowvector p)

void hqrdp(numeric matrix A, H, tau, R1, real rowvector p)

void hqrdp(numeric matrix A, tau, R1, real rowvector p)

void hqrdp la(numeric matrix A, tau, real rowvector p)

Remarks and examples stata.com

Remarks are presented under the following headings:

QR decomposition
Avoiding calculation of Q
Pivoting
Least-squares solutions with omitted columns

https://www.stata.com/manuals/m-1lapack.pdf#m-1LAPACK
http://stata.com

qrd() — QR decomposition 3

QR decomposition

The decomposition of square or nonsquare matrix A can be written as

A = QR (1)

where Q is an orthogonal matrix (Q′Q = I) and R is upper triangular or upper trapezoidal. A matrix
is an upper-trapezoidal matrix if its nonzero elements are found only in the upper triangle of the
matrix, including the main diagonal. qrd(A, Q, R) will make this calculation:

: A
1 2

1 4 8
2 4 6
3 1 0
4 2 4
5 2 1

: Q = R = .

: qrd(A, Q, R)

: Ahat = Q*R

: mreldif(Ahat, A)
2.53765e-16

Avoiding calculation of Q

In fact, you probably do not want to use qrd(). Calculating the necessary ingredients for Q is not too
difficult, but going from those necessary ingredients to form Q is devilish. The necessary ingredients
are usually all you need, which are the Householder vectors and their scale factors, known as H and
tau. For instance, one can write down a mathematical function f (H, tau, X) that will calculate QX or
Q′X for some matrix X.

Also, QR decomposition is often carried out on violently nonsquare matrices A: m × n, m � n. We
can write

A
m×n

=

[
Q1
m×n

Q2
m×m−n

][R1
n×n
R2

m−n×n

]
= Q1R1

m×n
+ Q2R2

m×n

R2 is zero, and thus

A
m×n

=

[
Q1
m×n

Q2
m×m−n

][R1
n×n
0

m−n×n

]
= Q1R1

m×n

Thus, it is enough to know Q1 and R1. Rather than defining QR decomposition as

A = QR Q : m×m R : m× n (1)

We can better define it as

A = Q1R1 Q1 : m× n R1 : n× n (1′)

4 qrd() — QR decomposition

To appreciate the savings, consider the reasonable case where m = 4,000 and n = 3,

A = QR Q : 4,000 × 4,000 R : 4,000 × 3

versus
A = Q1R1 Q1 : 4,000 × 3 R1 : 3 × 3

Memory consumption is reduced from 125,094 kilobytes to 94 kilobytes, a 99.92% saving!

Combining the arguments, we need not save Q because Q1 is sufficient, we need not calculate Q1

because H and tau are sufficient, and we need not store R because R1 is sufficient.

That is what hqrd(A, H, tau, R1) does. Having used hqrd(), if you need to multiply the full Q
by some matrix X, you can use hqrdmultq(). Having used hqrd(), if you need the full Q, you
can use hqrdq() to obtain it, but by that point, you will be making the devilish calculation you
sought to avoid, and so you might as well have used qrd() to begin with. If you want Q1, you
can use hqrdq1(). Finally, having used hqrd(), if you need R or R1, you can use hqrdr() and
hqrdr1():

: A
1 2

1 4 8
2 4 6
3 1 0
4 2 4
5 2 1

: H = tau = R1 = .

: hqrd(A, H, tau, R1)

: Ahat = hqrdq1(H, tau) * R1 // i.e., Q1*R1

: mreldif(Ahat, A)
2.53765e-16

Note that Q1 is obtained only when m ≥ n. When m < n, we can write

A
m×n

= Q
m×m

R
m×n

where R, which is also called R1 for consistency when m ≥ n, is upper trapezoidal. For example,
: B

1 2 3

1 4 4 1
2 8 6 0

: Q = R = .

: qrd(B, Q, R)

: Bhat = Q * R

: mreldif(Bhat, B)
4.44089e-16

: R
1 2 3

1 -8.94427191 -7.155417528 -.4472135955
2 0 -.894427191 -.894427191

qrd() — QR decomposition 5

Pivoting

The QR decomposition with column pivoting solves

AP = QR (2)

or, if you prefer,
AP = Q1R1 (2′)

for m ≥ n, where P is a permutation matrix; see [M-1] Permutation. We can rewrite this as

A = QRP′ (3)

and
A = Q1R1P′ (3′)

for m ≥ n.

Column pivoting can improve the numerical accuracy. The functions qrdp(A, Q, R, p) and
hqrdp(A, H, tau, R1, p) perform pivoting and return the permutation matrix P in permutation
vector form:

: A
1 2

1 4 8
2 4 6
3 1 0
4 2 4
5 2 1

: Q = R = p = .

: qrdp(A, Q, R, p)

: Ahat = (Q*R)[., invorder(p)] // i.e., QRP’

: mreldif(Ahat, A)
1.97373e-16

: H = tau = R1 = p = .

: hqrdp(A, H, tau, R1, p)

: Ahat = (hqrdq1(H, tau)*R1)[., invorder(p)] // i.e., Q1*R1*P’

: mreldif(Ahat, A)
1.97373e-16

Before calling qrdp() or hqrdp(), we set p equal to missing, specifying that all columns could be
pivoted. We could just as well have set p equal to (0, 0), which would have stated that both columns
were eligible for pivoting.

When pivoting is disallowed, and when A is not of full-column rank, the order in which columns
appear affects the kind of generalized solution produced; later columns are, in effect, omitted. When
pivoting is allowed, the columns are reordered based on numerical accuracy considerations. In the
rank-deficient case, you no longer know ahead of time which columns will be omitted, because you do
not know in what order the columns will appear. Generally, you do not care, but there are occasions
when you do.

In such cases, you can specify which columns are eligible for pivoting and which are not—you
specify p as a vector, and if pi==1, the ith column may not be pivoted. The pi==1 columns are
(conceptually) moved to appear first in the matrix, and the remaining columns are ordered optimally
after that. The permutation vector that is returned in p accounts for all of this.

https://www.stata.com/manuals/m-1permutation.pdf#m-1Permutation

6 qrd() — QR decomposition

Least-squares solutions with omitted columns

Least-square solutions are one popular use of QR decomposition. We wish to solve for x

Ax = b (A : m × n, m ≥ n) (4)

The problem is that there is no solution to (4) when m > n because we have more equations than
unknowns. Then, we want to find x such that (Ax − b)′(Ax − b) is minimized.

If A is of full-column rank, then it is well known that the least-squares solution for x is given by
solveupper(R1, Q′1b) where solveupper() is an upper-triangular solver; see [M-5] solvelower().

If A is of less than full-column rank and we do not care which columns are omitted, then we can
use the same solution: solveupper(R1, Q′1b).

Adding pivoting to the above hardly complicates the issue; the solution becomes solveupper(R1,
Q′1b)[invorder(p)].

For both cases, the full details are

: A
1 2 3

1 3 9 1
2 3 8 1
3 3 7 1
4 3 6 1

: b
1

1 7
2 3
3 12
4 0

: H = tau = R1 = p = .

: hqrdp(A, H, tau, R1, p)

: q1b = hqrdmultq1t(H, tau, b) // i.e., Q1’b

: xhat = solveupper(R1, q1b)[invorder(p)]

: xhat
1

1 -1.166666667
2 1.2
3 0

The A matrix in the above example has less than full-column rank; the first column contains a variable
with no variation, and the third column contains the data for the intercept. The solution above is
correct, but we might prefer a solution that included the intercept. To do that, we need to specify
that the third column cannot be pivoted:

: p = (0, 0, 1)

: H = tau = R1 = .

: hqrdp(A, H, tau, R1, p)

: q1b = hqrdmultq1t(H, tau, b)

https://www.stata.com/manuals/m-5solvelower.pdf#m-5solvelower()

qrd() — QR decomposition 7

: xhat = solveupper(R1, q1b)[invorder(p)]

: xhat
1

1 0
2 1.2
3 -3.5

Conformability

qrd(A, Q, R):
input:

A: m × n
output:

Q: m × m
R: m × n

hqrd(A, H, tau, R1):
input:

A: m × n
output:

H: m × n
tau: 1 × n
R1: n × n

hqrd(A, tau, R1):
input:

A: m × n
output:

A: m × n (contains H)
tau: 1 × n
R1: n × n

hqrdmultq(H, tau, X, transpose, transform):
H: m × n

tau: 1 × n
X: m × c

transpose: 1 × 1
transform: 1 × 1 (optional)

result: m × c

hqrdmultq1t(H, tau, X, transform):
H: m × n, m ≥ n

tau: 1 × n
X: m × c

transform: 1 × 1 (optional)
result: n × c

8 qrd() — QR decomposition

hqrdq(H, tau):
H: m × n

tau: 1 × n
result: m × m

hqrdq1(H, tau):
H: m × n, m ≥ n

tau: 1 × n
result: m × n

hqrdr(H):
H: m × n

result: m × n

hqrdr1(H):
H: m × n

result: n × n

qrdp(A, Q, R, p):
input:

A: m × n
p: 1 × 1 or 1 × n

output:
Q: m × m
R: m × n
p: 1 × n

hqrdp(A, H, tau, R1, p):
input:

A: m × n
p: 1 × 1 or 1 × n

output:
H: m × n

tau: 1 × n
R1: n × n

p: 1 × n

hqrdp(A, tau, R1, p):
input:

A: m × n
p: 1 × 1 or 1 × n

output:
A: m × n (contains H)

tau: 1 × n
R1: n × n

p: 1 × n

qrd() — QR decomposition 9

hqrdp la(A, tau, p):
input:

A: m × n
p: 1 × 1 or 1 × n

output:
A: m × n (contains H)

tau: 1 × n
p: 1 × n

Diagnostics

qrd(A, . . .), hqrd(A, . . .), hqrd(A, . . .), qrdp(A, . . .), hqrdp(A, . . .), and hqrdp(A,
. . .) return missing results if A contains missing values. That is, Q will contain all missing values.
R will contain missing values on and above the diagonal. p will contain the integers 1, 2,

hqrd(A, . . .) and hqrdp(A, . . .) abort with error if A is a view.

hqrdmultq(H, tau, X, transpose, transform) and hqrdmultq1t(H, tau, X, transform) return
missing results if X contains missing values.

� �
Vera Nikolaevna Kublanovskaya (1920–2012) was born in Krokhino, Russia, a small fishing
village east of St. Petersburg. After finishing her secondary studies, Vera started her training to
become a primary school teacher, but her grades were so outstanding that her mentors encouraged
her to pursue a career in mathematics.

After graduation, she started working on computational algorithms for the Soviet nuclear program,
from which she retired in 1955. She also participated in the development of numerical linear-
algebra operations in the computer language PRORAB for the first electronic computer in the
Soviet Union, BESM. In 1955, she received her PhD. She then published numerous papers, in
particular on the topic of numerical linear algebra. Her most acclaimed contribution is as one of
the inventors of the QR algorithm for computing eigenvalues of matrices.� �� �
Alston Scott Householder (1904–1993) was born in Rockford, Illinois, and grew up in Alabama.
He studied philosophy at Northwestern and Cornell, and then mathematics, earning a doctorate in
the calculus of variations from the University of Chicago. Householder worked on mathematical
biology for several years at Chicago, but in 1946 he moved on to Oak Ridge National Laboratory,
where he became the founding director of the Mathematics Division in 1948. There he moved
into numerical analysis, specializing in linear equations and eigensystems and helping to unify
the field through reviews and symposia. His last post was at the University of Tennessee.� �

Also see

[M-5] qrinv() — Generalized inverse of matrix via QR decomposition

[M-5] qrsolve() — Solve AX=B for X using QR decomposition

[M-4] Matrix — Matrix functions

https://www.stata.com/giftshop/bookmarks/series8/kublanovskaya/
https://www.stata.com/manuals/m-5qrinv.pdf#m-5qrinv()
https://www.stata.com/manuals/m-5qrsolve.pdf#m-5qrsolve()
https://www.stata.com/manuals/m-4matrix.pdf#m-4Matrix

10 qrd() — QR decomposition

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

