Description	Quick start	Menu	Syntax
Options	Remarks and examples	Stored results	Methods and formulas
References	Also see		

Description

irt pcm fits partial credit models (PCMs) to ordinal items. In the PCM, items vary in their difficulty but share the same discrimination parameter.
irt gpem fits generalized partial credit models (GPCMs) to ordinal items. In the GPCM, items vary in their difficulty and discrimination.

Quick start

PCM for ordinal items o1 to 05
irt pcm o1-o5
Plot CCCs for 01
irtgraph icc o1

Menu

Statistics $>$ IRT (item response theory)

Syntax

Partial credit model
irt pcm varlist [if] [in] [weight] [, options]

Generalized partial credit model
irt gpcm varlist [if] [in] [weight] [, options]
options
Description
group (varname)
Model
cns (spec)
listwise

SE/Robust

Reporting
level(\#)
notable
noheader
display_options
Integration
intmethod (intmethod)
intpoints(\#)
Maximization
maximize_options
startvalues (svmethod)
noestimate
estmetric
dnumerical
coeflegend
vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap, or jackknife
fit model for different groups
apply specified parameter constraints drop observations with any missing items
set confidence level; default is level (95)
suppress coefficient table
suppress output header
control columns and column formats
integration method
set the number of integration points; default is intpoints (7)
control the maximization process; seldom used
method for obtaining starting values
do not fit the model; show starting values instead
show parameter estimates in the estimation metric
use numerical derivative techniques
display legend instead of statistics
intmethod
mvaghermite
mcaghermite
ghermite

Description
mean-variance adaptive Gauss-Hermite quadrature; the default mode-curvature adaptive Gauss-Hermite quadrature nonadaptive Gauss-Hermite quadrature
bootstrap, by, collect, jackknife, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see $[R]$ bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
startvalues(), noestimate, estmetric, dnumerical, and coeflegend do not appear in the dialog box. See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

group (varname) specifies that the model be fit separately for the different values of varname; see [IRT] irt, group() for details.

Model

cns (spec) constrains item parameters to a fixed value or constrains two or more parameters to be equal; see [IRT] irt constraints for details.
listwise handles missing values through listwise deletion, which means that the entire observation is omitted from the estimation sample if any of the items are missing for that observation. By default, all nonmissing items in an observation are included in the likelihood calculation; only missing items are excluded.

SE/Robust
vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

Reporting
level(\#); see [R] Estimation options.
notable suppresses the estimation table, either at estimation or upon replay.
noheader suppresses the output header, either at estimation or upon replay.
display_options: noci, nopvalues, cformat (\%fmt), pformat(\%fmt), sformat(\%fmt), and nolstretch; see [R] Estimation options.

Integration
intmethod(intmethod) specifies the integration method to be used for computing the log likelihood. mvaghermite performs mean and variance adaptive Gauss-Hermite quadrature; mcaghermite performs mode and curvature adaptive Gauss-Hermite quadrature; and ghermite performs nonadaptive Gauss-Hermite quadrature.

The default integration method is mvaghermite.
intpoints(\#) sets the number of integration points for quadrature. The default is intpoints(7), which means that seven quadrature points are used to compute the log likelihood.
The more integration points, the more accurate the approximation to the log likelihood. However, computation time increases with the number of integration points.

Maximization
maximize_options: difficult, technique (algorithm_spec), iterate (\#), [no] log, trace, gradient, showstep, hessian, showtolerance, tolerance(\#), ltolerance(\#), nrtolerance(\#), nonrtolerance, and from(init_specs); see [R] Maximize. Those that require special mention for irt are listed below.
from() accepts a properly labeled vector of initial values or a list of coefficient names with values. A list of values is not allowed.

The following options are available with irt but are not shown in the dialog box:
startvalues () specifies how starting values are to be computed. Starting values specified in from() override the computed starting values.
startvalues (zero) specifies that all starting values be set to 0 . This option is typically useful only when specified with the from() option.
startvalues (constantonly) builds on startvalues (zero) by fitting a constant-only model for each response to obtain estimates of intercept and cutpoint parameters.
startvalues(fixedonly) builds on startvalues(constantonly) by fitting a full fixedeffects model for each response variable to obtain estimates of coefficients along with intercept and cutpoint parameters. You can also add suboption iterate(\#) to limit the number of iterations irt allows for fitting the fixed-effects model.
startvalues(ivloadings) builds on startvalues (fixedonly) by using instrumental-variable methods with the generalized residuals from the fixed-effects models to compute starting values for latent-variable loadings. This is the default behavior.
noestimate specifies that the model is not to be fit. Instead, starting values are to be shown (as modified by the above options if modifications were made), and they are to be shown using the coeflegend style of output. An important use of this option is before you have modified starting values at all; you can type the following:
. irt ..., ... noestimate
. matrix $b=e(b)$
. ... (modify elements of b) ...
. irt ..., ... from(b)
estmetric displays parameter estimates in the slope-intercept metric that is used for estimation.
dnumerical specifies that during optimization, the gradient vector and Hessian matrix be computed
using numerical techniques instead of analytical formulas. By default, irt uses analytical formulas for computing the gradient and Hessian for all integration methods.
coeflegend; see [R] Estimation options.

Remarks and examples

The following discussion is about how to use irt to fit PCMs and GPCMs to ordinal items. If you are new to the IRT features in Stata, we encourage you to read [IRT] irt first.

The PCM is used for ordered categorical responses. An item scored $0,1, \ldots, K$ is divided into K adjacent logits, and a positive response in category k implies a positive response to the categories preceding category k.

The probability of person j scoring in category k on item i is

$$
\operatorname{Pr}\left(Y_{i j}=k \mid \theta_{j}\right)=\frac{\exp \left\{\sum_{t=1}^{k} a\left(\theta_{j}-b_{i t}\right)\right\}}{1+\sum_{s=1}^{K} \exp \left\{\sum_{t=1}^{s} a\left(\theta_{j}-b_{i t}\right)\right\}} \quad \theta_{j} \sim N(0,1)
$$

where a represents the discrimination common to all items, $b_{i t}$ represents the difficulty that distinguishes outcome t from the other outcomes in item i, and θ_{j} is the latent trait of person j.

In a GPCM, each item has its own discrimination parameter.
The PCM was proposed by Masters (1982). The GPCM was proposed by Muraki (1992).

> Example 1: Fitting a PCM

To illustrate the PCM, we use the analogical reasoning data from de Ayala (2022). alike.dta contains eight questions, v1 through v8, that ask how two things are alike, for example, "In what way are a dog and a lion alike?" Each response is graded as 0 (incorrect), 1 (partially correct), and 2 (correct). Here we list the first five observations.

```
. use https://www.stata-press.com/data/r18/alike
(Analogical reasoning data from de Ayala (2009))
. list in 1/5, nolabel
```

v1	v2	v3	v4	v5	v6	v7	v8
2	2	0	0	0	0	0	0
2	0	2	1	2	1	0	0
2	2	1	2	2	1	0	0
2	2	2	1	2	0	0	0
2	2	2	2	1	2	2	2

Looking across the first row, we see that the first respondent correctly solved items v1 and v2 and was incorrect on the remaining items.

We fit a PCM as follows:
. irt pcm v1-v8
Fitting fixed-effects model:
Iteration 0: Log likelihood $=-20869.947$
Iteration 1: Log likelihood $=-20869.947$ (backed up)
Fitting full model:
Iteration 0: Log likelihood = -20048.975
Iteration 1: Log likelihood $=-19814.317$
Iteration 2: Log likelihood $=-19678.395$
Iteration 3: Log likelihood $=-19678.271$
Iteration 4: Log likelihood $=-19678.271$
Partial credit model
Number of obs $=2,941$
Log likelihood $=-19678.271$

	Coefficient	Std. err.	z	$P>\|z\|$	[95\% conf	interval]
Discrim	. 8375472	. 0194059	43.16	0.000	. 7995124	. 875582
v1						
Diff						
1 vs 0	-1.546962	. 1128848	-13.70	0.000	-1.768212	-1.325712
2 vs 1	-2.463391	. 0900475	-27.36	0.000	-2.639881	-2.286902
v2						
Diff						
1 vs 0	-. 508318	. 0803871	-6.32	0.000	-. 6658738	-. 3507622
2 vs 1	-1.592003	. 0753361	-21.13	0.000	-1.739659	-1.444347
v3						
Diff						
1 vs 0	-1.242774	. 0719814	-17.27	0.000	-1.383855	-1.101694
2 vs 1	-. 2770088	. 0562749	-4.92	0.000	-. 3873056	-. 166712
v4						
Diff						
1 vs 0	-. 3337874	. 0580143	-5.75	0.000	-. 4474934	-. 2200814
2 vs 1	. 7146057	. 0614175	11.64	0.000	. 5942296	. 8349819
v5						
Diff						
1 vs 0	1.89372	. 0969163	19.54	0.000	1.703768	2.083672
2 vs 1	-1.454011	. 0955847	-15.21	0.000	-1.641353	-1.266668
v6						
Diff						
1 vs 0	-. 2165156	. 052177	-4.15	0.000	-. 3187806	-. 1142506
2 vs 1	3.115386	. 1146119	27.18	0.000	2.89075	3.340021
v7						
Diff						
1 vs 0	1.909344	. 0834947	22.87	0.000	1.745698	2.072991
2 vs 1	-. 0129814	. 0832004	-0.16	0.876	-. 1760511	. 1500883
v8						
Diff						
1 vs 0	1.514291	. 0685158	22.10	0.000	1.380003	1.64858
2 vs 1	1.63067	. 0933511	17.47	0.000	1.447705	1.813635

The difficulties represent a point at which the two adjacent categories are equally likely. For item v4, a person with $\theta=-0.33$ is equally likely to answer incorrectly or to answer partially correct (labeled 1 vs 0). A person with $\theta=0.71$ is equally likely to be partially correct or to be correct (labeled 2 vs 1).

We can present this graphically using CCCs. The curves trace the probability of choosing each category as a function of θ using the estimated PCM parameters. Here we plot the probabilities for item v4 using irtgraph icc; see [IRT] irtgraph icc for details.

```
. irtgraph icc v4, xlabel(-4 -. 33 .71 4)
```


Category characteristic curves

While the PCM is intended for items having ordered categorical responses, the model is parameterized as if the outcomes were nominal. Therefore, the difficulty parameters for a given item are not necessarily in an increasing order. For example, for item v2, the second difficulty parameter is -1.59 and is smaller than the first difficulty parameter, -0.51 . This is called a reversal and indicates that the category with the reversed threshold is dominated by the other two categories. Here we show this situation graphically.

```
. irtgraph icc v2, xlabel(-4 -. 51 -1.59 4)
```

Category characteristic curves

Notice that the probability of responding with a partially correct answer is never greater than both the probability of responding incorrectly and the probability of responding correctly. A reversal of the
thresholds may indicate a potential problem with the item or with how raters graded the responses to the item. In our case, item v2 is primarily behaving like a binary item.

Stored results

irt pcm and irt gpcm store the following in e():
Scalars
e(N)
e(k)
e(k_eq)
e(k_dv)
e(k_rc)
e(k_rs)
e(irt_k_eq)
e(k_items1)
e(k_out\#)
e(11)
e(N_clust)
e(N_groups)
e (n_quad)
e(rank)
e(ic)
e(rc)
e(converged)
Macros

```
e(cmd)
e(cmd2)
e(cmdline)
e(model1)
e(items1)
e(depvar)
e(wtype)
e(wexp)
e(title)
e(clustvar)
e(groupvar)
e(family#)
e(link#)
e(intmethod)
e(vce)
e(vcetype)
e(opt)
e(which)
e(method)
e(ml_method)
e(user)
e(technique)
e(datasignature)
e(datasignaturevars)
e(properties)
e(estat_cmd)
e(predict)
e(covariates)
e(footnote)
```

number of observations
number of parameters
number of equations in $e(b)$
number of dependent variables
number of covariances
number of variances
number of IRT equations
number of items in first IRT equation
number of categories for the \#th item, ordinal
log likelihood
number of clusters
number of groups
number of integration points
rank of e(V)
number of iterations
return code
1 if target model converged, 0 otherwise

gsem

irt
command as typed
pcm or gpcm
names of items in first IRT equation
names of all item variables
weight type
weight expression
title in estimation output
name of cluster variable
name of group variable
family for the \#th item
link for the \#th item
integration method
vcetype specified in vce()
title used to label Std. err.
type of optimization
max or min; whether optimizer is to perform maximization or minimization
estimation method: ml
type of ml method
name of likelihood-evaluator program
maximization technique
the checksum
variables used in calculation of checksum
b V
program used to implement estat
program used to implement predict
list of covariates
program used to implement the footnote display

```
Matrices
    e(_N)
    e(b)
    e(b_pclass)
    e(out#)
    e(Cns)
    e(ilog)
    e(gradient)
    e(V)
    e(V_modelbased)
    e(groupvalue)
    e(nobs)
Functions
    e(sample) marks estimation sample
```

In addition to the above, the following is stored in r() :
Matrices
r (table) matrix containing the coefficients with their standard errors, test statistics, p-values, and confidence intervals

Note that results stored in $r()$ are updated when the command is replayed and will be replaced when any r-class command is run after the estimation command.

Methods and formulas

Let $Y_{i j}$ represent the (yet to be observed) outcome for item i from person j. Without loss of generality, we will assume all items take on the ordered categories, $k=0,1, \ldots, K$.

Using the IRT parameterization, we see that the probability of person j with latent trait level θ_{j} (the latent trait) providing response k for item i is given by

$$
\operatorname{Pr}\left(Y_{i j}=k \mid a_{i}, \mathbf{b}_{i}, \theta_{j}\right)=\frac{\exp \left\{\sum_{t=1}^{k} a_{i}\left(\theta_{j}-b_{i t}\right)\right\}}{1+\sum_{s=1}^{K} \exp \left\{\sum_{t=1}^{s} a_{i}\left(\theta_{j}-b_{i t}\right)\right\}}
$$

where a_{i} represents the discrimination for item $i, \mathbf{b}_{i}=\left(b_{i 1}, \ldots, b_{i K}\right)$ represent the difficulties that distinguish the ordered categories of item i, and it is understood that

$$
\operatorname{Pr}\left(Y_{i j}=0 \mid a_{i}, \mathbf{b}_{i}, \theta_{j}\right)=\frac{1}{1+\sum_{s=1}^{K} \exp \left\{\sum_{t=1}^{s} a_{i}\left(\theta_{j}-b_{i t}\right)\right\}}
$$

irt pcm and irt gpcm fit the model using the slope-intercept form, so the probability for providing response k is parameterized as

$$
\operatorname{Pr}\left(Y_{i j}=k \mid \alpha_{i}, \boldsymbol{\beta}_{i}, \theta_{j}\right)=\frac{\exp \left(k \alpha_{i} \theta_{j}+\beta_{i k}\right)}{1+\sum_{s=1}^{K} \exp \left(s \alpha_{i} \theta_{j}+\beta_{i s}\right)}
$$

The transformation between these two parameterizations is

$$
a_{i}=\alpha_{i} \quad b_{i k}=-\frac{\beta_{i k}-\beta_{i, k-1}}{\alpha_{i}}
$$

where $b_{i 0}=0$ and $\beta_{i 0}=0$. For irt pcm, the item discriminations a_{i} are constrained to be equal.

Let $y_{i j}$ be the observed response for $Y_{i j}$ and $p_{i j}=\operatorname{Pr}\left(Y_{i j}=y_{i j} \mid \alpha_{i}, \boldsymbol{\beta}_{i}, \theta_{j}\right)$. Conditional on θ_{j}, the item responses are assumed to be independent, so the conditional density for person j is given by

$$
f\left(\mathbf{y}_{j} \mid \boldsymbol{B}, \theta_{j}\right)=\prod_{i=1}^{I} p_{i j}
$$

where $\mathbf{y}_{j}=\left(y_{1 j}, \ldots, y_{I j}\right), \boldsymbol{B}=\left(\alpha_{1}, \ldots, \alpha_{I}, \boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{I}\right)$, and I is the number of items.
Missing items are skipped over in the above product by default. When the listwise option is specified, persons with any missing items are dropped from the estimation sample.

The likelihood for person j is computed by integrating out the latent variable from the joint density

$$
L_{j}(\boldsymbol{B})=\int_{-\infty}^{\infty} f\left(\mathbf{y}_{j} \mid \boldsymbol{B}, \theta_{j}\right) \phi\left(\theta_{j}\right) d \theta_{j}
$$

where $\phi(\cdot)$ is the density function for the standard normal distribution. The log likelihood for the estimation sample is simply the sum of the \log likelihoods from the N persons in the estimation sample.

$$
\log L(\boldsymbol{B})=\sum_{j=1}^{N} \log L_{j}(\boldsymbol{B})
$$

The integral in the formula for $L_{j}(\boldsymbol{B})$ is generally not tractable, so we must use numerical methods.
Models for multiple groups, Gauss-Hermite quadrature, and adaptive quadrature are documented in Methods and formulas of [IRT] irt hybrid.

References

de Ayala, R. J. 2022. The Theory and Practice of Item Response Theory. 2nd ed. New York: Guilford Press.
Hamel, J.-F., G. Challet-Bouju, V. Sébille, and J.-B. Hardouin. 2016. Partial credit model: Estimations and tests of fit with pcmodel. Stata Journal 16: 464-481.

Masters, G. N. 1982. A Rasch model for partial credit scoring. Psychometrika 47: 149-174. https://doi.org/10.1007/BF02296272.
Muraki, E. 1992. A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement 16: 159-176. https://doi.org/10.1177/014662169201600206.

[^0]
[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

[^0]: Also see
 [IRT] irt pem postestimation - Postestimation tools for irt pcm
 [IRT] irt - Introduction to IRT models
 [IRT] irt constraints - Specifying constraints
 [IRT] irt grm - Graded response model
 [IRT] irt rsm - Rating scale model
 [SEM] gsem - Generalized structural equation model estimation command
 [SVY] svy estimation - Estimation commands for survey data

