
Title stata.com

Datetime — Date and time values and variables

Description Quick start Syntax Remarks and examples References
Also see

Description

This entry provides a complete overview of Stata’s date and time values. We discuss functions
used to obtain Stata dates, including string-to-numeric conversions and conversions among different
types of dates and times.

Stata’s date and time values need to be formatted so they look like the dates and times we are
familiar with. We show basic formatting options here, but more details can be found in [D] Datetime
display formats.

[D] Datetime conversion has more details on converting dates and times stored as strings to
numerically encoded Stata dates and times.

[D] Datetime values from other software discusses getting Stata dates from dates created by other
software.

[D] Datetime durations describes functions designed to get durations (for example, ages) from
two Stata dates or to express a duration in different units.

[D] Datetime relative dates describes functions that return dates based on other dates, for example,
the date of a birthday in another year.

[D] Datetime business calendars describes business calendars—using dates with nonbusiness days
(for example, weekends and holidays) removed. You can use existing calendars or create your own;
see [D] Datetime business calendars creation.

For an alphabetical listing of all the datetime functions, see [FN] Date and time functions.

Quick start
Convert the string variable strdate, with dates such as "January 1, 2020", to a numerically

encoded Stata date
generate numdate = date(strdate, "MDY")

Format numdate to make it readable when displayed
format numdate %td

Convert the string variable strtime, with dates and times such as "January 1,2020 10:30 am",
to a numerically encoded Stata datetime variable

generate double numtime = clock(strtime, "MDYhm")

Format numtime to make it readable when displayed
format numtime %tc

Convert the string variable strmonthly, with monthly dates such as "2012-04", to a Stata date,
and format it to make it readable when displayed

generate nummonth = monthly(strmonthly, "YM")
format nummonth %tm

1

http://stata.com
https://www.stata.com/manuals/ddatetimedisplayformats.pdf#dDatetimedisplayformats
https://www.stata.com/manuals/ddatetimedisplayformats.pdf#dDatetimedisplayformats
https://www.stata.com/manuals/ddatetimeconversion.pdf#dDatetimeconversion
https://www.stata.com/manuals/ddatetimevaluesfromothersoftware.pdf#dDatetimevaluesfromothersoftware
https://www.stata.com/manuals/ddatetimedurations.pdf#dDatetimedurations
https://www.stata.com/manuals/ddatetimerelativedates.pdf#dDatetimerelativedates
https://www.stata.com/manuals/ddatetimebusinesscalendars.pdf#dDatetimebusinesscalendars
https://www.stata.com/manuals/ddatetimebusinesscalendarscreation.pdf#dDatetimebusinesscalendarscreation
https://www.stata.com/manuals/fndateandtimefunctions.pdf#fnDateandtimefunctions

2 Datetime — Date and time values and variables

List observations for which numdate is prior to February 15, 2013
list if numdate < td(15/2/2013)

Create a monthly date variable from numeric variables year and month

generate monthly = ym(year,month)

Create a daily date variable from the datetimes stored in numtime

generate dateoftime = dofc(numtime)

Create a monthly date variable from the daily dates stored in numdate

generate monthlyofdate = mofd(numdate)

Create a new variable with the month of the daily dates stored in numdate

generate monthnum = month(numdate)

Syntax
Syntax is presented under the following headings:

Types of dates and how they are displayed
How Stata dates are stored
Converting dates stored as strings to Stata dates
Formatting Stata dates for display
Creating dates from components
Converting among units
Extracting time-of-day components from datetimes
Extracting date components from daily dates
Typing dates into expressions

Types of dates and how they are displayed

Dates and times can take many forms; below, we list the types of dates that are supported in Stata.
Note that throughout our documentation, we use the term “datetime” to refer to variables that record
time or date and time.

Date type Examples

datetime 20jan2010 09:15:22.120

date 20jan2010, 20/01/2010, . . .

weekly date 2010w3
monthly date 2010m1
quarterly date 2010q1
half-yearly date 2010h1
yearly date 2010

The styles of the dates in the table above are merely examples; dates can be displayed in a number
of ways. Perhaps you prefer 2010.01.20; Jan. 20, 2010; 2010-1; etc.

Datetime — Date and time values and variables 3

How Stata dates are stored
Stata dates are numeric values that record durations (positive or negative) from 01jan1960. Below,

we list the numeric values corresponding to the dates displayed in the table in the previous section.

Stata date type Examples Units

datetime/c 1,579,598,122,120 milliseconds since 01jan1960 00:00:00.000,
assuming 86,400 s/day

datetime/C 1,579,598,146,120 milliseconds since 01jan1960 00:00:00.000,
adjusted for leap seconds*

date 18,282 days since 01jan1960 (01jan1960 = 0)
weekly date 2,601 weeks since 1960w1
monthly date 600 months since 1960m1
quarterly date 200 quarters since 1960q1
half-yearly date 100 half-years since 1960h1
yearly date 2010 years since 0000

* Datetime/C is equivalent to coordinated universal time (UTC). In UTC, leap seconds are
periodically inserted because the length of the mean solar day is slowly increasing. See
Why there are two datetime encodings in [D] Datetime conversion.

Stata dates are stored as regular Stata numeric variables.

You can convert dates stored as strings to Stata dates by using the string-to-numeric conversion
functions; see Converting dates stored as strings to Stata dates.

You can make Stata dates readable by placing the appropriate %fmt on the numeric variable; see
Formatting Stata dates for display.

You can convert from one Stata date type to another by using conversion functions; see Converting
among units.

Storing dates as numeric values is convenient because you can subtract them to obtain time between
dates, for example,

datetime2 − datetime1= milliseconds between datetime1 and datetime2
(divide by 1,000 to obtain seconds)

date2 − date1 = days between date1 and date2

week2 − week1 = weeks between week1 and week2

month2 − month1 = months between month1 and month2

half2 − half1 = half-years between half1 and half2

year2 − year1 = years between year1 and year2

For time differences in other units, for example, the number of years between date1 and date2,
see [D] Datetime durations.

https://www.stata.com/manuals/ddatetimeconversion.pdf#dDatetimeconversionRemarksandexamplesWhytherearetwodatetimeencodings
https://www.stata.com/manuals/ddatetimeconversion.pdf#dDatetimeconversion
https://www.stata.com/manuals/ddatetimedurations.pdf#dDatetimedurations

4 Datetime — Date and time values and variables

Converting dates stored as strings to Stata dates

To convert dates and times stored as strings to Stata dates and times, use one of the functions
listed below.

Stata date type Function Required variable precision

datetime/c clock(str, mask) double

datetime/C Clock(str, mask) double

date date(str, mask) float or long

weekly date weekly(str, mask)* float or int
monthly date monthly(str, mask)* float or int
quarterly date quarterly(str, mask)* float or int
half-yearly date halfyearly(str, mask)* float or int
yearly date yearly(str, mask) float or int

* str is a string variable or a literal string enclosed in quotes.

Within each function, you need to specify the string you want to convert and the order in which
the date and time components appear in that string.

The string to be converted with clock(), Clock(), and date() may contain dates and times
that are run together or include punctuation marks between the components. However, the functions
marked with an asterisk require that the string date contain a space or punctuation between the year and
the other component if the string consists only of numbers. For more information on how punctuation
is handled and other details related to these conversion functions, see [D] Datetime conversion.

The order of the components is specified within quotes, such as "YMD", and is referred to as a
mask. The mask may contain the following elements:

Mask element Component

D day
W week
M month
Q quarter
H half-year
Y year
19Y two-digit year in the 1900s
20Y two-digit year in the 2000s
h hour
m minute
s second
placeholder for something to be ignored

https://www.stata.com/manuals/ddatetimeconversion.pdf#dDatetimeconversion

Datetime — Date and time values and variables 5

Examples:

1. You have datetimes stored in the string variable mystr, an example being 2010.07.12
14:32. To convert this to a Stata datetime/c variable, you type

. generate double eventtime = clock(mystr, "YMDhm")

The string contains the year, month, and day followed by the hour and minute, so you
specify the mask "YMDhm".

2. You have datetimes stored in mystr, an example being 2010.07.12 14:32:12. You type

. generate double eventtime = clock(mystr, "YMDhms")

Mask element s specifies seconds. In example 1, there were no seconds; in this example,
there are.

3. You have datetimes stored in mystr, an example being 2010 Jul 12 14:32. You type

. generate double eventtime = clock(mystr, "YMDhm")

This is the same command that you typed in example 1. In the mask, you specify the order
of the components; Stata figures out the style for itself. In example 1, months were numeric.
In this example, they are spelled out (and happen to be abbreviated).

4. You have datetimes stored in mystr, an example being July 12, 2010 2:32 PM. You type

. generate double eventtime = clock(mystr, "MDYhm")

Stata automatically looks for AM and PM, in uppercase and lowercase, with and without
periods.

5. You have datetimes stored in mystr, an example being 7-12-10 14.32. The 2-digit year
is to be interpreted as being prefixed with 20. You type

. generate double eventtime = clock(mystr, "MD20Yhm")

6. You have datetimes stored in mystr, an example being 14:32 on 7/12/2010. You type

. generate double eventtime = clock(mystr, "hm#MDY")

The # sign between m and M means “ignore one thing between minute and month”, which
in this case is the word “on”. Had you omitted the # from the mask, the new variable
eventtime would have contained missing values.

7. You have a date stored in mystr, an example being 22/7/2010. In this case, you want to
create a Stata date instead of a datetime. You type

. generate eventdate = date(mystr, "DMY")

Typing

. generate double eventtime = clock(mystr, "DMY")

would have worked, too. Variable eventtime would contain a different coding from that
contained by eventdate; namely, it would contain milliseconds from 1jan1960 rather than
days (1,595,376,000,000 rather than 18,465). Datetime value 1,595,376,000,000 corresponds
to 22jul2010 00:00:00.000.

6 Datetime — Date and time values and variables

Formatting Stata dates for display

While Stata dates are stored as regular Stata numeric variables, they are formatted so they look
like the dates and times we are familiar with. Each type of date has a corresponding display format,
and we list them below:

Stata date type Display format

datetime/c %tc

datetime/C %tC

date %td

weekly date %tw

monthly date %tm

quarterly date %tq

half-yearly date %th

yearly date %ty

The display formats above are the simplest forms of each of the Stata dates. You can control how
each type of Stata date is displayed; see [D] Datetime display formats.

Examples:

1. You have datetimes stored in string variable mystr, an example being 2010.07.12 14:32.
To convert this to a Stata datetime/c variable and make the new variable readable when
displayed, you type

. generate double eventtime = clock(mystr, "YMDhm")

. format eventtime %tc

2. You have a date stored in mystr, an example being 22/7/2010. To convert this to a Stata
date variable and make the new variable readable when displayed, you type

. generate eventdate = date(mystr, "DMY")

. format eventdate %td

https://www.stata.com/manuals/ddatetimedisplayformats.pdf#dDatetimedisplayformats

Datetime — Date and time values and variables 7

Creating dates from components

If you have components of your date stored separately, you can use the following functions to
create a single date variable. Note that each component used in this function must be numeric; you
can specify numeric variables or simply digits.

Stata date type Function to build from components

datetime/c mdyhms(M, D, Y, h, m, s)*
dhms(ed, h, m, s)*†

hms(h, m, s)*

datetime/C Cmdyhms(M, D, Y, h, m, s)*
Cdhms(ed, h, m, s)*†

Chms(h, m, s)*

date mdy(M, D, Y)
dmy(D, M, Y)

weekly date yw(Y, W)

monthly date ym(Y, M)

quarterly date yq(Y, Q)
half-yearly date yh(Y, H)

yearly date y(Y)

* Stata datetime variables must be stored as doubles.
† ed is a Stata date with a month, day, and year component.

Examples:

1. Your dataset has three variables, mo, da, and yr, with each variable containing a date
component in numeric form. To create a date variable from these components, you type

. generate eventdate = mdy(mo, da, yr)

. format eventdate %td

If you prefer the ordering day, month, and year, you can use dmy() instead of mdy():

. generate eventdate = dmy(da, mo, yr)

. format eventdate %td

2. Your dataset has two numeric variables, mo and yr. To create a date variable corresponding
to the first day of the month, you type

. generate eventdate = mdy(mo, 1, yr)

. format eventdate %td

3. Your dataset has two numeric variables, da and yr, and one string variable, month,
containing the spelled-out month. In this case, do not use the building-from-component
functions. Instead, construct a new string variable with these components, and then convert
the string to a Stata date using the conversion functions:

. generate str work = month + " " + string(da) + " " + string(yr)

. generate eventdate = date(work, "MDY")

. format eventdate %td

8 Datetime — Date and time values and variables

Converting among units

The table below lists the functions for converting one type of date and time to another. Because
there are not official functions for every possible conversion, we have also included the functions
you can nest instead to obtain those conversions. Similarly, for any other conversion not listed here,
you can use two functions, going through date or datetime as appropriate. For example, to obtain a
monthly date from a datetime/c variable, you would use mofd(dofc(varname)).

To:
From: datetime/c datetime/C date
datetime/c Cofc() dofc()

datetime/C cofC() dofC()

date cofd() Cofd()

To:
From: date weekly monthly quarterly
date wofd() mofd() qofd()

weekly dofw() mofd(dofw()) qofd(dofw())

monthly dofm() wofd(dofm()) qofd(dofm())

quarterly dofq() wofd(dofq()) mofd(dofq())

To:
From: date half-yearly yearly
date hofd() yofd()

half-yearly dofh()

yearly dofy()

Note that if you are converting to a date type for which you do not have all the components, those
missing elements will be set to their defaults. For example, converting a yearly date to a weekly date
would give you the first week of each year. Converting a quarterly date to a monthly date would give
you the first month of each quarter, along with the year, of course. Below, we list the defaults for
the date and time components:

Date component Default

year 1960

half-year 1

quarter 1

month 1
week 1
day 01

hour 00
minute 00
second 00

Datetime — Date and time values and variables 9

Examples:

1. You have the Stata datetime/c variable eventtime and wish to create the new variable
eventdate containing just the date from the datetime variable. You type

. generate eventdate = dofc(eventtime)

. format eventdate %td

2. You have the daily date eventdate and wish to create the new datetime/c variable eventtime
from it. For this unusual case, you can even type

. generate double eventtime = cofd(eventdate)

. format eventtime %tc

The time components of the new variable will be set to the default 00:00:00.000.

3. You have the Stata quarterly variable eventqtr and wish to create the new Stata date
variable eventdate from it. You type

. generate eventdate = dofq(eventqtr)

. format eventdate %tq

The new variable, eventdate, will contain 01jan dates for quarter 1, 01apr dates for
quarter 2, 01jul dates for quarter 3, and 01oct dates for quarter 4.

4. You have the datetime/c variable admittime and wish to create the quarterly variable
admitqtr from it. You type

. generate admitqtr = qofd(dofc(admittime))

. format admitqtr %tq

Because there is no qofc() function, you use qofd(dofc()).

Extracting time-of-day components from datetimes

In the table below, we list the functions used to extract time-of-day components from datetimes.
If you are working with standard datetimes, use the functions in the datetime/c column. If you are
working with leap second–adjusted times, use the functions in the datetime/C column.

Function
Desired component datetime/c datetime/C Example

hour of day hh(etc) hhC(etC) 14

minutes of day mm(etc) mmC(etC) 42

seconds of day ss(etc) ssC(etC) 57.123

year, month, day, clockpart(etc,su) Clockpart(etC,su) 2020
hour, minute, second,
or millisecond

etc is a Stata datetime/c value.
etC is a Stata datetime/C value (UTC time with leap seconds).
su is a string specifying the time unit. su can be string "year" or "y" for year;
"month" or "mon" for month; "day" or "d" for day; "hour" or "h" for hour;
"minute" or "min" for minute; "second", "sec", or "s" for second; and
"millisecond" or "ms" for millisecond (case insensitive).

Notes:
0 ≤ hh(etc) ≤ 23, 0 ≤ hhC(etC) ≤ 23
0 ≤ mm(etc) ≤ 59, 0 ≤ mmC(etC) ≤ 59
0 ≤ ss(etc) < 60, 0 ≤ ssC(etC) < 61 (sic)

10 Datetime — Date and time values and variables

Example:

1. You have the Stata datetime/c variable admittime. You wish to create the new variable
admithour equal to the hour and fraction of hour within the day of admission. You type

. generate admithour = hh(admittime) + mm(admittime)/60
> + ss(admittime)/3600

2. You have the Stata datetime/C variable admitTime. You wish to create the new variable
admityear to record the year of admission. You type

. generate admityear = Clockpart(admitTime, "year")

See [D] Datetime durations for other functions that can be used to calculate durations.

Extracting date components from daily dates

You might be working with dates that have more information than you need. For example, daily
dates refer to dates that have a month, day, and year component. If you want to refer only to the
month, or year, of a daily date, you can use the extraction functions below.

Desired component Function* Example†

calendar year year(ed) 2013
datepart(ed, "year") 2013

calendar month month(ed) 7
datepart(ed, "month") 7

calendar day day(ed) 5
datepart(ed, "day") 5

day of week dow(ed) 2
(0=Sunday)

Julian day of year doy(ed) 186
(1=first day)

week within year week(ed) 27
(1=first week)

quarter within year quarter(ed) 3
(1=first quarter)

half within year halfyear(ed) 2
(1=first half)

* ed is a Stata date with a month, day, and year component.
† All examples are with ed = mdy(7,5,2013).

All functions require a numeric Stata daily date as an argument. A string variable cannot be specified
as the date. To extract components from other Stata date types, use the appropriate conversion function
to convert to a daily date. For example, quarter(dofq(qvar))would return the quarter of the quarterly
date values stored in qvar.

https://www.stata.com/manuals/ddatetimedurations.pdf#dDatetimedurations

Datetime — Date and time values and variables 11

Examples:

1. You wish to obtain the day of week Sunday, Monday, . . . corresponding to the daily date
variable eventdate. You type

. generate day_of_week = dow(eventdate)

The new variable, day of week, contains 0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

2. You wish to obtain the day of week Sunday, Monday, . . . corresponding to the datetime/c
variable eventtime. You type

. generate day_of_week = dow(dofc(eventtime))

3. You have the daily date variable evdate and wish to create the new date variable evdate r
from it. evdate r will contain the same date as evdate but rounded back to the first of
the month. You type

. generate evdate_r = mdy(month(evdate), 1, year(evdate))

In the above solution, we used the date-component extraction functions month() and year()
and used the build-from-components function mdy().

Typing dates into expressions

You can type date values by just typing the number, such as 16,237 or 1,402,920,000,000, as in

. generate before = cond(hiredon < 16237, 1, 0) if !missing(hiredon)

. drop if admittedon < 1402920000000

Easier to type is

. generate before = cond(hiredon < td(15jun2004), 1, 0) if !missing(hiredon)

. drop if admittedon < tc(15jun2004 12:00:00)

You can type Stata date values by typing the date inside td(), as in td(15jun2004).

You can type Stata datetime/c values by typing the datetime inside tc(), as in tc(15jun2004
12:00:00).

td() and tc() are called pseudofunctions because they translate what you type into their numerical
equivalents. Pseudofunctions require only that you specify the datetime components in the expected
order, so rather than 15jun2004 above, we could have specified 15 June 2004, 15-6-2004, or 15/6/2004.

The pseudofunctions and their expected component order are

Desired date type Pseudofunction

datetime/c tc([day-month-year] hh:mm[:ss [.sss]])
datetime/C tC([day-month-year] hh:mm[:ss [.sss]])
date td(day-month-year)
weekly date tw(year-week)
monthly date tm(year-month)
quarterly date tq(year-quarter)
half-yearly date th(year-half)
yearly date none necessary; years are numeric and can be typed directly

12 Datetime — Date and time values and variables

Note that the day-month-year in tc() and tC() are optional. If you omit them, 01jan1960 is
assumed. Doing so produces time as an offset, which can be useful in, for example,

. generate six_hrs_later = eventtime + tc(6:00)

Note that string-to-date functions can be used in expressions with literal strings. For example,
date("15jun2004","DMY") gives the same result as td(15jun2004).

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Example 1: Converting string datetimes to Stata datetimes
Example 2: Extracting date components
Example 3: Building dates from components
Example 4: Converting among date types
Example 5: Using dates in expressions

Introduction

To use dates in Stata, you must first convert what you have to a Stata date. Stata dates are numbers,
so they can easily be translated from, say, daily dates to monthly dates. Even so, they can be formatted
so that they look like the dates you are familiar with. If you have dates stored as strings, you must
first convert them to Stata dates.

Converting a string date to a Stata date is as simple as telling Stata the string date and the order
of the components. For example, we have a fictional dataset on patients who visited a local hospital.
We have their birthdates, the dates of their visits, the reasons for their visits, and the dates they were
discharged. All dates and times are stored as strings.

. use https://www.stata-press.com/data/r18/visits
(Fictional hospital visit data)

. describe

Contains data from https://www.stata-press.com/data/r18/visits.dta
Observations: 5 Fictional hospital visit data

Variables: 7 27 Aug 2022 22:56

Variable Storage Display Value
name type format label Variable label

patid byte %9.0g Patient ID
dateofbirth str9 %9s Date of birth
reason str15 %15s Reason for visit
admit_d str8 %9s Admission date
admit_t str17 %17s Admission date and time
discharge_d str9 %9s Discharge date
discharge_t str14 %14s Discharge date and time

Sorted by:

http://stata.com

Datetime — Date and time values and variables 13

. list admit_d dateofbirth

admit_d dateofb~h

1. 20110625 May152001
2. 20110313 Apr011999
3. 20110409 Nov151975
4. 20120211 Aug261960
5. 20120801 Dec161987

If we wanted to sort our data by birthdates or use these dates to compute a patient’s age, we
would need these variables to be numeric, not strings. So let’s create numeric Stata dates from the
birthdates and dates of admission:

. generate admit = date(admit_d, "YMD")

. generate dob = date(dateofbirth, "MDY")

. list admit_d admit dateofbirth dob

admit_d admit dateofb~h dob

1. 20110625 18803 May152001 15110
2. 20110313 18699 Apr011999 14335
3. 20110409 18726 Nov151975 5797
4. 20120211 19034 Aug261960 238
5. 20120801 19206 Dec161987 10211

For dates of admission, we told Stata that the string date was stored in admit d and that the date
was stored in the following order: year, month, day (YMD). Similarly, for birthdates we specify the
string date and the order of the components: month, day, and year (MDY). It does not matter whether
the month is written as a number, spelled out completely, or abbreviated to three letters.

You might be surprised by the values listed. The numbers represent the days elapsed since January 1,
1960, Stata’s base date. Most software store dates and times in this manner, but they differ in the
date they choose as a base. For us to understand the dates that these values represent, we apply a
display format. All datetime display formats begin with a %t and contain a second letter representing
the type of date: %td for daily dates, %tw for weekly dates, and so on. In our case, we have daily
dates, so we use the %td format.

. format admit dob %td

. list admit dob

admit dob

1. 25jun2011 15may2001
2. 13mar2011 01apr1999
3. 09apr2011 15nov1975
4. 11feb2012 26aug1960
5. 01aug2012 16dec1987

If we instead had weekly dates, monthly dates, or quarterly dates, we would use the appropriate
string-to-numeric conversion function to create the numeric variable and the appropriate display format.
For more ways to format the dates above, see [D] Datetime display formats.

This is a simple example to get us started. The key points are that we want our dates to be stored
numerically and formatted so that they look like the dates we are familiar with.

https://www.stata.com/manuals/ddatetimedisplayformats.pdf#dDatetimedisplayformats

14 Datetime — Date and time values and variables

Below, we will discuss how to work with other types of dates. We will explore dates that have
a time component, dates with components stored in multiple variables, and dates that have more
components than we wish to work with. So whether you need to build, extract, or convert among
different types of dates, you will learn how to do so with the examples that follow.

Example 1: Converting string datetimes to Stata datetimes

In this dataset, we also have string variables that record the date and time of admission and
discharge:

. codebook admit_t discharge_t

admit_t Admission date and time

Type: String (str17)

Unique values: 5 Missing "": 0/5

Tabulation: Freq. Value
1 "20110313 8:30:45"
1 "20110409 10:17:08"
1 "20110625 5:15:06"
1 "20120211 10:30:12"
1 "20120801 6:45:59"

Warning: Variable has embedded blanks.

discharge_t Discharge date and time

Type: String (str14)

Unique values: 5 Missing "": 0/5

Tabulation: Freq. Value
1 "20110326 2:15"
1 "20110409 19:35"
1 "20110629 10:27"
1 "20120216 2:15"
1 "20120802 11:59"

Warning: Variable has embedded blanks.

Let’s convert these to Stata dates. Regardless if we are working with simple dates or dates and
times, the process is the same. We are going to specify the string we want to convert and the order of
the components. The only difference between this example and the previous example is the function;
because these variables record the date and time, we will now use the clock() function, and the
variables we generate will be referred to as datetime variables.

. generate double admit_time = clock(admit_t, "YMDhms")

. generate double disch_time = clock(discharge_t, "YMDhm")

. format admit_time disch_time %tc

. list admit_time disch_time

admit_time disch_time

1. 25jun2011 05:15:06 29jun2011 10:27:00
2. 13mar2011 08:30:45 26mar2011 02:15:00
3. 09apr2011 10:17:08 09apr2011 19:35:00
4. 11feb2012 10:30:12 16feb2012 02:15:00
5. 01aug2012 06:45:59 02aug2012 11:59:00

Datetime — Date and time values and variables 15

Note that the string variable admit t contained the hour, minutes, and seconds, whereas the
string variable discharge t contained only the hour and minutes. This is why we did not specify
an s in the list of components for discharge t, and it is also why the seconds are set to zero for
disch time.

These variables now record the milliseconds since 01jan1960 00:00:00.000, assuming 86,400
seconds per day. You might have guessed that these values will be quite large, which is why we need
to use the most precise storage type in Stata, double.

We have a lot of information in these variables, but we can choose to view just the portion in
which we are interested by modifying the display format. For example, below we specify that we
want to display only the hour and minute for the time of discharge, and we list the newly formatted
time alongside the original string variable.

. format disch_time %tcHH:MM

. list discharge_t disch_time

discharge_t disch_~e

1. 20110629 10:27 10:27
2. 20110326 2:15 02:15
3. 20110409 19:35 19:35
4. 20120216 2:15 02:15
5. 20120802 11:59 11:59

We created the datetime variables above assuming there are 86,400 seconds in a day. This is one
way to record time; another way would be to use UTC. UTC times are adjusted for leap seconds and
can be obtained by modifying our commands just slightly, as follows:

. generate double admit_Time = Clock(admit_t, "YMDhms")

. format admit_Time %tC

Notice that the Clock() function and the %tC display format both contain a capital C. When you
are working with standard datetimes, you will use functions with a lowercase c, and for UTC times,
you will use functions with an uppercase C.

Example 2: Extracting date components

Suppose we want to work with just the month or year of admission. We can extract these components
from our Stata date variable:

. generate admonth = month(admit)

. generate adyear = year(admit)

. list admit admonth adyear

admit admonth adyear

1. 25jun2011 6 2011
2. 13mar2011 3 2011
3. 09apr2011 4 2011
4. 11feb2012 2 2012
5. 01aug2012 8 2012

16 Datetime — Date and time values and variables

Now, for each year, we can look at the patients that were admitted in the first three months and
the reason for their visit:

. bysort adyear: list patid reason if admonth < 4

-> adyear = 2011

patid reason

2. 2 chest pain

-> adyear = 2012

patid reason

1. 4 abdominal pain

Example 3: Building dates from components

If we are concerned only with the month and year of admission, we can also create a monthly
date with the two newly created variables above:

. generate monthly = ym(adyear,admonth)

. format monthly %tm

. list admit monthly

admit monthly

1. 25jun2011 2011m6
2. 13mar2011 2011m3
3. 09apr2011 2011m4
4. 11feb2012 2012m2
5. 01aug2012 2012m8

Because we now have monthly dates, we apply the %tm display format.

The ym() function shown above is useful when you have components of a date stored separately.
In fact, we could have created this monthly date variable by nesting functions:

. generate monthly2 = ym(year(admit), month(admit))

. format monthly2 %tm

Instead of generating those intermediary variables to extract the month and year of the daily date,
we simply used the extraction functions year() and month() within the ym() function. Either of
the two methods shown above will give you the same result, but if your goal is to convert a daily
date variable to a monthly date, you can use the mofd() conversion function, as demonstrated in the
next example.

Datetime — Date and time values and variables 17

Example 4: Converting among date types

Often, we need to modify the data from its raw form for our purposes. For example, suppose our
dataset included only the datetime variable admit time but we were interested only in the date. We
could type

. generate dateoftime = dofc(admit_time)

. format dateoftime %td

. list admit_time dateoftime

admit_time dateoft~e

1. 25jun2011 05:15:06 25jun2011
2. 13mar2011 08:30:45 13mar2011
3. 09apr2011 10:17:08 09apr2011
4. 11feb2012 10:30:12 11feb2012
5. 01aug2012 06:45:59 01aug2012

Or we might want to create a monthly date from the date of admission:

. generate monthofdate = mofd(admit)

. format monthofdate %tm

. list admit monthofdate

admit montho~e

1. 25jun2011 2011m6
2. 13mar2011 2011m3
3. 09apr2011 2011m4
4. 11feb2012 2012m2
5. 01aug2012 2012m8

Several functions are available for converting from one type of date and time to another. But, if
one is not available for what you need, you can nest functions to obtain the conversion you want.
For example, suppose we would like to convert a monthly date to a quarterly date. There is no direct
function for this conversion, so instead we type

. generate quarterly = qofd(dofm(monthofdate))

. format quarterly %tq

. list monthofdate quarterly

montho~e quarte~y

1. 2011m6 2011q2
2. 2011m3 2011q1
3. 2011m4 2011q2
4. 2012m2 2012q1
5. 2012m8 2012q3

We use the dofm() function to convert the monthly date to a daily date. This daily date will contain
the month and year from the monthly date, and the day will be set to 1. This is the general rule with
datetime functions; if you are converting from one type of date to another that has more elements,
those elements are set to their defaults. The qofd() function then converts the resulting daily date
to a quarterly date.

18 Datetime — Date and time values and variables

Example 5: Using dates in expressions

Besides generating date and time variables, you might use dates in expressions. For example,
suppose we wanted to look only at observations after a certain date. Let’s list visit information for
any patients who were admitted after February 20, 2012:

. list admit patid reason if admit > td(20feb2012)

admit patid reason

5. 01aug2012 5 rapid breathing

This td() function will convert February 20, 2012, to its numeric form. Our expression is then
evaluated by comparing this numeric value with the numeric values stored in admit.

If you would like to see that underlying numeric value, you can type

. display td(20feb2012)

References
Cox, N. J. 2010. Stata tip 68: Week assumptions. Stata Journal 10: 682–685.

. 2012. Stata tip 111: More on working with weeks. Stata Journal 12: 565–569.

Cox, N. J., and C. B. Schechter. 2018. Speaking Stata: Seven steps for vexatious string variables. Stata Journal 18:
981–994.

Also see
[D] Datetime business calendars — Business calendars

[D] Datetime conversion — Converting strings to Stata dates

[D] Datetime display formats — Display formats for dates and times

[D] Datetime durations — Obtaining and working with durations

[D] Datetime relative dates — Obtaining dates and date information from other dates

[D] Datetime values from other software — Date and time conversion from other software

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

http://www.stata-journal.com/article.html?article=dm0052
https://doi.org/10.1177/1536867X1201200316
http://www.stata-journal.com/article.html?article=dm0098
https://www.stata.com/manuals/ddatetimebusinesscalendars.pdf#dDatetimebusinesscalendars
https://www.stata.com/manuals/ddatetimeconversion.pdf#dDatetimeconversion
https://www.stata.com/manuals/ddatetimedisplayformats.pdf#dDatetimedisplayformats
https://www.stata.com/manuals/ddatetimedurations.pdf#dDatetimedurations
https://www.stata.com/manuals/ddatetimerelativedates.pdf#dDatetimerelativedates
https://www.stata.com/manuals/ddatetimevaluesfromothersoftware.pdf#dDatetimevaluesfromothersoftware

