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Example 3 — Zero-inflated models

Description Remarks and examples References Also see

Description
In this example, we demonstrate how to fit a zero-inflated Poisson model as a two-component

mixture model. We use estat lcprob to estimate marginal class probabilities and estat lcmean
to estimate marginal predicted counts. A likelihood-ratio test is performed to compare models with
and without predictors of class membership.

Remarks and examples stata.com

Two-component mixture models are often used to model counts that include book sales through
direct mail (Wedel et al. 1993), healthcare utilization (Deb and Trivedi 1997), and modeling of risk
behavior (Lanza, Kugler, and Mathur 2011). In the FMM framework, a zero-inflated count model is
represented by a mixture of a component that models both zero and nonzero counts and a degenerate
point mass distribution that models the zeros; see [FMM] fmm: pointmass for details.

The most popular zero-inflated count model is the zero-inflated Poisson (ZIP) model. Here we fit
this model to the data on the number of fish caught by park visitors. Almost 57% of visitors reported
zero catch, but we do not know whether they fished in the first place. In other words, zero counts
can either be from a Poisson distribution or are hard zeros from a point mass distribution. Using a
zero-inflated FMM, we can make probabilistic statements about which distribution a given zero came
from.

Using fish2.dta, we fit a two-component mixture model where the nonfishing group (class 1) is
modeled using a degenerate point mass distribution with the default value zero and the fishing group
(class 2) is modeled using a Poisson distribution. For the latter group, we model the number of fish
caught as a function of whether the visitor brought a boat (boat) and the number of persons in the
party (persons).

By default, the reference probability is the class 1 probability. We specify lcbase(2) to make
the reference probability be the probability for class 2. This will allow us to more easily compare
the mixing proportions when we add covariates to model the probability of being in the nonfishing
group.

. use https://www.stata-press.com/data/r18/fish2
(Fictional fishing data)

. fmm, lcbase(2): (pointmass count) (poisson count persons boat)

(iteration log omitted )
Finite mixture model Number of obs = 250
Log likelihood = -882.31198

Coefficient Std. err. z P>|z| [95% conf. interval]

1.Class
_cons .0867958 .1390251 0.62 0.532 -.1856884 .35928

2.Class (base outcome)
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Class: 2
Response: count
Model: poisson

Coefficient Std. err. z P>|z| [95% conf. interval]

count
persons .750919 .0422907 17.76 0.000 .6680307 .8338072

boat 1.813785 .2648584 6.85 0.000 1.294672 2.332898
_cons -2.024982 .2974941 -6.81 0.000 -2.608059 -1.441904

The first table in the output provides the estimated coefficients on the logit scale for the class
probabilities. The coefficient on 1.Class represents the probability of being in the nonfishing group
which is about 52% [invlogit(0.087) ≈ 0.52]. Because we have only two groups, the fishing fraction
is 48%. Recall that the fraction of zeros in the data is 0.57, thus the model suggests that some zero
counts are due to the Poisson component.

The second output table presents the results for the Poisson model component. The coefficients
here are interpreted just as those from a standard Poisson regression; see [R] poisson. For example, we
see that having a boat increases the expected number of fish caught by around six [exp(1.814) ≈ 6.14]
for those who did fish, holding other covariates constant.

We store our estimates for later use.

. estimates store model1

In the model above, we did not model class probabilities. By modeling class probabilities with
covariates, we can further differentiate between visitors who did not fish and those who fished without
success. Here we make the mixing probability for the point mass component depend on covariates
by using the lcprob() option with covariates child and camper. The default reference probability
now switches to the Poisson component; therefore, we no longer need to specify lcbase(2).

. fmm: (pointmass count, lcprob(child camper)) (poisson count persons boat)

(iteration log omitted )

Finite mixture model Number of obs = 250
Log likelihood = -850.70142

Coefficient Std. err. z P>|z| [95% conf. interval]

1.Class
child 1.602571 .2797719 5.73 0.000 1.054228 2.150913

camper -1.015698 .365259 -2.78 0.005 -1.731593 -.2998039
_cons -.4922872 .3114562 -1.58 0.114 -1.10273 .1181558

2.Class (base outcome)

Class: 2
Response: count
Model: poisson

Coefficient Std. err. z P>|z| [95% conf. interval]

count
persons .8068853 .0453288 17.80 0.000 .7180424 .8957281

boat 1.757289 .2446082 7.18 0.000 1.277866 2.236713
_cons -2.178472 .2860289 -7.62 0.000 -2.739078 -1.617865

https://www.stata.com/manuals/rpoisson.pdf#rpoisson
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The coefficients for the Poisson component are close to those from the previous model.

The coefficients of interest for the class 1 probability are both significant. A positive coefficient
on the child variable means people with children in their party tended do to something other than
fish. A negative coefficient on the camper variable means people camping at the park were more
likely to go fishing.

Because we modeled the probability of being in the point mass component with covariates,
calculating the marginal probabilities of belonging to a given component is more involved than before.
We use estat lcprob to display marginal class probabilities on a probability scale.

. estat lcprob

Latent class marginal probabilities Number of obs = 250

Delta-method
Margin std. err. [95% conf. interval]

Class
1 .4786335 .0341083 .4125554 .5454678
2 .5213665 .0341083 .4545322 .5874446

We find that about 48% of the park visitors are in the nonfishing group, which is slightly lower than
the 52% we found previously.

We can use lrtest to compare the current model with the previous one.

. lrtest model1 .

Likelihood-ratio test
Assumption: model1 nested within .

LR chi2(2) = 63.22
Prob > chi2 = 0.0000

The likelihood-ratio test favors the model that includes covariates in the modeling of the probability
of being in the nonfishing group.

We can also estimate the marginal predicted counts (means) for the fishing group using estat
lcmean.

. estat lcmean

Latent class marginal means Number of obs = 250

Expression: Predicted mean (number of fish caught in class 2.Class),
predict(outcome(count) class(2))

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

2
count 6.490014 .2361623 27.48 0.000 6.027144 6.952884

The marginal predicted count for the fishing group is 6.49. This is much higher than the sample mean
of 3.30 that is based on the fishing and nonfishing populations combined. If we were advertising
fishing opportunities in the park, we know which number we would use!

https://www.stata.com/manuals/fmmestatlcmean.pdf#fmmestatlcmean
https://www.stata.com/manuals/fmmestatlcmean.pdf#fmmestatlcmean
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Also see
[FMM] fmm — Finite mixture models using the fmm prefix

[R] zip — Zero-inflated Poisson regression
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