Description	Quick start	Menu	Syntax
Options	Remarks and examples	References	Also see

Description

graph matrix draws scatterplot matrices.

Quick start

Scatterplot matrix for variables v1, v2, v3, v4, and v5
graph matrix v1 v2 v3 v4 v5
Same as above, but draw only the lower triangle
graph matrix v1 v2 v3 v4 v5, half
Separate scatterplot matrices for each level of catvar
graph matrix v1 v2 v3 v4 v5, by (catvar)
With hollow circles as markers
graph matrix v1 v2 v3 v4 v5, half msymbol(Oh)
Same as above, but with periods as markers
graph matrix v1 v2 v3 v4 v5, half msymbol(p)
Override the default text on the diagonal for v1 and v3
graph matrix v1 v2 v3 v4 v5, diagonal("Variable 1" . "Variable 3")

Menu

Graphics $>$ Scatterplot matrix

Syntax

graph matrix varlist $[$ if $][$ in $][$ weight $][$, options $]$
options
half
marker_options
marker_label_options
jitter(\#)
jitterseed(\#)
diagonal (stringlist, ...)
diagopts(textbox_options)
scale(\#)
iscale([*]\#)
maxes (axis_scale_options
axis_label_options)
axis_label_options
by (varlist, ...)
std_options

Description
draw lower triangle only
look of markers
include labels on markers
perturb location of markers
random-number seed for jitter()
override text on diagonal
rendition of text on diagonal
overall size of symbols, labels, etc.
size of symbols, labels, within plots
labels, ticks, grids, \log scales, etc.
axis-by-axis control
repeat for subgroups
title, aspect ratio, saving to disk

All options allowed by graph twoway scatter are also allowed, but they are ignored.
half, diagonal(), scale(), and iscale() are unique; jitter() and jitterseed() are rightmost and maxes () is merged-implicit; see [G-4] Concept: repeated options.
stringlist, ..., the argument allowed by diagonal(), is defined

$$
[\{. \mid \text { "string" }\}][\{. \mid \text { "string" }\} \ldots][\text {, textbox_options }]
$$

aweights, fweights, and pweights are allowed; see [U] 11.1.6 weight. Weights affect the size of the markers. See Weighted markers in [G-2] graph twoway scatter.

Options

half specifies that only the lower triangle of the scatterplot matrix be drawn.
marker_options specify the look of the markers used to designate the location of the points. The important marker_options are msymbol(), mcolor(), and msize().
The default symbol used is msymbol (0) - solid circles. You specify msymbol(Oh) if you want hollow circles (a recommended alternative). If you have many observations, we recommend specifying msymbol (p); see Marker symbols and the number of observations under Remarks and examples below. See [G-4] symbolstyle for a list of marker symbol choices.
The default mcolor() is dictated by the scheme; see [G-4] Schemes intro. See [G-4] colorstyle for a list of color choices.
Be careful specifying the msize() option. In graph matrix, the size of the markers varies with the number of variables specified; see option iscale() below. If you specify msize(), that will override the automatic scaling.
See [G-3] marker_options for more information on markers.
marker_label_options allow placing identifying labels on the points. To obtain this, you specify the marker_label_option mlabel(varname); see [G-3] marker_label_options. These options are of little use for scatterplot matrices because they make the graph seem too crowded.
jitter (\#) adds spherical random noise to the data before plotting. \# represents the size of the noise as a percentage of the graphical area. This is useful when plotting data which otherwise would result in points plotted on top of each other. See Jittered markers in [G-2] graph twoway scatter for an explanation of jittering.
jitterseed(\#) specifies the seed for the random noise added by the jitter() option. \# should be specified as a positive integer. Use this option to reproduce the same plotted points when the jitter() option is specified.
diagonal ([stringlist $][$, textbox_options $]$) specifies text and its style to be displayed along the diagonal. This text serves to label the graphs (axes). By default, what appears along the diagonals are the variable labels of the variables of varlist or, if a variable has no variable label, its name. Typing

```
. graph matrix mpg weight displ, diag(. "Weight of car")
```

would change the text appearing in the cell corresponding to variable weight. We specified period (.) to leave the text in the first cell unchanged, and we did not bother to type a third string or a period, so we left the third element unchanged, too.

You may specify textbox_options following stringlist (which may itself be omitted) and a comma. These options will modify the style in which the text is presented but are of little use here. We recommend that you do not specify diagonal(,size()) to override the default sizing of the text. By default, the size of text varies with the number of variables specified; see option iscale() below. Specifying diagonal(,size()) will override the automatic size scaling. See [G-3] textbox_options for more information on textboxes.
diagopts(textbox_options) specify the look of text on the diagonal. This option is a shortcut for diagonal (, textbox_options).
scale(\#) specifies a multiplier that affects the size of all text and markers in a graph. scale(1) is the default, and scale(1.2) would make all text and markers 20% larger.
See [G-3] scale_option.
iscale(\#) and iscale(*\#) specify an adjustment (multiplier) to be used to scale the markers, the text appearing along the diagonals, and the labels and ticks appearing on the axes.
By default, iscale () gets smaller and smaller the larger n is, the number of variables specified in varlist. The default is parameterized as a multiplier $\mathrm{f}(n)-0<\mathrm{f}(n)<1, \mathrm{f}^{\prime}(n)<0$-that is used as a multiplier for msize(), diagonal(,size()), maxes(labsize()), and maxes(tlength()).
If you specify iscale(\#), the number you specify is substituted for $f(n)$. We recommend that you specify a number between 0 and 1 , but you are free to specify numbers larger than 1 .

If you specify iscale $(* \#)$, the number you specify is multiplied by $\mathrm{f}(n)$, and that product is used to scale text. Here you should specify $\#>0 ; \#>1$ merely means you want the text to be bigger than graph matrix would otherwise choose.
maxes (axis_scale_options axis_label_options) affect the scaling and look of the axes. This is a case where you specify options within options.
Consider the axis_scale_options $\{\mathrm{y} \mid \mathrm{x}\} \mathrm{scale}(\mathrm{log})$, which produces logarithmic scales. Type maxes (yscale (log) xscale (log)) to draw the scatterplot matrix by using log scales. Remember to specify both xscale (log) and yscale (log), unless you really want just the y axis or just the x axis logged.

Or consider the axis_label_options $\{\mathrm{y} \mid \mathrm{x}\}$ label(,grid), which adds grid lines. Specify maxes(ylabel(,grid)) to add grid lines across, maxes(xlabel(,grid)) to add grid lines vertically, and both options to add grid lines in both directions. When using both, you can specify the maxes() option twice-maxes(ylabel(,grid)) maxes(xlabel(,grid))—or once combined-maxes (ylabel(,grid) xlabel(,grid))—it makes no difference because maxes () is merged-implicit; see [G-4] Concept: repeated options.
See [G-3] axis_scale_options and [G-3] axis_label_options for the suboptions that may appear inside maxes(). In reading those entries, ignore the axis(\#) suboption; graph matrix will ignore it if you specify it.
axis_label_options allow you to assert axis-by-axis control over the labeling. Do not confuse this with maxes(axis_label_options), which specifies options that affect all the axes. axis_label_options specified outside the maxes () option specify options that affect just one of the axes. axis_label_options can be repeated for each axis.
When you specify axis_label_options outside maxes(), you must specify the axis-label suboption axis(\#). For instance, you might type

```
. graph matrix mpg weight displ, ylabel(0(5)40, axis(1))
```

The effect of that would be to label the specified values on the first y axis (the one appearing on the far right). The axes are numbered as follows:

y axis(2)	$\begin{gathered} x \\ \operatorname{axis}(2) \end{gathered}$			$\begin{gathered} x \\ \operatorname{axis}(4) \\ \hline \end{gathered}$		y axis(1)
		v1/v2	v1/v3	v1/v4	v1/v5	
	v2/v1		v2/v3	v2/v4	v2/v5	
	v3/v1	v3/v2		v3/v4	v3/v5	y axis(3)
y axis(4)	v4/v1	v4/v2	v4/v3		v4/v5	
	v5/v1	v5/v2	v5/v3	v5/v4		y axis(5)
	$\stackrel{x}{\text { xis(1 }}$		$\begin{gathered} x \\ \text { xis(3 } \end{gathered}$		$\underset{x}{x}$	

and if half is specified, the numbering scheme is

See [G-3] axis_label_options; remember to specify the axis(\#) suboption, and do not specify the graph matrix option maxes().
by (varlist, ...) allows drawing multiple graphs for each subgroup of the data. See Use with by() under Remarks and examples below, and see [G-3] by_option.
std_options allow you to specify titles (see Adding titles under Remarks and examples below, and see [G-3] title_options), control the aspect ratio and background shading (see [G-3] region_options), control the overall look of the graph (see [G-3] scheme_option), and save the graph to disk (see [G-3] saving_option).
See [G-3] std_options for an overview of the standard options.

Remarks and examples

stata.com
Remarks are presented under the following headings:

```
Typical use
Marker symbols and the number of observations
Controlling the axes labeling
Adding grid lines
Adding titles
Use with by()
History
```


Typical use

graph matrix provides an excellent alternative to correlation matrices (see [R] correlate) as a quick way to examine the relationships among variables:

```
. use https://www.stata-press.com/data/r18/lifeexp
(Life expectancy, 1998)
```

. graph matrix popgrowth-safewater

Seeing the above graph, we are tempted to transform gnppc into log units:
. generate lgnppc $=\ln ($ gnppc $)$
(5 missing values generated)
. label variable lgnppc "Log GNP"
. graph matrix popgr lexp lgnp safe

Some people prefer showing just half the matrix, moving the "dependent" variable to the end of the list:
. gr matrix popgr lgnp safe lexp, half

Marker symbols and the number of observations

The msymbol() option-abbreviation ms()—allows us to control the marker symbol used; see [G-3] marker_options. Hollow symbols sometimes work better as the number of observations increases:

```
. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. gr mat mpg price weight length, ms(Oh)
```


Points work best when there are many data:

```
. use https://www.stata-press.com/data/r18/citytemp, clear
```

(City temperature data)
. gr mat heatdd-tempjuly, ms(p)

Controlling the axes labeling

By default, approximately three values are labeled and ticked on the y and x axes. When graphing only a few variables, increasing this often works well:

```
. use https://www.stata-press.com/data/r18/citytemp, clear
(City temperature data)
. gr mat heatdd-tempjuly, ms(p) maxes(ylab(#4) xlab(#4))
```


Specifying \#4 does not guarantee four labels; it specifies that approximately four labels be used; see [G-3] axis_label_options. Also see axis_label_options under Options above for instructions on controlling the axes individually.

Adding grid lines

To add horizontal grid lines, specify maxes (ylab(,grid)), and to add vertical grid lines, specify maxes(xlab(,grid)). Below we do both and specify that four values be labeled:

```
. use https://www.stata-press.com/data/r18/lifeexp, clear
(Life expectancy, 1998)
. generate lgnppc = ln(gnppc)
(5 missing values generated)
. label variable lgnppc "Log GNP"
. graph matrix popgr lexp lgnppc safe, maxes(ylab(\#4, grid) xlab(\#4, grid))
```


Adding titles

The standard title options may be used with graph matrix:

```
. use https://www.stata-press.com/data/r18/lifeexp, clear
(Life expectancy, 1998)
. generate lgnppc = ln(gnppc)
(5 missing values generated)
. label var lgnppc "Log GNP"
. graph matrix popgr lexp lgnp safe, maxes(ylab(#4, grid) xlab(#4, grid))
subtitle("Summary of 1998 life-expectancy data")
note("Source: The World Bank Group")
```


Use with by()

graph matrix may be used with by ():

```
. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. gr matrix mpg weight displ, by(foreign) xsize(5)
```


Graphs by Car origin

See [G-3] by_option.

History

The origin of the scatterplot matrix is unknown, although early written discussions may be found in Hartigan (1975), Tukey and Tukey (1981), and Chambers et al. (1983). The scatterplot matrix has also been called the draftman's display and pairwise scatterplot. Regardless of the name used, we believe that the first "canned" implementation was by Becker and Chambers in a system called S—see Becker and Chambers (1984)—although S predates 1984. We also believe that Stata provided the second implementation, in 1985.

References

Basford, K. E., and J. W. Tukey. 1998. Graphical Analysis of Multiresponse Data. Boca Raton, FL: Chapman and Hall/CRC.

Becker, R. A., and J. M. Chambers. 1984. S: An Interactive Environment for Data Analysis and Graphics. Belmont, CA: Wadsworth.

Chambers, J. M., W. S. Cleveland, B. Kleiner, and P. A. Tukey. 1983. Graphical Methods for Data Analysis. Belmont, CA: Wadsworth.

Hartigan, J. A. 1975. Printer graphics for clustering. Journal of Statistical Computation and Simulation 4: 187-213. https://doi.org/10.1080/00949657508810123.
Tukey, P. A., and J. W. Tukey. 1981. Preparation; prechosen sequences of views. In Interpreting Multivariate Data, ed. V. Barnett, 189-213. Chichester, UK: Wiley.

Also see
 [G-2] graph - The graph command
 [G-2] graph twoway scatter - Twoway scatterplots

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

