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Description
frlink creates and helps manage links between datasets in different frames. A link allows the

variables in one frame to be accessed by another. See [D] frames intro if you do not know what a
frame is.

Quick start
Create 1-to-1 linkage to frame fr2 and match on variable matchvar

frlink 1:1 matchvar, frame(fr2)

Create many-to-1 linkage to frame fr3, matching variables v1 and v2 in the current frame to variables
x1 and x2 in frame fr3, naming the linkage lnk

frlink m:1 v1 v2, frame(fr3 x1 x2) generate(lnk)

List names of linkages in current frame
frlink dir

Show details for linkage lnk

frlink describe lnk

Attempt to re-create linkage lnk after data have changed
frlink rebuild lnk

Eliminate linkage lnk

drop lnk
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Syntax
Create linkage between current frame and another

frlink { 1:1 | m:1 } varlist1, frame(frame2
[

varlist2
]
)

[
generate(linkvar1)

]
List names of existing linkages

frlink dir

List details about existing linkage, and verify it is still valid

frlink describe linkvar2

Re-create existing linkage when data have changed or frames are renamed

frlink rebuild linkvar2
[
, frame(frame3)

]
Drop existing linkage (dropping the variable eliminates the linkage)

drop linkvar2

1:1 and m:1 indicate how observations are to be matched.

varlist1 contains the match variables in the current frame, which we will call frame 1.

linkvar1 is the name to be given to the new variable that frlink creates. The variable is added to
the dataset in frame 1. The variable contains all the information needed to link the frames.

You specify the name for linkvar1 using the generate(linkvar1) option, or you let frlink name
it for you. If frlink() chooses the name, the variable is given the same name as frame2.

linkvar2 is the name of an existing link variable.

collect is allowed with frlink dir and frlink rebuild; see [U] 11.1.10 Prefix commands.

Options

Options are presented under the following headings:

Options for frlink 1:1 and frlink m:1
Options for frlink rebuild

Options for frlink 1:1 and frlink m:1

frame(frame2
[

varlist2
]
) specifies the name of the frame, frame2, to which a linkage is created

and optionally the names of variables in varlist2 on which to match. If varlist2 is not specified,
the match variables are assumed to have the same names in both frames. frame() is required.

To create a link to a frame named counties, you can type

. frlink m:1 countyid, frame(counties)

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
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This example omits specification of varlist2, and it works when the match variable countyid
has the same name in both frames. If the variable were named cntycode, however, in the other
frame, you type

. frlink m:1 countyid, frame(counties cntycode)

The rule for matching observations is thus that countyid in the current frame equals cntycode
in the other frame.

You can specify multiple match variables when necessary. For example, you want to match on
county names in U.S. data. County names repeat across the states, so you match on the combined
county and state names by typing

. frlink m:1 countyname statename, frame(counties)

If the match variables had different names in frame counties, such as county and state, you
type

. frlink m:1 countyname statename, frame(counties county state)

generate(linkvar1) specifies the name of the new variable that will contain all the information
needed to link the frames. This variable is added to the dataset in frame 1. This option is rarely
used.

If this option is not specified, the link variable will then be named the same as the frame name
specified in the frame() option.

Options for frlink rebuild

frame(frame3) specifies a frame name that differs from the existing linkage. frame3 is the new name
of a frame linked by linkvar2.

For instance, yesterday, you created a linkage named george to the data in the frame named
george by typing

. frlink m:1 countyname statename, frame(george)

Today, you loaded the linked data into a frame named counties. To rebuild the linkage so that
linkage george links to the data in frame counties, type

. frlink rebuild george, frame(counties)

If you also wish to rename the linkage to be counties, type

. rename george counties

Then you would have a linkage named counties to the data in the frame named counties.

Remarks and examples stata.com

Remarks are presented under the following headings:

Overview of the frlink command
Everything you need to know about linkages
Example 1: A typical m:1 linkage
How link variables work
Advanced examples
Example 2: A complex m:1 linkage
Example 3: A 1:1 linkage, a simple solution to a hard problem

http://stata.com


4 frlink — Link frames

Overview of the frlink command

frlink 1:1 and frlink m:1 create linkages between the current frame and another frame you
specify. This adds a new variable to the current frame, known as the link variable. You can use the
frget command to copy variables from the linked frame to the current frame and use the frval()
function to use the other frame’s variables in expressions. You can use the fralias add command
to define aliases of variables from the linked frame in the current frame. An alias is a reference to
a variable in another frame, similar to a copy, but uses very little memory. You cannot modify the
observations in a alias variable.

Linkages are said to be named, but the name is in fact the name of the link variable that frlink
creates.

frlink dir lists the names of existing linkages.

frlink describe linkvar displays details about the specified linkage. It also checks the validity
of the link variable and, if there are problems, tells you how to fix it.

frlink rebuild linkvar re-creates the specified linkvar. If linkvar is invalid, frlink rebuild
will fix it.

Type drop linkvar to delete linkages.

Everything you need to know about linkages

Here is everything you need to know in outline form:

1. A linkage connects one frame to another. Here are the advantages.
1.1 The frval() function.
1.2 The frget command.
1.3 The fralias add command.

2. The frlink command creates linkages.
3. Linkages are named.
4. A linkage is variable added to the data.
5. Drop the link variable, remove the link.
6. Do not modify the contents of the link variable.
7. Linkages are formed based on equality of the match variables.
8. You can specify more than one match variable.
9. Match variables can be named differently in the two frames.

10. Match type: One-to-one or many-to-one matching.
11. Linking can result in unmatched observations.
12. Linkages are directional.
13. How to create nested linkages.
14. Saving and using linked frames.
15. Do’s and don’ts.

What follows will turn you into an expert.

1. A linkage connects one frame to another. Here are the advantages.

Create a linkage and you can access the variables in another frame using the frval()
function and the commands frget and fralias add.

https://www.stata.com/manuals/dfrget.pdf#dfrget
https://www.stata.com/manuals/fnprogrammingfunctions.pdf#fnProgrammingfunctionsfrval()
https://www.stata.com/manuals/dfralias.pdf#dfralias
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1.1 The frval() function. You can type

. generate rel_income = income / frval(counties, median_income)

frval(counties, median income) returns the value of the median income
variable in frame counties. If the current frame contained data on people and the
county frame contained data on counties (linked to with link variable counties in
the current frame), the above would produce person income divided by the median
income of the county in which he or she resides. See frval() in [FN] Programming
functions.

1.2 The frget command. You can type

(1) . frget median_income, from(counties)
(2) . frget medinc = median_income, from(counties)
(3) . frget median_income pop, from(counties)
(4) . frget median_income pop attr*, from(counties)
(5) . frget median_income pop attr*, from(counties) prefix(c_)

and more . . .

(1) copies median income from frame counties into the data in the current
frame.

(2) does the same but names the variable medinc.

(3) copies two variables.

(4) copies lots of variables.

(5) copies lots of variables and renames them to start with c .

This is only a smattering of what frget can do. See [D] frget.
1.3 The fralias add command. You can type

(1) . fralias add median_income, from(counties)
(2) . fralias add medinc = median_income, from(counties)
(3) . fralias add median_income pop, from(counties)
(4) . fralias add median_income pop attr*, from(counties)
(5) . fralias add median_income pop attr*, from(counties) prefix(c_)

and more . . .

(1) alias median income from frame counties so that you can use its observations
in the current frame.

(2) does the same but names the alias variable medinc.

(3) aliases two variables.

(4) aliases lots of variables.

(5) aliases lots of variables and renames them to start with c .

This is only a smattering of what fralias add can do. See [D] fralias.

2. The frlink command creates linkages.

frlink creates a linkage from the current frame to the frame you specify.

. frlink . . . , frame(counties)

https://www.stata.com/manuals/fnprogrammingfunctions.pdf#fnProgrammingfunctionsfrval()
https://www.stata.com/manuals/fnprogrammingfunctions.pdf#fnProgrammingfunctionsfrval()
https://www.stata.com/manuals/dfrget.pdf#dfrget
https://www.stata.com/manuals/dfralias.pdf#dfralias
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3. Linkages are named.

The command

. frlink . . . , frame(counties)

creates a linkage named counties to the frame named counties.

You can specify option generate() to give the linkage a different name. To create a linkage
named c to the frame counties, type

. frlink . . . , frame(counties) generate(c)

4. A linkage is a variable added to the data.

The entire physical manifestation of a linkage is the addition of a single variable to the
dataset in the current frame. Typing

. frlink . . . , frame(counties)

adds new variable counties to the dataset in the current frame.

. frlink . . . , frame(counties) generate(c)

adds new variable c to the dataset in the current frame.

The added variable is known as the “link variable”, or linkvar.

5. Drop the link variable, remove the link.

Because linkages are just a variable, if you drop the variable, you remove the link.

. drop counties

. drop c

6. Do not modify the contents of the link variable.

If you modify the link variable’s contents, you invalidate the linkage. If you are lucky, the
next time you use the frget or fralias add command or the frval() function, they will
detect the problem and issue an error. If not, they will simply produce incorrect results.

. replace counties = . . . // Do not do this

. replace c = . . . // Do not do this

If you accidentally modify the link variable’s contents, use frlink rebuild to repair it.

. frlink rebuild counties

. frlink rebuild c

7. Linkages are formed based on equality of match variables.

To construct a link to frame counties, type

. frlink . . . , frame(counties)

The complete command would have the dots filled in. Part of what needs to appear in place
of the dots are the match variables. A more complete version of the command is

. frlink . . . countyid, frame(counties)

We specified one match variable, countyid.

Linkages are formed by matching observations in the current frame to observations in the
other frame when their match variables are equal.
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In the example, the match variables are countyid in the current frame and countyid in
the county frame. Observations are matched when the countyid variables are equal.

Let’s unravel that. The data in the current frame are on people. countyid in the current
frame records the county in which each person resides.

Meanwhile, the data in the county frame contains information on counties, such as a county’s
median income. Variable countyid in this frame records the county each observation
describes.

Observations in the two frames are matched when the county in which a person resides
equals the county being described. Once we have formed the linkage by typing

. frlink . . . countyid, frame(counties)

if we then type

. generate rel_income = income / frval(counties, median_income)

we obtain the ratio of each person’s income to the median income in the county in which
he or she resides.

8. You can specify more than one match variable.

We just considered the case of one match variable—countyid—in each of the frames:

. frlink . . . countyid, frame(counties)

Let’s imagine that instead of containing countyid, the datasets contain countyname.
Substituting countyname for countyid might be insufficient to form the desired linkage:

. frlink . . . countyname, frame(counties)

County names in the United States are repeated across states. Monroe County, for instance,
exists in Florida, Mississippi, Texas, and other states. To link the frames, we need to match
on both county and state names:

. frlink . . . countyname statename, frame(counties)

Because county and state names, taken together, uniquely identify the locations, the order
in which we specify them is irrelevant:

. frlink . . . statename countyname, frame(counties)

9. Match variables can be named differently in the two frames.

When we type

. frlink . . . countyname statename, frame(counties)

we are stating the variables countyname and statename appear in both frames. If the
names are different in the two frames, specify the names used in the current frame following
the frlink command, and specify the names used in the other frame in the frame() option,
after the frame’s name:

. frlink . . . countyname statename, frame(counties cnty usstate)

countyname and statename are the variable names used in the current frame. The variables
corresponding to them in frame counties are named cnty and usstate.

10. Match type: One-to-one or many-to-one matching.

Consider the linkage created by

. frlink . . . countyid, frame(counties)
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The current frame contains data on persons, and the other frame—counties—contains data
on counties.

All that is needed to turn the above into a complete command is to replace the dots with a
match type, which can be 1:1 or m:1. In this case, the match type should be m:1, and the
full command is

. frlink m:1 countyid, frame(counties)

m:1 stands for many-to-one matching. m:1 means that is okay if more than one observation
in the current frame matches the same observation in the other frame. We specify m:1
because it is possible that multiple people in the current frame reside in the same county.
If five people live in county 207, all five will match to the observation in frame counties
that describes county 207.

The alternative 1:1 means that at most one observation in the current frame can match an
observation in the other frame. Specifying 1:1 would be appropriate for matching person
data in the current frame with more data on him or her in the other frame. If persons were
to be matched on personid and if the other frame were named person2, we type

. frlink 1:1 personid, frame(person2)

Matched would be persons in the current frame who also appeared in the second frame.

If you think about it, 1:1 is a special case of m:1. 1:1 means at most one observation
matches. m:1 means one or more observations match. This means that, if

. frlink 1:1 personid, frame(morepersons)

forms the linkage you want, so will

. frlink m:1 personid, frame(morepersons)

So why specify 1:1? We specify 1:1 so that frlink can issue an error message if the
result is not 1:1. When matching people’s data to more data on the same people, if two
people in the first frame matched the same observation in the second, that means

P1. there is an error in the first dataset: the same person appears more than once in it;
or

P2. there is an error in variable personid in the first dataset: the personid variable
contains the wrong value; or

P3. we are not thinking clearly and should have specified m:1 instead of 1:1.

You specify 1:1 so that the software can flag situations where the reality is different from
your expectations. Then you fix your data or your thinking.

11. Linking can result in unmatched observations.

Imagine that you have successfully executed

. frlink m:1 countyid, frame(counties)

The result will be that each observation in the current frame will be matched or unmatched.
Observations in the current frame are matched when the values of countyid are found in frame
counties. The remaining observations, if any, are unmatched. Unmatched observations are
not an error; they are a characteristic and perhaps a shortcoming of your datasets.

frlink tells you how many unmatched observations there are when you create the linkage.
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Function frval() will subsequently return missing values for the unmatched observations.
If you type

. generate relative_income = income/frval(linkvar, median_income)

variable relative income would be missing (.) for the unmatched observations, the same
as if unmatched observations were matched but contained median income==..

frget and alias variables created by fralias add behave similarly. frget sets the unmatched
observations equal to missing in the copied variable. Alias variables return missing values
for unmatched observations.

. frget median_income, from(counties)

. fralias add median_income, from(counties) prefix(a_)

In addition, the link variable in the current frame contains missing values for the unmatched
observations. This is useful. How many observations in the current frame are unmatched?
If you do not remember, type

. count if counties==.

You can look at the data for the unmatched observations.
. browse if counties==.

You can analyze the unmatched data.
. summarize if counties==.

If observations will be useful to you only when they are matched with county data, you can
keep just the matched data by typing

. keep if counties!=.

12. Linkages are directional.

We say that we link the current frame to another frame, but it’s really the other way around.
Data flow to the current frame from the other frame. If you have created the linkage

. frlink m:1 countyid, frame(counties)

then you can access data in frame counties from the current frame, but you cannot access
data in the current frame from frame counties.

13. How to create nested linkages.

Consider separate frames containing data on students, the schools they attend, and the
counties in which the schools are located. Here is the setup:

Current frame: students.dta containing variables for each student’s ID, the ID
of the schools he or she attends, and student characteristics.

Frame schools: schools.dta containing each school’s ID, the ID of the counties
in which the schools are located, and school characteristics.

Frame counties: us counties.dta containing each county’s ID and county
characteristics.

Here is how you load the datasets into the frames:
. frame create schools
. frame create counties

. use students

. frame schools: use schools

. frame counties: use us_counties
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Here is how you link the frames:

. frlink m:1 schoolid, frame(schools)

. frget countyid, from(schools)

. frlink m:1 countyid, frame(counties)

The first command links students with the schools they attend.

The second command copies variable countyid from frame schools to the current frame.

The third command links students with the counties in which their schools are located.

The command that copied countyid into the current frame was necessary so that the students
in the current frame could be linked to the county frame.

Said generically, if you have data in frames A, B, and C, you link frame A to B and link
frame A to C to access all the data from A.

Said negatively, linkages are not transitive. Linking frame A to B and B to C is not sufficient
to allow frame A to access all the data.

14. Saving and using linked frames.

You have created students-linked-to-county data:

. use students

. frame create counties

. frame counties: use us_counties

. frlink m:1 countyid, frame(counties)

To save the datasets so that you can use them later, you need only type

. save students, replace

It is necessary to save students.dta because it has a new variable in it, namely, the
linkage variable counties. It is not necessary to save us counties.dta because it has
not changed.

That said, you might still wish to save both files:

. save students, replace

. frame counties: save us_counties, replace

The data in frame counties were not changed, but the sort order of the data changed.
Linking sorts the linked-to frame on its match variables. We recommend you save both
datasets.

To later load the data, you type

. use students

. frame create counties

. frame counties: use us_counties

You might want to put these lines in a do-file. You could call it usestudents.do. Then,
whenever you wanted to load the data, all you need to do is type

. do usestudents

15. Do’s and don’ts.

We start with the don’ts. There are only three:

Do not modify the contents of the link variable,

. . . but if you do, use frlink rebuild to fix it.
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Do not rename the match variables in either frame,

. . . but if you do, drop the link variable, and use frlink m:1 or 1:1 to link
the frames again.

Do not drop the match variables from either frame,

. . . and if you do, we cannot help you.

Everything else is a do, but they come in two flavors. The first is do without qualifications.
The second is also a do, but do it only if you follow it by typing frlink rebuild.

Here are the do’s without qualifications:

Do drop the link variable. That’s how you eliminate the link.

Do rename the link variable.

Do drop observations in the current frame.

Do add new variables in either frame.

Do modify or rename variables in either frame, with the exception of the link and
the match variables.

And here are the do’s with qualification, which is always the same: Type frlink rebuild
afterward.

Do rebuild after adding observations in either or both frames.

Do rebuild after dropping observations in the linked frame.

Do rebuild after modifying the contents of the match variables in either or both
frames.

And remember a rule that always applies:

It is always safe to type frlink rebuild.

If there is no problem, it will do nothing.

If there is a problem, it will fix it unless it cannot,

. . . then it explains why and do nothing to your data.

You are now an expert on linked frames.

Example 1: A typical m:1 linkage

File persons.dta contains data on people. Among its variables is countyid, containing the
county code where each person resides.

File txcounty.dta contains data on Texas counties. Among its variables is countyid, the county
code for the county that each observation describes.

Here is how we load and link the datasets:

. use https://www.stata-press.com/data/r18/persons

. frame create txcounty

. frame txcounty: use https://www.stata-press.com/data/r18/txcounty
(Median income in Texas counties)

. frlink m:1 countyid, frame(txcounty)
(all observations in frame default matched)
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Linkages are for situations where you want to analyze the data in the current frame using variables
from both frames.

Below, we create new variable relative income in the current frame equal to income (in the
current frame) divided by median income (from the county frame):

. generate relative_income = income / frval(txcounty, median_income)

. summarize relative_income

Variable Obs Mean Std. dev. Min Max

relative_i~e 20 .5501545 .1090887 .352133 .7038001

If we wanted to use median income from the county frame in a linear regression, we would use
the frget command to add median income to the current frame’s data:

. frget median_income, from(txcounty)

. regress income . . . median_income . . .

We will not do that because persons.dta contains fictional values and is not worth the bother.
But realize what would be possible if these datasets were real and contained more variables:

Get a variable:

frget median_income, from(txcounty)

Get a variable, but change its name:

frget medinc = median_income, from(txcounty)

Get a lot of variables:

frget median* nbus-pop, from(txcounty)

Get a lot of variables, but change their names to begin with c :

frget median* nbus-pop, prefix(c_) from(txcounty)

See [D] frget.
A more memory-efficient option is to use fralias add to create aliases instead of copies. See

[D] fralias.

How link variables work

frlink performs two actions when it creates a link:

1. It adds the link variable to the dataset in the current frame.

2. It sorts the dataset in the other frame by its match variables.

In the example above, this means that

1. frlink adds variable txcounty to the data in the current frame.

2. frlink sorts the data in frame txcounty by countyid. (It literally executes frame
txcounty: sort countyid.)

https://www.stata.com/manuals/dfrget.pdf#dfrget
https://www.stata.com/manuals/dfralias.pdf#dfralias
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Look at variable txcounty in the first observations of persons.dta in the current frame:
. list in 1/5

personid countyid income txcounty relati~e

1. 1 5 30818 5 .7038001
2. 2 3 30752 3 .4225046
3. 3 2 29673 2 .5230381
4. 4 3 32115 3 .441231
5. 5 2 31189 2 .5497603

Each observation of variable txcounty contains the observation number in frame txcounty that
matches the current observation. The above list says that

obs. 5 of frame txcounty matches obs. 1 of the current frame

obs. 3 of frame txcounty matches obs. 2 of the current frame

obs. 2 of frame txcounty matches obs. 3 of the current frame

obs. 3 of frame txcounty matches obs. 4 of the current frame

obs. 2 of frame txcounty matches obs. 5 of the current frame

. . . assuming the data in frame txcounty are sorted on countyid

Frame txcounty is the other frame. It is the other frame that must be sorted, not the data in the
current frame.

Even so, the assumption is iffy. It is true after frlink creates the linkage because frlink itself
sorts the data. And fralias add, frget, and frval() check the sort order before using the other
frame’s data so that accidents do not happen.

The only way things can go wrong are 1) if you change the contents of the link variable txcounty
or 2) you drop or modify the match variable countyid. So do not do that.

Advanced examples

Example 1 showed you how linkages are usually used. We linked person data to county data. We
could show you another example that links student data to school data and student data to county
data, but it amounts to nothing more than example 1, done twice.

We have two more examples to show you, but we admit that they are advanced and abstruse.

The first is an example in which linkage shines, but the solution is seldom useful beyond the
particular example shown.

The second concerns 1:1 linkages. If 1:1 is appropriate for your problem, you probably want
to merge the datasets, not link them. You probably want to use merge, not frlink. On occasion,
however, a situation arises where linkage is a better solution. We show you one and provide guidelines
on how to identify other such situations.

Example 2: A complex m:1 linkage

We have a dataset on families and the file is named, naturally enough, family.dta. The dataset
contains information on variables of interest, as all datasets do, but that is not what makes this
dataset interesting, so the variables are simply named x1, x2, . . . , x5. What makes this dataset
interesting is that it contains observations on related adult people. It contains adult children, parents,
and grandparents.
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Such data are notoriously difficult to process and analyze.

In the dataset, every person is identified by a person ID, called a “pid”. The data also contain the
variables pid m and pid f, which are the pids for the person’s mother and father, if they too are
in the data. The oldest generation in the data has pid m==. and pid f==..

One person in the data is person number 14982. Here are the values of ID variables for 14982:
. list pid* if pid==14982

pid pid_m pid_f

8. 14982 695966 933335

Variables pid m and pid f are the IDs of 14982’s mother and father. The mother is 695966 and
the father, 933335.

Here are the recorded ID variables for 695966, 14982’s mother:
. list pid* if pid==695966

pid pid_m pid_f

431. 695966 186484 238126

14982’s maternal grandmother is 186484 and maternal grandfather, 238126.

Let’s stay with the maternal side of the family. Here are the ID variables for 186484, 14982’s
maternal grandmother:

. list pid* if pid==186484

pid pid_m pid_f

100. 186484 . .

The grandmother’s variables have missing values for her mother’s and father’s ID, so we cannot
continue back further. Nonetheless, there are other people in this dataset just like 14982, people on
whom we have their data, their parents’ data, and their parents’ parents’ data.

frlink can link the data so that we have access to all of them. To do that, we will create six
linkages, named

linkage name meaning linkage to

f father
m mother
mm mother’s mother
mf mother’s father
fm father’s mother
ff father’s father

Once we have these six linkages, we will be able to access variables for the person, his or her
parents, and their parents. We will be able to do that using the frval() function or the fralias
add and frget commands.
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If we wanted to access x1 using function frval(), we would do so with the following:

value of x1 desired type

own value x1

mother’s value frval(m, x1)

father’s value frval(f, x1)

mother’s mother’s value frval(mm, x1)

mother’s father’s value frval(mf, x1)

father’s mother’s value frval(fm, x1)

father’s father’s value frval(ff, x1)

If we wanted to copy all five variables of interest to the current frame, prefixed by their relationship,
we would do so with the following:

value of x1-x5 desired type

own value x1-x5

mother’s variables frget x1-x5, from(m) prefix(m)

father’s variables frget x1-x5, from(f) prefix(f)

mother’s mother’s variables frget x1-x5, from(mm) prefix(mm)

mother’s father’s variables frget x1-x5, from(mf) prefix(mf)

father’s mother’s variables frget x1-x5, from(fm) prefix(fm)

father’s father’s variables frget x1-x5, from(ff) prefix(ff)

Instead, we can alias all five variables of interest to the current frame, prefixed by their relationship,
with the following:

value of x1-x5 desired type

own value x1-x5

mother’s variables fralias add x1-x5, from(m) prefix(m)

father’s variables fralias add x1-x5, from(f) prefix(f)

mother’s mother’s variables fralias add x1-x5, from(mm) prefix(mm)

mother’s father’s variables fralias add x1-x5, from(mf) prefix(mf)

father’s mother’s variables fralias add x1-x5, from(fm) prefix(fm)

father’s father’s variables fralias add x1-x5, from(ff) prefix(ff)

If we combined all 5 variables of interest from all 7 sources, we would have a total of 35 variables
of interest. We could form that dataset by typing just six commands. Before we can do any of this,
we must build the linkages.
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To build them, we start in the usual way. We load the data of interest into the current frame and
load into the other frame the data we want to link:

. clear all

. use https://www.stata-press.com/data/r18/family
(Fictional family linkage data)

. frame create family

. frame family: use https://www.stata-press.com/data/r18/family // yes, the same data
(Fictional family linkage data)

We are in fact going to link family.dta to itself, but frlink requires that linkages be made
from the current frame to the other frame. Nonetheless, we will be able to create all six linkages to
that single frame.

To create the first two linkages, we type
. frlink m:1 pid_m, frame(family pid) generate(m)
(355 observations in frame default unmatched)

. frlink m:1 pid_f, frame(family pid) generate(f)
(355 observations in frame default unmatched)

Because we are linking people to people, your natural inclination might be that the matching needs
to be 1:1. That was our inclination too, but when we tried, frlink complained that the data were
m:1 and refused. It took us a minute to realize why. Some of the people in the data have the same
mother or father.

We have shown you the commands to build the first two linkages. Four remain to be built. What
is different about these four is that the current frame does not contain the necessary match variable.
Think about forming the mm linkage, which is the maternal grandmother of a person in the current
frame. We need a variable containing the ID of the current person’s mother’s mother or frval(m,
pid m). We could call the variable pid mm, and construct it and the related match variables by
typing

. generate pid_mm = frval(m, pid_m)
(539 missing values generated)

. generate pid_mf = frval(m, pid_f)
(539 missing values generated)

. generate pid_fm = frval(f, pid_m)
(539 missing values generated)

. generate pid_ff = frval(f, pid_f)
(539 missing values generated)

Alternatively, we could have obtained them by using the frget command:
frget pid_mm = pid_m, from(m)
frget pid_mf = pid_f, from(m)
frget pid_fm = pid_m, from(f)
frget pid_ff = pid_f, from(f)

It does not matter which we use.

Once we have the match variables, we can form the linkages:
. frlink m:1 pid_mm, frame(family pid) generate(mm)
(539 observations in frame default unmatched)

. frlink m:1 pid_mf, frame(family pid) generate(mf)
(539 observations in frame default unmatched)

. frlink m:1 pid_fm, frame(family pid) generate(fm)
(539 observations in frame default unmatched)

. frlink m:1 pid_ff, frame(family pid) generate(ff)
(539 observations in frame default unmatched)
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At this point, we are basically done. We are interested, however, in the sample of people for whom
data on their parents and grandparents are available. We can drop the other people from the data in
the current frame.

. drop if pid_m ==. | pid_f ==.
(355 observations deleted)

. drop if pid_mm==. | pid_mf==.
(184 observations deleted)

. drop if pid_fm==. | pid_ff==.
(0 observations deleted)

. count // number of observations remaining
100

We now have our data ready for analysis.

What are the chances that an even 100 people would be left? They would be nil if this were real
data. We manufactured these data, however, so there is no reason to continue to analyze variables x1
through x5. They contain fictional values, and random.

Example 3: A 1:1 linkage, a simple solution to a hard problem

Most 1:1 cases are better handled by merge. Here is an exception.

You are working with hospital patient data, file discharge1.dta. The file contains variable
patientid among other variables, and you receive additional data on the same patients, file
discharge2.dta. Loading the two datasets into separate frames and linking them is easy to do.

. use https://www.stata-press.com/data/r18/discharge1, clear

. frame create discharge2

. frame discharge2: use https://www.stata-press.com/data/r18/discharge2

. frlink 1:1 patientid, frame(discharge2)

But should we be doing this at all? Would it not be better to merge discharge1.dta with
discharge2.dta? It usually would be. It would be if you received the following note from George:

Kathy: Here are new data on the 1,980 patients. The data contain the five variables
that were previously omitted. – George.

merge will allow you to add these five new variables. Use it.

The note you received from George, however, reads

Kathy: Here are the data on the 1,980 patients. You’re not going to believe this, but
even though they said there are five values that needed to be updated, they sent all the
data again! Verify their claim, and tell me which variables they updated. – George.
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This is a case for linking because you will not have to rename the 19 variables so that you can
verify their claim. The link solution of handling George’s request is easier:

. use https://www.stata-press.com/data/r18/discharge1, clear
(Fictional WA hospital discharges)

. frame create discharge2

. frame discharge2: use https://www.stata-press.com/data/r18/discharge2
(Fictional WA hospital discharges)

. frlink 1:1 patientid, frame(discharge2)
(all observations in frame default matched)

. foreach v of varlist patientid-proc3code {
2. quietly count if ‘v’ != frval(discharge2, ‘v’, discharge2)
3. if (r(N)!=0) {
4. display "‘v’: " r(N) " value(s) changed"
5. }
6. }

sex: 1 value(s) changed
los: 1 value(s) changed
billed: 1 value(s) changed
diag1code: 1 value(s) changed
diag2code: 1 value(s) changed

It turns out that the updated data are just as it was represented to be.

These data had two features that made them a candidate for linking rather than merging:

1. The sample of interest was the observations in the original data, the data in the current
frame, and

2. lots of variables in the two datasets had the same names, and we were interested in both
sets of values.

Let’s now think about other examples. Only some 1:1 problems will have feature 1. 1:1 matches
in which you will subsequently analyze the merged data— merge==3 in merge speak—will all have
feature 1.

Feature 2 arises less often. In the example, the new data updated the old. Linkages make comparing
values easier when the names are the same. Linkages in general make it easier when variable names
are the same, even when there is no reason to compare them. Imagine that both datasets contain a
variable called income, but they are different measures of income. In the combined result, you want
them both, so you need to rename one of them. Now imagine that there are hundreds of variables
and a handful share the same names across datasets even though they contain different concepts of
whatever is being measured. Linkages make renaming them easy.

First, link the data:

. frlink personid, frame(newdata)

Then, try to copy all the variables:

. frget *, from(newdata)

The command will either work or tell you the variables that have the same name in both frames.
Imagine that frget lists income and six other variables. You want to copy income, so you rename
the variable:

. frame newdata: rename income farmincome

Now try again:

. frget *, from(newdata)
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Of course the command does nothing but repeat the six variables that still have the same names
in both frames. You review the list one last time and decide that you still do not care about those six
variables. Then you type

. frget *, from(newdata) exclude(‘r(dups)’)

This time it works! When variables have the same name, in addition to listing them, frget saves
their names in r(dups). That is why we typed frget *, from(newdata) when we knew we had
not yet resolved all the duplicate names. We wanted frget to set r(dups) so that we could next
tell frget to copy all the variables, except exclude(‘r(dups)’).

Now that we have gotten the variables of interest, we break the link:

. drop newdata

. frame drop newdata

The data in memory are now the same data that we could have coaxed merge into producing had
we done everything right.

Stored results
frlink m:1 and frlink 1:1 store the following in r()

Scalars
r(unmatched) # of observations in the current frame unable to be matched

frlink dir stores the following in r():

Scalars
r(n vars) # of link variables

Macros
r(vars) space-separated list of link-variable names

frlink describe stores nothing in r().

frlink rebuild stores the following in r():

Scalars
r(unmatched) # of observations in the current frame unable to be matched

Also see
[D] fralias — Alias variables from linked frames

[D] frget — Copy variables from linked frame

[D] frames intro — Introduction to frames

[D] merge — Merge datasets
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