
Title stata.com

class — Object-oriented programming (classes)

Description Syntax Remarks and examples Reference
Also see

Description

class provides object-oriented programming, also known as class programming, to Mata.

A class is a set of variables or related functions (methods) (or both) tied together under one name.
Classes may be derived from other classes according to inheritance.

For a more detailed description of classes, see Gould (2018).

Let’s look at the details of the example from the first page of this entry (under the heading Example):

1. First, we created a class called coord. When we coded

class coord {
real scalar x, y
real scalar length(), angle()

}

we specified that each element of a coord stores two real values, which we called x and y.
coord also contains two functions, which we called length() and angle(). length()
and angle() are functions because of the open and close parentheses at the end of the
names, and x and y are variables because of the absence of parentheses. In the jargon, x and
y are called member variables, and length() and angle() are called member functions.

The above, called the class’s definition, defines a blueprint for the type coord.

A variable that is of type coord is called an instance of a coord. Say variables b and c
are instances of coord, although we have not yet explained how you might arrange that.
Then b.x and b.y would be b’s values of x and y, and c.x and c.y would be c’s values.
We could run the functions on the values in b by coding b.length() and b.angle(), or
on the values in c by coding c.length() and c.angle().

2. Next we defined coord’s length() and angle() functions. The definitions were

real scalar coord::length()
{

return(sqrt(x^2 + y^2))
}

real scalar coord::angle()
{

return(atan2(y, x)*360/(2*pi()))
}

1

http://stata.com

2 class — Object-oriented programming (classes)

These functions are similar to regular Mata functions. These functions do not happen to take
any arguments, but that is not a requirement. It often happens that member functions do not
require arguments because the functions are defined in terms of the class and its concepts.
That is exactly what is occurring here. The first function says that when someone has an
instance of a coord and they ask for its length, return the square root of the sum of the x
and y values, individually squared. The second function says that when someone asks for
the angle, return the arctangent of y and x, multiplied by 360/(2*pi()) to convert the
result from radians to degrees.

3. Next we defined another new concept, a rotated coord, by extending (inheriting from)
class coord:

class rotated_coord extends coord {
real scalar theta
real scalar angle()
void new()

}

So think of a coord and read the above as the additions. In addition to x and y of a
regular coord, a rotated coord has new variable theta. We also declared that we were
adding two functions, angle() and new(). But wait, angle() already existed! What we
are actually saying by explicitly mentioning angle() is that we are going to change the
definition of angle(). Function new() is indeed new.

Notice that we did not mention previously existing function length(). Our silence indicates
that the concept of length() remains unchanged.

So what is a rotated coord? It is a coord with the addition of theta, a redefinition of
how angle() is calculated, and the addition of a function called new().

This is an example of inheritance. class rotated coord is an extension of class coord.
In object-oriented programming, we would say this as “class rotated coord inherits
from class coord”. A class that inherits from another class is known as a “subclass”.

4. Next we defined our replacement and new functions. The definitions are

real scalar rotated_coord::angle()
{

return(super.angle() - theta)
}

void rotated_coord::new()
{

theta = 0
}

Concerning angle(), we stated that it is calculated by taking the result of super.angle()
and subtracting theta from it. super.angle() is how one refers to the parent’s definition of
a function. If you are unfamiliar with object-oriented programming, parent may seem like an
odd word in this context. We are inheriting concepts from coord to define rotated coord,
and in that sense, coord is the parent concept. Anyway, the new definition of an angle is
the old definition, minus theta, the angle of rotation.

new() is a special function and is given a special name in the sense that the name new() is
reserved. The new() function, if it exists, is a function that is called automatically whenever

class — Object-oriented programming (classes) 3

a new instance of the class is created. Our new() function says that when a new instance
of a rotated coord is created, initialize the instance’s theta to 0.

Well, that seems like a good idea. But we did not have a new() function when we defined
our previous class, coord. Did we forget something? Maybe. When you do not specify a
new() function—when you do not specify how variables are to be initialized—they are
initialized in the usual Mata way: missing values. x and y will be initialized to contain
missing. Given our new() function for rotated coord, however, theta will be initialized
to 0.

new() is called a “constructor”, because it is used to construct, or initialize, the class when
a new instance of the class is created.

And that completes the definition of our two, related classes.

There are two ways to create instances of a coord or a rotated coord. One is mostly for interactive
use and the other for programming use.

If you interactively type a=coord() (note the parentheses), you will create a coord and store it in
a. If you interactively type b=rotated coord(), you will create a rotated coord and store it
in b. In the first example, typing b=rotated coord() is exactly what we chose to do:

: b = rotated_coord()

Recall that a rotated coord contains an x, y, and theta. At this stage, x and y equal missing,
and theta is 0. In the example, we set b’s x and y values to 1, and then asked for the resulting
angle():

: b.x = b.y = 1

: b.angle()
45

b-dot-x is how one refers to b’s value of x. One can use b.x (and b.y) just as one would use any
real scalar variable in Mata.

If we reset b’s theta to be 30 degrees, then b’s angle ought to change to being 15 degrees. That is
exactly what happens:

: b.theta = 30

: b.angle()
15

b-dot-angle() is how one specifies that member function angle() is to be run on instance b. Now
you know why member functions so seldom have additional arguments: they are, in effect, passed an
instance of a class and so have access to all the values of member variables of that class. We repeat,
however, that a member function could take additional arguments. Had we coded

real scalar rotated_coord::angle(real scalar base)
{

return(super.angle() - theta - base)
}

then angle() would have taken an argument and returned the result measured from base.

The difference between using rotated coord interactively and using it inside a Mata program is
that if we declare a variable (say, b) to be a class rotated coord scalar, with the emphasis on

4 class — Object-oriented programming (classes)

scalar, then we do not need to bother coding b=rotated coord() to fill in b initially. Coding
class rotated coord scalar b implies that b needs to be initialized because it is a scalar, and so
that happens automatically. It would not hurt if we also coded b=rotated coord(), but it would
be a waste of our time and of the computer’s once it got around to executing our program.

Now let’s show you something we did not show in the first example. Remember when we defined
length() for a coord? Remember how we did not define length() for a rotated coord?
Remember how we did not even mention length()? Even so, length() is a concept of a
rotated coord, because part of the definition of rotated coord was inherited from coord, and
that happened because when we declared rotated coord, we said

class rotated_coord extends coord

The inheritance happened because we said extends. Let’s test that length() works with our
rotated coord class instance, b:

: b.length()
1.414213562

In the above, inheritance is what saved us from having to write additional, repeated code.

Let’s review. First, we defined a coord. From that, we defined a rotated coord. You might now
define translated and rotated coord using rotated coord as a starting point. It would not
be difficult.

Classes have lots of properties, features, and details, but it is the property of inheritance that is at the
heart of object-oriented programming.

Syntax

class classname
[
extends classname

]
{

declaration(s)
}

Syntax is presented under the following headings:

Introduction
Example
Declaration of member variables
Declaration and definition of methods (member functions)
Default exposure in declarations

Description and Remarks and examples follow that.

Introduction

Stata’s two programming languages, ado and Mata, each support object-oriented programming. This
manual entry explains object-oriented programming in Mata. Most users interested in object-oriented
programming will wish to program in Mata. See [P] class to learn about object-oriented programming
in ado.

https://www.stata.com/manuals/pclass.pdf#pclass

class — Object-oriented programming (classes) 5

Example

The following example is explained in detail in Description .

class coord {
real scalar x, y
real scalar length(), angle()

}

real scalar coord::length()
{

return(sqrt(x^2 + y^2))
}

real scalar coord::angle()
{

return(atan2(y, x)*360/(2*pi()))
}

class rotated_coord extends coord {
real scalar theta
real scalar angle()
void new()

}

real scalar rotated_coord::angle()
{

return(super.angle() - theta)
}

void rotated_coord::new()
{

theta = 0
}

One could use the class interactively:

: b = rotated_coord()
: b.x = b.y = 1
: b.angle() // displayed will be 45
: b.theta = 30
: b.angle() // displayed will be 15

Note that executing the class as if it were a function creates an instance of the class. When using
the class inside other functions, it is not necessary to create the instance explicitly as long as you
declare the member instance variable to be a scalar:

void myfunc()
{

class rotated_coord scalar b

b.x = b.y = 1
b.angle() // displayed will be 45
b.theta = 30
b.angle() // displayed will be 15

}

6 class — Object-oriented programming (classes)

Declaration of member variables

Declarations are of the form[
exposure

] [
static

][
final

]
matatype name

[
, name

[
, . . .

]]
where

exposure := { public | protected | private }
matatype := { eltype orgtype | eltype | orgtype }

eltype := transmorphic orgtype := matrix
numeric vector
real rowvector
complex colvector
string scalar
pointer
class classname
struct structname

For example,

class S {
real matrix M
private real scalar type
static real scalar count
class coord scalar c

}

Declaration and definition of methods (member functions)

Declarations are of the form[
exposure

] [
static

][
final

] [
virtual

]
matatype name()

[
, name()

[
. . .

]]
For example,

class T {
. . .
real matrix inverse()
protected real scalar type()
class coord scalar c()

}

Note that function arguments, even if allowed, are not declared.

class — Object-oriented programming (classes) 7

Member functions (methods) and member variables may share the same names and no special meaning
is attached to the fact. type and c below are variables, and type() and c() are functions:

class U {
real matrix M
private real scalar type
static real scalar count
class coord scalar c

real matrix inverse()
protected real scalar type()
class coord scalar c()

}

Member functions are defined separately, after the class is defined. For example,

class V {
real matrix M
private real scalar type
static real scalar count
class coord scalar c

real matrix inverse()
protected real scalar type()
class coord scalar c()

}

real matrix V::inverse(. . .)
{

. . .
}

real scalar V::type(. . .)
{

. . .
}

class coord scalar V::c(. . .)
{

. . .
}

When you define member functions, they must be of the same matatype as they were previously
declared to be, but you omit exposure (as well as static, final, and virtual).

Default exposure in declarations

Variables and functions are public unless explicitly declared otherwise. (They are also not static,
not final, and not virtual, but that is not part of exposure and so has nothing to do with this
subsection.)

8 class — Object-oriented programming (classes)

You may use any of the exposure modifiers public, protected, and private, followed by a colon,
to create blocks with a different default:

class V {
public:

real matrix M
static real scalar count
class coord scalar c
real matrix inverse()
class coord scalar c()

private:
real scalar type

protected:
real scalar type()

}

Remarks and examples stata.com

Remarks are presented under the following headings:
Notation and jargon
Declaring and defining a class
Saving classes in files
Workflow recommendation
When you need to recompile
Obtaining instances of a class
Constructors and destructors
Setting member variable and member function exposure
Making a member final
Making a member static
Virtual functions
Referring to the current class using this
Using super to access the parent’s concept
Casting back to a parent
Accessing external functions from member functions
Pointers to classes

Notation and jargon

:: (double colon)
The double-colon notation is used as a shorthand in documentation to indicate that a variable or
function is a member of a class and, in two cases, the double-colon notation is also syntax that is
understood by Mata.

S::s indicates that the variable s is a member of class S. S::s is documentation shorthand.

S::f() indicates that function f() is a member of class S. S::f() is documentation shorthand.
S::f() is something Mata itself understands in two cases:

1. Notation S::f() is used when defining member functions.

2. Notation S::f() can be used as a way of calling static member functions.

be an instance of
When we write “let s be an instance of S” we are saying that s is an instance of class S, or
equivalently, that in some Mata code, s is declared as a class S scalar.

http://stata.com

class — Object-oriented programming (classes) 9

class definition, class declaration
A class definition or declaration is the definition of a class, such as the following:

class S {
private real scalar a, b
real scalar f(), g()

}

Note well that the declaration of a Mata variable to be of type class S, such as the line class
S scalar s in

void myfunction()
{

class S scalar s
. . .

}

is not a class definition. It is a declaration of an instance of a class.

class instance, instance, class A instance
A class instance is a variable defined according to a class definition. In the code

void myfunction()
{

class S scalar s
real scalar b
. . .

}

s is a class instance, or, more formally, an instance of class S. The term “instance” can be used with
all element types, not just with classes. Thus b is an instance of a real. The term “instance” is
more often used with classes and structures, however, because one needs to distinguish definitions
of variables containing classes or structures from the definitions of the classes and structures
themselves.

inheritance, extends, subclass, parent, child
Inheritance is the property of one class definition using the variables and functions of another just
as if they were its own. When a class does this, it is said to extend the other class. T extending
S means the same thing as T inheriting from S. T is also said to be a subclass of S.

Consider the following definitions:

class S {
real scalar a, b
real scalar f()

}

class T extends S {
real scalar c
real scalar g()

}

Let s be an instance of S and t be an instance of T. It is hardly surprising that s.a, s.b, s.f(),
t.c, and t.g() exist, because each is explicitly declared. It is because of inheritance that t.a,
t.b, and t.f() also exist, and they exist with no additional code being written.

10 class — Object-oriented programming (classes)

If U extends T extends S, then U is said to be a child of T and to be a child of S, although formally
U is the grandchild of S. Similarly, both S and T are said to be parents of U, although formally S
is the grandparent of U. It is usually sufficient to label the relationship parent/child without going
into details.

external functions
An external function is a regular function, such as sqrt(), sin(), and myfcn(), defined outside
of the class and, as a matter of fact, outside of all classes. The function could be a function
provided by Mata (such as sqrt() or sin()) or it could be a function you have written, such
as myfcn().

An issue arises when calling external functions from inside the code of a member function. When
coding a member function, references such as sqrt(), sin(), and myfcn() are assumed to be
references to the class’s member functions if a member function of the name exists. If one wants
to ensure that the external-function interpretation is made, one codes ::sqrt(), ::sin(), and
::myfcn(). See Accessing external functions from member functions below.

member, member variable, member function, method
A variable or function declared within a class is said to be a member variable, or member function,
of the class. Member functions are also known as methods. In what follows, let ex1 be an instance
of S, and assume class S contains member function f() and member variable v.

When member variables and functions are used inside member functions, they can simply be
referred to by their names, v and f(). Thus, if we were writing the code for S::g(), we could
code

real scalar S::g()
{

return(f()*v)
}

When member variables and functions are used outside of member functions, which is to say, are
used in regular functions, the references must be prefixed with a class instance and a period. Thus
one codes

real scalar myg(class S scalar ex1)
{

return(ex1.f()*ex1.v)
}

variable and method overriding
Generically, a second variable or function overrides a first variable or function when they share
the same name and the second causes the first to be hidden, which causes the second variable to
be accessed or the second function to be executed in preference to the first. This arises in two
ways in Mata’s implementation of classes.

In the first way, a variable or function in a parent class is said to be overridden if a child defines a
variable or function of the same name. For instance, let U extend T extend S, and assume S::f()
and T::f() are defined. By the rules of inheritance, instances of U and T that call f() will cause
T::f() to execute. Instances of S will cause S::f() to be executed. Here S.f() is said to be
overridden by T.f(). Because T::f() will usually be implemented in terms of S::f(), T::f()
will find it necessary to call S::f(). This is done by using the super prefix; see Using super to
access the parent’s concept.

class — Object-oriented programming (classes) 11

The second way has to do with stack variables having precedence over member variables in member
functions. For example,

class S {
real scalar a, b
void f()
. . .

}

void S::f()
{

real scalar a

a = 0
b = 0

}

Let s be an instance of S. Then execution of s.f() sets s.b to be 0; it does not change s.a,
although it was probably the programmer’s intent to set s.a to zero, too. Because the programmer
declared a variable named a within the program, however, the program’s variable took precedence
over the member variable a. One solution to this problem would be to change the a = 0 line to
read this.a = 0; see Referring to the current class using this.

Declaring and defining a class

Let’s say we declared a class by executing the code below:

class coord {
real scalar x, y
real scalar length(), angle()

}

At this point, class coord is said to be declared but not yet fully defined because the code for its
member functions length() and angle() has not yet been entered. Even so, the class is partially
functional. In particular,

1. The class will work. Obviously, if an attempt to execute length() or angle() is made,
an error message will be issued.

2. The class definition can be saved in an .mo or .mlib file for use later, with the same
proviso as in 1).

Member functions of the class are defined in the same way regular Mata functions are defined but
the name of the function is specified as classname::functionname().

real scalar coord::length()
{

return(sqrt(x^2 + y^2))
}

real scalar coord::angle()
{

return(atan2(y, x)*360/(2*pi()))
}

12 class — Object-oriented programming (classes)

The other difference is that member functions have direct access to the class’s member variables and
functions. x and y in the above are the x and y values from an instance of class coord.

Class coord is now fully defined.

Saving classes in files

The notation coord()—classname-open parenthesis-close parenthesis—is used to refer to the entire
class definition by Mata’s interactive commands such as mata describe, mata mosave, and mata
mlib.

mata describe coord() would show

: mata describe coord()

bytes type name and extent

344 classdef scalar coord()
176 real scalar ::angle()
136 real scalar ::length()

The entire class definition—the compiled coord() and all its compiled member functions—can be
stored in a .mo file by typing

: mata mosave coord()

The entire class definition could be stored in an already existing .mlib library, lpersonal, by
typing

: mata mlib add lpersonal coord()

When saving a class definition, both commands allow the additional option complete. The option
specifies that the class is to be saved only if the class definition is complete and that, otherwise, an
error message is to be issued.

: mata mlib add lpersonal coord(), complete

Workflow recommendation

Our recommendation is that the source code for classes be kept in separate files, and that the files
include the complete definition. At StataCorp, we would save coord in file coord.mata:

https://www.stata.com/manuals/m-3matadescribe.pdf#m-3matadescribe
https://www.stata.com/manuals/m-3matamosave.pdf#m-3matamosave
https://www.stata.com/manuals/m-3matamlib.pdf#m-3matamlib
https://www.stata.com/manuals/m-3matamlib.pdf#m-3matamlib

class — Object-oriented programming (classes) 13

begin coord.mata

*! version 1.0.0 class coord

version 18.0

mata:

class coord {
real scalar x, y
real scalar length(), angle()

}

real scalar coord::length()
{

return(sqrt(x^2 + y^2))
}

real scalar coord::angle()
{

return(atan2(y, x)*360/(2*pi()))
}
end

end coord.mata

Note that the file does not clear Mata, nor does it save the class in a .mo or .mlib file; the file
merely records the source code. With this file, to save coord in a .mo file, we need only to type

. clear mata

. do coord.mata

. mata mata mosave coord(), replace

(Note that although file coord.mata does not have the extension .do, we can execute it just like
we would any other do-file by using the do command.) Actually, we would put those three lines in
yet another do-file called, perhaps, cr coord.do.

We similarly use files for creating libraries, such as

begin cr lourlib.do

version 18.0
clear mata
do coord.mata
do anotherfile.mata
do yetanotherfile.mata
/* etc. */

mata:
mata mlib create lourlib, replace
mata mlib add lourlib*()
end

end cr lourlib.do

With the above, it is easy to rebuild libraries after updating code.

When you need to recompile

If you change a class declaration, you need to recompile all programs that use the class. That includes
other class declarations that inherit from the class. For instance, in the opening example, if you change
anything in the coord declaration,

14 class — Object-oriented programming (classes)

class coord {
real scalar x, y
real scalar length(), angle()

}

even if the change is so minor as to reverse the order of x and y, or to add a new variable or function,
you must recompile all of coord’s member functions, recompile all functions that use coord, and
recompile rotated coord because rotated coord is inherited from coord.

You must do this because Mata seriously compiles your code. The Mata compiler deconstructs all
uses of classes and substitutes low-level, execution-time-efficient constructs that record the address
of every member variable and member function. The advantage is that you do not have to sacrifice
run-time efficiency to have more readable and easily maintainable code. The disadvantage is that you
must recompile when you make changes in the definition.

You do not need to recompile outside functions that use a class if you only change the code of
member functions. You do need to recompile if you add or remove member variables or member
functions.

To minimize the need for recompiling, especially if you are distributing your code to others physically
removed from you, you may want to adopt the pass-through approach.

Assume you have written large, wonderful systems in Mata that all hinge on object-oriented program-
ming. One class inherits from another and that one from another, but the one class you need to tell
your users about is class wonderful. Rather than doing that, however, merely tell your users that
they should declare a transmorphic named wonderfulhandle—and then just have them pass
wonderfulhandle around. They begin using your system by making an initialization call:

wonderfulhandle = wonderful_init()

After that, they use regular functions you provide that require wonderful as an argument. From their
perspective, wonderfulhandle is a mystery. From your perspective, wonderful init() returned
an instance of a class wonderful, and the other functions you provided receive an instance of a
wonderful. Sadly, this means that you cannot reveal to your users the beauty of your underlying
class system, but it also means that they will not have to recompile their programs when you distribute
an update. If the Mata compiler can compile their code knowing only that wonderfulhandle is
a transmorphic, then it is certain their code does not depend on how wonderfulhandle is
constructed.

Obtaining instances of a class

Declaring a class, such as

class coord {
real scalar x, y
real scalar length(), angle()

}

in fact creates a function, coord(). Function coord() will create and return instances of the class:

• coord()—coord() without arguments—returns a scalar instance of the class.

• coord(3)—coord() with one argument, here 3—returns a 1× 3 vector, each element of
which is a separate instance of the class.

class — Object-oriented programming (classes) 15

• coord(2,3)—coord() with two arguments, here 2 and 3—returns a 2× 3 matrix, each
element of which is a separate instance of the class.

Function coord() is useful when using Mata interactively. It is the only way to create instances of
a class interactively.

In functions, you can create scalar instances by coding class coord scalar name, but in all other
cases, you will also need to use function coord(). In the following example, the programmer wants
a vector of coords:

void myfunction()
{

real scalar i
class coord vector v
. . .

v = coord(3)
for (i=1; i<=3; i++) v[i].x = v[i].y = 1
. . .

}

This program would have generated a compile-time error had the programmer omitted the line class
coord vector v. Variable declarations are usually optional in Mata, but variable declarations of
type class are not optional.

This program would have generated a run-time error had the programmer omitted the line v =
coord(3). Because v was declared to be vector, v began life as 1 × 0. The first thing the
programmer needed to do was to expand v to be 1× 3.

In practice, one seldom needs class vectors or matrices. A more typical program would read

void myfunction()
{

real scalar i
class coord scalar v
. . .

v.x = v.y = 1
. . .

}

Note particularly the line class coord scalar v. The most common error programmers make is to
omit the word scalar from the declaration. If you do that, then matrix is assumed, and then, rather
than v being 1 × 1, it will be 0 × 0. If you did omit the word scalar, you have two alternatives.
Either go back and put the word back in, or add the line v = coord() before initializing v.x and
v.y. It does not matter which you do. In fact, when you specify scalar, the compiler merely inserts
the line v = coord() for you.

Constructors and destructors

You can specify how variables are initialized, and more, each time a new instance of a class is created,
but before we get to that, let’s understand the default initialization. In

16 class — Object-oriented programming (classes)

class coord {
real scalar x, y
real scalar length(), angle()

}

there are two variables. When an instance of a coord is created, say, by coding b = coord(), the
values are filled in the usual Mata way. Here, because x and y are scalars, b.x and b.y will be filled
in with missing. Had they been vectors, row vectors, column vectors, or matrices, they would have
been dimensioned 1× 0 (vectors and row vectors), 0× 1 (column vectors), and 0× 0 (matrices).

If you want to control initialization, you may declare a constructor function named new() in your
class:

class coord {
real scalar x, y
real scalar length(), angle()
void new()

}

Function new() must be declared to be void and must take no arguments. You never bother to
call new() yourself—in fact, you are not allowed to do that. Instead, function new() is called
automatically each time a new instance of the class is created.

If you wanted every new instance of a coord to begin life with x and y equal to 0, you could code

void coord::new()
{

x = y = 0
}

Let’s assume we do that and we then inherit from coord when creating the new class rotated coord,
just as shown in the first example.

class rotated_coord extends coord {
real scalar theta
real scalar angle()
void new()

}

void rotated_coord::new()
{

theta = 0
}

When we create an instance of a rotated coord, all the variables were initialized to 0. That is,
function rotated coord() will know to call both coord::new() and rotated coord::new(),
and it will call them in that order.

In your new() function, you are not limited to initializing values. new() is a function and you can
code whatever you want, so if you want to set up a link to a radio telescope and check for any
incoming messages, you can do that. Closer to home, if you were implementing a file system, you
might use a static variable to count the number of open files. (We will explain static member variables
later.)

On the other side of instance creation—instance destruction—you can declare and create void
destroy(), which also takes no arguments, to be called each time an instance is destroyed.

class — Object-oriented programming (classes) 17

destroy() is known as a destructor. destroy() works like new() in the sense that you are not
allowed to call the function directly. Mata calls destroy() for you whenever Mata is releasing the
memory associated with an instance. destroy() does not serve much use in Mata because, in Mata,
memory management is automatic and the freeing of memory is not your responsibility. In some other
object-oriented programming languages, such as C++, you are responsible for memory management,
and the destructor is where you free the memory associated with the instance.

Still, there is an occasional use for destroy() in Mata. Let’s consider a system that needs to count
the number of instances of itself that exists, perhaps so it can release a resource when the instance
count goes to 0. Such a system might, in part, read

class bigsystem {
static real scalar counter
. . .
void new(), destroy()
. . .

}

void bigsystem::new()
{

counter = (counter==. ? 1 : counter+1)
}

void bigsystem::destroy()
{

counter--
}

Note that bigsystem::new() must deal with two initializations, first and subsequent. The first time
it is called, counter is . and new() must set counter to be 1. After that, new() must increment
counter.

If this system needed to obtain a resource, such as access to a radio telescope, on first initialization
and release it on last destruction, and be ready to repeat the process, the code could read

void bigsystem::new()
{

if (counter==.) {
get_resource()
counter = 1

}
else {

++counter
}

}

void bigsystem::destroy()
{

if (--counter == 0) {
release_resource()
counter = .

}
}

Note that destroy()s are run whenever an instance is destroyed, even if that destruction is due to
an abort-with-error in the user’s program or even in the member functions. The radio telescope will

18 class — Object-oriented programming (classes)

be released when the last instance of bigsystem is destroyed, except in one case. The exception is
when there is an error in destroy() or any of the subroutines destroy() calls.

For inheritance, child destroy()s are run before parent destroy()s.

Setting member variable and member function exposure

Exposure specifies who may access the member variables and member functions of your class. There
are three levels of exposure: from least restrictive to most restrictive, public, protected, and private.

• Public variables and functions may be accessed by anyone, including callers from outside a
class.

• Protected variables and functions may be accessed only by member functions of a class and
its children.

• Private variables and functions may be accessed only by member functions of a class
(excluding children).

When you do not specify otherwise, variables and functions are public. For code readability, you may
declare member variables and functions to be public with public, but this is not necessary.

In programming large systems, it is usually considered good style to make member variables private
and to provide public functions to set and to access any variables that users might need. This way,
the internal design of the class can be subsequently modified and other classes that inherit from the
class will not need to be modified, they will just need to be recompiled.

You make member variables and functions protected or private by preceding their declaration with
protected or private:

class myclass {
private real matrix X
private real vector y
void setup()
real matrix invert()
protected real matrix invert_subroutine()

}

Alternatively, you can create blocks with different defaults:

class myclass {
public:

void setup()
real matrix invert()

protected:
real matrix invert_subroutine()

private:
real matrix X
real vector y

}

You may combine public, private, and protected, with or without colons, freely.

class — Object-oriented programming (classes) 19

Making a member final

A member variable or function is said to be final if no children define a variable or function of the
same name. Ensuring that a definition is the final definition can be enforced by including final in
the declaration of the member, such as

class myclass {
public:

void setup()
real matrix invert()

protected:
final real matrix invert_subroutine()

private:
real matrix X
real vector y

}

In the above, no class that inherits from myclass can redefine invert subroutine().

Making a member static

Being static is an optional property of a class member variable function. In what follows, let ex1
and ex2 both be instances of S, assume c is a static variable of the class, and assume f() is a static
function of the class.

A static variable is a variable whose value is shared across all instances of the class. Thus, ex1.c
and ex2.c will always be equal. If ex1.c is changed, say, by ex1.c=5, then ex2.c will also be 5.

A static function is a function that does not use the values of nonstatic member variables of the class.
Thus ex1.f(3) and ex2.f(3) will be equal regardless of how ex1 and ex2 differ.

Outside of member functions, static functions may also be invoked by coding the class name, two
colons, and the function name, and thus used even if you do not have a class instance. For instance,
equivalent to coding ex1.f(3) or ex2.f(3) is S::f(3).

Virtual functions

When a function is declared to be virtual, the rules of inheritance act as though they were reversed.
Usually, when one class inherits from another, if the child class does not define a function, then
it inherits the parent’s function. For virtual functions, however, the parent has access to the child’s
definition of the function, which is why we say that it is, in some sense, reverse inheritance.

The canonical motivational example of this deals with animals. Without loss of generality, we will
use barnyard animals to illustrate. A class, animal, is defined. Classes cow and sheep are defined
that extend (inherit from) animal. One of the functions defined in animal needs to make the
sound of the specific animal, and it calls virtual function sound() to do that. At the animal level,
function animal::sound() is defined to display “Squeak!”. Because function sound() is virtual,
however, each of the specific-animal classes is supposed to define their own sound. Class cow defines
cow::sound() that displays “Moo!” and class sheep defines sheep::sound() that displays “Baa!”
The result is that when a routine in animal calls sound(), it behaves as if the inheritance is reversed,
the appropriate sound() routine is called, and the user sees “Moo!” or “Baa!” If a new specific
animal is added, and if the programmer forgets to define sound(), then animal::sound() will run,
and the user sees “Squeak!”. In this case, that is supposed to be the sound of the system in trouble,
but it is really just the default action.

20 class — Object-oriented programming (classes)

Let’s code this example. First, we will code the usual case:

class animal {
. . .
void sound()
void poke()
. . .

}

void animal::sound() { "Squeak!" }

void animal::poke()
{

. . .
sound()
. . .

}

class cow extends animal {
. . .

}

class sheep extends animal {
. . .

}

In the above example, when an animal, cow, or sheep is poked, among other things, it emits a sound.
Poking is defined at the animal level because poking is mostly generic across animals, except for
the sound they emit. If c is an instance of cow, then one can poke that particular cow by coding
c.poke(). poke(), however, is inherited from animal, and the generic action is taken, along with
the cow emitting a generic squeak.

Now we make sound() virtual:

class animal {
. . .
virtual void sound()
void poke()
. . .

}

void animal::sound() { "Squeak!" }

void animal::poke()
{

. . .
sound()
. . .

}

class cow extends animal {
. . .
virtual void sound()

}

class — Object-oriented programming (classes) 21

void cow::sound() { "Moo!" }

class sheep extends animal {
. . .
virtual void sound()

}

void sheep::sound() { "Baa!" }

Now let’s trace through what happens when we poke a particular cow by coding c.poke().
c, to remind you, is a cow. There is no cow::poke() function; however, c.poke() executes
animal::poke(). animal::poke() calls sound(), which, were sound() not a virtual function,
would be animal::sound(), which would emit a squeak. Poke a cow, get a “Squeak!” Because
sound() is virtual, animal::poke() called with a cow calls cow::sound(), and we hear a “Moo!”

Focusing on syntax, it is important that both cow and sheep repeated virtual void sound()
in their declarations. If you define function S::f(), then f() must be declared in S. Consider a case,
however, where we have two breeds of cows, Angus and Holstein, and they emit slightly different
sounds. The Holstein, being of Dutch origin, gets a bit of a U sound into the moo in a way no
native English speaker can duplicate. Thus we would declare two new classes, angus extends cow
and holstein extends cow, and we would define angus::sound() and holstein::sound().
Perhaps we would not bother to define angus::sound(); then an Angus would get the generic cow
sound.

But let’s pretend that, instead, we defined angus::sound() and removed the function for
cow::sound(). Then it does not matter whether we include the line virtual void sound()
in cow’s declaration. Formally, it should be included, because the line of reverse declaration should
not be broken, but Mata does not care one way or the other.

A common use of virtual functions is to allow you to process a list of objects without any knowledge
of the specific type of object, as long as all the objects are subclasses of the same base class:

class animal animals

animals = animal(3,1)

animals[1] = cow()
animals[2] = sheep()
animals[3] = holstein()

for(i=1; i<=length(animals); i++) {
animals[i].sound()

}

Note the use of animals = animal(3,1) to initialize the vector of animals. This is an example of
how to create a nonscalar class instance, as discussed in Obtaining instances of a class.

When the code above is executed, the appropriate sound for each animal will be displayed even
though animals is a vector declared to be of type class animal. Because sound() is virtual,
the appropriate sound from each specific animal child class is called.

22 class — Object-oriented programming (classes)

Referring to the current class using this

this is used within member functions to refer to the class as a whole. For instance, consider the
following:

class S {
real scalar n
real matrix M
void make_M()

}

void S::make_M(real scalar n)
{

real scalar i, j

this.n = n
M = J(n, n, 0)
for (i=1; i<=n; i++) {

for (j=1; j<=i; j++) M[i,j] = 1
}

}

In the above program, references to M are understood to be the class instance definition of M. References
to n, however, refer to the function’s definition of n because the program’s n has precedence over the
class’s definition of it. this.n is how one refers to the class’s variable in such cases. M also could
have been referred to as this.M, but that was not necessary.

If, in function S::f(), it was necessary to call a function outside of the class, and if that function
required that we pass the class instance as a whole as an argument, we could code this for the class
instance. The line might read outside function(this).

Using super to access the parent’s concept

The super modifier is a way of dealing with variables and functions that have been overridden in
subclasses or, said differently, is a way of accessing the parent’s concept of a variable or function.

Let T extend S and let t be an instance of T. Then t.f() refers to T::f() if the function exists,
and otherwise to S::f(). t.super.f() always refers to S::f().

More generally, in a series of inheritances, z.super.f() refers to the parent’s concept of f()—
the f() the parent would call if no super were specified—z.super.super.f() refers to the
grandparent’s concept of f(), and so on. For example, let W extend V extend U extend T extend S.
Furthermore, assume

S::f() exists
T::f() does not exist
U::f() exists
V::f() does not exist
W::f() does not exist

Finally, let s be an instance of S, t be an instance of T, and so on. Then calls of the form w.f(),
w.super.f(), . . . , w.super.super.super.super.f(), v.f(), v.super.f(), and so on, result
in execution of

class — Object-oriented programming (classes) 23

Number of supers specified
0 1 2 3 4

s. S::f()

t. S::f() S::f()

u. U::f() S::f() S::f()

v. U::f() U::f() S::f() S::f()

w. U::f() U::f() U::f() S::f() S::f()

Casting back to a parent

A class instance may be treated as a class instance of a parent by casting. Assume U extends T
extends S, and let u be an instance of U. Then

(class T) u

is treated as an instance of T, and

(class S) u

is treated as an instance of S. ((class T) u) could be used anywhere an instance of T is required
and ((class S) u) could be used anywhere an instance of S is required.

For instance, assume S::f() is overridden by T::f(). If an instance of U found it necessary to call
S::f(), one way it could do that would be u.super.super.f(). Another would be

((class S) u).f()

Accessing external functions from member functions

In the opening example, class coord contained a member function named length(). Had we been
coding a regular (nonclass) function, we could not have created that function with the name length().
The name length() is reserved by Mata for its own function that returns the length (number of
elements) of a vector; see [M-5] rows(). We are allowed to create a function named length() inside
classes. Outside of member functions, c.length() is an unambiguous reference to c’s definition of
length(), and length() by itself is an unambiguous reference to length()’s usual definition.

There is, however, possible confusion when coding member functions. Let’s add another member
function to coord: ortho(), the code for which reads

class coord scalar coord::ortho()
{

class coord scalar newcoord
real scalar r, t

r = length()
t = angle()
newcoord.x = r*cos(t)
newcoord.y = r*sin(t)
return(newcoord)

}

https://www.stata.com/manuals/m-5rows.pdf#m-5rows()

24 class — Object-oriented programming (classes)

Note that in the above code, we call length(). Because we are writing a member function, and
because the class defines a member function of that name, length() is interpreted as being a call to
coord’s definition of length(). If coord did not define such a member function, then length()
would have been interpreted as a call to Mata’s length().

So what do we do if the class provides a function, externally there is a function of the same name,
and we want the external function? We prefix the function’s name with double colons. If we wanted
length() to be interpreted as Mata’s function and not the class’s, we would have coded

r = ::length()

There is nothing special about the name length() here. If the class provided member function
myfcn(), and there was an external definition as well, and we wanted the externally defined function,
we would code ::myfcn(). In fact, it is not even necessary that the class provide a definition. If
we cannot remember whether class coord includes myfcn(), but we know we want the external
myfcn() no matter what, we can code ::myfcn().

Placing double-colons in front of external function names used inside the definitions of member
functions is considered good style. This way, if you ever go back and add another member function
to the class, you do not have to worry that some already written member function is assuming that
the name goes straight through to an externally defined function.

Pointers to classes

Just as you can obtain a pointer to any other Mata variable, you can obtain a pointer to an instance
of a class. Recall our example in Virtual functions of animals that make various sounds when poked.

For the sake of example, we will obtain a pointer to an instance of a cow() and access the poke()
function through the pointer:

void pokeacow() {
class cow scalar c
pointer(class cow scalar) scalar p

p = &c
p->poke()

}

You access the member variables and functions through a pointer to a class with the operator -> just
like you would for structures. See Pointers to structures in [M-2] struct for more information.

Reference
Gould, W. W. 2018. The Mata Book: A Book for Serious Programmers and Those Who Want to Be. College Station,

TX: Stata Press.

Also see

[M-2] Declarations — Declarations and types

[M-2] struct — Structures

[P] class — Class programming

https://www.stata.com/manuals/m-2struct.pdf#m-2structRemarksandexamplesPointerstostructures
https://www.stata.com/manuals/m-2struct.pdf#m-2struct
http://www.stata-press.com/books/mata-book
https://www.stata.com/manuals/m-2declarations.pdf#m-2Declarations
https://www.stata.com/manuals/m-2struct.pdf#m-2struct
https://www.stata.com/manuals/pclass.pdf#pclass

class — Object-oriented programming (classes) 25

[M-2] Intro — Language definition

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

https://www.stata.com/manuals/m-2intro.pdf#m-2Intro

