Contents

```
abs(x)
ceil(x)
cloglog(x)
comb ( }n,k\mathrm{ )
digamma(x)
exp(x)
expm1(x)
floor(x)
int(x)
invcloglog(x)
invlogit(x)
ln(x)
ln1m(x)
ln1p(x)
lnfactorial(n)
lngamma(x)
log(x)
log10(x)
log1m(x)
log1p(x)
logit(x)
max}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}
min}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}
mod}(x,y
reldif (x,y)
```

the absolute value of x
the unique integer n such that $n-1<x \leq n$; x (not ".") if x is missing, meaning that ceil (.a) $=$. a
the complementary $\log -\log$ of x
the combinatorial function $n!/\{k!(n-k)!\}$
the digamma() function, $d \ln \Gamma(x) / d x$
the exponential function e^{x}
$e^{x}-1$ with higher precision than $\exp (x)-1$ for small values of $|x|$
the unique integer n such that $n \leq x<n+1$; x (not ".") if x is missing, meaning that floor(.a) $=$. a
the integer obtained by truncating x toward 0 (thus, int (5.2) $=5$ and $\operatorname{int}(-5.8)=-5) ; x$ (not ".") if x is missing, meaning that int (.a) $=. \mathrm{a}$
the inverse of the complementary \log-log function of x
the inverse of the logit function of x
the natural logarithm, $\ln (x)$
the natural logarithm of $1-x$ with higher precision than $\ln (1-x)$ for small values of $|x|$
the natural logarithm of $1+x$ with higher precision than $\ln (1+x)$ for small values of $|x|$
the natural \log of n factorial $=\ln (n!)$
$\ln \{\Gamma(x)\}$
a synonym for $\ln (x)$
the base-10 logarithm of x
a synonym for $\ln 1 \mathrm{~m}(x)$
a synonym for $\ln 1 \mathrm{p}(x)$
the \log of the odds ratio of $x, \operatorname{logit}(x)=\ln \{x /(1-x)\}$
the maximum value of $x_{1}, x_{2}, \ldots, x_{n}$
the minimum value of $x_{1}, x_{2}, \ldots, x_{n}$
the modulus of x with respect to y
the "relative" difference $|x-y| /(|y|+1)$; 0 if both arguments are the same type of extended missing value; missing if only one argument is missing or if the two arguments are two different types of missing
round (x, y) or round (x)
$\operatorname{sign}(x)$
sqrt (x)
sum (x)
trigamma (x)
trunc (x)
x rounded in units of y or x rounded to the nearest integer if the argument y is omitted; x (not ".") if x is missing (meaning that round (.a) $=$.a and that round $(. a, y)=$.a if y is not missing) and if y is missing, then "." is returned the sign of $x:-1$ if $x<0,0$ if $x=0,1$ if $x>0$, or missing if x is missing
the square root of x
the running sum of x, treating missing values as zero the second derivative of lngamma $(x)=d^{2} \ln \Gamma(x) / d x^{2}$ a synonym for int (x)

Functions

```
abs ( \(x\) )
```

Description: the absolute value of x
Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad 0$ to $8 \mathrm{e}+307$
ceil (x)
Description: the unique integer n such that $n-1<x \leq n$; (not ".") if x is missing, meaning that ceil (. a) $=$. a
Also see floor (x), int (x), and round (x).
Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: integers in $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
cloglog (x)
Description: the complementary $\log -\log$ of x $\operatorname{clog} \log (x)=\ln \{-\ln (1-x)\}$
Domain: 0 to 1
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
$\operatorname{comb}(n, k)$
Description: the combinatorial function $n!/\{k!(n-k)!\}$
Domain n : integers 1 to $1 \mathrm{e}+305$
Domain k : integers 0 to n
Range: $\quad 0$ to $8 \mathrm{e}+307$ or missing

digamma(x)

Description: the digamma() function, $d \ln \Gamma(x) / d x$
This is the derivative of Ingamma (x). The digamma (x) function is sometimes called the psi function, $\psi(x)$.
Domain: $\quad-1 \mathrm{e}+15$ to $8 \mathrm{e}+307$
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing

$\exp (x)$

Description: the exponential function e^{x}
This function is the inverse of $\ln (x)$. To compute $e^{x}-1$ with high precision for small values of $|x|$, use expm1 (x).
Domain: $\quad-8 \mathrm{e}+307$ to 709
Range: $\quad 0$ to $8 \mathrm{e}+307$

```
expm1(x)
```

Description: $e^{x}-1$ with higher precision than $\exp (x)-1$ for small values of $|x|$
Domain: $\quad-8 \mathrm{e}+307$ to 709
Range: $\quad-1$ to $8 \mathrm{e}+307$

floor (x)

Description: the unique integer n such that $n \leq x<n+1$; (not ".") if x is missing, meaning that floor (.a) $=. \mathrm{a}$
Also see ceil (x), int (x), and round (x).
Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: integers in $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
int (x)
Description: the integer obtained by truncating x toward 0 (thus, int (5.2) $=5$ and int (-5.8) $=$ -5); x (not ".") if x is missing, meaning that $\operatorname{int}(. \mathrm{a})=. \mathrm{a}$
One way to obtain the closest integer to x is $\operatorname{int}(x+\operatorname{sign}(x) / 2)$, which simplifies to int ($x+0.5$) for $x \geq 0$. However, use of the round () function is preferred. Also see round (x), ceil (x), and floor (x).
Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: integers in $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$

```
invcloglog(x)
```

Description: the inverse of the complementary \log-log function of x

$$
\text { invcloglog }(x)=1-\exp \{-\exp (x)\}
$$

Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad 0$ to 1 or missing

invlogit (x)

Description: the inverse of the logit function of x

$$
\text { invlogit }(x)=\exp (x) /\{1+\exp (x)\}
$$

Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad 0$ to 1 or missing
$\ln (x)$
Description: the natural logarithm, $\ln (x)$
This function is the inverse of $\exp (x)$. The logarithm of x in base b can be calculated via $\log _{b}(x)=\log _{a}(x) / \log _{a}(b)$. Hence,
$\log _{5}(x)=\ln (x) / \ln (5)=\log (x) / \log (5)=\log 10(x) / \log 10(5)$
$\log _{2}(x)=\ln (x) / \ln (2)=\log (x) / \log (2)=\log 10(x) / \log 10(2)$
You can calculate $\log _{b}(x)$ by using the formula that best suits your needs. To compute $\ln (1-x)$ and $\ln (1+x)$ with high precision for small values of $|x|$, use $\ln 1 \mathrm{~m}(x)$ and $\ln 1 \mathrm{p}(x)$, respectively.
Domain: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Range: $\quad-744$ to 709
$\ln 1 \mathrm{~m}(x)$
Description: the natural logarithm of $1-x$ with higher precision than $\ln (1-x)$ for small values of $|x|$
Domain: $\quad-8 \mathrm{e}+307$ to $1-\mathrm{c}(\mathrm{epsdouble})$
Range: $\quad-37$ to 709
$\ln 1 \mathrm{p}(x)$
Description: the natural logarithm of $1+x$ with higher precision than $\ln (1+x)$ for small values of $|x|$
Domain: $\quad-1+c$ (epsdouble) to $8 \mathrm{e}+307$
Range: $\quad-37$ to 709
lnfactorial(n)
Description: the natural \log of n factorial $=\ln (n!)$
To calculate n !, use round ($\exp (\operatorname{lnf} \operatorname{actorial}(n)), 1)$ to ensure that the result is an integer. Logs of factorials are generally more useful than the factorials themselves because of overflow problems.
Domain: integers 0 to $1 e+305$
Range: 0 to $8 \mathrm{e}+307$

Ingamma (x)

Description: $\ln \{\Gamma(x)\}$
Here the gamma function, $\Gamma(x)$, is defined by $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$. For integer values of $x>0$, this is $\ln ((x-1)!)$.
$\operatorname{lngamma}(x)$ for $x<0$ returns a number such that \exp (lngamma (x)) is equal to the absolute value of the gamma function, $\Gamma(x)$. That is, Ingamma (x) always returns a real (not complex) result.
Domain: $\quad-2,147,483,648$ to $1 \mathrm{e}+305$ (excluding negative integers)
Range: $\quad-8 e+307$ to $8 e+307$
$\log (x)$
Description: a synonym for $\ln (x)$
$\log 10(x)$
Description: the base-10 logarithm of x
Domain: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Range: $\quad-323$ to 308
$\log 1 \mathrm{~m}(x)$
Description: a synonym for $\ln 1 \mathrm{~m}(x)$
$\log 1 \mathrm{p}(x)$
Description: a synonym for $\ln 1 \mathrm{p}(x)$
$\operatorname{logit}(x)$
Description: the \log of the odds ratio of $x, \operatorname{logit}(x)=\ln \{x /(1-x)\}$
Domain: 0 to 1 (exclusive)
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
$\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)$
Description: the maximum value of $x_{1}, x_{2}, \ldots, x_{n}$
Unless all arguments are missing, missing values are ignored.
$\max (2,10, ., 7)=10$
$\max (., .,)=$..
Domain x_{1} : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Domain x_{2} : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Domain $x_{n}:-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
$\min \left(x_{1}, x_{2}, \ldots, x_{n}\right)$
Description: the minimum value of $x_{1}, x_{2}, \ldots, x_{n}$
Unless all arguments are missing, missing values are ignored.
$\min (2,10, ., 7)=2$
$\min (., .,)=$..
Domain $x_{1}:-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Domain $x_{2}:-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Domain $x_{n}:-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
$\bmod (x, y)$
Description: the modulus of x with respect to y

$$
\bmod (x, y)=x-y \text { floor }(x / y)
$$

$\bmod (x, 0)=$.
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain y : 0 to $8 \mathrm{e}+307$
Range: $\quad 0$ to $8 \mathrm{e}+307$
reldif (x, y)
Description: the "relative" difference $|x-y| /(|y|+1) ; 0$ if both arguments are the same type of extended missing value; missing if only one argument is missing or if the two arguments are two different types of missing
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Domain y : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Range: $\quad 0$ to $8 \mathrm{e}+307$ or missing
round (x, y) or round (x)
Description: x rounded in units of y or x rounded to the nearest integer if the argument y is omitted; x (not ".") if x is missing (meaning that round(.a) $=$.a and that round (.a,y)=.a if y is not missing) and if y is missing, then "." is returned
For $y=1$, or with y omitted, this amounts to the closest integer to x; round $(5.2,1)$ is 5 , as is round $(4.8,1)$; round $(-5.2,1)$ is -5 , as is round $(-4.8,1)$. The rounding definition is generalized for $y \neq 1$. With $y=0.01$, for instance, x is rounded to two decimal places; round (sqrt(2),.01) is $1.41 . y$ may also be larger than 1 ; round $(28,5)$ is 30 , which is 28 rounded to the closest multiple of 5 . For $y=0$, the function is defined as returning x unmodified.

For values of x exactly at midpoints, where it may not be clear whether to round up or down, x is always rounded up to the larger value. For example, round (4.5) is 5 and round (-4.5) is -4 . Note that rounding a number is based on the floating-point number representation of the number instead of the number itself. So round() is sensitive to representation errors and precision limits. For example, 0.15 has no exact floating-point number representation. Therefore, round ($0.15,0.1$) is 0.1 instead of 0.2. See [U] 13.12 Precision and problems therein for details.

Also see int (x), ceil (x), and floor (x).
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain y : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
$\operatorname{sign}(x)$
Description: the sign of $x:-1$ if $x<0,0$ if $x=0,1$ if $x>0$, or missing if x is missing
Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Range: $\quad-1,0,1$ or missing
sqrt (x)
Description: the square root of x
Domain: 0 to $8 \mathrm{e}+307$
Range: $\quad 0$ to $1 \mathrm{e}+154$
sum (x)
Description: the running sum of x, treating missing values as zero
For example, following the command generate $\mathrm{y}=\operatorname{sum}(\mathrm{x})$, the j th observation on y contains the sum of the first through j th observations on x. See [D] egen for an alternative sum function, total (), that produces a constant equal to the overall sum.
Domain: all real numbers or missing
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ (excluding missing)

trigamma (x)

Description: the second derivative of $\operatorname{lngamma}(x)=d^{2} \ln \Gamma(x) / d x^{2}$
The trigamma() function is the derivative of digamma (x).
Domain: $\quad-1 \mathrm{e}+15$ to $8 \mathrm{e}+307$
Range: $\quad 0$ to $8 \mathrm{e}+307$ or missing
trunc (x)
Description: a synonym for $\operatorname{int}(x)$

Video example

How to round a continuous variable

References

Abramowitz, M., and I. A. Stegun, ed. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Washington, DC: National Bureau of Standards.

Cox, N. J. 2003. Stata tip 2: Building with floors and ceilings. Stata Journal 3: 446-447.
-. 2007. Stata tip 43: Remainders, selections, sequences, extractions: Uses of the modulus. Stata Journal 7: 143-145.
-_. 2018. Speaking Stata: From rounding to binning. Stata Journal 18: 741-754.
Oldham, K. B., J. C. Myland, and J. Spanier. 2009. An Atlas of Functions. 2nd ed. New York: Springer.

Also see

[FN] Functions by category
[D] egen - Extensions to generate
[D] generate - Create or change contents of variable
[M-4] Intro - Categorical guide to Mata functions
[U] 13.3 Functions

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

