
Title stata.com

lusolve() — Solve AX=B for X using LU decomposition

Description Syntax Remarks and examples Conformability
Diagnostics Also see

Description

lusolve(A, B) solves AX=B and returns X. lusolve() returns a matrix of missing values if A is
singular.

lusolve(A, B, tol) does the same thing but allows you to specify the tolerance for declaring that
A is singular; see Tolerance under Remarks and examples below.

lusolve(A, B) and lusolve(A, B, tol) do the same thing except that, rather than returning
the solution X, they overwrite B with the solution and, in the process of making the calculation, they
destroy the contents of A.

lusolve la(A, B) and lusolve la(A, B, tol) are the interfaces to the [M-1] LAPACK
routines that do the work. They solve AX=B for X, returning the solution in B and, in the process,
using as workspace (overwriting) A. The routines return 1 if A was singular and 0 otherwise. If A
was singular, B is overwritten with a matrix of missing values.

Syntax
numeric matrix lusolve(numeric matrix A, numeric matrix B)

numeric matrix lusolve(numeric matrix A, numeric matrix B, real scalar tol)

void lusolve(numeric matrix A, numeric matrix B)

void lusolve(numeric matrix A, numeric matrix B, real scalar tol)

real scalar lusolve la(numeric matrix A, numeric matrix B)

real scalar lusolve la(numeric matrix A, numeric matrix B, real scalar tol)

Remarks and examples stata.com

The above functions solve AX=B via LU decomposition and are accurate. An alternative is qrsolve()
(see [M-5] qrsolve()), which uses QR decomposition. The difference between the two solutions is not,
practically speaking, accuracy. When A is of full rank, both routines return equivalent results, and
the LU approach is quicker, using approximately O(2/3n3) operations rather than O(4/3n3), where A
is n × n.

The difference arises when A is singular. Then the LU-based routines documented here return missing
values. The QR-based routines documented in [M-5] qrsolve() return a generalized (least squares)
solution.

For more information on LU and QR decomposition, see [M-5] lud() and see [M-5] qrd().

1

http://stata.com
https://www.stata.com/manuals/m-1lapack.pdf#m-1LAPACK
http://stata.com
https://www.stata.com/manuals/m-5qrsolve.pdf#m-5qrsolve()
https://www.stata.com/manuals/m-5qrsolve.pdf#m-5qrsolve()
https://www.stata.com/manuals/m-5lud.pdf#m-5lud()
https://www.stata.com/manuals/m-5qrd.pdf#m-5qrd()

2 lusolve() — Solve AX=B for X using LU decomposition

Remarks are presented under the following headings:

Derivation
Relationship to inversion
Tolerance

Derivation

We wish to solve for X
AX = B (1)

Perform LU decomposition on A so that we have A = PLU. Then (1) can be written as

PLUX = B

or, premultiplying by P′ and remembering that P′P = I,

LUX = P′B (2)

Define
Z = UX (3)

Then (2) can be rewritten as
LZ = P′B (4)

It is easy to solve (4) for Z because L is a lower-triangular matrix. Once Z is known, it is easy to
solve (3) for X because U is upper triangular.

Relationship to inversion

Another way to solve
AX = B

is to obtain A−1 and then calculate
X = A−1B

It is, however, better to solve AX = B directly because fewer numerical operations are required, and
the result is therefore more accurate and obtained in less computer time.

Indeed, rather than thinking about how solving a system of equations can be implemented via
inversion, it is more productive to think about how inversion can be implemented via solving a system
of equations. Obtaining A−1 amounts to solving

AX = I

Thus lusolve() (or any other solve routine) can be used to obtain inverses. The inverse of A can
be obtained by coding

: Ainv = lusolve(A, I(rows(A)))

In fact, we provide luinv() (see [M-5] luinv()) for obtaining inverses via LU decomposition, but
luinv() amounts to making the above calculation, although a little memory is saved because the
matrix I is never constructed.

Hence, everything said about lusolve() applies equally to luinv().

https://www.stata.com/manuals/m-5luinv.pdf#m-5luinv()

lusolve() — Solve AX=B for X using LU decomposition 3

Tolerance

The default tolerance used is

eta = (1e-13)*trace(abs(U))/n

where U is the upper-triangular matrix of the LU decomposition of A: n × n. A is declared to be
singular if any diagonal element of U is less than or equal to eta.

If you specify tol > 0, the value you specify is used to multiply eta. You may instead specify tol ≤
0, and then the negative of the value you specify is used in place of eta; see [M-1] Tolerance.

So why not specify tol = 0? You do not want to do that because, as matrices become close to being
singular, results can become inaccurate. Here is an example:

: rseed(12345)

: A = lowertriangle(runiform(4,4))
: A[3,3] = 1e-15

: trux = runiform(4,1)

: b = A*trux

: /* the above created an Ax=b problem, and we have placed the true
> value of x in trux. We now obtain the solution via lusolve()
> and compare trux with the value obtained:
> */

: x = lusolve(A, b, 0)

: trux, x

1 .260768733 .260768733 ← The discussed numerical
2 .0267289389 .0267289389 instability can cause this
3 .1079423963 .0989119749 output to vary a little
4 .3666839808 .3863636364 across different computers

We would like to see the second column being nearly equal to the first—the estimated x being nearly
equal to the true x—but there are substantial differences.

Even though the difference between x and trux is substantial, the difference between them is small
in the prediction space:

: A*trux-b, A*x-b
1 2

1 0 0
2 0 0
3 0 -2.77556e-17
4 0 0

What made this problem so difficult was the line A[3,3] = 1e-15. Remove that and you would find
that the maximum absolute difference between x and trux would be −2.44249e−15.

The degree to which the residuals A*x-b are a reliable measure of the accuracy of x depends on the
condition number of the matrix, which can be obtained by [M-5] cond(), which for A, is 4.47684e+15.
If the matrix is well conditioned, small residuals imply an accurate solution for x. If the matrix is ill
conditioned, small residuals are not a reliable indicator of accuracy.

https://www.stata.com/manuals/m-1tolerance.pdf#m-1Tolerance
https://www.stata.com/manuals/m-5cond.pdf#m-5cond()

4 lusolve() — Solve AX=B for X using LU decomposition

Another way to check the accuracy of x is to set tol = 0 and to see how well x could be obtained
were b = A*x:

: x = lusolve(A, b, 0)
: x2 = lusolve(A, A*x, 0)

If x and x2 are virtually the same, then you can safely assume that x is the result of a numerically
accurate calculation. You might compare x and x2 with mreldif(x2,x); see [M-5] reldif(). In our
example, mreldif(x2,x) is .03, a large difference.

If A is ill conditioned, then small changes in A or B can lead to radical differences in the solution
for X.

Conformability
lusolve(A, B, tol):

input:
A: n × n
B: n × k

tol: 1 × 1 (optional)
output:

result: n × k

lusolve(A, B, tol):
input:

A: n × n
B: n × k

tol: 1 × 1 (optional)
output:

A: 0 × 0
B: n × k

lusolve la(A, B, tol):
input:

A: n × n
B: n × k

tol: 1 × 1 (optional)
output:

A: 0 × 0
B: n × k

result: 1 × 1

Diagnostics

lusolve(A, B, . . .), lusolve(A, B, . . .), and lusolve la(A, B, . . .) return a result
containing missing if A or B contain missing values. The functions return a result containing all
missing values if A is singular.

lusolve(A, B, . . .) and lusolve la(A, B, . . .) abort with error if A or B is a view.

lusolve la(A, B, . . .) should not be used directly; use lusolve().

https://www.stata.com/manuals/m-5reldif.pdf#m-5reldif()

lusolve() — Solve AX=B for X using LU decomposition 5

Also see
[M-5] cholsolve() — Solve AX=B for X using Cholesky decomposition

[M-5] lud() — LU decomposition

[M-5] luinv() — Square matrix inversion

[M-5] qrsolve() — Solve AX=B for X using QR decomposition

[M-5] solvelower() — Solve AX=B for X, A triangular

[M-5] svsolve() — Solve AX=B for X using singular value decomposition

[M-4] Matrix — Matrix functions

[M-4] Solvers — Functions to solve AX=B and to obtain A inverse

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

https://www.stata.com/manuals/m-5cholsolve.pdf#m-5cholsolve()
https://www.stata.com/manuals/m-5lud.pdf#m-5lud()
https://www.stata.com/manuals/m-5luinv.pdf#m-5luinv()
https://www.stata.com/manuals/m-5qrsolve.pdf#m-5qrsolve()
https://www.stata.com/manuals/m-5solvelower.pdf#m-5solvelower()
https://www.stata.com/manuals/m-5svsolve.pdf#m-5svsolve()
https://www.stata.com/manuals/m-4matrix.pdf#m-4Matrix
https://www.stata.com/manuals/m-4solvers.pdf#m-4Solvers

