
Title stata.com

Syntax — Mata language grammar and syntax

Description Syntax Remarks and examples Reference Also see

Description

Mata is a C-like compiled-into-pseudocode language with matrix extensions and run-time linking.

Syntax

The basic language syntax is

istmt

where
istmt := stmt

function name(farglist) fstmt
ftype name(farglist) fstmt
ftype function name(farglist) fstmt

stmt := nothing
; (meaning nothing)
version number
{ stmt . . . }
exp
pragma pstmt
if (exp) stmt
if (exp) stmt else stmt
for (exp;exp;exp) stmt
while (exp) stmt
do stmt while (exp)
break
continue
label:
goto label
return
return(exp)

fstmt := stmt
type arglist
external type arglist

arglist := name
name()
name, arglist
name(), arglist

farglist := nothing
efarglist

1

http://stata.com

2 Syntax — Mata language grammar and syntax

efarglist := felement
felement, efarglist
| felement
| felement, efarglist

felement := name
type name
name()
type name()

ftype := type
void

type := eltype
orgtype
eltype orgtype

eltype := transmorphic
string
numeric
real
complex
pointer
pointer(ptrtype)

orgtype := matrix
vector
rowvector
colvector
scalar

ptrtype := nothing
type
type function
function

pstmt := unset name
unused name

name := identifier up to 32 characters long

label := identifier up to 8 characters long

exp := expression as defined in [M-2] exp

https://www.stata.com/manuals/m-2exp.pdf#m-2exp

Syntax — Mata language grammar and syntax 3

Remarks and examples stata.com

Remarks are presented under the following headings:

Treatment of semicolons
Types and declarations
Void matrices
Void functions
Operators
Subscripts
Implied input tokens
Function argument-passing convention
Passing functions to functions
Optional arguments

After reading [M-2] Syntax, see [M-2] Intro for a list of entries that give more explanation of what
is discussed here.

Treatment of semicolons

Semicolon (;) is treated as a line separator. It is not required, but it may be used to place two
statements on the same physical line:

x = 1 ; y = 2 ;

The last semicolon in the above example is unnecessary but allowed.

Single statements may continue onto more than one line if the continuation is obvious. Take “obvious”
to mean that there is a hanging open parenthesis or a hanging dyadic operator; for example,

x = (
3)

x = x +
2

See [M-2] Semicolons for more information.

Types and declarations

The type of a variable or function is described by

eltype orgtype

where eltype and orgtype are each one of

eltype orgtype

transmorphic matrix

numeric vector

real rowvector

complex colvector

string scalar

pointer

http://stata.com
https://www.stata.com/manuals/m-2intro.pdf#m-2Intro
https://www.stata.com/manuals/m-2semicolons.pdf#m-2Semicolons

4 Syntax — Mata language grammar and syntax

For example, a variable might be real scalar, or complex matrix, or string vector.

Mata also has structures—the eltype is struct name—but these are not discussed here. For a
discussion of structures, see [M-2] struct.

Mata also has classes—the eltype is class name—but these are not discussed here. For a discussion
of classes, see [M-2] class.

Declarations are optional. When the type of a variable or function is not declared, it is assumed to
be a transmorphic matrix. In particular:

1. eltype specifies the type of the elements. When eltype is not specified, transmorphic is
assumed.

2. orgtype specifies the organization of the elements. When orgtype is not specified, matrix
is assumed.

All types are special cases of transmorphic matrix.

The nesting of eltypes is

transmorphic

numeric string pointer

real complex

orgtypes amount to nothing more than a constraint on the number of rows and columns of a matrix:

orgtype Constraint

matrix r ≥ 0 and c ≥ 0
vector r = 1 and c ≥ 0 or r ≥ 0 and c = 1
rowvector r = 1 and c ≥ 0
colvector r ≥ 0 and c = 1
scalar r = 1 and c = 1

See [M-2] Declarations.

Void matrices

A matrix (vector, row vector, or column vector) that is 0 × 0, r × 0, or 0 × c is said to be void;
see [M-2] void.

The function J(r, c, val) returns an r × c matrix with each element containing val; see [M-5] J().

J() can be used to create void matrices.

See [M-2] void.

https://www.stata.com/manuals/m-2struct.pdf#m-2struct
https://www.stata.com/manuals/m-2class.pdf#m-2class
https://www.stata.com/manuals/m-2declarations.pdf#m-2Declarations
https://www.stata.com/manuals/m-2void.pdf#m-2void
https://www.stata.com/manuals/m-5j.pdf#m-5J()
https://www.stata.com/manuals/m-2void.pdf#m-2void

Syntax — Mata language grammar and syntax 5

Void functions

Rather than eltype orgtype, a function can be declared to return nothing by being declared to return
void:

void function example(matrix A)
{

real scalar i

for (i=1; i<=rows(A); i++) A[i,i] = 1
}

A function that returns nothing (does not include a return(exp) statement), in fact returns J(0, 0, .),
and the above function could equally well be coded as

void function example(matrix A)
{

real scalar i
for (i=1; i<=rows(A); i++) A[i,i] = 1
return(J(0, 0, .))

}

or

void function example(matrix A)
{

real scalar i
for (i=1; i<=rows(A); i++) A[i,i] = 1
return(J(0,0,.))

}

Therefore, void also is a special case of transmorphic matrix (it is in fact a 0 × 0 real matrix).
Because declarations are optional (but recommended both for reasons of style and for reasons of
efficiency), the above function could also be coded as

function example(A)
{

for (i=1; i<=rows(A); i++) A[i,i] = 1
}

See [M-2] Declarations.

Operators

Mata provides the usual assortment of operators; see [M-2] exp.

The monadic prefix operators are

- ! ++ -- & *

Prefix operators & and * have to do with pointers; see [M-2] pointers.

https://www.stata.com/manuals/m-2declarations.pdf#m-2Declarations
https://www.stata.com/manuals/m-2exp.pdf#m-2exp
https://www.stata.com/manuals/m-2pointers.pdf#m-2pointers

6 Syntax — Mata language grammar and syntax

The monadic postfix operators are
′ ++ --

Note the inclusion of postfix operator ′ for transposition. Also, for Z complex, Z′ returns the conjugate
transpose. If you want the transposition without conjugation, see [M-5] transposeonly().

The dyadic operators are

= ? \ :: , .. | & == >= <= < >

!= + - * # ^

Also, && and || are included as synonyms for & and |.

The operators == and != do not require conformability, nor do they require that the matrices be of
the same type. In such cases, the matrices are unequal (== is false and != is true). For complex
arguments, <, <=, >, and >= refer to length of the complex vector. == and !=, however, refer not to
length but to actual components. See [M-2] op logical.

The operators , and \ are the row-join and column-join operators. (1,2,3) constructs the row vector
(1,2,3). (1\2\3) constructs the column vector (1,2,3)′. (1,2\3,4) constructs the matrix with first
row (1,2) and second row (3,4). a,b joins two scalars, vectors, or matrices rowwise. a\b joins two
scalars, vectors, or matrices columnwise. See [M-2] op join.

.. and :: refer to the row-to and column-to operators. 1..5 is (1,2,3,4,5). 1::5 is (1\2\3\4\5).
5..1 is (5,4,3,2,1). 5::1 is (5\4\3\2\1). See [M-2] op range.

For |, &, ==, >=, <=, <, >, !=, +, -, *, /, and ^, there is :op at precedence just below op. These
operators perform the elementwise operation. For instance, A*B refers to matrix multiplication; A:*B
refers to elementwise multiplication. Moreover, elementwise is generalized to cases where A and B
do not have the same number of rows and the same number of columns. For instance, if A is a 1 ×
c row vector and B is a r × c matrix, then ||Cij || = ||Aj || ∗ ||Bij || is returned. See [M-2] op colon.

Subscripts

A[i, j] returns the i, j element of A.

A[k] returns A[1,k] if A is 1 × c and A[k,1] if A is r × 1. That is, in addition to declared vectors,
any 1 × c matrix or r × 1 matrix may be subscripted by one index. Similarly, any vector can be
subscripted by two indices.

i, j, and k may be vectors as well as scalars. For instance, A[(3\4\5), 4] returns a 3 × 1 column
vector containing rows 3 to 5 of the 4th column.

i, j, and k may be missing value. A[., 4] returns a column vector of the 4th column of A.

The above subscripts are called list-style subscripts. Mata provides a second format called range-style
subscripts that is especially useful for selecting submatrices. A[|3,3\5,5|] returns the 3 × 3
submatrix of A starting at A[3,3].

See [M-2] Subscripts.

https://www.stata.com/manuals/m-5transposeonly.pdf#m-5transposeonly()
https://www.stata.com/manuals/m-2op_logical.pdf#m-2op_logical
https://www.stata.com/manuals/m-2op_join.pdf#m-2op_join
https://www.stata.com/manuals/m-2op_range.pdf#m-2op_range
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-2subscripts.pdf#m-2Subscripts

Syntax — Mata language grammar and syntax 7

Implied input tokens

Before interpreting and compiling a line, Mata makes the following substitutions to what it sees:

Input sequence Interpretation

′name ′*name
[, [.,

,] ,.]

Hence, coding X′Z is equivalent to coding X′*Z, and coding x = z[1,] is equivalent to coding x =
z[1,.].

Function argument-passing convention

Arguments are passed to functions by address, also known as by name or by reference. They are not
passed by value. When you code

. . . f(A) . . .

it is the address of A that is passed to f(), not a copy of the values in A. f() can modify A.

Most functions do not modify their arguments, but some do. lud(A, L, U, p), for instance, calculates
the LU decomposition of A. The function replaces the contents of L, U, and p with matrices such that
L[p,]*U = A.

Oldtimers will have heard of the FORTRAN programmer who called a subroutine and passed to it
a second argument of 1. Unbeknownst to him, the subroutine changed its second argument, with
the result that the constant 1 was changed throughout the rest of his code. That cannot happen in
Mata. When an expression is passed as an argument (and constants are expressions), a temporary
variable containing the evaluation is passed to the function. Modifications to the temporary variable
are irrelevant because the temporary variable is discarded once the function returns. Thus if f()
modifies its second argument and you call it by coding f(A,2), because 2 is copied to a temporary
variable, the value of the literal 2 will remain unchanged on the next call.

If you call a function with an expression that includes the assignment operator, it is the left-hand side
of the expression that is passed. That is, coding

f(a, b=c)

has the same result as coding

b = c
f(a, b)

If function f() changes its second argument, it will be b and not c that is modified.

Also, Mata attempts not to create unnecessary copies of matrices. For instance, consider

function changearg(x) x[1,1] = 1

changearg(mymat) changes the 1,1 element of mymat to 1. Now let us define

function cp(x) return(x)

8 Syntax — Mata language grammar and syntax

Coding changearg(cp(mymat)) would still change mymat because cp() returned x itself. On the
other hand, if we defined cp() as

function cp(x)
{

matrix t

t = x
return(t)

}

then coding changearg(cp(mymat)) would not change mymat. It would change a temporary matrix
which would be discarded once changearg() returned.

Passing functions to functions

One function may receive another function as an argument using pointers. One codes

function myfunc(pointer(function) f, a, b)
{

. . . (*f)(a) . . . (*f)(b) . . .
}

although the pointer(function) declaration, like all declarations, is optional. To call myfunc()
and tell it to use function prima() for f(), and 2 and 3 for a and b, one codes

myfunc(&prima(), 2, 3)

See [M-2] ftof and [M-2] pointers.

Optional arguments

Functions may be coded to allow receiving a variable number of arguments. This is done by placing
a vertical or bar (|) in front of the first argument that is optional. For instance,

function mynorm(matrix A, |scalar power)
{

. . .
}

The above function may be called with one matrix or with a matrix followed by a scalar.

The function args() (see [M-5] args()) can be used to determine the number of arguments received
and to set defaults:

function mynorm(matrix A, |scalar power)
{

. . .
(args()==1) power = 2

. . .
}

See [M-2] optargs.

https://www.stata.com/manuals/m-2ftof.pdf#m-2ftof
https://www.stata.com/manuals/m-2pointers.pdf#m-2pointers
https://www.stata.com/manuals/m-5args.pdf#m-5args()
https://www.stata.com/manuals/m-2optargs.pdf#m-2optargs

Syntax — Mata language grammar and syntax 9

Reference
Gould, W. W. 2005. Mata Matters: Translating Fortran. Stata Journal 5: 421–441.

Also see
[M-2] Intro — Language definition

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

http://www.stata-journal.com/article.html?article=pr0017
https://www.stata.com/manuals/m-2intro.pdf#m-2Intro

