
Title stata.com

String functions

Contents Functions References Also see

Contents

abbrev(s,n) name s, abbreviated to a length of n
char(n) the character corresponding to ASCII or extended ASCII code n; ""

if n is not in the domain
collatorlocale(loc,type) the most closely related locale supported by ICU from loc if type

is 1; the actual locale where the collation data comes from if
type is 2

collatorversion(loc) the version string of a collator based on locale loc
indexnot(s1,s2) the position in ASCII string s1 of the first character of s1 not found

in ASCII string s2, or 0 if all characters of s1 are found in s2
plural(n,s) the plural of s if n 6= ±1
plural(n,s1,s2) the plural of s1, as modified by or replaced with s2, if n 6= ±1
real(s) s converted to numeric or missing
regexcapture(n) subexpression n from a previous regexm() or regexmatch()

match
regexcapturenamed(grp) subexpression corresponding to matching group named grp in reg-

ular expression from a previous regexm() or regexmatch()
match

regexm(s,re) a match of a regular expression, which evaluates to 1 if regular
expression re is satisfied by the ASCII string s; otherwise, 0

regexmatch(s,re
[
,noc

[
,std

[
,nlalt

]]]
)

a match of a regular expression, which evaluates to 1 if regular
expression re is satisfied by the ASCII string s; otherwise, 0

regexr(s1,re,s2) replaces the first substring within ASCII string s1 that matches re
with ASCII string s2 and returns the resulting string

regexreplace(s1,re,s2
[
,noc

[
,fmt

[
,std

[
,nlalt

]]]]
)

replaces the first substring within ASCII string s1 that matches re
with ASCII string s2 and returns the resulting string

regexreplaceall(s1,re,s2
[
,noc

[
,fmt

[
,std

[
,nlalt

]]]]
)

replaces all substrings within ASCII string s1 that match re with
ASCII string s2 and returns the resulting string

regexs(n) subexpression n from a previous regexm() or regexmatch()
match, where 0 ≤ n < 10

soundex(s) the soundex code for a string, s
soundex nara(s) the U.S. Census soundex code for a string, s
strcat(s1,s2) there is no strcat() function; instead the addition operator is used

to concatenate strings
strdup(s1,n) there is no strdup() function; instead the multiplication operator

is used to create multiple copies of strings
string(n) a synonym for strofreal(n)

1

http://stata.com

2 String functions

string(n,s) a synonym for strofreal(n,s)
stritrim(s) s with multiple, consecutive internal blanks (ASCII space character

char(32)) collapsed to one blank
strlen(s) the number of characters in ASCII s or length in bytes
strlower(s) lowercase ASCII characters in string s
strltrim(s) s without leading blanks (ASCII space character char(32))
strmatch(s1,s2) 1 if s1 matches the pattern s2; otherwise, 0
strofreal(n) n converted to a string
strofreal(n,s) n converted to a string using the specified display format
strpos(s1,s2) the position in s1 at which s2 is first found, 0 if s2 does not occur,

and 1 if s2 is empty
strproper(s) a string with the first ASCII letter and any other letters immediately

following characters that are not letters capitalized; all other
ASCII letters converted to lowercase

strreverse(s) the reverse of ASCII string s
strrpos(s1,s2) the position in s1 at which s2 is last found, 0 if s2 does not occur,

and 1 if s2 is empty
strrtrim(s) s without trailing blanks (ASCII space character char(32))
strtoname(s

[
,p

]
) s translated into a Stata 13 compatible name

strtrim(s) s without leading and trailing blanks (ASCII space character
char(32)); equivalent to strltrim(strrtrim(s))

strupper(s) uppercase ASCII characters in string s
subinstr(s1,s2,s3,n) s1, where the first n occurrences in s1 of s2 have been replaced

with s3
subinword(s1,s2,s3,n) s1, where the first n occurrences in s1 of s2 as a word have been

replaced with s3
substr(s,n1,n2) the substring of s, starting at n1, for a length of n2
tobytes(s

[
,n

]
) escaped decimal or hex digit strings of up to 200 bytes of s

uchar(n) the Unicode character corresponding to Unicode code point n or
an empty string if n is beyond the Unicode code-point range

udstrlen(s) the number of display columns needed to display the Unicode string
s in the Stata Results window

udsubstr(s,n1,n2) the Unicode substring of s, starting at character n1, for n2 display
columns

uisdigit(s) 1 if the first Unicode character in s is a Unicode decimal digit;
otherwise, 0

uisletter(s) 1 if the first Unicode character in s is a Unicode letter; otherwise,
0

ustrcompare(s1,s2
[
,loc

]
) compares two Unicode strings

ustrcompareex(s1,s2,loc,st,case,cslv,norm,num,alt,fr)
compares two Unicode strings

ustrfix(s
[
,rep

]
) replaces each invalid UTF-8 sequence with a Unicode character

ustrfrom(s,enc,mode) converts the string s in encoding enc to a UTF-8 encoded Unicode
string

ustrinvalidcnt(s) the number of invalid UTF-8 sequences in s
ustrleft(s,n) the first n Unicode characters of the Unicode string s

String functions 3

ustrlen(s) the number of characters in the Unicode string s
ustrlower(s

[
,loc

]
) lowercase all characters of Unicode string s under the given locale

loc
ustrltrim(s) removes the leading Unicode whitespace characters and blanks from

the Unicode string s
ustrnormalize(s,norm) normalizes Unicode string s to one of the five normalization forms

specified by norm

ustrpos(s1,s2
[
,n

]
) the position in s1 at which s2 is first found; otherwise, 0

ustrregexm(s,re
[
,noc

]
) performs a match of a regular expression and evaluates to 1 if regular

expression re is satisfied by the Unicode string s; otherwise, 0

ustrregexra(s1,re,s2
[
,noc

]
)replaces all substrings within the Unicode string s1 that match re

with s2 and returns the resulting string

ustrregexrf(s1,re,s2
[
,noc

]
)replaces the first substring within the Unicode string s1 that matches

re with s2 and returns the resulting string
ustrregexs(n) subexpression n from a previous ustrregexm() match
ustrreverse(s) the reverse of Unicode string s
ustrright(s,n) the last n Unicode characters of the Unicode string s
ustrrpos(s1,s2

[
,n

]
) the position in s1 at which s2 is last found; otherwise, 0

ustrrtrim(s) remove trailing Unicode whitespace characters and blanks from the
Unicode string s

ustrsortkey(s
[
,loc

]
) generates a null-terminated byte array that can be used by the sort

command to produce the same order as ustrcompare()

ustrsortkeyex(s,loc,st,case,cslv,norm,num,alt,fr)
generates a null-terminated byte array that can be used by the sort

command to produce the same order as ustrcompare()

ustrtitle(s
[
,loc

]
) a string with the first characters of Unicode words titlecased and

other characters lowercased
ustrto(s,enc,mode) converts the Unicode string s in UTF-8 encoding to a string in

encoding enc

ustrtohex(s
[
,n

]
) escaped hex digit string of s up to 200 Unicode characters

ustrtoname(s
[
,p

]
) string s translated into a Stata name

ustrtrim(s) removes leading and trailing Unicode whitespace characters and
blanks from the Unicode string s

ustrunescape(s) the Unicode string corresponding to the escaped sequences of s
ustrupper(s

[
,loc

]
) uppercase all characters in string s under the given locale loc

ustrword(s,n
[
,loc

]
) the nth Unicode word in the Unicode string s

ustrwordcount(s
[
,loc

]
) the number of nonempty Unicode words in the Unicode string s

usubinstr(s1,s2,s3,n) replaces the first n occurrences of the Unicode string s2 with the
Unicode string s3 in s1

usubstr(s,n1,n2) the Unicode substring of s, starting at n1, for a length of n2
word(s,n) the nth word in s; missing ("") if n is missing

https://www.stata.com/manuals/dsort.pdf#dsort
https://www.stata.com/manuals/dsort.pdf#dsort

4 String functions

wordbreaklocale(loc,type) the most closely related locale supported by ICU from loc if type
is 1, the actual locale where the word-boundary analysis data
come from if type is 2; or an empty string is returned for any
other type

wordcount(s) the number of words in s

Functions
In the display below, s indicates a string subexpression (a string literal, a string variable, or another

string expression) and n indicates a numeric subexpression (a number, a numeric variable, or another
numeric expression).

If your strings contain Unicode characters or you are writing programs that will be used by others
who might use Unicode strings, read [U] 12.4.2 Handling Unicode strings.

abbrev(s,n)
Description: name s, abbreviated to a length of n

Length is measured in the number of display columns, not in the number of
characters. For most users, the number of display columns equals the number of
characters. For a detailed discussion of display columns, see [U] 12.4.2.2 Displaying
Unicode characters.

If any of the characters of s are a period, “.”, and n < 8, then the value of n
defaults to a value of 8. Otherwise, if n < 5, then n defaults to a value of 5.
If n is missing, abbrev() will return the entire string s. abbrev() is typically
used with variable names and variable names with factor-variable or time-series
operators (the period case).

abbrev("displacement",8) is displa~t.
Domain s: strings
Domain n: integers 5 to 32
Range: strings

char(n)
Description: the character corresponding to ASCII or extended ASCII code n; "" if n is not in

the domain

Note: ASCII codes are from 0 to 127; extended ASCII codes are from 128 to
255. Prior to Stata 14, the display of extended ASCII characters was encoding
dependent. For example, char(128) on Microsoft Windows using Windows-1252
encoding displayed the Euro symbol, but on Linux using ISO-Latin-1 encoding,
char(128) displayed an invalid character symbol. Beginning with Stata 14, Stata’s
display encoding is UTF-8 on all platforms. The char(128) function is an invalid
UTF-8 sequence and thus will display a question mark. There are two Unicode
functions corresponding to char(): uchar() and ustrunescape(). You can
use uchar(8364) or ustrunescape("\u20AC") to display a Euro sign on all
platforms.

Domain n: integers 0 to 255
Range: ASCII characters

https://www.stata.com/manuals/u12.pdf#u12.4.2HandlingUnicodestrings
https://www.stata.com/manuals/uglossary.pdf#uGlossarydisambig
https://www.stata.com/manuals/u12.pdf#u12.4.2.2DisplayingUnicodecharacters
https://www.stata.com/manuals/u12.pdf#u12.4.2.2DisplayingUnicodecharacters

String functions 5

uchar(n)
Description: the Unicode character corresponding to Unicode code point n or an empty string

if n is beyond the Unicode code-point range

Note that uchar() takes the decimal value of the Unicode code point. us-
trunescape() takes an escaped hex digit string of the Unicode code point. For
example, both uchar(8364) and ustrunescape("\u20ac") produce the Euro
sign.

Domain n: integers ≥ 0
Range: Unicode characters

collatorlocale(loc,type)
Description: the most closely related locale supported by ICU from loc if type is 1; the actual

locale where the collation data comes from if type is 2

For any other type, loc is returned in a canonicalized form.

collatorlocale("en us texas", 0) = en US TEXAS
collatorlocale("en us texas", 1) = en US
collatorlocale("en us texas", 2) = root

Domain loc: strings of locale name
Domain type: integers
Range: strings

collatorversion(loc)
Description: the version string of a collator based on locale loc

The Unicode standard is constantly adding more characters and the sort key format
may change as well. This can cause ustrsortkey() and ustrsortkeyex()
to produce incompatible sort keys between different versions of International
Components for Unicode. The version string can be used for versioning the sort
keys to indicate when saved sort keys must be regenerated.

Range: strings

indexnot(s1,s2)
Description: the position in ASCII string s1 of the first character of s1 not found in ASCII string

s2, or 0 if all characters of s1 are found in s2
indexnot() is intended for use only with plain ASCII strings. For Unicode
characters beyond the plain ASCII range, the position and character are given in
bytes, not characters.

Domain s1: ASCII strings (to be searched)
Domain s2: ASCII strings (to search for)
Range: integers ≥ 0

https://www.stata.com/manuals/uglossary.pdf#uGlossarycodep
https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii
https://www.stata.com/manuals/uglossary.pdf#uGlossarydisambig

6 String functions

plural(n,s)
Description: the plural of s if n 6= ±1

The plural is formed by adding “s” to s.

plural(1, "horse") = "horse"
plural(2, "horse") = "horses"

Domain n: real numbers
Domain s: strings
Range: strings

plural(n,s1,s2)
Description: the plural of s1, as modified by or replaced with s2, if n 6= ±1

If s2 begins with the character “+”, the plural is formed by adding the remainder
of s2 to s1. If s2 begins with the character “-”, the plural is formed by subtracting
the remainder of s2 from s1. If s2 begins with neither “+” nor “-”, then the plural
is formed by returning s2.

plural(2, "glass", "+es") = "glasses"
plural(1, "mouse", "mice") = "mouse"
plural(2, "mouse", "mice") = "mice"
plural(2, "abcdefg", "-efg") = "abcd"

Domain n: real numbers
Domain s1: strings
Domain s2: strings
Range: strings

real(s)
Description: s converted to numeric or missing

Also see strofreal().

real("5.2")+1 = 6.2
real("hello") = .

Domain s: strings
Range: −8e+307 to 8e+307 or missing

regexcapture(n)
Description: subexpression n from a previous regexm() or regexmatch() match

regexcapture(0) returns the entire string that satisfied the regular expression.
Domain n: integers
Range: ASCII strings or missing

regexcapturenamed(grp)
Description: subexpression corresponding to matching group named grp in regular expression

from a previous regexm() or regexmatch() match
Domain grp: ASCII strings
Range: ASCII strings or missing

String functions 7

regexm(s,re)
Description: a match of a regular expression, which evaluates to 1 if regular expression re is

satisfied by the ASCII string s; otherwise, 0

Regular expression syntax is based on Henry Spencer’s NFA algorithm, and this is
nearly identical to the POSIX.2 standard. s and re may not contain binary 0 (\0).

regexm() is intended for use only with plain ASCII characters. For Unicode
characters beyond the plain ASCII range, the match is based on bytes. For a
character-based match, see ustrregexm().

For more advanced regular expression matching, see regexmatch().
Domain s: ASCII strings
Domain re: regular expressions
Range: 0, 1, or missing

regexmatch(s,re
[
,noc

[
,std

[
,nlalt

]]]
)

Description: a match of a regular expression, which evaluates to 1 if regular expression re is
satisfied by the ASCII string s; otherwise, 0

regexmatch() is intended for use only with plain ASCII characters. For Unicode
characters beyond the plain ASCII range, the match is based on bytes. For a
character-based match, see ustrregexm().

If noc is specified and is not 0, a case-insensitive match is performed; otherwise,
a case-sensitive match is performed.

std specifies the regular expression standard: 1 for POSIX Extended Regular, 2 for
POSIX Basic Regular, 3 for Emacs, 4 for AWK, 5 for grep, 6 for egrep, or any
other number for Perl, the default.

If nlalt is specified and is 0, the newline character, char(10), is not treated like
alternation operator |; otherwise, newline has the same effect as |.

s and re may not contain binary 0 (\0).
Domain s: ASCII strings
Domain re: regular expression
Domain noc: integers
Domain std: integers
Domain nlalt: integers
Range: 0, 1, or missing

https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii
https://www.stata.com/manuals/uglossary.pdf#uGlossarydisambig
https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii
https://www.stata.com/manuals/uglossary.pdf#uGlossarydisambig

8 String functions

regexr(s1,re,s2)
Description: replaces the first substring within ASCII string s1 that matches re with ASCII string

s2 and returns the resulting string

If s1 contains no substring that matches re, the unaltered s1 is returned. s1 and
the result of regexr() may be at most 1,100,000 characters long. s1, re, and s2
may not contain binary 0 (\0).

regexr() is intended for use only with plain ASCII characters. For Unicode
characters beyond the plain ASCII range, the match is based on bytes, and the result
is restricted to 1,100,000 bytes. For a character-based match, see ustrregexrf()
or ustrregexra().

For more advanced regular expression replacement, see regexreplace() and
regexreplaceall().

Domain s1: ASCII strings
Domain re: regular expressions
Domain s2: ASCII strings
Range: ASCII strings

regexreplace(s1,re,s2
[
,noc

[
,fmt

[
,std

[
,nlalt

]]]]
)

Description: replaces the first substring within ASCII string s1 that matches re with ASCII string
s2 and returns the resulting string

If noc is specified and is not 0, a case-insensitive match is performed; otherwise,
a case-sensitive match is performed.

fmt specifies the format string syntax supported in s2: 1 for literal, where s2 is
treated as a string literal (no special character substitution), 2 for sed, or any other
number for Perl, the default.

std specifies the regular expression standard: 1 for POSIX Extended Regular, 2 for
POSIX Basic Regular, 3 for Emacs, 4 for AWK, 5 for grep, 6 for egrep, or any
other number for Perl, the default.

If nlalt is specified and is 0, the newline character, char(10), is not treated like
alternation operator |; otherwise, newline has the same effect as |.

If s1 contains no substring that matches re, the unaltered s1 is returned. s1, s2,
and re may not contain binary 0 (\0).

Domain s1: ASCII strings
Domain re: regular expression
Domain s2: ASCII strings
Domain noc: integers
Domain fmt: integers
Domain std: integers
Domain nlalt: integers
Range: ASCII strings

https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii
https://www.stata.com/manuals/uglossary.pdf#uGlossarydisambig

String functions 9

regexreplaceall(s1,re,s2
[
,noc

[
,fmt

[
,std

[
,nlalt

]]]]
)

Description: replaces all substrings within ASCII string s1 that match re with ASCII string s2
and returns the resulting string
If noc is specified and is not 0, a case-insensitive match is performed; otherwise,
a case-sensitive match is performed.

fmt specifies the format string syntax supported in s2: 1 for literal, where s2 is
treated as a string literal (no special character substitution), 2 for sed, or any other
number for Perl, the default.
std specifies the regular expression standard: 1 for POSIX Extended Regular, 2 for
POSIX Basic Regular, 3 for Emacs, 4 for AWK, 5 for grep, 6 for egrep, or any
other number for Perl, the default.
If nlalt is specified and is 0, the newline character, char(10), is not treated like
alternation operator |; otherwise, newline has the same effect as |.
If s1 contains no substring that matches re, the unaltered s1 is returned. s1, s2,
and re may not contain binary 0 (\0).

Domain s1: ASCII strings
Domain re: regular expression
Domain s2: ASCII strings
Domain noc: integers
Domain fmt: integers
Domain std: integers
Domain nlalt: integers
Range: ASCII strings

regexs(n)
Description: subexpression n from a previous regexm() or regexmatch() match, where

0 ≤ n < 10
Subexpression 0 is reserved for the entire string that satisfied the regular expression.
The returned subexpression may be at most 1,100,000 characters (bytes) long.

For more options to return matching substrings, see regexcapture() and regex-
capturenamed().

Domain n: 0 to 9
Range: ASCII strings

ustrregexm(s,re
[
,noc

]
)

Description: performs a match of a regular expression and evaluates to 1 if regular expression
re is satisfied by the Unicode string s; otherwise, 0
If noc is specified and not 0, a case-insensitive match is performed. The function
may return a negative integer if an error occurs.

ustrregexm("12345", "([0-9]){5}") = 1
ustrregexm("de TRÈS près", "rès") = 1
ustrregexm("de TRÈS près", "Rès") = 0
ustrregexm("de TRÈS près", "Rès", 1) = 1

Domain s: Unicode strings
Domain re: Unicode regular expressions
Domain noc: integers
Range: integers

10 String functions

ustrregexrf(s1,re,s2
[
, noc

]
)

Description: replaces the first substring within the Unicode string s1 that matches re with s2
and returns the resulting string

If noc is specified and not 0, a case-insensitive match is performed. The function
may return an empty string if an error occurs.

ustrregexrf("très près", "rès", "X") = "tX près"
ustrregexrf("TRÈS près", "Rès", "X") = "TRÈS près"
ustrregexrf("TRÈS près", "Rès", "X", 1) = "TX près"

Domain s1: Unicode strings
Domain re: Unicode regular expressions
Domain s2: Unicode strings
Domain noc: integers
Range: Unicode strings

ustrregexra(s1,re,s2
[
, noc

]
)

Description: replaces all substrings within the Unicode string s1 that match re with s2 and
returns the resulting string

If noc is specified and not 0, a case-insensitive match is performed. The function
may return an empty string if an error occurs.

ustrregexra("très près", "rès", "X") = "tX pX"
ustrregexra("TRÈS près", "Rès", "X") = "TRÈS près"
ustrregexra("TRÈS près", "Rès", "X", 1) = "TX pX"

Domain s1: Unicode strings
Domain re: Unicode regular expressions
Domain s2: Unicode strings
Domain noc: integers
Range: Unicode strings

ustrregexs(n)
Description: subexpression n from a previous ustrregexm() match

Subexpression 0 is reserved for the entire string that satisfied the regular expression.
The function may return an empty string if n is larger than the maximum count
of subexpressions from the previous match or if an error occurs.

Domain n: integers ≥ 0
Range: strings

String functions 11

soundex(s)
Description: the soundex code for a string, s

The soundex code consists of a letter followed by three numbers: the letter is the
first ASCII letter of the name and the numbers encode the remaining consonants.
Similar sounding consonants are encoded by the same number. Unicode characters
beyond the plain ASCII range are ignored.

soundex("Ashcraft") = "A226"
soundex("Robert") = "R163"
soundex("Rupert") = "R163"

Domain s: strings
Range: strings

soundex nara(s)
Description: the U.S. Census soundex code for a string, s

The soundex code consists of a letter followed by three numbers: the letter is the
first ASCII letter of the name and the numbers encode the remaining consonants.
Similar sounding consonants are encoded by the same number. Unicode characters
beyond the plain ASCII range are ignored.

soundex nara("Ashcraft") = "A261"
Domain s: strings
Range: strings

strcat(s1,s2)
Description: there is no strcat() function; instead the addition operator is used to concatenate

strings

"hello " + "world" = "hello world"
"a" + "b" = "ab"
"Café " + "de Flore" = "Café de Flore"

Domain s1: strings
Domain s2: strings
Range: strings

strdup(s1,n)
Description: there is no strdup() function; instead the multiplication operator is used to create

multiple copies of strings

"hello" * 3 = "hellohellohello"
3 * "hello" = "hellohellohello"
0 * "hello" = ""
"hello" * 1 = "hello"

Domain s1: strings
Domain n: nonnegative integers 0, 1, 2, . . .
Range: strings

https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii
https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii

12 String functions

string(n)
Description: a synonym for strofreal(n)

string(n,s)
Description: a synonym for strofreal(n,s)

stritrim(s)
Description: s with multiple, consecutive internal blanks (ASCII space character char(32))

collapsed to one blank

stritrim("hello there") = "hello there"
Domain s: strings
Range: strings with no multiple, consecutive internal blanks

strlen(s)
Description: the number of characters in ASCII s or length in bytes

strlen() is intended for use only with plain ASCII characters and for use by
programmers who want to obtain the byte-length of a string. Note that any Unicode
character beyond ASCII range (code point greater than 127) takes more than 1 byte
in the UTF-8 encoding; for example, é takes 2 bytes.

For the number of characters in a Unicode string, see ustrlen().

strlen("ab") = 2
strlen("é") = 2

Domain s: strings
Range: integers ≥ 0

ustrlen(s)
Description: the number of characters in the Unicode string s

An invalid UTF-8 sequence is counted as one Unicode character. An invalid UTF-8
sequence may contain one byte or multiple bytes. Note that any Unicode character
beyond the plain ASCII range (code point greater than 127) takes more than 1 byte
in the UTF-8 encoding; for example, é takes 2 bytes.

ustrlen("médiane") = 7
strlen("médiane") = 8

Domain s: Unicode strings
Range: integers ≥ 0

https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii
https://www.stata.com/manuals/uglossary.pdf#uGlossaryunichar
https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii

String functions 13

udstrlen(s)
Description: the number of display columns needed to display the Unicode string s in the Stata

Results window
A Unicode character in the CJK (Chinese, Japanese, and Korean) encoding usually
requires two display columns; a Latin character usually requires one column. Any
invalid UTF-8 sequence requires one column.

Domain s: Unicode strings
Range: integers ≥ 0

strlower(s)
Description: lowercase ASCII characters in string s

Unicode characters beyond the plain ASCII range are ignored.

strlower("THIS") = "this"
strlower("CAFÉ") = "cafÉ"

Domain s: strings
Range: strings with lowercased characters

ustrlower(s
[
,loc

]
)

Description: lowercase all characters of Unicode string s under the given locale loc

If loc is not specified, the default locale is used. The same s but different loc
may produce different results; for example, the lowercase letter of “I” is “i” in
English but a dotless “i” in Turkish. The same Unicode character can be mapped
to different Unicode characters based on its surrounding characters; for example,
Greek capital letter sigma Σ has two lowercases: ς , if it is the final character of a
word, or σ. The result can be longer or shorter than the input Unicode string in
bytes.

ustrlower("MÉDIANE","fr") = "médiane"
ustrlower("ISTANBUL","tr") = "ıstanbul"

Domain s: Unicode strings
Domain loc: locale name
Range: Unicode strings

strltrim(s)
Description: s without leading blanks (ASCII space character char(32))

strltrim(" this") = "this"
Domain s: strings
Range: strings without leading blanks

https://www.stata.com/manuals/u12.pdf#u12.4.2.2DisplayingUnicodecharacters
https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii
https://www.stata.com/manuals/u12.pdf#u12.4.2.4LocalesinUnicode

14 String functions

ustrltrim(x)
Description: removes the leading Unicode whitespace characters and blanks from the Unicode

string s

Note that, in addition to char(32), ASCII characters char(9), char(10),
char(11), char(12), and char(13) are whitespace characters in Unicode stan-
dard.
ustrltrim(" this") = "this"
ustrltrim(char(9)+"this") = "this"
ustrltrim(ustrunescape("\u1680")+" this") = "this"

Domain s: Unicode strings
Range: Unicode strings

strmatch(s1,s2)
Description: 1 if s1 matches the pattern s2; otherwise, 0

strmatch("17.4","1??4") returns 1. In s2, "?" means that one character goes
here, and "*" means that zero or more bytes go here. Note that a Unicode
character may contain multiple bytes; thus, using "*" with Unicode characters
can infrequently result in matches that do not occur at a character boundary.

Also see regexm(), regexr(), and regexs().

strmatch("café", "caf?") = 1
Domain s1: strings
Domain s2: strings
Range: integers 0 or 1

strofreal(n)
Description: n converted to a string

Also see real().

strofreal(4)+"F" = "4F"
strofreal(1234567) = "1234567"
strofreal(12345678) = "1.23e+07"
strofreal(.) = "."

Domain n: −8e+307 to 8e+307 or missing
Range: strings

https://www.stata.com/manuals/uglossary.pdf#uGlossaryunichar
https://www.stata.com/manuals/uglossary.pdf#uGlossaryunichar

String functions 15

strofreal(n,s)
Description: n converted to a string using the specified display format

Also see real().

strofreal(4,"%9.2f") = "4.00"
strofreal(123456789,"%11.0g") = "123456789"
strofreal(123456789,"%13.0gc") = "123,456,789"
strofreal(0,"%td") = "01jan1960"
strofreal(225,"%tq") = "2016q2"
strofreal(225,"not a format") = ""

Domain n: −8e+307 to 8e+307 or missing
Domain s: strings containing % fmt numeric display format
Range: strings

strpos(s1,s2)
Description: the position in s1 at which s2 is first found, 0 if s2 does not occur, and 1 if s2

is empty

strpos() is intended for use only with plain ASCII characters and for use by
programmers who want to obtain the byte-position of s2. Note that any Unicode
character beyond ASCII range (code point greater than 127) takes more than 1 byte
in the UTF-8 encoding; for example, é takes 2 bytes.

To find the character position of s2 in a Unicode string, see ustrpos().

strpos("this","is") = 3
strpos("this","it") = 0
strpos("this","") = 1

Domain s1: strings (to be searched)
Domain s2: strings (to search for)
Range: integers ≥ 0

ustrpos(s1,s2
[
,n

]
)

Description: the position in s1 at which s2 is first found; otherwise, 0

If n is specified and is greater than 0, the search starts at the nth Unicode character
of s1. An invalid UTF-8 sequence in either s1 or s2 is replaced with a Unicode
replacement character \ufffd before the search is performed.

ustrpos("médiane", "édi") = 2
ustrpos("médiane", "édi", 3) = 0
ustrpos("médiane", "éci") = 0

Domain s1: Unicode strings (to be searched)
Domain s2: Unicode strings (to search for)
Domain n: integers
Range: integers

https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii
https://www.stata.com/manuals/uglossary.pdf#uGlossaryunichar

16 String functions

strproper(s)
Description: a string with the first ASCII letter and any other letters immediately following

characters that are not letters capitalized; all other ASCII letters converted to
lowercase
strproper() implements a form of titlecasing and is intended for use only with
plain ASCII strings. Unicode characters beyond ASCII are treated as characters that
are not letters. To titlecase strings with Unicode characters beyond the plain ASCII
range or to implement language-sensitive rules for titlecasing, see ustrtitle().

strproper("mR. joHn a. sMitH") = "Mr. John A. Smith"
strproper("jack o’reilly") = "Jack O’Reilly"
strproper("2-cent’s worth") = "2-Cent’S Worth"
strproper("vous êtes") = "Vous êTes"

Domain s: strings
Range: strings

ustrtitle(s
[
,loc

]
)

Description: a string with the first characters of Unicode words titlecased and other characters
lowercased
If loc is not specified, the default locale is used. Note that a Unicode word is
different from a Stata word produced by function word(). The Stata word is a
space-separated token. A Unicode word is a language unit based on either a set of
word-boundary rules or dictionaries for some languages (Chinese, Japanese, and
Thai). The titlecase is also locale dependent and context sensitive; for example,
lowercase “ij” is considered a digraph in Dutch. Its titlecase is “IJ”.

ustrtitle("vous êtes", "fr") = "Vous Êtes"
ustrtitle("mR. joHn a. sMitH") = "Mr. John A. Smith"
ustrtitle("ijmuiden", "en") = "Ijmuiden"
ustrtitle("ijmuiden", "nl") = "IJmuiden"

Domain s: Unicode strings
Domain loc: Unicode strings
Range: Unicode strings

strreverse(s)
Description: the reverse of ASCII string s

strreverse() is intended for use only with plain ASCII characters. For Unicode
characters beyond ASCII range (code point greater than 127), the encoded bytes
are reversed.
To reverse the characters of Unicode string, see ustrreverse().

strreverse("hello") = "olleh"
Domain s: ASCII strings
Range: ASCII reversed strings

https://www.stata.com/manuals/uglossary.pdf#uGlossarytitlecase
https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii
https://www.stata.com/manuals/u12.pdf#u12.4.2.4LocalesinUnicode
http://www.unicode.org/reports/tr29/#Word_Boundaries
https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii
https://www.stata.com/manuals/uglossary.pdf#uGlossaryencode
https://www.stata.com/manuals/uglossary.pdf#uGlossaryunichar

String functions 17

ustrreverse(s)
Description: the reverse of Unicode string s

The function does not take Unicode character equivalence into consideration.
Hence, a Unicode character in a decomposed form will not be reversed as one
unit. An invalid UTF-8 sequence is replaced with a Unicode replacement character
\ufffd.
ustrreverse("médiane") = "enaidém"

Domain s: Unicode strings
Range: reversed Unicode strings

strrpos(s1,s2)
Description: the position in s1 at which s2 is last found, 0 if s2 does not occur, and 1 if s2 is

empty

strrpos() is intended for use only with plain ASCII characters and for use
by programmers who want to obtain the last byte-position of s2. Note that any
Unicode character beyond ASCII range (code point greater than 127) takes more
than 1 byte in the UTF-8 encoding; for example, é takes 2 bytes.

To find the last character position of s2 in a Unicode string, see ustrrpos().

strrpos("this","is") = 3
strrpos("this is","is") = 6
strrpos("this is","it") = 0
strrpos("this is","") = 1

Domain s1: strings (to be searched)
Domain s2: strings (to search for)
Range: integers ≥ 0

ustrrpos(s1,s2
[
,n

]
)

Description: the position in s1 at which s2 is last found; otherwise, 0

If n is specified and is greater than 0, only the part between the first Unicode
character and the nth Unicode character of s1 is searched. An invalid UTF-8
sequence in either s1 or s2 is replaced with a Unicode replacement character
\ufffd before the search is performed.

ustrrpos("enchanté", "n") = 6
ustrrpos("enchanté", "n", 5) = 2
ustrrpos("enchanté", "n", 6) = 6
ustrrpos("enchanté", "ne") = 0

Domain s1: Unicode strings (to be searched)
Domain s2: Unicode strings (to search for)
Domain n: integers
Range: integers

strrtrim(s)
Description: s without trailing blanks (ASCII space character char(32))

strrtrim("this ") = "this"
Domain s: strings
Range: strings without trailing blanks

https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii
https://www.stata.com/manuals/uglossary.pdf#uGlossaryunichar

18 String functions

ustrrtrim(s)
Description: remove trailing Unicode whitespace characters and blanks from the Unicode string

s

Note that, in addition to char(32), ASCII characters char(9), char(10),
char(11), char(12), and char(13) are considered whitespace characters in
the Unicode standard.
ustrrtrim("this ") = "this"
ustrltrim("this"+char(10)) = "this"
ustrrtrim("this "+ustrunescape("\u2000")) = "this"

Domain s: Unicode strings
Range: Unicode strings

strtoname(s
[
,p

]
)

Description: s translated into a Stata 13 compatible name

strtoname() results in a name that is truncated to 32 bytes. Each character in s
that is not allowed in a Stata name is converted to an underscore character, . If the
first character in s is a numeric character and p is not 0, then the result is prefixed
with an underscore. Stata 14 names may be 32 characters; see [U] 11.3 Naming
conventions.
strtoname("name") = "name"
strtoname("a name") = "a name"
strtoname("5",1) = " 5"
strtoname("5:30",1) = " 5 30"
strtoname("5",0) = "5"
strtoname("5:30",0) = "5 30"

Domain s: strings
Domain p: integers 0 or 1
Range: strings

ustrtoname(s
[
,p

]
)

Description: string s translated into a Stata name

ustrtoname() results in a name that is truncated to 32 characters. Each character
in s that is not allowed in a Stata name is converted to an underscore character,

. If the first character in s is a numeric character and p is not 0, then the result
is prefixed with an underscore.

ustrtoname("name",1) = "name"
ustrtoname("the médiane") = "the médiane"
ustrtoname("0médiane") = " 0médiane"
ustrtoname("0médiane", 1) = " 0médiane"
ustrtoname("0médiane", 0) = "0médiane"

Domain s: Unicode strings
Domain p: integers 0 or 1
Range: Unicode strings

https://www.stata.com/manuals/u11.pdf#u11.3Namingconventions
https://www.stata.com/manuals/u11.pdf#u11.3Namingconventions

String functions 19

strtrim(s)
Description: s without leading and trailing blanks (ASCII space character char(32)); equivalent

to strltrim(strrtrim(s))

strtrim(" this ") = "this"
Domain s: strings
Range: strings without leading or trailing blanks

ustrtrim(s)
Description: removes leading and trailing Unicode whitespace characters and blanks from the

Unicode string s

Note that, in addition to char(32), ASCII characters char(9), char(10),
char(11), char(12), and char(13) are considered whitespace characters in
the Unicode standard.
ustrtrim(" this ") = "this"
ustrtrim(char(11)+" this ")+char(13) = "this"
ustrtrim(" this "+ustrunescape("\u2000")) = "this"

Domain s: Unicode strings
Range: Unicode strings

strupper(s)
Description: uppercase ASCII characters in string s

Unicode characters beyond the plain ASCII range are ignored.

strupper("this") = "THIS"
strupper("café") = "CAFé"

Domain s: strings
Range: strings with uppercased characters

ustrupper(s
[
,loc

]
)

Description: uppercase all characters in string s under the given locale loc

If loc is not specified, the default locale is used. The same s but a different loc
may produce different results; for example, the uppercase letter of “i” is “I” in
English, but “I” with a dot in Turkish. The result can be longer or shorter than
the input string in bytes; for example, the uppercase form of the German letter ß
(code point \u00df) is two capital letters “SS”.

ustrupper("médiane","fr") = "MÉDIANE"
ustrupper("Rußland", "de") = "RUSSLAND"
ustrupper("istanbul", "tr") = "İSTANBUL"

Domain s: Unicode strings
Domain loc: locale name
Range: Unicode strings

https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii
https://www.stata.com/manuals/u12.pdf#u12.4.2.4LocalesinUnicode

20 String functions

subinstr(s1,s2,s3,n)
Description: s1, where the first n occurrences in s1 of s2 have been replaced with s3

subinstr() is intended for use only with plain ASCII characters and for use by
programmers who want to perform byte-based substitution. Note that any Unicode
character beyond ASCII range (code point greater than 127) takes more than 1 byte
in the UTF-8 encoding; for example, é takes 2 bytes.

To perform character-based replacement in Unicode strings, see usubinstr().

If n is missing, all occurrences are replaced.

Also see regexm(), regexr(), and regexs().

subinstr("this is the day","is","X",1) = "thX is the day"
subinstr("this is the hour","is","X",2) = "thX X the hour"
subinstr("this is this","is","X",.) = "thX X thX"

Domain s1: strings (to be substituted into)
Domain s2: strings (to be substituted from)
Domain s3: strings (to be substituted with)
Domain n: integers ≥ 0 or missing
Range: strings

usubinstr(s1,s2,s3,n)
Description: replaces the first n occurrences of the Unicode string s2 with the Unicode string

s3 in s1
If n is missing, all occurrences are replaced. An invalid UTF-8 sequence in s1, s2,
or s3 is replaced with a Unicode replacement character \ufffd before replacement
is performed.

usubinstr("de très près","ès","es",1) = "de tres près"
usubinstr("de très pr‘es","ès","X",2) = "de trX prX"

Domain s1: Unicode strings (to be substituted into)
Domain s2: Unicode strings (to be substituted from)
Domain s3: Unicode strings (to be substituted with)
Domain n: integers ≥ 0 or missing
Range: Unicode strings

https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii
https://www.stata.com/manuals/uglossary.pdf#uGlossaryunichar

String functions 21

subinword(s1,s2,s3,n)
Description: s1, where the first n occurrences in s1 of s2 as a word have been replaced with

s3

A word is defined as a space-separated token. A token at the beginning or end of
s1 is considered space-separated. This is different from a Unicode word, which
is a language unit based on either a set of word-boundary rules or dictionaries for
several languages (Chinese, Japanese, and Thai). If n is missing, all occurrences
are replaced.

Also see regexm(), regexr(), and regexs().

subinword("this is the day","is","X",1) = "this X the day"
subinword("this is the hour","is","X",.) = "this X the hour"
subinword("this is this","th","X",.) = "this is this"

Domain s1: strings (to be substituted for)
Domain s2: strings (to be substituted from)
Domain s3: strings (to be substituted with)
Domain n: integers ≥ 0 or missing
Range: strings

substr(s,n1,n2)
Description: the substring of s, starting at n1, for a length of n2

substr() is intended for use only with plain ASCII characters and for use by
programmers who want to extract a subset of bytes from a string. For those with
plain ASCII text, n1 is the starting character, and n2 is the length of the string
in characters. For programmers, substr() is technically a byte-based function.
For plain ASCII characters, the two are equivalent but you can operate on byte
values beyond that range. Note that any Unicode character beyond ASCII range
(code point greater than 127) takes more than 1 byte in the UTF-8 encoding; for
example, é takes 2 bytes.

To obtain substrings of Unicode strings, see usubstr().

If n1 < 0, n1 is interpreted as the distance from the end of the string; if n2 = .
(missing), the remaining portion of the string is returned.

substr("abcdef",2,3) = "bcd"
substr("abcdef",-3,2) = "de"
substr("abcdef",2,.) = "bcdef"
substr("abcdef",-3,.) = "def"
substr("abcdef",2,0) = ""
substr("abcdef",15,2) = ""

Domain s: strings
Domain n1: integers ≥ 1 and ≤ −1
Domain n2: integers ≥ 1
Range: strings

http://www.unicode.org/reports/tr29/#Word_Boundaries
https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii
https://www.stata.com/manuals/uglossary.pdf#uGlossaryunichar

22 String functions

usubstr(s,n1,n2)
Description: the Unicode substring of s, starting at n1, for a length of n2

If n1 < 0, n1 is interpreted as the distance from the last character of the s; if
n2 = . (missing), the remaining portion of the Unicode string is returned.

usubstr("médiane",2,3) = "édi"
usubstr("médiane",-3,2) = "an"
usubstr("médiane",2,.) = "édiane"

Domain s: Unicode strings
Domain n1: integers ≥ 1 and ≤ −1
Domain n2: integers ≥ 1
Range: Unicode strings

udsubstr(s,n1,n2)
Description: the Unicode substring of s, starting at character n1, for n2 display columns

If n2 = . (missing), the remaining portion of the Unicode string is returned. If
n2 display columns from n1 is in the middle of a Unicode character, the substring
stops at the previous Unicode character.

udsubstr("médiane",2,3) = "édi"

Domain s: Unicode strings
Domain n1: integers ≥ 1
Domain n2: integers ≥ 1
Range: Unicode strings

tobytes(s
[
,n

]
)

Description: escaped decimal or hex digit strings of up to 200 bytes of s

The escaped decimal digit string is in the form of \dDDD. The escaped hex digit
string is in the form of \xhh. If n is not specified or is 0, the decimal form is
produced. Otherwise, the hex form is produced.

tobytes("abc") = "\d097\d098\d099"
tobytes("abc", 1) = "\x61\x62\x63"
tobytes("café") = "\d099\d097\d102\d195\d169"

Domain s: Unicode strings
Domain n: integers
Range: strings

uisdigit(s)
Description: 1 if the first Unicode character in s is a Unicode decimal digit; otherwise, 0

A Unicode decimal digit is a Unicode character with the character property Nd
according to the Unicode standard. The function returns -1 if the string starts with
an invalid UTF-8 sequence.

Domain s: Unicode strings
Range: integers

https://www.stata.com/manuals/u12.pdf#u12.4.2.2DisplayingUnicodecharacters

String functions 23

uisletter(s)
Description: 1 if the first Unicode character in s is a Unicode letter; otherwise, 0

A Unicode letter is a Unicode character with the character property L according to
the Unicode standard. The function returns -1 if the string starts with an invalid
UTF-8 sequence.

Domain s: Unicode strings
Range: integers

ustrcompare(s1,s2
[
,loc

]
)

Description: compares two Unicode strings

The function returns -1, 1, or 0 if s1 is less than, greater than, or equal to s2. The
function may return a negative number other than −1 if an error happens. The
comparison is locale dependent. For example, z< ö in Swedish but ö< z in German.
If loc is not specified, the default locale is used. The comparison is diacritic and case
sensitive. If you need different behavior, for example, case-insensitive comparison,
you should use the extended comparison function ustrcompareex(). Unicode
string comparison compares Unicode strings in a language-sensitive manner. On
the other hand, the sort command compares strings in code-point (binary) order.
For example, uppercase “Z” (code-point value 90) comes before lowercase “a”
(code-point value 97) in code-point order but comes after “a” in any English
dictionary.

ustrcompare("z", "ö", "sv") = -1
ustrcompare("z", "ö", "de") = 1

Domain s1: Unicode strings
Domain s2: Unicode strings
Domain loc: Unicode strings
Range: integers

ustrcompareex(s1,s2,loc,st,case,cslv,norm,num,alt,fr)
Description: compares two Unicode strings

The function returns -1, 1, or 0 if s1 is less than, greater than, or equal to s2.
The function may return a negative number other than -1 if an error occurs. The
comparison is locale dependent. For example, z < ö in Swedish but ö < z in
German. If loc is not specified, the default locale is used.

st controls the strength of the comparison. Possible values are 1 (primary), 2
(secondary), 3 (tertiary), 4 (quaternary), or 5 (identical). -1 means to use the
default value for the locale. Any other numbers are treated as tertiary. The primary
difference represents base letter differences; for example, letter “a” and letter “b”
have primary differences. The secondary difference represents diacritical differences
on the same base letter; for example, letters “a” and “ä” have secondary differences.
The tertiary difference represents case differences of the same base letter; for
example, letters “a” and “A” have tertiary differences. Quaternary strength is
useful to distinguish between Katakana and Hiragana for the JIS 4061 collation
standard. Identical strength is essentially the code-point order of the string, hence,
is rarely useful.

ustrcompareex("café","cafe","fr", 1, -1, -1, -1, -1, -1, -1) = 0
ustrcompareex("café","cafe","fr", 2, -1, -1, -1, -1, -1, -1) = 1
ustrcompareex("Café","café","fr", 3, -1, -1, -1, -1, -1, -1) = 1

https://www.stata.com/manuals/u12.pdf#u12.4.2.4LocalesinUnicode
https://www.stata.com/manuals/u12.pdf#u12.4.2.4LocalesinUnicode
https://www.stata.com/manuals/u12.pdf#u12.4.2.4LocalesinUnicode
https://www.stata.com/manuals/dsort.pdf#dsort
https://www.stata.com/manuals/u12.pdf#u12.4.2.4LocalesinUnicode

24 String functions

case controls the uppercase and lowercase letter order. Possible values are 0 (use
order specified in tertiary strength), 1 (uppercase first), or 2 (lowercase first). -1
means to use the default value for the locale. Any other values are treated as 0.

ustrcompareex("Café","café","fr", -1, 1, -1, -1, -1, -1, -1) = -1
ustrcompareex("Café","café","fr", -1, 2, -1, -1, -1, -1, -1) = 1

cslv controls whether an extra case level between the secondary level and the
tertiary level is generated. Possible values are 0 (off) or 1 (on). -1 means to use
the default value for the locale. Any other values are treated as 0. Combining this
setting to be “on” and the strength setting to be primary can achieve the effect
of ignoring the diacritical differences but preserving the case differences. If the
setting is “on”, the result is also affected by the case setting.

ustrcompareex("café","Cafe","fr", 1, -1, 1, -1, -1, -1, -1) = -1
ustrcompareex("café","Cafe","fr", 1, 1, 1, -1, -1, -1, -1) = 1

norm controls whether the normalization check and normalizations are performed.
Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale.
Any other values are treated as 0. Most languages do not require normalization
for comparison. Normalization is needed in languages that use multiple combining
characters such as Arabic, ancient Greek, or Hebrew.

num controls how contiguous digit substrings are sorted. Possible values are 0
(off) or 1 (on). -1 means to use the default value for the locale. Any other values
are treated as 0. If the setting is “on”, substrings consisting of digits are sorted
based on the numeric value. For example, “100” is after value “20” instead of
before it. Note that the digit substring is limited to 254 digits, and plus/minus
signs, decimals, or exponents are not supported.

ustrcompareex("100", "20","en", -1, -1, -1, -1, 0, -1, -1) = -1
ustrcompareex("100", "20","en", -1, -1, -1, -1, 1, -1, -1) = 1

alt controls how spaces and punctuation characters are handled. Possible values
are 0 (use primary strength) or 1 (alternative handling). Any other values are
treated as 0. If the setting is 1 (alternative handling), “onsite”, “on-site”, and “on
site” are considered equals.

ustrcompareex("onsite", "on-site","en",
-1, -1, -1, -1, -1, 1, -1) = 0

ustrcompareex("onsite", "on site","en",
-1, -1, -1, -1, -1, 1, -1) = 0

ustrcompareex("onsite", "on-site","en",
-1, -1, -1, -1, -1, 0, -1) = 1

fr controls the direction of the secondary strength. Possible values are 0 (off)
or 1 (on). -1 means to use the default value for the locale. All other values are
treated as “off”. If the setting is “on”, the diacritical letters are sorted backward.
Note that the setting is “on” by default only for Canadian French (locale fr CA).

ustrcompareex("coté", "côte","fr CA",-1,-1,-1,-1,-1,-1,0) = -1
ustrcompareex("coté", "côte","fr CA",-1,-1,-1,-1,-1,-1,1) = 1
ustrcompareex("coté", "côte","fr CA",-1,-1,-1,-1,-1,-1,-1) = 1
ustrcompareex("coté", "côte","fr",-1,-1,-1,-1,-1,-1,-1) = 1

String functions 25

Domain s1: Unicode strings
Domain s2: Unicode strings
Domain loc: Unicode strings
Domain st: integers
Domain case: integers
Domain cslv: integers
Domain norm: integers
Domain num: integers
Domain alt: integers
Domain fr: integers
Range: integers

ustrfix(s
[
,rep

]
)

Description: replaces each invalid UTF-8 sequence with a Unicode character

In the one-argument case, the Unicode replacement character \ufffd is used. In
the two-argument case, the first Unicode character of rep is used. If rep starts
with an invalid UTF-8 sequence, then Unicode replacement character \ufffd is
used. Note that an invalid UTF-8 sequence can contain one byte or multiple bytes.

ustrfix(char(200)) = ustrunescape("\ufffd")
ustrfix("ab"+char(200)+"cdé", "") = "abcdé"
ustrfix("ab"+char(229)+char(174)+"cdé", "é") = "abécdé"

Domain s: Unicode strings
Domain rep: Unicode character
Range: Unicode strings

ustrfrom(s,enc,mode)
Description: converts the string s in encoding enc to a UTF-8 encoded Unicode string

mode controls how invalid byte sequences in s are handled. The possible values
are 1, which substitutes an invalid byte sequence with a Unicode replacement
character \ufffd; 2, which skips any invalid byte sequences; 3, which stops at
the first invalid byte sequence and returns an empty string; or 4, which replaces
any byte in an invalid sequence with an escaped hex digit sequence %Xhh. Any
other values are treated as 1. A good use of value 4 is to check what invalid
bytes a Unicode string ust contains by examining the result of ustrfrom(ust,
"utf-8", 4).

Also see ustrto().

ustrfrom("caf"+char(233), "latin1", 1) = "café"
ustrfrom("caf"+char(233), "utf-8", 1) =

"caf"+ustrunescape("\ufffd")
ustrfrom("caf"+char(233), "utf-8", 2) = "caf"
ustrfrom("caf"+char(233), "utf-8", 3) = ""
ustrfrom("caf"+char(233), "utf-8", 4) = "caf%XE9"

Domain s: strings in encoding enc
Domain enc: Unicode strings
Domain mode: integers
Range: Unicode strings

26 String functions

ustrinvalidcnt(s)
Description: the number of invalid UTF-8 sequences in s

An invalid UTF-8 sequence may contain one byte or multiple bytes.

ustrinvalidcnt("médiane") = 0
ustrinvalidcnt("médiane"+char(229)) = 1
ustrinvalidcnt("médiane"+char(229)+char(174)) = 1
ustrinvalidcnt("médiane"+char(174)+char(158)) = 2

Domain s: Unicode strings
Range: integers

ustrleft(s,n)
Description: the first n Unicode characters of the Unicode string s

An invalid UTF-8 sequence is replaced with a Unicode replacement character
\ufffd.

Domain s: Unicode strings
Domain n: integers
Range: Unicode strings

ustrnormalize(s,norm)
Description: normalizes Unicode string s to one of the five normalization forms specified by

norm

The normalization forms are nfc, nfd, nfkc, nfkd, or nfkcc. The function
returns an empty string for any other value of norm. Unicode normalization
removes the Unicode string differences caused by Unicode character equivalence.
nfc specifies Normalization Form C, which normalizes decomposed Unicode
code points to a composited form. nfd specifies Normalization Form D, which
normalizes composited Unicode code points to a decomposed form. nfc and nfd
produce canonical equivalent form. nfkc and nfkd are similar to nfc and nfd but
produce compatibility equivalent forms. nfkcc specifies nfkc with casefolding.
This normalization and casefolding implement the Unicode Character Database.

In the Unicode standard, both “i” (\u0069 followed by a diaeresis \u0308)
and the composite character \u00ef represent “i” with 2 dots as in “naı̈ve”.
Hence, the code-point sequence \u0069\u0308 and the code point \u00ef are
considered Unicode equivalent. According to the Unicode standard, they should
be treated as the same single character in Unicode string operations, such as
in display, comparison, and selection. However, Stata does not support multiple
code-point characters; each code point is considered a separate Unicode character.
Hence, \u0069\u0308 is displayed as two characters in the Results window.
ustrnormalize() can be used with "nfc" to normalize \u0069\u0308 to the
canonical equivalent composited code point \u00ef.

ustrnormalize(ustrunescape("\u0069\u0308"), "nfc") = "ı̈"

http://www.unicode.org/reports/tr44/

String functions 27

The decomposed form nfd can be used to removed diacritical marks from base
letters. First, normalize the Unicode string to canonical decomposed form, and
then call ustrto() with mode skip to skip all non-ASCII characters.

Also see ustrfrom().

ustrto(ustrnormalize("café", "nfd"), "ascii", 2) = "cafe"
Domain s: Unicode strings
Domain norm: Unicode strings
Range: Unicode strings

ustrright(s,n)
Description: the last n Unicode characters of the Unicode string s

An invalid UTF-8 sequence is replaced with a Unicode replacement character
\ufffd.

Domain s: Unicode strings
Domain n: integers
Range: Unicode strings

ustrsortkey(s
[
,loc

]
)

Description: generates a null-terminated byte array that can be used by the sort command to
produce the same order as ustrcompare()

The function may return an empty array if an error occurs. The result is locale
dependent. If loc is not specified, the default locale is used. The result is also
diacritic and case sensitive. If you need different behavior, for example, case-
insensitive results, you should use the extended function ustrsortkeyex().
See [U] 12.4.2.5 Sorting strings containing Unicode characters for details and
examples.

Domain s: Unicode strings
Domain loc: Unicode strings
Range: null-terminated byte array

https://www.stata.com/manuals/dsort.pdf#dsort
https://www.stata.com/manuals/u12.pdf#u12.4.2.4LocalesinUnicode
https://www.stata.com/manuals/u12.pdf#u12.4.2.5SortingstringscontainingUnicodecharacters

28 String functions

ustrsortkeyex(s,loc,case,cslv,norm,num,alt,fr)
Description: generates a null-terminated byte array that can be used by the sort command to

produce the same order as ustrcompare()

The function may return an empty array if an error occurs. The result is locale
dependent. If loc is not specified, the default locale is used. See [U] 12.4.2.5 Sorting
strings containing Unicode characters for details and examples.

st controls the strength of the comparison. Possible values are 1 (primary), 2
(secondary), 3 (tertiary), 4 (quaternary), or 5 (identical). -1 means to use the
default value for the locale. Any other numbers are treated as tertiary. The primary
difference represents base letter differences; for example, letter “a” and letter “b”
have primary differences. The secondary difference represents diacritical differences
on the same base letter; for example, letters “a” and “ä” have secondary differences.
The tertiary difference represents case differences of the same base letters; for
example, letters “a” and “A” have tertiary differences. Quaternary strength is useful
to distinguish between Katakana and Hiragana for the JIS 4061 collation standard.
Identical strength is essentially the code-point order of the string and, hence, is
rarely useful.

case controls the uppercase and lowercase letter order. Possible values are 0 (use
order specified in tertiary strength), 1 (uppercase first), or 2 (lowercase first). -1
means to use the default value for the locale. Any other values are treated as 0.

cslv controls if an extra case level between the secondary level and the tertiary
level is generated. Possible values are 0 (off) or 1 (on). -1 means to use the
default value for the locale. Any other values are treated as 0. Combining this
setting to be “on” and the strength setting to be primary can achieve the effect
of ignoring the diacritical differences but preserving the case differences. If the
setting is “on”, the result is also affected by the case setting.

norm controls whether the normalization check and normalizations are performed.
Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale.
Any other values are treated as 0. Most languages do not require normalization
for comparison. Normalization is needed in languages that use multiple combining
characters such as Arabic, ancient Greek, or Hebrew.

num controls how contiguous digit substrings are sorted. Possible values are 0
(off) or 1 (on). -1 means to use the default value for the locale. Any other values
are treated as 0. If the setting is “on”, substrings consisting of digits are sorted
based on the numeric value. For example, “100” is after “20” instead of before
it. Note that the digit substring is limited to 254 digits, and plus/minus signs,
decimals, or exponents are not supported.

https://www.stata.com/manuals/dsort.pdf#dsort
https://www.stata.com/manuals/u12.pdf#u12.4.2.4LocalesinUnicode
https://www.stata.com/manuals/u12.pdf#u12.4.2.5SortingstringscontainingUnicodecharacters
https://www.stata.com/manuals/u12.pdf#u12.4.2.5SortingstringscontainingUnicodecharacters

String functions 29

alt controls how spaces and punctuation characters are handled. Possible values
are 0 (use primary strength) or 1 (alternative handling). Any other values are
treated as 0. If the setting is 1 (alternative handling), “onsite”, “on-site”, and “on
site” are considered equals.

fr controls the direction of the secondary strength. Possible values are 0 (off)
or 1 (on). -1 means to use the default value for the locale. All other values are
treated as “off”. If the setting is “on”, the diacritical letters are sorted backward.
Note that the setting is “on” by default only for Canadian French (locale fr CA).

Domain s: Unicode strings
Domain loc: Unicode strings
Domain st: integers
Domain case: integers
Domain cslv: integers
Domain norm: integers
Domain num: integers
Domain alt: integers
Domain fr: integers
Range: null-terminated byte array

ustrto(s,enc,mode)
Description: converts the Unicode string s in UTF-8 encoding to a string in encoding enc

See [D] unicode encoding for details on available encodings. Any invalid se-
quence in s is replaced with a Unicode replacement character \ufffd. mode
controls how unsupported Unicode characters in the encoding enc are handled.
The possible values are 1, which substitutes any unsupported characters with the
enc’s substitution strings (the substitution character for both ascii and latin1
is char(26)); 2, which skips any unsupported characters; 3, which stops at the
first unsupported character and returns an empty string; or 4, which replaces any
unsupported character with an escaped hex digit sequence \uhhhh or \Uhhhhhhhh.
The hex digit sequence contains either 4 or 8 hex digits, depending if the Unicode
character’s code-point value is less than or greater than \uffff. Any other values
are treated as 1.
ustrto("café", "ascii", 1) = "caf"+char(26)
ustrto("café", "ascii", 2) = "caf"
ustrto("café", "ascii", 3) = ""
ustrto("café", "ascii", 4) = "caf\u00E9"

ustrto() can be used to removed diacritical marks from base letters. First,
normalize the Unicode string to NFD form using ustrnormalize(), and then call
ustrto() with value 2 to skip all non-ASCII characters.

Also see ustrfrom().

ustrto(ustrnormalize("café", "nfd"), "ascii", 2) = "cafe"
Domain s: Unicode strings
Domain enc: Unicode strings
Domain mode: integers
Range: strings in encoding enc

https://www.stata.com/manuals/dunicodeencoding.pdf#dunicodeencoding

30 String functions

ustrtohex(s
[
,n

]
)

Description: escaped hex digit string of s up to 200 Unicode characters

The escaped hex digit string is in the form of \uhhhh for code points less than
\uffff or \Uhhhhhhhh for code points greater than \uffff. The function starts at
the nth Unicode character of s if n is specified and larger than 0. Any invalid UTF-8
sequence is replaced with a Unicode replacement character \ufffd. Note that the
null terminator char(0) is a valid Unicode character. Function ustrunescape()
can be applied on the result to get back the original Unicode string s if s does
not contain any invalid UTF-8 sequences.

Also see ustrunescape().

ustrtohex("i"+char(200)+char(0)+"s") =
"\u0069\ufffd\u0000\u0073"

Domain s: Unicode strings
Domain n: integers ≥ 1
Range: strings

ustrunescape(s)
Description: the Unicode string corresponding to the escaped sequences of s

The following escape sequences are recognized: 4 hex digit form \uhhhh; 8 hex
digit form \Uhhhhhhhh; 1–2 hex digit form \xhh; and 1–3 octal digit form \ooo,
where h is [0-9A-Fa-f] and o is [0-7]. The standard ANSI C escapes \a, \b,
\t, \n, \v, \f, \r, \e, \", \’, \?, \\ are recognized as well. The function
returns an empty string if an escape sequence is badly formed. Note that the 8
hex digit form \Uhhhhhhhh begins with a capital letter “U”.

Also see ustrtohex().

Domain s: strings of escaped hex values
Range: Unicode strings

word(s,n)
Description: the nth word in s; missing ("") if n is missing

Positive numbers count words from the beginning of s, and negative numbers
count words from the end of s. (1 is the first word in s, and -1 is the last word
in s.) A word is a set of characters that start and terminate with spaces. This is
different from a Unicode word, which is a language unit based on either a set of
word-boundary rules or dictionaries for several languages (Chinese, Japanese, and
Thai).

Domain s: strings
Domain n: integers
Range: strings

http://www.unicode.org/reports/tr29/#Word_Boundaries

String functions 31

ustrword(s,n
[
,loc

]
)

Description: the nth Unicode word in the Unicode string s

Positive n counts Unicode words from the beginning of s, and negative n counts
Unicode words from the end of s. For examples, n equal to 1 returns the first
word in s, and n equal to −1 returns the last word in s. If loc is not specified, the
default locale is used. A Unicode word is different from a Stata word produced by
the word() function. A Stata word is a space-separated token. A Unicode word
is a language unit based on either a set of word-boundary rules or dictionaries for
some languages (Chinese, Japanese, and Thai). The function returns missing ("")
if n is greater than cnt or less than −cnt, where cnt is the number of words s
contains. cnt can be obtained from ustrwordcount(). The function also returns
missing ("") if an error occurs.

ustrword("Parlez-vous français", 1, "fr") = "Parlez"
ustrword("Parlez-vous français", 2, "fr") = "-"
ustrword("Parlez-vous français",-1, "fr") = "français"
ustrword("Parlez-vous français",-2, "fr") = "vous"

Domain s: Unicode strings
Domain loc: Unicode strings
Domain n: integers
Range: Unicode strings

wordbreaklocale(loc,type)
Description: the most closely related locale supported by ICU from loc if type is 1, the actual

locale where the word-boundary analysis data come from if type is 2; or an empty
string is returned for any other type

wordbreaklocale("en us texas", 1) = en US
wordbreaklocale("en us texas", 2) = root

Domain loc: strings of locale name
Domain type: integers
Range: strings

wordcount(s)
Description: the number of words in s

A word is a set of characters that starts and terminates with spaces, starts with
the beginning of the string, or terminates with the end of the string. This is
different from a Unicode word, which is a language unit based on either a set of
word-boundary rules or dictionaries for several languages (Chinese, Japanese, and
Thai).

Domain s: strings
Range: nonnegative integers 0, 1, 2, . . .

https://www.stata.com/manuals/u12.pdf#u12.4.2.4LocalesinUnicode
http://www.unicode.org/reports/tr29/#Word_Boundaries
http://www.unicode.org/reports/tr29/#Word_Boundaries

32 String functions

ustrwordcount(s
[
,loc

]
)

Description: the number of nonempty Unicode words in the Unicode string s

An empty Unicode word is a Unicode word consisting of only Unicode whitespace
characters. If loc is not specified, the default locale is used. A Unicode word is
different from a Stata word produced by the word() function. A Stata word is a
space-separated token. A Unicode word is a language unit based on either a set of
word-boundary rules or dictionaries for some languages (Chinese, Japanese, and
Thai). The function may return a negative number if an error occurs.

ustrwordcount("Parlez-vous français", "fr") = 4
Domain s: Unicode strings
Domain loc: Unicode strings
Range: integers

References
Cox, N. J. 2004. Stata tip 6: Inserting awkward characters in the plot. Stata Journal 4: 95–96.

. 2011. Stata tip 98: Counting substrings within strings. Stata Journal 11: 318–320.

. 2022. Stata tip 148: Searching for words within strings. Stata Journal 22: 998–1003.

Jeanty, P. W. 2013. Dealing with identifier variables in data management and analysis. Stata Journal 13: 699–718.

Koplenig, A. 2018. Stata tip 129: Efficiently processing textual data with Stata’s new Unicode features. Stata Journal
18: 287–289.

Schwarz, C. 2019. lsemantica: A command for text similarity based on latent semantic analysis. Stata Journal 19:
129–142.

Also see
[FN] Functions by category
[D] egen — Extensions to generate

[D] generate — Create or change contents of variable

[M-4] String — String manipulation functions

[U] 12.4.2 Handling Unicode strings
[U] 13.2.2 String operators
[U] 13.3 Functions

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

https://www.stata.com/manuals/u12.pdf#u12.4.2.4LocalesinUnicode
http://www.unicode.org/reports/tr29/#Word_Boundaries
http://www.stata-journal.com/article.html?article=dm0006
http://www.stata-journal.com/article.html?article=dm0056
https://doi.org/10.1177/1536867X221141068
http://www.stata-journal.com/article.html?article=dm0071
http://www.stata-journal.com/article.html?article=dm0093
https://doi.org/10.1177/1536867X19830910
https://www.stata.com/manuals/fnfunctionsbycategory.pdf#fnFunctionsbycategory
https://www.stata.com/manuals/degen.pdf#degen
https://www.stata.com/manuals/dgenerate.pdf#dgenerate
https://www.stata.com/manuals/m-4string.pdf#m-4String
https://www.stata.com/manuals/u12.pdf#u12.4.2HandlingUnicodestrings
https://www.stata.com/manuals/u13.pdf#u13.2.2Stringoperators
https://www.stata.com/manuals/u13.pdf#u13.3Functions

