
Title stata.com

jdbc — Load, write, or view data from a database with a Java API

Description Quick start Syntax Options Remarks and examples
Stored results References Also see

Description

jdbc allows you to load data from a database, execute SQL statements on a database, and insert
data into a database using Java Database Connectivity (JDBC). JDBC is an application programming
interface (API) for the programming language Java and defines how a client (Stata) can access a
database. jdbc is oriented toward relational databases or nonrelational database-management systems
that have rectangular data. NoSQL databases will not work with jdbc.

jdbc connect stores all database connection settings for subsequent jdbc commands.

jdbc add stores database connection settings as a data source name for a Stata session.

jdbc remove removes a stored data source name for a Stata session.

jdbc list displays all stored data source names for a Stata session.

jdbc showdbs produces a list of all databases for a given URL.

jdbc showtables retrieves a list of table names available from a specified database.

jdbc describe lists column names and data types associated with a specified table.

jdbc load reads a database table into Stata’s memory. You can load a table specified in the
table() option or load an ODBC table generated by an SQL SELECT statement specified in the
exec() option.

jdbc insert writes data from memory to a database table. The data can be appended to an
existing table or replace an existing table.

jdbc exec allows for most SQL statements to be issued directly to any database. Statements that
produce output, such as SELECT, have their output neatly displayed. By using Stata’s ado-language,
you can also generate SQL commands on the fly to do positional updates or whatever the situation
requires.

Quick start
Store connection settings to database myDB

jdbc connect, jar("mysql-connector-java-5.1.49.jar") ///
driverclass("com.mysql.jdbc.Driver") ///
url("jdbc:mysql://https://www.stata.com/myDB:3306") ///
user("stata") password("stata")

List available table names in database myDB

jdbc showtables

Describe the column names and data types in table MyTable from myDB

jdbc describe "MyTable"

1

http://stata.com

2 jdbc — Load, write, or view data from a database with a Java API

Load MyTable into memory from myDB

jdbc load, table("MyTable")

Syntax
Store JDBC connection settings for all jdbc commands

jdbc connect
{

DataSourceName | , connect options
}

Add JDBC connection settings as a data source name for the current Stata session

jdbc add DataSourceName, connect options

Remove JDBC connection settings and data source name for the current Stata session

jdbc remove
{

DataSourceName | all
}

List stored data source names and URLs for the current Stata session

jdbc list

List all databases for a given connection

jdbc showdbs

Retrieve available table names from specified data source

jdbc showtables
[
"SearchString"

]
List column names and data types associated with specified table

jdbc describe "TableName"

Import data from a database

jdbc load,
{
table("TableName") | exec("SqlStmtList")

} [
load options

]
Export data to a database

jdbc insert
[

varlist
] [

if
] [

in
]
, table("TableName")

[
insert options

]
Allow SQL statements to be issued directly to a database

jdbc exec "SqlStmtList"

DataSourceName is a name used to store connection settings.
SearchString is a database table name search string; SQL wildcard characters like % and are allowed.
TableName is the name of a table in the database.
SqlStmtList may be one valid SQL statement or a list of SQL statements separated by semicolons.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange

jdbc — Load, write, or view data from a database with a Java API 3

connect options Description

∗jar("JarFileName") JAR file name of JDBC driver
∗jarpath("DirectoryName") directory where the driver JAR file is stored along with driver

dependencies
∗driverclass("ClassName") Java class name for JDBC driver
∗url("URL") database URL
∗user("UserID") user ID of user establishing connection
∗password("Password") password of user establishing connection
connprop("ConnectionProperty") driver-specific connection property
clear clear current connection settings from memory;

available only with jdbc connect

∗Either jar("JarFileName") or jarpath("DirectoryName") and driverclass("ClassName"), url("URL"),
user("UserID"), and password("Password") are required with jdbc add. These options are also required
with jdbc connect when DataSourceName is not specified.

load options Description

∗table("TableName") name of table stored in the database
∗exec("SqlStmtList") SQL SELECT statements to generate a table to be read into Stata
rows(#) fetch # result set rows from database; default is rows(10)

clear replace data in memory
case(lower | upper | preserve) import variable names as lowercase or uppercase; the default

is to preserve the case

∗Either table("TableName") or exec("SqlStmtList") must be specified.

insert options Description

∗table("TableName") name of table stored in the database
rows(#) build memory result set with # of rows; default is rows(1)

overwrite clear data in table before data in memory are written to the
table

∗table("TableName") is required.

JarFileName is the name of the JDBC driver JAR file.
ClassName is the Java class name stored in the JDBC driver JAR file.
URL is the database URL.
UserID is the user ID.
Password is the user’s password.

Options
Options are presented under the following headings:

Options for jdbc connect and jdbc add
Options for jdbc load
Options for jdbc insert

4 jdbc — Load, write, or view data from a database with a Java API

Options for jdbc connect and jdbc add

jar("JarFileName") specifies the JDBC driver JAR file installed along your ado-path. Either jar()
or jarpath() is required with jdbc add. Also, if DataSourceName is not specified, either jar()
or jarpath() is required with jdbc connect for jdbc showdbs, jdbc showtables, jdbc
describe, jdbc load, jdbc insert, and jdbc exec to work. jar() may not be combined
with jarpath().

jarpath("DirectoryName") specifies the directory where the JDBC driver JAR files are installed along
your ado-path. Either jarpath() or jar() is required with jdbc add. Also, if DataSourceName is
not specified, either jarpath() or jar() is required with jdbc connect for jdbc showdbs, jdbc
showtables, jdbc describe, jdbc load, jdbc insert, and jdbc exec to work. jarpath()
may not be combined with jar().

driverclass("ClassName") specifies the Java class name stored in the JDBC driver JAR file installed
along your ado-path. driverclass() is required with jdbc add. Also, if DataSourceName is not
specified, driverclass() is required with jdbc connect for jdbc showdbs, jdbc showtables,
jdbc describe, jdbc load, jdbc insert, and jdbc exec to work.

url("URL") specifies the URL to the database the user is attempting to establish the connection to.
url() is required with jdbc add. Also, if DataSourceName is not specified, url() is required
with jdbc connect for jdbc showdbs, jdbc showtables, jdbc describe, jdbc load, jdbc
insert, and jdbc exec to work. The driver URL syntax is as follows:

jdbc:Database type://Host:Port/Database name?connection properties

user("UserID") specifies the user ID of the user attempting to establish the connection to a database.
user() is required with jdbc add. Also, if DataSourceName is not specified, user() is required
with jdbc connect for jdbc showdbs, jdbc showtables, jdbc describe, jdbc load, jdbc
insert, and jdbc exec to work.

password("Password") specifies the password of the user attempting to establish the connection to
a database. password() is required with jdbc add. Also, if DataSourceName is not specified,
password() is required with jdbc connect for jdbc showdbs, jdbc showtables, jdbc
describe, jdbc load, jdbc insert, and jdbc exec to work.

connprop("ConnectionProperty") specifies the driver-specific connection properties. A connection
property is a key value pair that is separated by a colon and delimited by a semicolon. For example,

jdbc connect, ... connprop("characterEncoding:ISO8859-1;")

These properties can also be set in the url() option.

clear clears the current connection settings from memory. This option may only be specified with
jdbc connect and may not be combined with any other connect options.

Options for jdbc load

table("TableName") specifies the name of the table stored in a specified database. Either the
table() option or the exec() option—but not both—is required with the jdbc load command.

exec("SqlStmtList") allows you to issue an SQL SELECT statement to generate a table to be read
into Stata. Multiple SQL statements can be issued, with the last SQL statement being a SELECT.
Each statement should be delimited by a semicolon. For example,

local sql ///
"CREATE TEMPORARY TABLE t(a INT, b INT); INSERT INTO t VALUES (1,2); ///
SELECT * FROM t;"

jdbc load, exec("‘sql’")

https://www.stata.com/manuals/psysdir.pdf#psysdir
https://www.stata.com/manuals/psysdir.pdf#psysdir

jdbc — Load, write, or view data from a database with a Java API 5

An error message is returned if the SQL statements are invalid SQL. Either the table() option or
the exec() option—but not both—is required with the jdbc load command.

rows(#) specifies the number of rows to be fetched from the database result set for each network call.
This option may help improve command performance. The default is rows(10). Some drivers do
not support this feature. Note that setting rows() to a large number might require you to change
the amount of heap memory allocated for the JVM with the java set heapmax command.

clear permits the data to be loaded, even if there are data already in memory, and even if that data
have changed since the data were last saved.

case(lower | upper | preserve) specifies the case of the variable names after loading. The default
is case(preserve).

Options for jdbc insert

table("TableName") specifies the name of the table stored in a specified database.

rows(#) specifies the number of result set rows to be sent to the database for each network call. This
option may help improve command performance. The default result set size is 1. This option does
not work with datasets that contain strLs. Some drivers do not support this feature. Note that
setting the rows(#) to a large number might require you to change the amount of heap memory
allocated for the JVM with the java set heapmax command.

overwrite allows data to be dropped from a database table before the Stata data in memory are
written to the table. All data from the table are erased, not just the data from the variable columns
that will be replaced.

Remarks and examples stata.com

jdbc allows you to connect to, load data from, insert data into, and execute queries on a database
using JDBC. First, you specify the connection settings with jdbc connect, including the URL for
the database you are connecting to and your user ID and password. Thereafter, you can use jdbc
showdbs, jdbc showtables, jdbc describe, jdbc load, jdbc insert, and jdbc exec. These
commands allow you to execute statements on a database and load data to and from Stata; they will
use the connection information you specified with jdbc connect to open a connection and perform
the specified task.

If you will be connecting to multiple databases frequently, you can store the connection settings
for each database under a data source name with jdbc add. Then, whenever you wish to connect
to a database, simply use jdbc connect, and specify the data source name. This avoids having to
specify all the connection information every time you wish to connect to a different database.

Remarks are presented under the following headings:

JDBC drivers
Connecting to a database
Data source names
Exploring a database
Loading data from a database
Inserting data into a database
Executing SQL on a database

https://www.stata.com/manuals/pjavautilities.pdf#pJavautilities
https://www.stata.com/manuals/pjavautilities.pdf#pJavautilities
http://stata.com

6 jdbc — Load, write, or view data from a database with a Java API

JDBC drivers

To use jdbc, you must first download and install your database vendor JDBC driver JAR file. To
see information on Stata’s current JDBC implementation, click here.

Once you have downloaded the appropriate driver, you must install the driver along Stata’s ado-path.
If the file is compressed, you can use Stata’s unzipfile with the downloaded file to extract the
.jar file. Once extracted, place the .jar file along your ado-path so Stata can add it to the Java
virtual machine (JVM) class-path. You can use java query to check to see whether Stata has loaded
your driver along the JVM class-path.

Most users should place the .jar files in the PERSONAL directory or the current working directory.
System administrators may wish to place them in the SITE directory if they have a network installation
and want to make them available to all users.

Connecting to a database

jdbc connect stores all database connection settings for commands jdbc showdbs, jdbc showta-
bles, jdbc describe, jdbc load, jdbc insert, and jdbc exec. Options jar(), driverclass(),
url(), user(), and password() are required, unless you have already saved that information under
a data source name and you are specifying that DataSourceName with jdbc connect.

If you try to use these commands before setting your connection properties, you will receive the
following error message:

. jdbc showtables
Connection failed
JDBC driver class not found
r(681);

Technical note

Storing your database name, user ID, and password in a Stata do-file, ado-file, or log file can be a
security risk. Your database vendor might have software called a wallet that can store this information
securely on your machine.

Example 1: Creating a connection

Below, we create a connection string for the JDBC driver in Stata:

. jdbc connect, jar("mysql-connector-java-8.0.22.jar")
> driverclass("com.mysql.cj.jdbc.Driver")
> url("jdbc:mysql://localhost:3306/myDB")
> user("stata") password("stata_pass")

Going forward, when we issue the jdbc showdbs, jdbc showtables, jdbc describe, jdbc
load, jdbc insert, or jdbc exec command, each will use this information to connect to the
database myDB.

https://www.stata.com/support/faqs/data-management/configuring-jdbc/
https://www.stata.com/manuals/psysdir.pdf#psysdir
https://www.stata.com/manuals/dzipfile.pdf#dzipfile
https://www.stata.com/manuals/pjavautilities.pdf#pJavautilities
https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(681)

jdbc — Load, write, or view data from a database with a Java API 7

Example 2: Using macros

You can also use macros to make your do-file more readable and easier to change database settings.

. local jar "mysql-connector-java-8.0.22.jar"

. local driverclass "com.mysql.cj.jdbc.Driver"

. local url "jdbc:mysql://localhost:3306/myDB"

. local user "stata"

. local pass "stata_pass"

. jdbc connect, jar("‘jar’") driverclass("‘driverclass’")
> url("‘url’") user("‘user’") password("‘pass’")

Data source names
If you would like to have database connection settings stored and ready for jdbc to use every

time you start a Stata session, you can place jdbc add in your profile.do to store these settings;
see [GSW] B.3 Executing commands every time Stata is started, [GSM] B.1 Executing commands
every time Stata is started, or [GSU] B.1 Executing commands every time Stata is started.

Use jdbc list to see the current session’s stored connection settings and jdbc remove to remove
stored settings.

Exploring a database

jdbc showdbs, jdbc showtables, and jdbc describe are used, respectively, to list database
names, table names, and table columns of a connection. Use these commands to search for data to
load from your connection.

Example 3: Listing table names

jdbc showtables is used to list table names available from a specified database. To list all the
tables stored in database myDB, type

. jdbc showtables
Database: myDB

Tables

auto

https://www.stata.com/manuals/gswb.pdf#gswB.3ExecutingcommandseverytimeStataisstarted
https://www.stata.com/manuals/gsmb.pdf#gsmB.1ExecutingcommandseverytimeStataisstarted
https://www.stata.com/manuals/gsmb.pdf#gsmB.1ExecutingcommandseverytimeStataisstarted
https://www.stata.com/manuals/gsub.pdf#gsuB.1ExecutingcommandseverytimeStataisstarted

8 jdbc — Load, write, or view data from a database with a Java API

Example 4: Listing column names and data types
jdbc describe displays the column names and JDBC data types of the table listed. To describe

the auto table, type
. jdbc describe "auto"
Table: auto

column name column type

make VARCHAR
price INT
mpg INT
rep78 SMALLINT
headroom FLOAT
trunk SMALLINT
weight SMALLINT
length SMALLINT
turn SMALLINT
displacement SMALLINT
gear_ratio FLOAT
domestic VARCHAR

Loading data from a database
jdbc load is used to load a database table into Stata’s memory; this can be an existing table or

a subset of a table created by a series of SQL statements.

Example 5: Loading a table

To load a database table listed in the jdbc showtables output, specify the table name in the
table() option.

. jdbc load, table("auto")
74 observations loaded

. describe

Contains data
Observations: 74

Variables: 12

Variable Storage Display Value
name type format label Variable label

make str19 %19s make
price long %12.0g price
mpg long %12.0g mpg
rep78 int %8.0g rep78
headroom float %9.0g headroom
trunk int %8.0g trunk
weight int %8.0g weight
length int %8.0g length
turn int %8.0g turn
displacement int %8.0g displacement
gear_ratio float %9.0g gear_ratio
domestic str18 %18s domestic

Sorted by:
Note: Dataset has changed since last saved.

jdbc — Load, write, or view data from a database with a Java API 9

Example 6: Loading part of a table

If your database table is large and the memory on your computer is limited, it is a good idea to
limit the amount of data loaded from the database using a SELECT statement in the exec() option.
For example, instead of loading the whole table as we did above, we can just load the mpg column:

. jdbc load, exec("SELECT mpg FROM auto;")
74 observations loaded

. describe

Contains data
Observations: 74

Variables: 1

Variable Storage Display Value
name type format label Variable label

mpg long %12.0g mpg

Sorted by:
Note: Dataset has changed since last saved.

10 jdbc — Load, write, or view data from a database with a Java API

Technical note
When Stata loads a table, data are converted from JDBC data types to Stata data types. Stata does

not support all JDBC data types. If the column cannot be read because of incompatible data types,
Stata will issue a note and skip a column. The following table lists the supported JDBC data types
and their corresponding Stata data types:

JDBC data type Stata data type

BOOLEAN byte
BIT byte
TINYINT byte
SMALLINT int
INTEGER long
ROWID str
BIGINT str
REAL float
FLOAT float
NUMERIC double
DECIMAL double
DOUBLE double
DATE double
TIME double
TIMESTAMP double
TIME WITH TIMEZONE str
TIMESTAMP WITH TIMEZONE str
BINARY strL
VARBINARY strL
LONGVARBINARY strL
BLOB strL
CHAR str/strL
VARCHAR str/strL
LONGVARCHAR str/strL
NCHAR str/strL
NVARCHAR str/strL
LONGNVARCHAR str/strL
NCLOB str/strL
CLOB str/strL
STRUCT skipped
ARRAY skipped
SQLXML skipped
NULL skipped
OTHER skipped
REF CURSOR skipped
JAVA OBJECT skipped
DISTINCT skipped
REF skipped
DATALINK skipped

Stata is a UTF-8 application, so all string data should be encoded as UTF-8. This can be set using
a driver connection property. Check your database vendor or driver documentation to see how your
string data is encoded by default to see whether this property should be set.

. jdbc connect, ... connprop("characterEncoding:UTF8;")

jdbc — Load, write, or view data from a database with a Java API 11

Inserting data into a database

jdbc insert inserts data in memory into a database table. The database table and the Stata varlist
must have the same column and variable names, number of columns, and compatible data types for
the insert to work correctly. By default, observations are appended to the database table. When you
insert data, mapping of the data types are the same as jdbc load, with one exception, Stata bytes.
Stata bytes are mapped to SMALLINTs because some database vendors’ (SQLServer) BYTE data type
is unsigned.

Example 7: Inserting data into a table

Below, we insert the data in memory into the table auto.

. jdbc insert, table(auto)
74 rows inserted

To replace the table with the data in memory, use the option overwrite.

. jdbc insert, table(auto) overwrite
74 rows affected
74 rows inserted

Executing SQL on a database

You use jdbc exec to execute SQL commands on the database. If an SQL command returns a
result set, like SELECT, that result set will be displayed in the Stata Results window.

Example 8: Executing SQL commands

To use jdbc insert, you must have a table already created in your database. If you do not, you
can use jdbc exec to create a table in your database. For example, one might create a table in a
MySQL database with the SQL command below:

#delimit ;
local create_table_sql ‘"CREATE TABLE auto (

make varchar(19) NOT NULL,
price int,
mpg int,
rep78 smallint,
headroom float,
trunk smallint,
weight smallint,
length smallint,
turn smallint,
displacement smallint,
gear_ratio float,
domestic varchar(18)

);"’ ;
jdbc exec "‘create_table_sql’"

If your SQL statement contains double quotes, you must enclose your statement in compound
double quotes, as we did with the statement above.

12 jdbc — Load, write, or view data from a database with a Java API

Stored results
jdbc showdbs stores the following in r():

Scalars
r(n dbs) number of databases displayed

jdbc showtables stores the following in r():

Scalars
r(n tables) number of tables displayed

jdbc describe stores the following in r():

Scalars
r(k) number of columns displayed

jdbc load stores the following in r():

Scalars
r(k) number of variables loaded
r(N) number of observations loaded

jdbc insert stores the following in r():

Scalars
r(k) number of columns inserted
r(N) number of rows inserted

References
Crow, K. 2017. Importing WRDS data into Stata. The Stata Blog: Not Elsewhere Classified.

https://blog.stata.com/2017/09/19/importing-wrds-data-into-stata/.

. 2022. Wharton Research Data Services, Stata 17, and JDBC. The Stata Blog: Not Elsewhere Classified.
https://blog.stata.com/2022/01/27/wharton-research-data-services-stata-17-and-jdbc/.

Also see
[D] odbc — Load, write, or view data from ODBC sources

[D] import — Overview of importing data into Stata

[D] export — Overview of exporting data from Stata

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

https://blog.stata.com/2017/09/19/importing-wrds-data-into-stata/
https://blog.stata.com/2017/09/19/importing-wrds-data-into-stata/
https://blog.stata.com/2022/01/27/wharton-research-data-services-stata-17-and-jdbc/
https://blog.stata.com/2022/01/27/wharton-research-data-services-stata-17-and-jdbc/
https://www.stata.com/manuals/dodbc.pdf#dodbc
https://www.stata.com/manuals/dimport.pdf#dimport
https://www.stata.com/manuals/dexport.pdf#dexport

