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Description

bmaregress performs Bayesian model averaging (BMA) for linear regression, which accounts for
the uncertainty of which predictors should be included in the regression model. It can be used for
inference, prediction, or model selection. Inference can be made about models based on posterior
model probabilities (PMPs), importance of predictors based on posterior inclusion probabilities (PIPs),
and regression coefficients based on their posterior distributions. bmaregress allows you to include
predictors as groups and provides several ways of dealing with interaction terms. It supports a variety
of priors for models and regression coefficients. Also see Brief motivation in Remarks and examples
of [BMA] Intro for a quick overview of BMA.

Quick start
Perform BMA for linear regression of y on x1, x2, and x3 using the default model enumeration and

the default priors
bmaregress y x1 x2 x3

Same as above, but specify binomial model prior distribution with a 0.4 probability of inclusion for
all predictors

bmaregress y x1 x2 x3, mprior(binomial 0.4)

Same as above, but with prior probability of inclusion of 0.2 for x1 and 0.6 for x2
bmaregress y x1 x2 x3, mprior(binomial x1 0.2 x2 0.6)

Specify beta-binomial model prior with shape parameters 2 and 4
bmaregress y x1 x2 x3, mprior(betabinomial 2 4)

Specify a fixed value of 0.5 for the g parameter of a Zellner’s g-prior for regression coefficients
bmaregress y x1 x2 x3, gprior(fixed 0.5)

Same as above, but use the Markov chain Monte Carlo (MCMC) model composition (MC3) sampling
algorithm with 5,000 burn-in iterations and MCMC sample size of 50,000

bmaregress y x1 x2 x3, gprior(fixed 0.5) sampling burnin(5000) ///
mcmcsize(50000)

Specify a random g parameter with a hyper-g prior distribution with hyperparameter 3
bmaregress y x1 x2 x3, gprior(hyperg 3)

Specify that predictors x2 and x3 be considered as a group, and include predictor x4 in all models
bmaregress y (x4, always) x1 (x2 x3)

Specify factor variables a and b and their interaction, and request that no heredity rules be applied
bmaregress y x1 i.a##i.b, heredity(none)
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Redisplay results in variable input order, and report only predictors with PIP above 0.5
bmaregress, inputorder pipcutoff(0.5)

Save model results to bmadata.dta on replay, and store estimates in memory as bmaest

bmaregress, saving(bmadata.dta)
estimates store bmaest

Menu
Statistics > Bayesian model averaging > Linear regression

Syntax
BMA linear regression with in–out predictors

bmaregress depvar
[

inoutvars
] [

if
] [

in
] [

weight
][

, mprior(mspec) gprior(gspec) options
]

BMA linear regression with always-included predictors

bmaregress depvar (alwaysvars, always)
[

inoutvars
] [

if
] [

in
] [

weight
][

, mprior(mspec) gprior(gspec) options
]

BMA linear regression with groups of predictors

bmaregress depvar
[
(alwaysvars, always)

] [
inoutspec

] [
if
] [

in
] [

weight
][

, mprior(mspec) gprior(gspec) options
]

inoutvars and alwaysvars are varlist.

inoutspec is a combination of in–out terms inoutterm, where inoutterm is one of in–out predictors,
varname, or one of in–out groups of predictors, (varlist). varname is always its own group; that is,
(varname) is implied. Also see Groups of predictors in Remarks and examples.

inoutvars, alwaysvars, and inoutspec may not contain duplicate terms. See [D] vl for managing large
variable lists.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesGroupsofpredictors
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamples
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https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/dvl.pdf#dvl
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options Description

Model

mprior(mspec) prior for model space; default is mprior(betabinomial)

gprior(gspec) prior for Zellner’s g parameter; default is gprior(bench)

heredity(heredspec) heredity rule for interactions of predictors;
default is heredity(strong)

groupfv group all factor variables and their interactions

Simulation

enumeration model enumeration; default with fixed g and no more than 12
predictors or groups; not allowed with random g

sampling model sampling; default with random g or with more than 12
predictors or groups

mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

minitial(minitspec) initial model for MC3 sampling; default varies
ginitial(ginitspec) initial value for random g for MC3 sampling; default varies
rseed(#) random-number seed

Reporting

saving(filename
[
, replace

]
) save simulation results to filename.dta

clevel(#) set credible interval (CrI) level for random g; default is
clevel(95)

hpd display highest posterior density (HPD) CrIs instead of the
default equal-tailed CrIs for random g[

no
]
dots suppress or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed

inputorder display results in input order; default is descending order of PIP

recentered show coefficients for recentered predictors
pipcutoff(#) lowest PIP value for displaying results; default is pipcutoff(.01)

notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

allcoef show all coefficients; equivalent to pipcutoff(0)

inoutvars, alwaysvars, and inoutspec may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, inoutvars, alwaysvars, and inoutspec may contain time-series operators; see [U] 11.4.4 Time-series varlists.
collect is allowed; see [U] 11.1.10 Prefix commands.
Only fweights are allowed; see [U] 11.1.6 weight.
allcoef does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/bmaglossary.pdf#bmaGlossaryfixedg
https://www.stata.com/manuals/bmaglossary.pdf#bmaGlossaryrandomg
https://www.stata.com/manuals/bmaglossary.pdf#bmaGlossaryrandomg
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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mspec Description

betabinomial same as betabinomial 1 1; the default
betabinomial #1 #2 beta-binomial prior using shape parameters of beta distribution
betabinomial # beta-binomial prior using expected model size #
uniform uniform prior
binomial # binomial prior with the same inclusion probability # for all

in–out terms
binomial same as binomial 0.5

binomial inoutterm #
[
. . .
]

binomial prior with specified inclusion probabilities

gspec Description

Fixed priors:
bench set g = max(n, p2); the default
uip set g = n (n is sample size); unit-information prior
ric set g = p2 (p is the number of predictors); risk inflation criterion
sqrtn set g =

√
n

fixed # set g to fixed value #
ebl empirical Bayes local estimate

Random priors:
betashrink #1 #2 beta prior with shapes #1 and #2 on shrinkage δ = g/(1 + g)
betabench # benchmark beta-shrinkage prior with shapes #×max(n, p2) and #
hyperg # hyper-g prior with hyperparameter #
hypergn # hyper-g/n prior with hyperparameter #
zsiow Zellner–Siow prior
robust robust prior

heredspec Description

strong strong heredity; the default
weak weak heredity
none no heredity

Options

� � �
Model �

mprior(mspec) specifies model prior, a prior distribution on the model space. In a regression setting,
this is equivalent to specifying prior probabilities for the inclusion of predictors in a model. A
group of predictors is viewed as one term in the model prior specification. That is, the prior
inclusion probability is specified for the entire group and not the individual predictors.

mspec is one of betabinomial, betabinomial #1 #2, betabinomial #, uniform, binomial
#, binomial, and binomial inoutterm #

[
. . .
]
.

betabinomial, the default, and betabinomial #1 #2 specify a binomial model prior with an
inclusion probability (IP) and a beta prior on the IP. The two arguments specify the shape
parameters of the beta distribution. betabinomial is a synonym for betabinomial 1 1.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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betabinomial # specifies a binomial model prior and a beta prior for the IP. This specification
includes one argument #, which is the expected number of inoutterms to be included (Ley and
Steel 2009). # must be greater than 0 and less than the total number of inoutterms specified in
the regression model. If there are no groups specified, # is the expected model size.

uniform specifies a uniform model prior, which assumes an equal probability for each model.

binomial # specifies a binomial model prior, in which all inoutterms have the same IP # between
0 and 1.

binomial is a synonym for binomial 0.5.

binomial inoutterm #
[

inoutterm #
[
. . .
] ]

specifies a binomial model prior with different values
of IP for inoutterms. IPs are specified as pairs consisting of an inoutterm and the corresponding
IP #, 0 < # < 1. inoutterms for which no IP is specified are assumed to have probability of 0.5.
The specified inoutterms must be one of the inoutterms from the regression model specification.
For grouped terms, it is sufficient to list one of the predictors from the group to specify the
IP, and this probability will be used for the entire group. But you may not specify different
IPs for multiple predictors from the same group. You can specify the same IP # for multiple
predictors from different groups by using binomial inoutterm

[
inoutterm

[
. . .
] ]

#.

gprior(gspec) specifies a fixed value or a prior distribution (hyperprior) for parameter g of a
Zellner’s g-prior assumed for regression coefficients. Let p be the number of predictors and n be
the sample size.

gspec is one of the fixed priors—bench, uip, ric, sqrtn, fixed #, or ebl—or one of the
random priors—betashrink #1 #2, betabench #, hyperg #, hypergn #, zsiow, or robust.

The following are the fixed priors:

bench specifies the benchmark prior with g = max(n, p2), which is a combination of the unit-
information and risk inflation criterion priors. This is the default. This prior was suggested by
Fernández, Ley, and Steel (2001a), who found it to perform well in a variety of cases with
respect to a model’s predictive performance.

uip specifies the unit-information prior with g = n (Kass and Wasserman 1995), which assigns
the same amount of information to the prior for regression coefficients as is contained in one
observation. Under this prior, the Bayes factors behave like the Bayesian information criterion
(BIC).

ric specifies the prior based on the risk inflation criterion with g = p2 (Foster and George 1994).
This prior has good small-sample properties.

sqrtn specifies the square-root n prior with g =
√
n (Porwal and Raftery 2022b).

fixed # specifies a fixed value # for g.

ebl use the empirical Bayes local estimate for g as suggested by Liang et al. (2008). Instead of
using an a priori value for g, this prior estimates g from the data and does it separately for
each model.

The following are the random priors:

betashrink #1 #2 specifies a general beta-shrinkage prior, which uses a beta prior with shape
parameters #1 and #2 for the shrinkage factor δ = g/(g + 1).

betabench # specifies the benchmark beta-shrinkage prior suggested by Ley and Steel (2012),
which uses a beta prior with shape parameters # × max(n, p2) and # on the shrinkage factor
δ = g/(g + 1).
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hyperg # specifies the hyper-g prior suggested by Liang et al. (2008), which is a beta prior with
shape parameters 1 and #/2 − 1 on shrinkage factor δ = g/(g + 1). The hyperparameter #
must satisfy 2 < # ≤ 4.

hypergn # specifies the hyper-g/n prior suggested by Liang et al. (2008), which is a beta prior with
shape parameters 1 and #/2− 1 on g/(g+ n). The hyperparameter # must satisfy 2 < # ≤ 4.

zsiow specifies a prior suggested by Zellner and Siow (1980), which is an inverse-gamma prior
on g with shape 0.5 and rate n/2.

robust specifies the robust prior as defined in Bayarri et al. (2012).

heredity(heredspec) specifies a heredity rule for interaction terms. This option is relevant only
when interaction terms, terms that include # or ##, are present; see [U] 11.4.3 Factor variables
and Handling factor variables and interactions in Remarks and examples.

heredspec is one of strong, weak, or none.

strong specifies that whenever an interaction is included in a model, all main effects are also
included, which aids interpretation. This is the default. This rule is the most restrictive for the
model space. If your goal is prediction, you may decide to choose a less restrictive rule.

weak specifies that whenever an interaction is included in a model, at least one main effect is also
included. This rule is less restrictive for the model space than heredity(strong).

none specifies that interactions be included independently of the main effects. This rule does
not make any additional restrictions for the model space and may be more beneficial when
prediction is of interest.

groupfv specifies that all factor-variable terms be grouped and is relevant only in the presence of
factor variables; see [U] 11.4.3 Factor variables and Handling factor variables and interactions in
Remarks and examples.

� � �
Simulation �

enumeration specifies that model enumeration be used to explore the model space. This option
considers all 2p models, where p is the number of predictors, and is thus not feasible with many
predictors. It is the default for a fixed g when the number of predictors or groups is less than or
equal to 12. And it may not be specified with more than 24 predictors or groups of predictors.
Only one of enumeration or sampling may be specified.

enumeration is not allowed with a random g, meaning when one of the random g priors is
specified in option gprior(): betashrink, betabench, hyperg, hypergn, zsiow, or robust.

Model enumeration is a deterministic procedure, so the following sampling options are not available
with it: mcmcsize(), burnin(), thinning(), minitial(), ginitial(), rseed(), clevel(),
and hpd. Also, options nodots, dots, and dots() are not relevant and thus ignored.

sampling specifies that sampling be used to explore the model space. This is the default with a
random g or when the number of predictors or groups is greater than 12. With a fixed g, the MC3
algorithm (Madigan and York 1995) is used to sample from the model space (Fernández, Ley, and
Steel 2001a and Ley and Steel 2012). With a random g, a modified MC3 is used—MC3 is used to
sample models, and an adaptive Metropolis–Hastings method is used to sample g. Only one of
sampling or enumeration may be specified.

mcmcsize(#) specifies the target MCMC sample size for the model space. The default is mcmc-
size(10000). The total number of iterations for the MC3 algorithm equals the sum of the burn-in
iterations and the MCMC sample size (in the absence of thinning). If thinning is present, the total
number of MCMC iterations is computed as burnin() + (mcmcsize()− 1)× thinning() + 1.

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesHandlingfactorvariablesandinteractions
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamples
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesHandlingfactorvariablesandinteractions
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamples
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Computation time is proportional to the total number of iterations. The MCMC sample size de-
termines the precision of posterior summaries. Also see Convergence of BMA in Remarks and
examples and Burn-in period and MCMC sample size in [BAYES] bayesmh. This option is not
allowed with model enumeration.

burnin(#) specifies the number of iterations for the burn-in period of MCMC. The MCMC states
simulated during burn-in are not used for estimation. The default is burnin(2500). Also see
Convergence of BMA in Remarks and examples and Burn-in period and MCMC sample size in
[BAYES] bayesmh. This option is not allowed with model enumeration.

thinning(#) specifies the thinning interval. Only simulated values from every (1+k×#)th iteration
for k = 0, 1, 2, . . . are saved in the final MCMC sample; all other simulated values are discarded.
The default is thinning(1); that is, all simulation values are saved. Thinning greater than one
is typically used for decreasing the autocorrelation of the simulated MCMC sample. This option is
not allowed with model enumeration.

minitial(minitspec) specifies an initial model for the MCMC sample of models. This option is not
allowed with model enumeration.

minitspec is one of random, varlist, null, or full.

random specifies that the initial model for the MCMC be generated randomly from the model prior
distribution. This is the default with fewer than 1,000 predictors.

varlist specifies that the initial model include a given set of predictors varlist. The initial model
must be compatible with the specified regression model for the in–out predictors. For example,
if you specified the following command,
. bmaregress x1 (x2 x3) (x4, always)

then the valid initial model may 1) include or exclude both x2 and x3 and 2) include or exclude
x1.

null specifies that the null model, the model with only a constant term, be used as initial. This
is the default with 1,000 predictors or more.

full specifies that the full model, the model that includes all predictors, be used as initial.

ginitial(ginitspec) specifies the initial g value for the MCMC for random g. This option is allowed
only with random g priors specified in option gprior(): betashrink, betabench, hyperg,
hypergn, zsiow, or robust. This option is not allowed with model enumeration.

ginitspec is one of ebl, random, or #.

ebl specifies that the empirical Bayes local estimate for the initial model be used as the initial
value for g. This is the default.

random specifies that the initial value for g be generated randomly from its prior distribution.

# specifies the initial value for g.

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is
equivalent to typing set seed # prior to calling bmaregress; see [R] set seed. This option is not
allowed with model enumeration.

� � �
Reporting �

saving(filename
[
, replace

]
) saves simulation results in filename.dta. The replace option

specifies to overwrite filename.dta if it exists. If the saving() option is not specified, bmaregress
saves simulation results in a temporary file for later access by postestimation commands. This
temporary file will be overridden every time bmaregress is run and will also be erased if the
current estimation results are cleared. saving() may be specified during estimation or on replay.

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesConvergenceofBMA
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamples
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamples
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesBurn-inperiodandMCMCsamplesize
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesConvergenceofBMA
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamples
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesBurn-inperiodandMCMCsamplesize
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
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The saved dataset has the following structure. Variable chain is the chain identifier; it is always 1.
Variable index records iteration numbers. Variables loglikelihood, logposterior,
and logmprior record the log-likelihood, log-posterior, and log model-prior, respectively.
logposterior records the joint posterior of models and g. Variable g records the used fixed

value of Zellner’s g parameter or a sample from its posterior distribution. Variable logs2delta
contains a sample from the posterior distribution of parameter ln(s2j,δ), defined in Conditional
posterior distribution of model parameters of Methods and formulas. This parameter corresponds
to the log of two times the inverse-gamma scale parameter of the posterior distribution of error
variance for a given model. Model states are encoded as binary vectors and saved in variables
state eq1 p1 through state eq1 pp for each of the p predictors. Each of these variables can
be viewed as a sample from a posterior distribution of a random indicator for inclusion of the
respective predictor in a model. The model-specific posterior mean estimates of coefficients are
saved in mean eq1 p1 through mean eq1 pp. The model-specific posterior variance estimates of
coefficients are saved in var eq1 p1 through var eq1 pp. Variable hash records information
used by bmaregress to identify models. bmaregress saves only model states and parameter
values that are different from one iteration to another and the frequency of each state in variable
frequency. Thus, index may not necessarily contain consecutive integers. Remember to use
frequency as a frequency weight if you need to obtain any summaries of this dataset.

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD CrIs for random g.
The default is clevel(95) or as set by [BAYES] set clevel.

hpd displays the HPD CrIs instead of the default equal-tailed CrIs for random g.

Options clevel() and hpd are not allowed with model enumeration. These options are allowed only
with random g priors specified in option gprior(): betashrink, betabench, hyperg, hypergn,
zsiow, or robust.

nodots, dots, dots(#), and dots(#, every(#)) specify to suppress or display dots during simu-
lation. nodots, the default, suppresses the display of dots. dots displays dots every 100 iterations
and iteration numbers every 1,000 iterations; it is a synonym for dots(100, every(1000)).
dots(#) displays a dot every # iterations. If dots(. . ., every(#)) is specified, then an iteration
number is displayed every #th iteration instead of a dot. dots(, every(#)) is equivalent to
dots(1, every(#)). During the adaptation period, a symbol a is displayed instead of a dot. The
dots options are ignored with model enumeration.

inputorder specifies that the results be displayed in the order in which predictors are specified in
the model. By default, the results are displayed in the descending order of PIP.

recentered specifies that coefficients for the recentered predictors be shown in the output table. By
default, the coefficients for the untransformed predictors are shown. The two representations are
related by a linear transformation that affects only the constant term in the model.

pipcutoff(#) specifies the lowest PIP limit for displaying the results. The results for predictors with
PIP lower than this limit are not shown in the output table. The default is pipcutoff(0.01). For
models with many predictors, you can limit the displayed results by using a higher pipcutoff().

notable suppresses the estimation table from the output.

noheader suppresses the output header either at estimation or upon replay.

title(string) specifies an optional title for the command that is displayed above the table of the
parameter estimates.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] Estimation options.

https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulasConditionalposteriordistributionofmodelparameters
https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulasConditionalposteriordistributionofmodelparameters
https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulas
https://www.stata.com/manuals/bayessetclevel.pdf#bayessetclevel
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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The following option is available with bmaregress but is not shown in the dialog box:

allcoef shows all regression coefficients. This is equivalent to pipcutoff(0). This option may
produce a lengthy output with many predictors.

Remarks and examples stata.com

Remarks are presented under the following headings:
Introduction to BMA for linear regression
Convergence of BMA
Interpretation of BMA regression coefficients
Using the bmaregress command
Groups of predictors
Handling factor variables and interactions

Examples are presented under the following headings:
Getting started examples

Example 1: BMA linear regression (model enumeration)
Example 2: Exploring high-posterior probability models
Example 3: Model-size distribution
Example 4: Posterior distributions of regression coefficients
Example 5: Credible intervals
Example 6: Comparison with standard linear regression
Example 7: Jointness of predictors
Example 8: Exploring model space using MC3 (model sampling)
Example 9: Checking BMA convergence
Example 10: BMA linear regression using different g-priors
Example 11: Sensitivity analysis of model priors
Example 12: Comparing model fit using the log predictive-score
Example 13: BMA predictions
Example 14: Cleanup after BMA analysis

BMA predictive performance for the USA crime rate data
Example 15: BMA regression for the USA crime rate
Example 16: Assessing BMA predictive performance

BMA analysis of cross-country economic growth data
Example 17: BMA linear regression of economic growth
Example 18: Model and variable-inclusion summaries
Example 19: Coefficient summaries
Example 20: Jointness measures
Example 21: BMA regression of economic growth using random parameter g

Introduction to BMA for linear regression

A widely used technique in data analysis is model selection, which comprises two stages: choosing
an optimal model for the data based on specific criteria and conducting inference based on the selected
model. The inference is conditional on the assumption that the data are actually generated from this
model. This approach does not account for the uncertainty of model selection and thus may render the
results more precise than they actually are. This may lead to overly confident inferential conclusions
and predictions. And if the selected model is substantively different from the true generating model,
the results may even be biased.

Instead of selecting just one model, BMA (Leamer 1978) considers a set of plausible models and
bases its inference on averaging across those models, weighing by model probabilities given the
observed data. BMA is a principled statistical method that addresses the problem of underestimating
or rather ignoring model uncertainty. You may not need model averaging for every data analysis, but
even if you need to choose just one model, you may find BMA helpful for selecting the best one
available for your data.

http://stata.com
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See [BMA] Intro for a general introduction to BMA. In this entry, we focus on BMA for linear
regression. In what follows, we present some of the main concepts of BMA following the discussions
in Steel (2020), Moral-Benito (2015), and Hoeting et al. (1999).

In a regression setting with p potential predictors, model uncertainty is confined to which predictors
should be included in the model (for example, Steel [2020] and Moral-Benito [2015]). There are 2p

possible regression models that include or exclude each of the p predictors in a model. Variable-
selection methods such as stepwise regression and information critera focus on selecting one “best”
model for the data according to some criteria. Depending on the application, results based on a single
model may be overly optimistic (for example, Steel [2020]).

Unlike variable-selection methods, BMA incorporates (potentially) all models from the considered
model space by averaging over it to estimate model parameters and obtain predictions. That is, in
the context of a linear regression, BMA would potentially account for all 2p models in the analysis.
When we say “account for all 2p models”, we mean that BMA will consider these models and adjust
parameter estimates for the likeliness of each model. Thus, BMA results incorporate the uncertainty
about the model-selection process.

Suppose we have an outcome Y and p predictors X1, X2, . . . , Xp. We want to model Y as a
linear function of these predictors, but we do not know which ones to include in the model. We can
use a BMA linear regression to explore all 2p models.

Model setup. Consider an n× 1 vector of outcome values y = (y1, y2, . . . , yn)′, an n× p design
matrix X containing values of p predictors, and an n× 1 vector of ones 1n. Let Mj be a regression
model that contains a subset of pj predictors stored in an n × pj design submatrix Xj . Then, for
each j ∈ {1, 2, . . . , 2p}, consider a linear regression Mj ,

y = α1n + Xjβj + εj

where α is an unknown intercept, βj is a pj × 1 vector of unknown (Mj-specific) regression
coefficients, and εj = (ε1,j , ε2,j , . . . , εn,j)

′ is an n× 1 vector of model-specific error terms, which
are independently normally distributed with mean zero and variance σ2.

Priors. In a Bayesian linear regression (see [BAYES] bayes: regress), we assume a prior
p(α,βj , σ

2|Mj) for model parameters α, βj , and σ2, which is conditional on model Mj . In a
BMA framework, model Mj itself is considered random and thus assumed to have a discrete prior
P (Mj) for j ∈ {1, 2, . . . , 2p}.

A BMA linear regression assumes noninformative priors for α and σ2 and a Zellner’s g-prior for
βj . Thus, the prior for regression coefficients is controlled by the g parameter of a Zellner’s g-prior;
g can be fixed or random. For a random g, a prior distribution (hyperprior) is specified for g. The
g parameter controls the amount of shrinkage of regression coefficients toward zero. Smaller g leads
to more shrinkage. There are many choices for a g-prior; see Priors for parameter g in Methods
and formulas. Fernández, Ley, and Steel (2001a) suggest that the so-called benchmark prior, where
g = max(n, p2), tends to perform well in a variety of cases with respect to a model’s predictive
performance. Other priors suggested in the literature are g =

√
n, local empirical Bayes, and hyper-g

priors (Porwal and Raftery 2022a). The use of hyperpriors is often suggested to deal with data
robustness, when small differences in the data can lead to substantive changes in the results. See
Steel (2020) and references therein for more discussion.

There are also a number of choices for a model prior P (Mj); see Priors on the model space
in Methods and formulas. A uniform prior, which assumes that each model is equally likely, and a
beta-binomial prior with shape parameters of 1, which assumes that models of all sizes are equally
likely, are some of the common choices. See Moral-Benito (2015), Steel (2020), and Fragoso, Bertoli,

https://www.stata.com/manuals/bmaintro.pdf#bmaIntro
https://www.stata.com/manuals/bayesbayesregress.pdf#bayesbayesregress
https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulasPriorsforparameterg
https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulas
https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulas
https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulasPriorsonthemodelspace
https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulas
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and Louzada (2018) for a discussion of various model priors and Ley and Steel (2009), Ley and
Steel (2012), and Porwal and Raftery (2022b) for a comparison of performance of different priors.

As with any Bayesian results, BMA results (in particular, PMPs) can be sensitive to the choice of
priors. See Steel (2020) for a discussion of the role of priors on both PMPs and posterior inference.
Regardless of the chosen prior, you should perform sensitivity analysis using a variety of relevant
priors to evaluate their impact on final results.

Estimation. The estimation of PMPs, model probabilities conditional on the observed data, is
central to BMA estimation. PMPs are used as weights in the averaging of the model-specific results
that produces the final BMA results. How PMPs are estimated depends on how the model space is
explored and whether the g parameter is fixed or random.

For a moderate number of predictors, say, p ≤ 24, model enumeration can be used to explore the
entire space of 2p models. With more predictors, model enumeration becomes less feasible, and an
MCMC sampling algorithm, for example, MC3 (Madigan and York 1995), is used to explore the model
space.

When g is fixed, analytical formulas are available to compute PMPs. We refer to these PMPs as
analytical PMPs, Pa(Mj |y). In the case of sampling, analytical PMPs are conditional on the model
space visited by the sampling algorithm. When g is random, what we call a modified MC3 algorithm—
MC3 for model space and adaptive Metropolis–Hastings (MH) for g—is used to jointly sample the
model space and g. In this case, analytical formulas for PMPs are not available, and PMPs are estimated
from the MCMC sample of models by using frequencies. We refer to these PMPs as frequency PMPs,
Pf (Mj |y).

Convergence. See Convergence of BMA.

Inference. In addition to standard Bayesian posterior inference for model parameters, BMA provides
inference for models via PMP and formal assessment of the importance of considered predictors in
relation to the outcome via PIP, which is a probability that a predictor is included in a model given the
observed data. Models with high PMPs are of interest. And predictors with high PIPs are of interest.
See [BMA] bmastats models and [BMA] bmastats pip.

Posterior inference for model parameters is performed with respect to the posterior distributions
of model parameters over all models. For instance, with model enumeration, posterior mean and
variance for regression coefficients are computed based on the posterior distribution of β and defined
as follows,

βBMA = µBMA =E(β|y) =

2p∑
j=1

Pa(Mj |y)µj

Var(β|y) =

2p∑
j=1

Pa(Mj |y)
{

Var(βj) + µjµ
′
j

}
− µBMAµ

′
BMA

where µj is the posterior mean of regression coefficients βj based on model Mj .

Also see Interpretation of BMA regression coefficients.

Prediction. The early use of BMA was in the context of prediction. The posterior predictive density
of y over all models is defined as a weighted PMP average of posterior predictive densities of y
conditional on each model (for example, Moral-Benito [2015]). See [BMA] bmapredict for details.

Regression modeling and model space. As with a standard linear regression, you should also
carefully consider the parameterization of the regression function in a BMA linear regression. This
essentially relates to the definition of the BMA model space. Most theoretical results for BMA are

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesConvergenceofBMA
https://www.stata.com/manuals/bmabmastatsmodels.pdf#bmabmastatsmodels
https://www.stata.com/manuals/bmabmastatspip.pdf#bmabmastatspip
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesInterpretationofBMAregressioncoefficients
https://www.stata.com/manuals/bmabmapredict.pdf#bmabmapredict
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developed under the assumption that the “true” model is included in the model space, although
Steel (2020) comments that BMA can be shown to be robust to this assumption.

For instance, any interaction and nonlinear terms that might improve the explanatory power of the
regression model need to be considered. If they are omitted from the model space at the onset, there
is no chance for BMA to explore the models involving these terms. But care should be taken with
how to include such terms properly in a BMA regression depending on the research objective; see
Groups of predictors and Handling factor variables and interactions.

Model diagnostics. In addition to MCMC convergence diagnostics as described in Convergence of
BMA, any model diagnostics such as residual analysis used for a standard linear regression should be
considered for a BMA linear regression as well. But because there are multiple models, the application
of model checks is not as straightforward for BMA. Ideally, diagnostics should be explored for each
model. This may not be feasible with many models. One recommendation in the literature is to
perform model checks for the full model before the estimation and check diagnostics for at least the
models with high PMP after estimation (Hoeting et al. 1999). Also see Banner and Higgs (2017) for
other recommendations.

For various usages and applications of BMA in practice, see Usage of BMA in Remarks and
examples of [BMA] Intro. For technical details about BMA computations, see Methods and formulas.

Convergence of BMA

As with standard Bayesian estimation, whenever sampling is used, the convergence of BMA needs to
be checked before proceeding with the analysis. In addition to standard MCMC convergence diagnostics
for model parameters (see Convergence of MCMC in Remarks and examples of [BAYES] bayesmh),
the convergence of the model MCMC sample must be established.

For models with many predictors, convergence may be difficult (or even infeasible) to achieve
unless the model space is restricted using a strong model prior. An example of a strong model prior
is an independent Bernoulli prior, where a small group of predictors is assigned a high probability of
inclusion and the rest are assigned a low probability of inclusion. The default model prior used by
bmaregress specifies an equal probability for a model of any size.

Sampling correlation (Fernández, Ley, and Steel 2001a) is used to evaluate the MCMC convergence
of the BMA model. It is defined as the correlation between the analytical and frequency PMPs. It
measures the agreement between the expected and observed PMPs. When sampling correlation has a
low positive value (less than 10%) or even negative, nonconvergence is suspected. You should review
your model specification carefully and potentially increase the MCMC sample size.

Sampling correlation can also be missing. This is always the case when there is only one visited
model. It is possible that there is only one plausible model in the BMA model space, which BMA
found. In this case, there is no reason to suspect nonconvergence. However, in general, unless the
regression model has no predictors, one visited model is insufficient to explore the full model space,
and you should not trust the reported results. You may also get a missing sampling correlation when
there is an insufficient number of MCMC iterations.

Sampling correlation is not a formal measure of MCMC convergence in BMA. Its precision may
vary from one sample to another. In fact, with a random g, there is no reliable way to estimate
sampling correlation, because there is no analytical formula for PMP. In this case, sampling correlation
is computed based on the harmonic-mean approximation of the analytical PMP distribution and is thus
subject to the accuracy of the approximation, in addition to the inherent sampling variability. You
should interpret a sampling-correlation value as a guide for BMA convergence rather than a formal
assessment of it.

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesGroupsofpredictors
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesHandlingfactorvariablesandinteractions
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesConvergenceofBMA
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesConvergenceofBMA
https://www.stata.com/manuals/bmaintro.pdf#bmaIntroRemarksandexamplesUsageofBMA
https://www.stata.com/manuals/bmaintro.pdf#bmaIntroRemarksandexamples
https://www.stata.com/manuals/bmaintro.pdf#bmaIntroRemarksandexamples
https://www.stata.com/manuals/bmaintro.pdf#bmaIntro
https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulas
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamples
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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There is no formal way to determine BMA convergence. Sampling correlation is just one way to
explore MCMC convergence numerically. You should also look at graphical convergence diagnostics
(see [BMA] bmagraph pmp) and use other standard MCMC diagnostic tools (see Convergence of
MCMC in Remarks and examples of [BAYES] bayesmh).

Interpretation of BMA regression coefficients

To avoid the infamous problem of mixing “apples and oranges” during averaging in BMA, it is
important that a quantity being averaged has a common interpretation across all models (for example,
Steel [2020] and Fragoso, Bertoli, and Louzada [2018]). The motivation for BMA originally was in
the context of predicting new outcome values. Because such predictions have the same interpretation
across all models, the application of averaging is justified.

A BMA linear model also provides model-averaged estimates for the regression coefficients, intercept,
and error variance. The error variance has a common meaning across the models, so the averaging is
applicable. During estimation, BMA recenters predictors to make them orthogonal to the intercept, so
the intercept also has the same interpretation across all models. The regression coefficients, however,
should be evaluated more carefully.

In one of the comments to Hoeting et al. (1999), Draper (1999) points out that the meaning of
the coefficient of X1 in a regression of Y on X1 is different from that in a regression of Y on X1

and X2. Hoeting et al. (1999) respond that one can recast BMA into a one-model space by viewing
it as a standard Bayesian linear regression including all predictors, in which the prior allows some
of the regression coefficients to be zero or close to zero. Banner and Higgs (2017) further investigate
the use of BMA in practice for the interpretation of partial regression coefficients and provide some
guidance and graphical tools to aid interpretation.

In summary, when the predictors are orthogonal or in the case of a simple linear regression, the
(partial) regression coefficients have the same interpretation across models and their averaged BMA
estimates are appropriate. This might be rare in practice, especially with observational data. In more
realistic situations such as in the presence of collinear predictors or interaction terms, care should
be taken with the interpretation of BMA coefficients as partial regression coefficients. In these cases,
perhaps the BMA inference should shift toward estimation of marginal effects instead.

In a Bayesian context, the interpretation of regression coefficients, particularly in the presence
of collinearity, should also be considered in the context of their prior distribution. As indicated
by Leamer (1973), “a well-defined prior distribution can have no problem interpreting the sample
evidence.” From this perspective, the interpretation of regression coefficients should account for their
prior information, especially in cases when the observed data do not provide sufficient evidence.
Of course, the exploration of the sensitivity of the results to the assumed prior becomes even more
important in such cases.

Using the bmaregress command

The bmaregress command performs BMA for linear regression. It explores the model space either
exhaustively, when this is feasible, or by using MCMC. It reports various summaries of the visited
models and included predictors, and posterior distributions of model parameters.

The simplest syntax of bmaregress is the same as for regress (see [R] regress)—you list the
dependent and predictor variables following the command:

. bmaregress y x1 x2 x3

https://www.stata.com/manuals/bmabmagraphpmp.pdf#bmabmagraphpmp
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamples
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/rregress.pdf#rregress
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With this specification, each of the three variables x1, x2, and x3 will be in and out of the model,
that is, will be either included or excluded from the model.

If you wish to always include some of the predictors in the model, you can use the following
specification:

. bmaregress y (x1 x3, always) x2

You can also group predictors so that each group is in and out of the model. This is useful with
factor variables and variables that are functions of other variables that you may want to include
together in the regression models:

. bmaregress y x1 (x2 x3)

In the above, x2 and x3 will always be included or excluded together. So, technically, bmaregress
determines the model space by the number of groups pg . In this example, the model space will
include 22 = 4 models and not 23 = 8. Also see Groups of predictors.

In the presence of interactions, bmaregress always includes all main effects whenever the
corresponding interaction is in the model, but you can change this with the heredity() option. See
Handling factor variables and interactions.

bmaregress uses the default beta-binomial prior with shape parameters of one on the model space,
which assumes the uniform prior for the model size, and the default benchmark (fixed) prior for the
g parameter. You can change them by specifying the mprior() and gprior() options, respectively.
Default priors are provided for convenience. They are chosen based on the recommendations in the
literature, which found them to be fairly uninformative in a variety of cases. But they may not apply
to all cases. It is important that you carefully evaluate the choice of priors and specify the priors
that are appropriate for your model and research questions. You cannot simply rely on the provided
defaults. It is also important that you consider various priors to check the sensitivity of the results to
the prior assumptions. See Priors in Introduction to BMA for linear regression.

By default, bmaregress uses model enumeration to explore the model space fully with up to
12 predictors or, more precisely, with up to 12 groups of predictors, ignoring the always group. For
more than 12 predictors, it uses the MC3 sampling algorithm. If desired, you can use sampling with
12 predictors or fewer by specifying the sampling option. You can also use model enumeration
with up to 24 predictors by specifying the enumeration option. With a random g, the model space
cannot be explored fully, and a modified version of MC3 is used: MC3 is used to sample models, and
an adaptive MH, similar to that described in [BAYES] bayesmh, is used to sample g.

When a sampling method is used, bmaregress uses 2,500 burn-in iterations and an MCMC sample
size of 10,000. You can change this, respectively, with options burnin() and mcmcsize(). Also,
with sampling, the results produced by bmaregress are stochastic: they can change from one run of
the command to another. You can specify the rseed() option for reproducibility.

bmaregress also supports various reporting options. For instance, with many predictors or with a
random g, you may want to specify the dots and related options to see the simulation progress. By
default, the predictors are listed in the order from highest to lowest PIP. You can use the inputorder
option to display them in the order they are specified with bmaregress.

Finally, you can use the saving() option to save your BMA MCMC results to a file. This can be done
during or after estimation. Some postestimation commands such as bmacoefsample, estimates
store, and estimates save require that you save your BMA results before running the commands.

As with any MCMC algorithms, the MC3 algorithms require that you check sampling convergence;
see Convergence of BMA. You should always use bmagraph pmp to explore sampling convergence
graphically after bmaregress.

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesGroupsofpredictors
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesHandlingfactorvariablesandinteractions
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregpriors
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You can use bmastats models and bmagraph varmap to explore model and variable-inclusion
summaries and bmastats pip to explore variable-inclusion probabilities. bmastats msize and
bmagraph msize provide information about the model size. bmastats jointness reports whether
pairs of predictors tend to be included in the model together or separately. bmastats lps can be
used to check the predictive performance of the fitted BMA model and compare it with other potential
BMA models. bmacoefsample samples regression coefficients and other model parameters from their
posterior distributions, and bmagraph coefdensity plots these distributions. Finally, if you are
interested in a BMA prediction, use bmapredict.

There are also two Stata commands that help you prepare your data and specify predictors
before your BMA analysis: splitsample and vl. splitsample divides your sample into several
random subsamples, which can be used for training, validation, and prediction (testing). vl is useful
for managing a potentially large set of predictors for use with bmaregress. It helps you specify
predictors conveniently without typing every variable name. See [D] splitsample and [D] vl for details.

Groups of predictors

The bmaregress command allows you to group predictors using the parentheses notation. In the
context of BMA, a group of predictors is treated as one in-and-out term—all predictors in the group
are either included or excluded from linear regression models. The model space of a BMA linear
regression is thus defined by the grouping of predictors. The number of groups pg determines the
size of the model space, 2pg . The model prior distribution, specified with option mprior(), is also
imposed on the space of groups.

For example, suppose we have three predictors x1, x2, and x3, and x2 and x3 are grouped together:

. bmaregress y x1 (x2 x3)

The model space comprises four possible regression models: no predictors, only x1, only x2 and x3,
and all variables x1, x2, and x3. The default model prior distribution is beta-binomial with shape
parameters of 1.

We can use the mprior() option to specify, say, a binomial prior with the following prior
probabilities of inclusion of predictors and groups of predictors:

. bmaregress y x1 (x2 x3), mprior(binomial x1 0.4 (x2 x3) 0.6)

In the above command, we set the probability of inclusion to 0.4 for x1 and to 0.6 for the group that
includes x2 and x3.

In the output of bmaregress, the Group column contains the information about the groups of
predictors.

Grouping restricts the model space and may diminish the predictive performance of a BMA linear
regression, so it should be used thoughtfully.

Handling factor variables and interactions

The levels of a categorical predictor, excluding the base level, are commonly treated as independent
in-and-out terms in variable-selection methods. Suppose a categorical predictor a has four levels, with
one being the base level, and is included as a factor variable in the model:

. bmaregress y i.a

https://www.stata.com/manuals/bmabmastatsmodels.pdf#bmabmastatsmodels
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The above introduces three regression terms: 2.a, 3.a, and 4.a, which will be in and out of the
model independently. The model space will then include the regression models regress y 2.a,
regress y 3.a, regress y 4.a.

If you wish to treat these three terms as one group, you can type

. bmaregress y (i.a)

or you can use the groupfv option,

. bmaregress y i.a, groupfv

In this case, the model space will include only the regression model regress y 2.a 3.a 4.a and
the constant-only model.

The groupfv option will group all specified factor variables. For example, the specification

. bmaregress y i.a i.b i.a#i.b, groupfv

will introduce three groups: (i.a), (i.b), and (i.a#i.b).

However, the following specification will group all interactions and main effects in one group
(i.a##i.b):

. bmaregress y i.a##i.b, groupfv

If you include an interaction in your BMA model, you need to consider the relationship between
this interaction and the main effects. Do you want the interaction to be included in regression models
independently of the main effects or not? If your goal is inference and interpretation of coefficients,
you might want to include the main effects whenever the interaction is included. For prediction, you
might choose to keep the model space larger (by allowing the interaction terms to be included without
main effects) for more optimal prediction.

This relationship between the main effects and interactions is controlled by the heredity() option.
By default, heredity(strong) is assumed, which does not allow the interactions to be in a regression
model without all corresponding main effects. You can specify heredity(weak), which will include
at least one of the main effects together with the interaction. Or you can specify heredity(none),
in which case the interactions and main effects will be included in a model independently.

For instance, consider binary predictors a and b. Under strong heredity,

. bmaregress y i.a i.b i.a#i.b, heredity(strong)

will consider five models that include 1) only intercept, 2) i.a, 3) i.b, 4) i.a and i.b, and 5) i.a,
i.b, and i.a#i.b. Note that the intercept will also be included in all models.

Under weak heredity,

. bmaregress y i.a i.b i.a#i.b, heredity(weak)

will additionally consider two more models that include 6) i.a and i.a#i.b and 7) i.b and i.a#i.b.

With no heredity, heredity(none), a model with only an interaction term i.a#i.b will also be
considered. This gives us a total of eight models.
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Getting started examples

In our first series of examples, we use a small dataset, performance, surveying the employee
satisfaction with their supervisors in a large financial organization. The dataset is adapted from
Chatterjee and Hadi (2012, sec. 3.3). It contains 7 variables and 30 observations, representing 30
different departments in the surveyed organization.

. use https://www.stata-press.com/data/r18/performance
(Data on employee satisfaction with supervisor)

. describe

Contains data from https://www.stata-press.com/data/r18/performance.dta
Observations: 30 Data on employee satisfaction

with supervisor
Variables: 7 23 Feb 2023 12:57

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

rating byte %8.0g Overall rating of supervisor’s
performance

complaints byte %8.0g Handling of employee complaints
privileges byte %8.0g Does not allow special privileges
learning byte %8.0g Opportunity to learn new things
raises byte %8.0g Raises based on performance
critical byte %8.0g Supervisor is too critical
advance byte %8.0g Rating of employee’s advancement

Sorted by:

The outcome of interest is the overall department rating with values in the 0 to 100 range. The
observed values for the dependent variable rating are between 40 and 85. They are computed based
on the percentage of favorable survey responses from each department. The other variables record
the percentages of favorable responses to each of six survey questions. Although all variables have
integer values, we regard them as continuous and model the response using a linear regression. In
their analysis of this dataset in Chatterjee and Hadi (2012), the authors conclude that the complaints
and learning variables explain most of the variation in the response. Let’s apply BMA to this dataset.
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Example 1: BMA linear regression (model enumeration)

Using the performance dataset described above, we apply BMA to rating with all other variables
as predictors by using the bmaregress command. We use varlist notation complaints-advance to
refer to all variables in the dataset between complaints and advance.

. bmaregress rating complaints-advance

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 10
Cons.: Noninformative Mean model size = 1.699
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.302

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
learning .0603014 .1285281 3 .25249
advance -.0167921 .073883 6 .13148

privileges -.0074174 .0488635 2 .10998
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default priors are used for models and parameter g.

The BMA model summary and regression results are displayed in the header and estimation table,
which we describe in detail below.

Header. The header reports 30 observations and p = 6 predictors. By default, Model enumeration
is used, so bmaregress visited all possible 26 = 64 models. Of those models, 10 contribute to the
cumulative PMP (CPMP) of at least 0.9. The mean model size is 1.699, which suggests that on average,
the models included roughly two predictors.

The default priors are as described in Using the bmaregress command. bmaregress always uses
the same noninformative priors for the constant and error variance, which are proportional to 1/σ2,
and a Zellner’s g-prior for regression coefficients. But there are several options for the model and
parameter g priors. The default model prior is Beta-binomial(1, 1), which assigns an equal
probability for each model size. The default g-prior is the Benchmark prior with a fixed value for
g = max(n, p2) = max(30, 36) = 36, following Fernández, Ley, and Steel (2001a). This corresponds
to the shrinkage parameter δ = g/(1 + g) = 0.973, where δ = 1 means no shrinkage and δ = 0
means complete shrinkage (a coefficient is essentially forced to be zero). In this example, we assume
little shrinkage a priori. But we explore the effect of different priors on these data in examples 10,
11, and 12.

From the header, the posterior mean estimate of the error variance, Mean sigma2, is 52.3.

bmaregress uses model enumeration by default when there are few predictors or, more precisely,
groups of predictors (no more than 12) and when g is fixed.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesUsingthebmaregresscommand
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatrandom
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatmprior
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatlps


bmaregress — Bayesian model averaging for linear regression 19

Estimation table. The estimation table reported by bmaregress includes estimates of posterior
means and standard deviations of coefficients for each predictor, as well as predictors’ estimated
posterior inclusion probabilities, PIPs. In the case of enumeration, as in our example, these estimates
are based on analytical formulas and thus are exact. The table also reports the grouping information—
each variable is its own group in our example.

The complaints predictor has, by far, the highest PIP of all predictors—the total posterior
probability of the models that include complaints is almost 1, or 0.99973 to be exact. It is followed
by learning with a PIP of 0.25. All other predictors have lower PIPs between 0.13 and 0.1. Both
variables have positive posterior mean coefficients. Thus, we can conclude that a better handling of
complaints, complaints, and more opportunities to learn new things, learning, appear to positively
affect the rating scores. These findings agree with Chatterjee and Hadi (2012).

In a BMA regression, the constant term is always included, so it is displayed in a separate equation
labeled Always. If we specify any other predictors to be included in all models, they will be listed in
this same equation. The intercept or, more generally, the Always group does not affect the grouping
information.

Notes. The command concludes with a couple of notes. The first note reminds us that the reported
posterior means and standard deviations are estimated from 64 visited models. We need to interpret
these averaged estimates thoughtfully; see Interpretation of BMA regression coefficients. We are also
reminded that the default priors were used for models and parameter g; see Priors in Introduction to
BMA for linear regression and discussion about the default priors in Using the bmaregress command.
With many predictors, you might also see a note about some predictors being omitted from the
output because of their PIP being less than 0.01. You can use the allcoef option (or, equivalently,
pipcutoff(0)) to see all predictors or specify a higher cutoff in pipcutoff() to further restrict
the list of displayed predictors.

Displaying results in input order. By default, bmaregress displays results according to PIP,
from highest to lowest. You can use the inputorder option to display results in the input variable
order. This might be useful when you want to compare results with other Stata commands such as
regress.

. bmaregress, noheader inputorder

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
privileges -.0074174 .0488635 2 .10998

learning .0603014 .1285281 3 .25249
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534
advance -.0167921 .073883 6 .13148

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default priors are used for models and parameter g.

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesInterpretationofBMAregressioncoefficients
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregpriors
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesIntroductiontoBMAforlinearregression
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesIntroductiontoBMAforlinearregression
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesUsingthebmaregresscommand
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Displaying PIP. Instead of replaying all the results from bmaregress, we can display only the
PIP estimates by using the bmastats pip command.

. bmastats pip

Posterior inclusion probability (PIP)

No. of obs = 30
No. of predictors = 6

Groups = 6
Always = 0

Reported = 6
No. of models = 64
Mean model size = 1.699

PIP Group

complaints .99973 1
learning .25249 3
advance .13148 6

privileges .10998 2
raises .10642 4

critical .098534 5

Always
_cons 1 0

Note: Using analytical PMPs.

bmastats pip is particularly useful if we would like to see PIP only for a subset of predictors.

. bmastats pip complaints learning

Posterior inclusion probability (PIP)

No. of obs = 30
No. of predictors = 6

Groups = 6
Always = 0

Reported = 2
No. of models = 64
Mean model size = 1.699

PIP Group

complaints .99973 1
learning .25249 3

Always
_cons 1 0

Note: Using analytical PMPs.

https://www.stata.com/manuals/bmabmastatspip.pdf#bmabmastatspip
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Saving BMA results. Before we proceed, let’s store our current estimation results. Similarly to
other Bayesian estimation commands, we first need to save BMA simulation or, in this example,
enumeration results in a dataset. We can then use estimates store or estimates save (see
[R] estimates) to store BMA estimation results.

. bmaregress, saving(bmadata_enum)
note: file bmadata_enum.dta saved.

. estimates store bmareg

We saved the BMA enumeration results in the bmadata enum dataset, and we stored the BMA
estimation results as bmareg. Remember to remove the generated dataset when it is no longer needed;
see example 14.

Example 2: Exploring high-posterior probability models

Exploring models with high PMPs is an integral part of BMA inference. We can use bmastats
models to explore individual models after bmaregress.

. bmastats models

Computing model probabilities ...

Model summary Number of models:
Visited = 64

Reported = 5

Analytical PMP Model size

Rank
1 .5556 1
2 .1169 2
3 .04072 2
4 .03932 2
5 .03804 2

Variable-inclusion summary

Rank Rank Rank Rank Rank
1 2 3 4 5

complaints x x x x x
learning x

raises x
privileges x

advance x

Legend:
x - estimated

By default, bmastats models lists the top five models ranked by PMP along with the table listing
the included predictors for each model. The top ranked model has a PMP of 0.56 and contains only
one predictor, complaints. The second-ranked model adds learning as a predictor and has a much
lower PMP of 0.12. It appears that the default BMA model for these data tends to favor regression
models with two predictors, one of which is always complaints.

https://www.stata.com/manuals/restimates.pdf#restimates
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatclean
https://www.stata.com/manuals/bmabmastatsmodels.pdf#bmabmastatsmodels
https://www.stata.com/manuals/bmabmastatsmodels.pdf#bmabmastatsmodels
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The variable-inclusion summary can be explored more conveniently visually by using the bmagraph
varmap command.

. bmagraph varmap

Computing model probabilities ...

critical

raises

privile~s

advance

learning

complai~s

0 .2 .4 .6 .8 1
Cumulative posterior model probability

Positive
Negative
Not included

Coefficient

All 64 visited models shown. 

Variable-inclusion map

By default, the first top 100 models are plotted. In our example, this means that all 64 models
are shown on the graph. We can see that the top model contains only complaints with a PMP
or, equivalently, CPMP of roughly 0.56 (the width of the first bar). The next highest-PMP model
contains both complaints and learning, with a CPMP of roughly 0.67 (the sum of widths of
the first two bars). Essentially all models include complaints, and learning is the next most
frequently included predictor. Predictors raises and critical appear in some models too. All of
these predictors have positive coefficients, although the latter two change the sign for some models
with small PMPs. Predictors advance and privileges are included in some models too, but they
have negative coefficients in all of those models. See [BMA] bmagraph varmap for details.

In the output header, bmaregress reported that there are 10 models that contribute to the CPMP
of 0.9. We can see the actual CPMPs for each model by using the cumulative() option:

. bmastats models, cumulative(0.9)

Computing model probabilities ...

Model summary Number of models:
Visited = 64

Reported = 10

Analytical CPMP Model size

Rank
1 .5556 1
2 .6724 2
3 .7132 2
4 .7525 2
5 .7905 2
6 .8271 2
7 .8598 3
8 .8796 3
9 .8942 3

10 .9086 3

Variable-inclusion summary

https://www.stata.com/manuals/bmabmagraphvarmap.pdf#bmabmagraphvarmap
https://www.stata.com/manuals/bmabmagraphvarmap.pdf#bmabmagraphvarmap
https://www.stata.com/manuals/bmabmagraphvarmap.pdf#bmabmagraphvarmap
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Rank Rank Rank Rank Rank Rank
1 2 3 4 5 6

complaints x x x x x x
learning x

raises x
privileges x

advance x
critical x

Legend:
x - estimated

Rank Rank Rank Rank
7 8 9 10

complaints x x x x
learning x x x x

raises x
privileges x

advance x
critical x

Legend:
x - estimated

We can also plot the CPMPs by using the bmagraph pmp command with the cumulative option.
We also specify options to add several reference lines to the graph:

. bmagraph pmp, cumulative xline(10 30) yline(.907 1) xlabel(10 30, add)
note: frequency estimates not available with model enumeration; option

nofreqline implied.

.5

.6

.7

.8

.9

1

P
ro

ba
bi

lit
y

0 20 40 6010 30
Model

Analytical CPMP

All 64 visited models shown. 

Cumulative posterior model probability

Again, the default top 100 models and thus all 64 models in our example are shown on the plot. We
can see that the CPMP of about 0.9 is reached with 10 models and of 1 with roughly 30 models, so
the rest of the visited models have essentially 0 PMPs and do not contribute to the averaged results.

With sampling, when an MCMC model sample is available, bmagraph pmp also reports the
frequency PMP distribution estimated from the MCMC sample. This estimate is not available with
model enumeration.

https://www.stata.com/manuals/bmabmagraphpmp.pdf#bmabmagraphpmp
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Example 3: Model-size distribution

Another aspect of exploring the model space is the model size weighted by PMP. It is useful to
compare the prior and posterior distributions of the size of the visited models.

. bmagraph msize
note: frequency posterior model-size distribution not available.

0

.2

.4

.6

P
ro

ba
bi

lit
y

0 2 4 6
Model size

Analytical posterior
Prior

Model-size distributions

The default beta-binomial prior is uniform over the model size. Compared with the prior, the posterior
prior is skewed to the left, favoring models with fewer predictors. In fact, the mode of the distribution
corresponds to the model with only one predictor, which we know is complaints. Thus, the data
suggest more parsimonious models than our prior expectation.

Instead of the entire distribution, we can use bmastats msize to explore the summaries of the
model-size distributions.

. bmastats msize

Model-size summary

Number of models = 64
Model size:

Minimum = 0
Maximum = 6

Mean Median

Prior
Analytical 3.0000 3

Posterior
Analytical 1.6986 1

Note: Frequency summaries not available.

The posterior mean size is the same as the one reported by bmaregress in the header. The posterior
mean model size of 1.7 is smaller than the assumed prior mean model size of 3.

https://www.stata.com/manuals/bmabmastatsmsize.pdf#bmabmastatsmsize
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Example 4: Posterior distributions of regression coefficients

The bmaregress command computes and reports only the posterior means and standard deviations
of the regression coefficients. But we can use bmagraph coefdensity to plot the entire posterior
densities for the regression coefficients.

For a fixed g, as in our example, the posterior distributions for the regression coefficients can
be computed analytically, so we can use bmagraph coefdensity directly after bmaregress. With
a random g, the analytical computation is not available, and the MCMC sampling is needed to
approximate these distributions. In that case, the bmacoefsample command needs to be run first to
obtain posterior samples of regression coefficients.

Let’s look at the distributions of regression coefficients for complaints and learning. Similarly
to other Stata Bayesian commands, we use the curly-braces notation to refer to model parameters—the
regression coefficients here:

. bmagraph coefdensity {complaints}

0

.5

1

P
ro

ba
bi

lit
y

0

1

2

3
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D
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{rating:complaints}

Density conditional
on inclusion
Prob. of noninclusion,
1 - PIP = .0003

PIP = .9997

Analytical posterior density

The posterior density of a regression coefficient is a mixture of a point mass at zero, which represents the
probability of not being included in the model and a continuous density conditional on being included.
For coefficient {complaints} (or using its full name {rating:complaints}), the probability of
noninclusion is very low, 0.0003, so the red line that represents it is not even visible on the graph. So
the posterior density of {complaints} is essentially a continuous density, with a mean of roughly
0.7 and with a slight skewness to the left. Most of the mass of the distribution is between roughly
0.025 and 1.1, away from 0.

https://www.stata.com/manuals/bmabmagraphcoefdensity.pdf#bmabmagraphcoefdensity
https://www.stata.com/manuals/bmabmacoefsample.pdf#bmabmacoefsample
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Let’s plot the posterior density for {learning}:

. bmagraph coefdensity {learning}
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{rating:learning}
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1 - PIP = .7475

PIP = .2525

Analytical posterior density

The probability of inclusion for {learning} is about 0.25, so we see the red vertical line with the
horizontal reference line at a noninclusion probability of roughly 1− 0.25 = 0.75. Conditional on the
inclusion, the continuous density has its mass between roughly −0.2 and 0.7, which includes zero.

The posterior means and standard deviations reported by bmaregress are computed with respect
to the above mixtures of distributions.

Example 5: Credible intervals

The analytical formulas for posterior credible intervals (CrIs) are not as straightforward as for the
posterior means and standard deviations, so bmaregress does not report them by default. But they
can be computed based on a sample from the posterior distributions of regression coefficients. The
bmacoefsample command (see [BMA] bmacoefsample) generates such samples. Once the posterior
samples of regression coefficients are available, we can use a standard Bayesian postestimation
command, bayesstats summary (see [BAYES] bayesstats summary), to report the posterior summaries
for regression coefficients, including CrIs. To run bmacoefsample, we must first save the MCMC
simulation dataset from bmaregress, which we already did in example 1.

https://www.stata.com/manuals/bmabmacoefsample.pdf#bmabmacoefsample
https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummary
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatfirst
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. bmacoefsample, rseed(18)

Simulation (10000): ....5000....10000 done

. bayesstats summary

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

rating
complaints .7046698 .1224187 .001224 .7098586 .4528384 .9331236
privileges -.0076884 .0498252 .000491 0 -.1663752 .0341648

learning .0601684 .1283288 .001288 0 0 .4350166
raises .0070129 .069632 .000675 0 -.077316 .2114686

critical .0009327 .0442536 .000443 0 -.08034 .1035208
advance -.016395 .073175 .000732 0 -.2646079 .0299074

_cons 14.92624 7.832332 .078323 14.97213 -1.027763 30.11586

sigma2 52.113 14.80086 .148009 49.78668 30.43213 87.38376
g 36 0 0 36 36 36

The results above are posterior summaries based on the MCMC samples of model parameters from their
respective posterior distributions. The MCMC estimates of posterior means and standard deviations for
regression coefficients are very similar to the exact values reported by bmaregress. But bayesstats
summary additionally reports CrIs. The equal-tailed CrIs are reported by default, but we can request
the highest posterior density (HPD) CrIs instead:

. bayesstats summary {complaints} {learning}, hpd

Posterior summary statistics MCMC sample size = 10,000

HPD
rating Mean Std. dev. MCSE Median [95% cred. interval]

complaints .7046698 .1224187 .001224 .7098586 .4584306 .9362436
learning .0601684 .1283288 .001288 0 0 .3942063

We used the hpd option to report HPD CrIs and requested results only for regression coefficients
{complaints} and {learning}. (To distinguish between the actual variable names and the regression
coefficients associated with those variables, bayesstats summary uses the {} specification.)
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Example 6: Comparison with standard linear regression

Let’s redisplay our earlier BMA results here for convenience:

. bmaregress, noheader inputorder

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
privileges -.0074174 .0488635 2 .10998

learning .0603014 .1285281 3 .25249
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534
advance -.0167921 .073883 6 .13148

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default priors are used for models and parameter g.

We can compare our BMA findings with the results from a standard linear regression (see [R] regress):

. regress rating complaints-advance

Source SS df MS Number of obs = 30
F(6, 23) = 10.50

Model 3147.96634 6 524.661057 Prob > F = 0.0000
Residual 1149.00032 23 49.9565359 R-squared = 0.7326

Adj R-squared = 0.6628
Total 4296.96667 29 148.171264 Root MSE = 7.068

rating Coefficient Std. err. t P>|t| [95% conf. interval]

complaints .6131876 .1609831 3.81 0.001 .2801687 .9462066
privileges -.0730501 .1357247 -0.54 0.596 -.3538181 .2077178

learning .3203321 .1685203 1.90 0.070 -.0282787 .668943
raises .0817321 .2214777 0.37 0.715 -.3764293 .5398936

critical .0383814 .1469954 0.26 0.796 -.2657018 .3424647
advance -.2170567 .1782095 -1.22 0.236 -.5857111 .1515977

_cons 10.78708 11.58926 0.93 0.362 -13.18713 34.76128

As expected, the coefficient estimates for complaints are similar between the two commands,
because complaints was included in almost all models by bmaregress. The PIP of 0.9997 is
comparable “in spirit” with the low p-value of 0.001 from regress, which suggests that complaints
is an important predictor of rating. Unlike the p-value, however, we can interpret PIP as how likely
(or unlikely, 1− PIP) it is for complaints to be included in the model. In general, we would expect
the coefficient estimates between bmaregress and regress to be similar for predictors with high
PIP (in the absence of collinearity).

For regression coefficients with lower PIP, we see the effect of shrinking toward zero by bmaregress,
which is reasonable—one would expect that the effect of weak predictors should be downweighted.
For example, the coefficient for learning from bmaregress is 0.06, while the one from regress
is 0.32.

We can also compare posterior standard deviations from bmaregress with standard errors from
regress. Both represent the uncertainty in the coefficient estimates. The Std. dev. for complaints
from bmaregress is 0.12 and the Std. err. from regress is 0.16. Unlike standard errors, the
posterior standard deviations additionally incorporate the uncertainty about the inclusion of the specified
predictors in the model.

https://www.stata.com/manuals/rregress.pdf#rregress
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The 95% equal-tailed CrI for complaints from example 5 is [0.45, 0.93] and is narrower than
the 95% confidence interval (CI) of [0.28, 0.95]. Unlike the CI, CrI can be interpreted as the range
to which the coefficient for complaints belongs with the 0.95 probability. For {learning}, the
difference between CrI and CI is larger, as expected for predictors with lower PIPs.

If we force all variables to always be in the model, which we can do by specifying all the predictors
in a group with the always suboption, our BMA model will mimic the regression results more closely.

. bmaregress rating (complaints-advance, always)

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 0

Always = 6
Priors: No. of models = 1

Models: Beta-binomial(1, 1) For CPMP >= .9 = 1
Cons.: Noninformative Mean model size = 6.000
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 45.707

rating Mean Std. dev. Group PIP

Always
complaints .596615 .1518883 0 1
privileges -.0710758 .1280569 0 1

learning .3116745 .1589997 0 1
raises .0795232 .2089652 0 1

critical .0373441 .1386909 0 1
advance -.2111903 .1681415 0 1

_cons 12.24238 10.9364 0 1

Note: Coefficient posterior means and std. dev. estimated from 1 model.
Note: Default priors are used for models and parameter g.

There is only one model and all predictors have PIPs of 1. The above model corresponds to the
BMA model with the highly informative model prior distribution that assigns the probability of 1
to the full model and 0 to all other models. Equivalently, this prior assumes that the probability of
inclusion for each predictor is exactly 1. We investigate the effect of priors on the results in more
detail in examples 10, 11, and 12. The above model is also equivalent to a Bayesian linear regression
with noninformative priors for the error variance and intercept and with a Zellner’s g-prior for the
regression coefficients.

Example 7: Jointness of predictors

In BMA, in addition to exploring the importance of individual predictors, we can investigate whether
this importance depends on the presence of other predictors across the models. The tendency of the
predictors to appear together or separately in the models is known as jointness. The bmastats
jointness command computes various jointness measures for pairs of predictors.

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatcri
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatrandom
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatmprior
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatlps
https://www.stata.com/manuals/bmabmastatsjointness.pdf#bmabmastatsjointness
https://www.stata.com/manuals/bmabmastatsjointness.pdf#bmabmastatsjointness
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As a quick demonstration, let’s investigate the jointness between, for instance, complaints and
raises.

. bmastats jointness complaints raises

Variables: complaints raises

Jointness

Doppelhofer--Weeks -2.388135
Ley--Steel type 1 .1062777
Ley--Steel type 2 .1189158

Yule’s Q -.831836

Notes: Using analytical PMPs. See
thresholds.

bmastats jointness reports four measures of jointness. Based on the thresholds described in
Remarks and examples in [BMA] bmastats jointness, such as −2.39 < −2 for the Doppelhofer–
Weeks measure, all four measures agree that the two predictors are disjoint or the so-called substitutes.
This means that when one is included in the model, the inclusion of the other does not provide any
additional information for explaining the outcome. See [BMA] bmastats jointness for more information
and example 20 for another example.

Example 8: Exploring model space using MC3 (model sampling)

For models with many predictors, complete enumeration of all possible models becomes infeasible.
The alternative is to use MCMC to sample the model space. The MCMC model composition sampling,
MC3 (Madigan and York 1995), is commonly used in BMA to explore the model space.

In bmaregress, MC3 sampling can be requested by specifying the sampling option. The MC3
sampling is actually the default when the number of predictors (or groups of predictors) is greater
than 12.

Because MC3 sampling is stochastic, for reproducibility, we need to specify a random-number seed,
for example, rseed(18). The sampling includes the burn-in phase, during which the model space is
explored for models with high posterior probabilities, followed by an active sampling phase, during
which all visited models are saved and accounted for during estimation.

https://www.stata.com/manuals/bmabmastatsjointness.pdf#bmabmastatsjointnessRemarksandexamples
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. bmaregress rating complaints-advance, sampling rseed(18)

Burn-in ...
Simulation ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 sampling Groups = 6

Always = 0
No. of models = 32

For CPMP >= .9 = 10
Priors: Mean model size = 1.699

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.2417

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.292

Sampling correlation = 0.9990

rating Mean Std. dev. Group PIP

complaints .705479 .1218881 1 1
learning .0601919 .1282869 3 .25234
advance -.0167514 .0737415 6 .13141

privileges -.0074265 .048844 2 .10996
raises .0069949 .0666406 4 .10629

critical .0009699 .0437742 5 .098526

Always
_cons 14.84478 7.871046 0 1

Note: Coefficient posterior means and std. dev. estimated from 32 models.
Note: Default priors are used for models and parameter g.

bmaregress now uses MC3 sampling. The header additionally reports standard MCMC summaries,
including the number of burn-in and MCMC iterations and the acceptance rate. The sampling correlation
is also reported. It is used to check convergence; see Convergence of BMA.

The reported sampling correlation, 0.9990, is very close to 1, which suggests that the sampling
algorithm has converged and the sample of models approximates the true model posterior distribution
well. Consequently, the posterior mean and standard deviation estimates are very close to their exact
values obtained by enumeration in example 1. The same is true for the PIP estimates, which match
their exact counterparts closely.

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesConvergenceofBMA
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Example 9: Checking BMA convergence

A graphical summary of the MC3 convergence is provided by the bmagraph pmp command. It
shows the analytical and MCMC sampling probabilities of the visited models, ordered decreasingly by
their PMPs. Upon convergence, these two curves should overlap closely, as is the case in our example.

. bmagraph pmp
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We can also explore the CPMPs by specifying the cumulative option. The analytical and sampling
cumulative probabilities overlap closely too.

. bmagraph pmp, cumulative
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The cumulative graph also shows the contributions of the top PMP models. In our example, the top 6
models contribute to about 80% of the total probability mass on the model space.

https://www.stata.com/manuals/bmabmagraphpmp.pdf#bmabmagraphpmp
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Example 10: BMA linear regression using different g-priors

As we mentioned in Using the bmaregress command, bmaregress provides default priors for
convenience. It is important to explore other available prior choices during your analysis. Here we
focus on the g-priors, and we explore the model priors in example 11.

By default, bmaregress uses the benchmark prior from Fernández, Ley, and Steel (2001a), which
is g = max(n, p2), where g = n corresponds to the unit-information prior and g = p2 corresponds
to the risk inflation criterion prior. Because the number of observations, 30, is less than the number
of predictors squared, the benchmark g-prior is equivalent to using the risk inflation criterion,
gprior(ric).

. bmaregress rating complaints-advance, gprior(ric) saving(bmadata_ric)

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 10
Cons.: Noninformative Mean model size = 1.699
Coef.: Zellner’s g

g: Risk inflation, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.302

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
learning .0603014 .1285281 3 .25249
advance -.0167921 .073883 6 .13148

privileges -.0074174 .0488635 2 .10998
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for models.

file bmadata_ric.dta saved.

. estimates store ric

We stored BMA estimation results for later comparison.

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesUsingthebmaregresscommand
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Let’s specify the unit-information g-prior, gprior(uip):

. bmaregress rating complaints-advance, gprior(uip) saving(bmadata_uip)

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 11
Cons.: Noninformative Mean model size = 1.777
Coef.: Zellner’s g

g: Unit-information, g = 30 Shrinkage, g/(1+g) = 0.9677
sigma2: Noninformative Mean sigma2 = 52.739

rating Mean Std. dev. Group PIP

complaints .6988904 .1242031 1 .99969
learning .0658469 .1334993 3 .27425
advance -.0194169 .0791369 6 .14818

privileges -.0083983 .0519289 2 .12391
raises .0079323 .071638 4 .11984

critical .0012079 .0467515 5 .11142

Always
_cons 15.05253 7.983872 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for models.

file bmadata_uip.dta saved.

. estimates store uip

Using this prior reduces the fixed value of g from 36 to 30 and the shrinkage factor from 0.973 to
0.968. The reported posterior means are only slightly different from the ric results, which are the
same as in example 1, and the PIP order of the predictors remains the same. A theoretical benefit of
the unit-information prior is its consistency, in the sense that if a true data-generating model is in the
considered model space, its PMP will go to one as the sample size goes to infinity (Fernández, Ley,
and Steel 2001a).

Other fixed g-priors often considered in the literature are the square-root n prior, gprior(sqrtn),
and the empirical Bayes (local) prior, gprior(ebl).

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatfirst
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The square-root n prior sets g =
√
n, which is g =

√
30 = 5.48 in our example.

. bmaregress rating complaints-advance, gprior(sqrtn) saving(bmadata_sqrtn)

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 22
Cons.: Noninformative Mean model size = 2.818
Coef.: Zellner’s g

g: g = sqrt(n) = 5.48 Shrinkage, g/(1+g) = 0.8456
sigma2: Noninformative Mean sigma2 = 64.848

rating Mean Std. dev. Group PIP

complaints .585586 .1441692 1 .99743
learning .1134179 .1641032 3 .48829
advance -.0512107 .126477 6 .36728

privileges -.0201474 .0851126 2 .3289
raises .0203943 .1270875 4 .32382

critical .0053258 .0832724 5 .31268

Always
_cons 20.79312 9.495701 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for models.

file bmadata_sqrtn.dta saved.

. estimates store sqrtn

This prior substantively reduces parameter g from 36 to 5.48 and the shrinkage factor from 0.973
to 0.846. The posterior mean error variance is noticeably higher. The posterior mean estimates of
coefficients are somewhat different. The coefficient for complaints is slightly smaller (0.6 versus
0.7), the coefficient for learning is larger (0.11 versus 0.06), and the other coefficients are about
10 times larger, but they are still close to 0. The PIPs of all predictors except complaints are much
higher too: about twice as high for learning and three times as high for the other predictors. These
results appear to be closer to those from regress in example 6. Under this more informative prior,
the BMA model favors models with more predictors, which is indicated by the increased posterior
mean model size from 1.7 to 2.8. We explore these differences further in examples 11 and 12.

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatregress
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The local empirical Bayes prior uses a model-specific g estimated from the data for each model.

. bmaregress rating complaints-advance, gprior(ebl) saving(bmadata_ebl)

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 14
Cons.: Noninformative Mean model size = 1.872
Coef.: Zellner’s g

g: Empirical Bayes (local) Shrinkage, g/(1+g) = 0.9696
sigma2: Noninformative Mean sigma2 = 52.442

rating Mean Std. dev. Group PIP

complaints .6989413 .1302979 1 .99949
learning .0694007 .1373262 3 .28635
advance -.0234091 .0869118 6 .16924

privileges -.0096619 .0563268 2 .14424
raises .0092523 .0797441 4 .14018

critical .001859 .0519251 5 .13209

Always
_cons 14.95335 8.048125 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for models.

file bmadata_ebl.dta saved.

. estimates store ebl

The results are again similar to the default ones and those from other priors, except the previous
square-root n prior.



bmaregress — Bayesian model averaging for linear regression 37

We can also specify one of the random priors, for example, a hyper-g prior with hyperparameter 3:

. bmaregress rating complaints-advance, gprior(hyperg 3) saving(bmadata_hyperg3)

Burn-in ...
Simulation ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 and adaptive MH sampling Groups = 6

Always = 0
No. of models = 38

For CPMP >= .9 = 17
Priors: Mean model size = 2.096

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.5895

g: Hyper-g(3)
sigma2: Noninformative Mean sigma2 = 55.351

Sampling correlation = 0.9935

rating Mean Std. dev. Group PIP

complaints .6741553 .1420621 1 .9984
learning .0765859 .1437933 3 .316
advance -.0307362 .099772 6 .2259

privileges -.012216 .0648199 2 .1925
raises .0126483 .0932019 4 .182

critical .0027903 .0617168 5 .1814

Always
_cons 16.36026 8.877669 0 1

Note: Coefficient posterior means and std. dev. estimated from 38 models.
Note: Default prior is used for models.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

g 843.7276 27512.51 581.21 23.32369 3.531358 587.8747
Shrinkage .9410376 .0591481 .00196 .9588878 .7793152 .9983018

file bmadata_hyperg3.dta saved.

. estimates store hyperg3
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Or the robust prior:

. bmaregress rating complaints-advance, gprior(robust) rseed(18)
> saving(bmadata_robust)

Burn-in ...
Simulation ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 and adaptive MH sampling Groups = 6

Always = 0
No. of models = 34

For CPMP >= .9 = 12
Priors: Mean model size = 1.734

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.4232

g: Robust
sigma2: Noninformative Mean sigma2 = 53.095

Sampling correlation = 0.9994

rating Mean Std. dev. Group PIP

complaints .7000463 .1273543 1 .9998
learning .0594904 .1286095 3 .25
advance -.0192712 .0797935 6 .1503
raises .0079416 .0727859 4 .1201

privileges -.0072591 .0487009 2 .1069
critical .0014397 .0466476 5 .1067

Always
_cons 15.24911 7.988166 0 1

Note: Coefficient posterior means and std. dev. estimated from 34 models.
Note: Default prior is used for models.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

g 152.668 1968.132 43.5265 33.81024 8.205076 610.6026
Shrinkage .9656427 .0276071 .001234 .9712728 .8913639 .9983649

file bmadata_robust.dta saved.

. estimates store robust

With a random g, the sampling algorithm is a modified MC3 that uses MC3 for model exploration and
an adaptive MH for sampling g. Also, the parameter g and shrinkage are now stochastic, and their
posterior summaries are displayed at the bottom of the estimation table.

By specifying a hyperprior for g, we let the data guide the value for g instead of using a fixed value.
For instance, for the robust prior, the posterior mean estimate for g of roughly 153 is substantially
larger than the values we assumed in previous examples. But it also has a high variability, which is
not surprising for a sample of only 30 observations. With this prior, although g is much higher, the
results are still similar, and our conclusions remain unchanged.

Overall, the results in this example appear to be fairly robust to a variety of g-priors, except the
square-root n prior. See example 12 for a comparison of these priors by using the log predictive-score.
We explore the sensitivity of the results to different priors further in example 11.
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See Fernández, Ley, and Steel (2001a) for a comparison of various fixed g priors, Liang et al. (2008)
for a discussion of local empirical Bayes, hyper-g, and hyper-g/n priors, and Ley and Steel (2012)
and Porwal and Raftery (2022b) for a comparison of many other priors.

In this example, we generated several MCMC simulation datasets, which you might want to erase
at the end of the analysis; see example 14.

Example 11: Sensitivity analysis of model priors

In example 10, we considered several g-priors. In this example, we explore several model priors.

As a reference, we refit our default bmaregress model, but this time specifying the default
Beta-binomial(1, 1) prior explicitly. We also save the BMA MCMC results in bmadata betabinom.dta
and store estimation results as betabinom.

. bmaregress rating complaints-advance, mprior(betabinomial)
> saving(bmadata_betabinom)

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 10
Cons.: Noninformative Mean model size = 1.699
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.302

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
learning .0603014 .1285281 3 .25249
advance -.0167921 .073883 6 .13148

privileges -.0074174 .0488635 2 .10998
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for parameter g.

file bmadata_betabinom.dta saved.

. estimates store betabinom

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatclean
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The above prior is the uniform (noninformative) prior for the model size. Alternatively, we can
assume the uniform prior for the model space, which assumes that each model is equally likely, with
a probability of 1/64 in our example. This is equivalent to assuming that each predictor has the same
probability of being included in the model.

. bmaregress rating complaints-advance, mprior(uniform) saving(bmadata_uniform)

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Uniform For CPMP >= .9 = 13
Cons.: Noninformative Mean model size = 2.043
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 51.603

rating Mean Std. dev. Group PIP

complaints .6903531 .1291635 1 .99968
learning .0918832 .1486692 3 .38708
advance -.0243892 .087595 6 .19757

privileges -.0109805 .0591344 2 .16143
raises .0098927 .0801092 4 .15484

critical .0008905 .0524265 5 .14236

Always
_cons 14.40123 8.301086 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for parameter g.

file bmadata_uniform.dta saved.

. estimates store uniform

The posterior mean model size is slightly larger, 2 versus 1.7, under the uniform prior. But the results
are very similar to those using the default beta-binomial prior.

When we assume a noninformative prior, we allow the data to “speak for themselves” when
estimating model parameters. Sometimes, however, the data may have little to say. This is especially
common with small datasets. In this case, it might be reasonable to explore more informative priors.
The performance dataset is a relatively small dataset. We have already seen some dependency of
this dataset on one of the g-priors in example 10. Let’s see what happens as we introduce more
information about the models.

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatrandom
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Let’s continue with the beta-binomial prior but make it informative. The beta-binomial prior
assumes a binomial distribution for the inclusion of predictors in a model with the same IP and
assumes a beta distribution for the IP. One way to modify this prior is to specify a desired expected
mean model size instead of assuming that models of all sizes are equally likely. Given that we have
two predictors that stand out, we may consider a prior that gives more weight to smaller models. On
the other hand, all predictors have PIP above 10%, so it may not be unreasonable to also consider
larger models. Let’s use beta-binomial priors with the expected mean model size of 2 and 5. We
specify the mprior(betabinomial 2) and mprior(betabinomial 5) options, respectively.

. bmaregress rating complaints-advance, mprior(betabinomial 2)
> saving(bmadata_betabinom2)

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial, mean = 2 For CPMP >= .9 = 7
Cons.: Noninformative Mean model size = 1.522
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.639

rating Mean Std. dev. Group PIP

complaints .7116651 .1185252 1 .99975
learning .0458966 .1135214 3 .19841
advance -.0105735 .0597458 6 .094173

privileges -.0051842 .041615 2 .080238
raises .005258 .0565843 4 .078173

critical .0004494 .0371854 5 .071644

Always
_cons 15.00536 7.675558 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for parameter g.

file bmadata_betabinom2.dta saved.

. estimates store betabinom2

The results are very similar to those using the default prior.
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. bmaregress rating complaints-advance, mprior(betabinomial 5)
> saving(bmadata_betabinom5)

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial, mean = 5 For CPMP >= .9 = 15
Cons.: Noninformative Mean model size = 2.159
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 51.509

rating Mean Std. dev. Group PIP

complaints .6914498 .1304325 1 .99971
learning .0923695 .1546786 3 .35955
advance -.0362158 .104821 6 .22875

privileges -.0138814 .0646952 2 .19699
raises .0133366 .0926326 4 .19141

critical .003734 .0601699 5 .1824

Always
_cons 14.52747 8.31467 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for parameter g.

file bmadata_betabinom5.dta saved.

. estimates store betabinom5

The posterior mean model size is slightly higher, but the results are still similar to the above.
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With the beta-binomial prior, the IP is allowed to be inferred from the data. It may be difficult to
estimate the IP reliably with small datasets. If we want to fix this probability, we can use the binomial
prior. Let’s specify the binomial priors with mean model sizes of 2 and 5. With the binomial prior,
we need to specify the IP. For the mean model size of 2, the corresponding IP is 2/p = 2/6 = 0.33,
and for the mean size of 5, it is 5/p = 5/6 = 0.83.

. bmaregress rating complaints-advance, mprior(binomial 0.33)
> saving(bmadata_binom2)

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Binomial, IP = 0.33 For CPMP >= .9 = 7
Cons.: Noninformative Mean model size = 1.561
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.561

rating Mean Std. dev. Group PIP

complaints .7090898 .119952 1 .99975
learning .0499472 .1158814 3 .22295
advance -.0091067 .0564581 6 .096086

privileges -.0051623 .0422812 2 .084251
raises .0056663 .057094 4 .082806

critical .0002176 .0379403 5 .075179

Always
_cons 14.87536 7.771313 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for parameter g.

file bmadata_binom2.dta saved.

. estimates store binom2

The results for the binomial prior with the mean model size of 2 are again similar to the previous
results.
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. bmaregress rating complaints-advance, mprior(binomial 0.83)
> saving(bmadata_binom5)

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Binomial, IP = 0.83 For CPMP >= .9 = 23
Cons.: Noninformative Mean model size = 3.836
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 48.343

rating Mean Std. dev. Group PIP

complaints .6368386 .1435817 1 .99951
learning .2237682 .1794828 3 .80435
advance -.1102228 .1561712 6 .61442

privileges -.0376032 .0996713 2 .49344
raises .0313871 .1470874 4 .47092

critical .0112057 .0948876 5 .45346

Always
_cons 13.47056 9.637186 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for parameter g.

file bmadata_binom5.dta saved.

. estimates store binom5

The results for the binomial prior with the mean model size of 5 are different and more similar to the
results from regress in example 6. This is not surprising considering that this prior favors larger
models—the posterior mean model size is now roughly 4.

It appears that the results are somewhat robust to the considered model priors except for
gprior(binomial 0.83). We evaluate these priors more formally in example 12.

Example 12: Comparing model fit using the log predictive-score

As we discussed in Model diagnostics and Regression modeling and model space in Introduction
to BMA for linear regression, the definition of the model space and model diagnostics are important
after BMA linear regression. Before you proceed with bmaregress, it is beneficial that you explore
the regression diagnostics for at least the full model first. In addition to checking standard regression
assumptions, you will benefit from exploring alternative regression specifications to ensure that you
include all relevant predictors in the BMA model space; see [R] regress postestimation. After fitting
bmaregress, you should check regression diagnostics for models with higher PMPs, such as the two
models we identified in example 2. You should also check the sensitivity of the results to the default
priors, as we showed in examples 10 and 11 and continue exploring in this example. And, if sampling
is used, we should also check BMA convergence; see example 9.

In example 10, the choice of prior does not appear to affect the results except for one prior. Let’s go
ahead and compare those different prior specifications more formally by using the log predictive-score
(LPS). The LPS is defined as the negative of the log of the posterior predictive density evaluated

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatregress
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatlps
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregdiagnostics
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregmodeling
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesIntroductiontoBMAforlinearregression
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesIntroductiontoBMAforlinearregression
https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimation
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatmodels
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatrandom
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatmprior
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatconv
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatrandom


bmaregress — Bayesian model averaging for linear regression 45

at an observation. The smaller its value, the better the model fit. The bmastats lps command
computes LPS. We can use this command for in-sample observations used during estimation and for
out-of-sample observations. The former can be used for comparing model goodness of fit, and the
latter can be used for checking predictive performance of the model. We will compare the goodness
of fit here.

. bmastats lps ric uip sqrtn ebl hyperg3 robust, compact

Log predictive-score (LPS)

Number of observations = 30

LPS Mean Minimum Maximum

ric 3.33244 2.890314 4.429047
uip 3.3322 2.89472 4.422744

sqrtn 3.36909 2.999145 4.388221
ebl 3.331938 2.892466 4.418862

hyperg3 3.339529 2.916094 4.413267
robust 3.335522 2.897331 4.432305

Notes: Results using analytical and frequency PMPs.
Result ebl has the smallest mean LPS.

bmastats lps reports that the ebl prior has the lowest mean LPS, but all mean LPS values (and
other summaries), except sqrtn, are similar.

Similarly to g-priors, we can evaluate the model priors from example 10 by using the LPS.
. bmastats lps uniform betabinom betabinom2 betabinom5 binom2 binom5, compact

Log predictive-score (LPS)

Number of observations = 30

LPS Mean Minimum Maximum

uniform 3.324591 2.884711 4.394576
betabinom 3.33244 2.890314 4.429047

betabinom2 3.336546 2.892654 4.445658
betabinom5 3.323516 2.885564 4.386189

binom2 3.335636 2.891732 4.438463
binom5 3.295903 2.865979 4.258077

Notes: Using analytical PMPs.
Result binom5 has the smallest mean LPS.

The binom5 prior, mprior(binomial 0.83), with the mean model size of 5, has the smallest mean
LPS. It also has the smaller mean LPS than the above ebl prior.

In conclusion, all considered priors identified complaints as a highly important predictor of
rating and learning as the predictor with the next highest PIP. The actual estimates of PIPs, except
for complaints, and posterior summaries appeared to be dependent on whether the BMA model
favored the smaller or larger models. This may be explained by the presence of correlation between
some of the predictors. The noninformative model priors such as betabinomial (the default) and
uniform and g-priors assuming shrinkage δ = g/(g + 1) closer to 1 favored smaller models for
these data. The sqrtn g-prior and binomial 0.83 model prior (with the mean model size of five)
favored the larger models.

In the above, we considered the g-priors and model priors independently. But it is important to
consider their combination when evaluating model performance. To explore model fit, we computed
LPS using the entire estimation sample. We could have instead split our data into a training and test
subsamples and evaluated the out-of-sample performance of the priors by fitting the models using the

https://www.stata.com/manuals/bmabmastatslps.pdf#bmabmastatslps
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatrandom
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training subsample and computing LPS using the test subsample; see the examples in [BMA] bmastats
lps, including how to use cross-validation to check the model performance. Such an approach is
important for evaluating the predictive performance of the model, especially when prediction is the
final goal of the analysis. But, because of the smaller sample size, this approach may not be as viable
for the performance dataset.

LPS is used to evaluate the predictive performance of models in the context of BMA (Fernández,
Ley, and Steel (2001b); Ley and Steel (2012)), but we can also use other diagnostic measures such
as mean squared error or CrI coverage to compare model fit and its predictive performance; see
example 16 and Remarks and examples in [BMA] bmapredict.

In this example, we generated several datasets with BMA results, which we can remove at the end
of the analysis; see example 14.

Example 13: BMA predictions

In addition to identifying high PMP models and important predictors, BMA is also used for prediction
that accounts for model uncertainty. In fact, BMA was originated in the context of prediction. In
prediction, it is particularly important that the considered model space is as rich as possible to obtain
accurate predictions.

You can use the bmapredict command to compute posterior predictive summaries such as mean,
standard deviations, and CrIs, or you can simulate an entire predictive sample; see [BMA] bmapredict.

For posterior means and standard deviations, analytical expressions are available with fixed g, so
you can use bmapredict directly after bmaregress to compute those summaries.

Recall our BMA model from example 1. Let’s compute posterior predictive means for rating
based on this model.

. estimates restore bmareg
(results bmareg are active now)

. bmapredict pmean, mean
note: computing analytical posterior predictive means.

Let’s now compute the 95% equal-tailed predictive CrIs. The analytical expressions for these are
not as straightforward and require approximation. But we can compute them based on a predictive
MCMC sample. To generate this sample, we must first obtain the MCMC sample of model parameters.
This is done by bmacoefsample. To use bmapredict, we must also save the MCMC model parameter
sample with bmacoefsample.

. bmacoefsample, saving(bmacoef) rseed(18)

Simulation (10000): ....5000....10000 done

file bmacoef.dta saved.

. bmapredict cri_l cri_u, cri
note: computing credible intervals using simulation.

Computing predictions ...

https://www.stata.com/manuals/bmabmastatslps.pdf#bmabmastatslps
https://www.stata.com/manuals/bmabmastatslps.pdf#bmabmastatslps
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexcrimepred
https://www.stata.com/manuals/bmabmapredict.pdf#bmabmapredictRemarksandexamples
https://www.stata.com/manuals/bmabmapredict.pdf#bmabmapredict
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatclean
https://www.stata.com/manuals/bmabmapredict.pdf#bmabmapredict
https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexatfirst
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Let’s summarize the predictions:

. summarize rating pmean cri_l cri_u

Variable Obs Mean Std. dev. Min Max

rating 30 64.63333 12.17256 40 85
pmean 30 64.63333 9.788015 43.71523 82.16643
cri_l 30 49.68274 9.812 27.45753 66.24698
cri_u 30 79.67859 9.794941 59.52461 98.29689

The predicted summaries look reasonable for rating. The mean of posterior predictive means over
observations is 64.63 and matches the mean of rating. The mean posterior predictive lower 95%
credible bound is 49.7 and the upper is 79.7. Also see Remarks and examples in [BMA] bmapredict
for how to evaluate the quality of predictions.

Example 14: Cleanup after BMA analysis

With BMA, we often need to generate and save many datasets that contain simulation summaries.
Remember to remove them whenever you no longer need them. We remove the following BMA
datasets generated by Getting started examples:

. erase bmadata_enum.dta

. erase bmadata_ric.dta

. erase bmadata_uip.dta

. erase bmadata_sqrtn.dta

. erase bmadata_ebl.dta

. erase bmadata_hyperg3.dta

. erase bmadata_robust.dta

. erase bmadata_betabinom.dta

. erase bmadata_betabinom2.dta

. erase bmadata_betabinom5.dta

. erase bmadata_binom2.dta

. erase bmadata_binom5.dta

. erase bmadata_uniform.dta

. erase bmacoef.dta

BMA predictive performance for the USA crime rate data

Consider a study from 1960 on the factors influencing criminal activity in the USA (Ehrlich 1973;
Becker 1968; and Brier and Fienberg 1980). The earlier work by Ehrlich (1973) focused on the
relationship between crime rate and the probability of imprisonment and average time served in state
prisons. The dataset uscrime is from Vandaele (1978). It contains 16 variables and 47 observations,
one for 47 different states in the USA. The outcome of interest, ln offenses, accounts for the rate of
criminal activity per head of population on the log scale. The rest of the variables measure different
socio-economic and punishment-related factors, also on the log scale. Variables ln prisonp and
ln prisont correspond to the predictors of interest in the analysis by Ehrlich (1973) in the log
scale. (In what follows, when we mention predictors, we will imply their log-transformed versions
without stating this explicitly.)

https://www.stata.com/manuals/bmabmapredict.pdf#bmabmapredictRemarksandexamples
https://www.stata.com/manuals/bmabmapredict.pdf#bmabmapredict
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. use https://www.stata-press.com/data/r18/uscrime
(1960 crime rates for 47 states in the USA)

. describe

Contains data from https://www.stata-press.com/data/r18/uscrime.dta
Observations: 47 1960 crime rates for 47 states

in the USA
Variables: 16 23 Feb 2023 13:08

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

ln_offenses float %9.0g Number of offenses per million
population, log scale

ln_malepop float %9.0g Number of males of age 14-24 per
1,000 population, log scale

southern byte %8.0g Indicator variable for southern
state

ln_meaneduc float %9.0g Mean years of schooling, log
scale

ln_police60 float %9.0g Police expenditure in 1960, log
scale

ln_police59 float %9.0g Police expenditure in 1959, log
scale

ln_labor float %9.0g Labor force participation rate,
log scale

ln_mtofpop float %9.0g Number of males per 1,000
females, log scale

ln_pop float %9.0g State population size in hundred
thousands, log scale

ln_nonwhite float %9.0g Number of nonwhites per 1,000
people, log scale

ln_unemp24 float %9.0g Unemployment rate of urban males,
age 14-24, log scale

ln_unemp39 float %9.0g Unemployment rate of urban males,
age 35-39, log scale

ln_wealth float %9.0g Wealth in tens of dollars, log
scale

ln_ineq float %9.0g Income inequality, log scale
ln_prisonp float %9.0g Probability of imprisonment, log

scale
ln_prisont float %9.0g Average time served in state

prisons, log scale

Sorted by:

Raftery, Madigan, and Hoeting (1997) provide an extensive analysis of this dataset in the context
of BMA. We will follow some of their analyses by using bmaregress.
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Example 15: BMA regression for the USA crime rate

We first use bmaregress to fit a BMA linear regression of ln offenses on the remaining 15
variables. With more than 12 predictors, bmaregress uses stochastic MC3 sampling, so we specify
the rseed() option for reproducibility. Alternatively, we could still use enumeration to visit all
215 = 32,768 models by specifying the enumeration option, but we stick with the MC3 sampling
to mimic the setup of Raftery, Madigan, and Hoeting (1997) more closely. We also specify the
uniform prior on the model space to be more consistent with the authors’ setup, because, by default,
bmaregress assumes a uniform prior on the model size.

. bmaregress ln_offenses ln_malepop-ln_prisont, mprior(uniform) rseed(18)

Burn-in ...
Simulation ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 47
Linear regression No. of predictors = 15
MC3 sampling Groups = 15

Always = 0
No. of models = 803

For CPMP >= .9 = 245
Priors: Mean model size = 6.428

Models: Uniform Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.2902

g: Benchmark, g = 225 Shrinkage, g/(1+g) = 0.9956
sigma2: Noninformative Mean sigma2 = 0.037

Sampling correlation = 0.9380

ln_offenses Mean Std. dev. Group PIP

ln_ineq 1.460748 .3458405 13 .99948
ln_meaneduc 1.855513 .6249968 3 .9692
ln_prisonp -.1834373 .1198622 14 .81149
ln_malepop 1.091052 .732965 1 .77907

ln_police60 .6916081 .5425088 4 .66525
ln_nonwhite .0517939 .0582191 9 .51981
ln_unemp39 .1545517 .198343 11 .4623

ln_police59 .3509272 .5211463 5 .36779
ln_pop -.0142643 .0336552 8 .20569

ln_prisont -.0427634 .1211644 15 .17169
ln_wealth .0973078 .2782722 12 .15905
southern .0192679 .0682639 2 .11977

ln_unemp24 -.0033401 .1010699 10 .088322
ln_mtofpop .0522426 .4667382 7 .063663

ln_labor .008854 .140245 6 .045103

Always
_cons -21.67062 6.336048 0 1

Note: Coefficient posterior means and std. dev. estimated from 803 models.
Note: Default prior is used for parameter g.

From the output, the uniform prior is used for the model space, and the benchmark prior of Fernández,
Ley, and Steel (2001a) with g = 152 = 225 for these data is used for the regression coefficients. The
shrinkage factor of 225/(225 + 1) = 0.9956 corresponds to little shrinkage of coefficients toward
zero. The MC3 sampling has an acceptance rate of about 30% and fairly high sampling correlation
of about 94%. We do not suspect nonconvergence, but it is a good practice to look at the graphical
convergence summary as well. We will leave you to verify this by running bmagraph pmp. This
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means that the visited 803 models are among models with high posterior probabilities, and the drawn
MCMC sample provides a good representation of the model posterior distribution.

The top three predictors with PIP above 80% are income inequality, ln ineq, mean years of
schooling, ln meaneduc, and probability of imprisonment, ln prisonp. Other important predictors
for crime rate are percentage of males, ln malepop, and police expenditure in 1960, ln police60.
These factors were also selected in Raftery, Madigan, and Hoeting (1997) by using various model-
selection criteria.

We use the bmastats models command to inspect the top 5 models by PMP.

. bmastats models

Computing model probabilities ...

Model summary Number of models:
Visited = 803

Reported = 5

Analytical PMP Frequency PMP Model size

Rank
1 .0412 .0339 6
2 .03963 .0454 7
3 .0266 .0293 6
4 .02633 .0126 5
5 .02605 .0142 5

Note: Using analytical PMP for model ranking.

Variable-inclusion summary

Rank Rank Rank Rank Rank
1 2 3 4 5

ln_malepop x x x x x
ln_meaneduc x x x x x
ln_police60 x x x x
ln_unemp39 x x x x

ln_ineq x x x x x
ln_prisonp x x x x

ln_nonwhite x
ln_police59 x

Legend:
x - estimated

The top model has PMP of 0.04 and includes six predictors: ln malepop, ln meaneduc,
ln police60, ln unemp39, ln ineq, and ln prisonp. The posterior mean estimate for probabil-
ity of imprisonment from the earlier estimation table is negative, −0.18, which indicates its deterrent
“effect” on the outcome. (As mentioned in Raftery, Madigan, and Hoeting [1997], the term “effect”
in this analysis is used loosely.) In addition to ln prisonp, the model considered in Ehrlich (1973),
includes time served in prison, ln prisont, as a deterrent to criminal activity. In view of our BMA
analysis, this predictor has a PIP of only 0.17 and is not included in the top five models. In the context
of model selection, when we work with a single model, there is uncertainty about the inclusion of
this predictor (Raftery, Madigan, and Hoeting 1997).
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Example 16: Assessing BMA predictive performance

To assess the predictive performance of our BMA regression, we randomly split the dataset into
two equal subsets, fit the model to one of them and test the predictive performance on the other.
We adopt the prediction analysis of Raftery, Madigan, and Hoeting (1997) for comparison. We will
obtain the 90% predictive CrIs for the test subsample and compute the percentage of the observed
values that fall within these intervals.

We use the splitsample command to create the sample variable, which identifies the training
and test subsamples.

. splitsample, generate(sample) nsplit(2) rseed(18)

We then refit our model using the first subsample. We also save the MCMC model simulation
results in a dataset, bma1model.dta, to use bmacoefsample later.

. bmaregress ln_offenses ln_malepop-ln_prisont if sample == 1,
> mprior(uniform) rseed(18) saving(bma1model)

Burn-in ...
Simulation ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 24
Linear regression No. of predictors = 15
MC3 sampling Groups = 15

Always = 0
No. of models = 845

For CPMP >= .9 = 246
Priors: Mean model size = 4.254

Models: Uniform Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.2532

g: Benchmark, g = 225 Shrinkage, g/(1+g) = 0.9956
sigma2: Noninformative Mean sigma2 = 0.043

Sampling correlation = 0.9556

ln_offenses Mean Std. dev. Group PIP

ln_ineq 1.742633 .571148 13 .96936
ln_police60 1.066626 .7762218 4 .7983
ln_meaneduc .9848326 1.016487 3 .56043
ln_prisonp -.0533234 .1007384 14 .2904

ln_labor .531245 1.073081 6 .26204
ln_police59 .1248871 .7554263 5 .2585

ln_pop -.029143 .0621607 8 .23924
ln_unemp39 .1347758 .3466462 11 .19688
ln_wealth .1413427 .471408 12 .13636

ln_unemp24 -.0771369 .2646401 10 .12362
ln_prisont .0209606 .1144098 15 .10844

southern .0139217 .0754495 2 .092931
ln_malepop .0731975 .3506361 1 .083313

ln_nonwhite .0034271 .0257528 9 .068867
ln_mtofpop .0052071 .6672984 7 .065453

Always
_cons -17.13352 8.459582 0 1

Note: Coefficient posterior means and std. dev. estimated from 845 models.
Note: Default prior is used for parameter g.

file bma1model.dta saved.
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The MCMC model simulation file saved by bmaregress contains the information about the visited
models and model-specific posterior means and standard deviations of regression coefficients. But to
compute CrIs, we also need an MCMC sample from posterior distributions of the model parameters.
The bmacoefsample command generates such a sample. We also save the MCMC results from
bmacoefsample in bma1coef.dta, as required by bmapredict, which we will use later to generate
CrIs.

. bmacoefsample, saving(bma1coef) rseed(18)

Simulation (10000): ....5000....10000 done

file bma1coef.dta saved.

The MCMC dataset bma1coef contains the draws from the posterior distribution of model parameters,
which will be used to generate CrIs.

We now use bmapredict to compute the 90% lower and upper CrIs using the test sample and
save them in new variables bma1l and bma1u.

. bmapredict bma1l bma1u if sample == 2, cri clevel(90) rseed(18)
note: computing credible intervals using simulation.

Computing predictions ...

Now we compute the actual CrI coverage.

. generate bma1cov90 = ln_offenses < bma1u & ln_offenses > bma1l if sample == 2
(24 missing values generated)

. summarize bma1cov90

Variable Obs Mean Std. dev. Min Max

bma1cov90 23 .8695652 .3443502 0 1

We obtain about 87% coverage for the observed outcome in the test sample, which is close to the
theoretical 90%. In Raftery, Madigan, and Hoeting (1997), the authors report a predictive coverage of
80% for Occam’s window algorithm and a 67% coverage or below for various other model selection
procedures.

For comparison, let’s also compute predictive CrI coverages based on two regression models: one
that includes all predictors, the full model, and one that corresponds to the highest posterior model
(HPM), rank 1, model from example 15.

We can still use bmaregress to fit these models, but we now need to specify the relevant predictors
to be always included in the model.

. bmaregress ln_offenses (ln_malepop-ln_prisont, always) if sample == 1,
> mprior(uniform) saving(bma2model) notable

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 24
Linear regression No. of predictors = 15
Model enumeration Groups = 0

Always = 15
Priors: No. of models = 1

Models: Uniform For CPMP >= .9 = 1
Cons.: Noninformative Mean model size = 15.000
Coef.: Zellner’s g

g: Benchmark, g = 225 Shrinkage, g/(1+g) = 0.9956
sigma2: Noninformative Mean sigma2 = 0.010

file bma2model.dta saved.

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexcrimereg
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As expected, there is only one visited model in the model space.

We now repeat the earlier computations of CrIs and their coverage for the full model.

. bmacoefsample, saving(bma2coef) rseed(18)

Simulation (10000): ....5000....10000 done

file bma2coef.dta saved.

. bmapredict bma2l bma2u if sample==2, cri clevel(90) rseed(18)
note: computing credible intervals using simulation.

Computing predictions ...

. generate bma2cov90 = ln_offenses < bma2u & ln_offenses > bma2l if sample == 2
(24 missing values generated)

. summarize bma2cov90

Variable Obs Mean Std. dev. Min Max

bma2cov90 23 .3913043 .4990109 0 1

The full model achieves only 39% coverage, which is substantially lower than the BMA coverage.

Next we compute predictions using the HPM model reported by the bmaregress command in
example 15. It includes the following six predictors: ln malepop, ln meaneduc, ln police60,
ln unemp39, ln ineq, and ln prisonp. We specify these variables in the always group and then
compute the predictive CrI coverage as before.

. bmaregress ln_offenses
> (ln_malepop ln_meaneduc ln_police60 ln_unemp39 ln_ineq ln_prisonp, always)
> if sample == 1, mprior(uniform) saving(bma3model) notable

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 24
Linear regression No. of predictors = 6
Model enumeration Groups = 0

Always = 6
Priors: No. of models = 1

Models: Uniform For CPMP >= .9 = 1
Cons.: Noninformative Mean model size = 6.000
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 0.036

file bma3model.dta saved.

. bmacoefsample, saving(bma3coef) rseed(18)

Simulation (10000): ....5000....10000 done

file bma3coef.dta saved.

. bmapredict bma3l bma3u if sample==2, cri clevel(90) rseed(18)
note: computing credible intervals using simulation.

Computing predictions ...

. generate bma3cov90 = ln_offenses < bma3u & ln_offenses > bma3l if sample == 2
(24 missing values generated)

. summarize bma3cov90

Variable Obs Mean Std. dev. Min Max

bma3cov90 23 .826087 .3875534 0 1

This model produces the predictive CrI coverage of about 83%, but it is still lower than the BMA
model with coverage of 87%.

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexcrimereg
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Once we are done with our analysis, we can remove the extra variables and datasets that we
created:

. drop bma*l bma*u bma*cov90

. erase bma1model.dta

. erase bma2model.dta

. erase bma3model.dta

. erase bma1coef.dta

. erase bma2coef.dta

. erase bma3coef.dta

BMA analysis of cross-country economic growth data

In the following series of examples, we apply BMA to an extensively studied problem of economic
growth. We follow some of the methodology and use the dataset from Fernández, Ley, and Steel (2001b),
which is considered one of the fundamental papers on BMA. Also see, for instance, Eicher, Papageorgiou,
and Raftery (2011), who investigated the effect of different BMA priors in a study of economic growth
determinants and found that a uniform model prior and a unit-information g-prior performed best
among considered priors. And see Ley and Steel (2009) for the effect of prior assumptions in economic
growth modeling.

The econgrowth dataset contains information about 72 countries, including their average per
capita gross domestic product (GDP) computed over the period 1960 through 1992, size of labor force,
life expectancy, etc. It is a subset from an earlier study in Sala-I-Martin (1997). Below, we describe
the variables in the dataset.

. use https://www.stata-press.com/data/r18/econgrowth
(Economic growth data)

. describe

Contains data from https://www.stata-press.com/data/r18/econgrowth.dta
Observations: 72 Economic growth data

Variables: 43 8 Mar 2023 10:17
(_dta has notes)
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Variable Storage Display Value
name type format label Variable label

gdpgrowth float %9.0g * Average annual growth in GDP per
capita, 1960-1992

abslat float %9.0g Absolute latitude (degrees)
age byte %8.0g Age
area int %8.0g Surface area (in 1,000s of square

kilometers)
blmktpm float %9.0g Premium for black market
brit byte %8.0g British colony dummy
buddha float %9.0g Fraction Buddhist
catholic float %9.0g Fraction Catholic
civllib float %9.0g * Civil liberties index
confucian float %9.0g Fraction Confucian
ecoorg byte %8.0g * Degree of capitalism
english float %9.0g Fraction speaking English
equipinv float %9.0g Share of output invested in

physical equipment
ethnol float %9.0g Ethnolinguistic fractionalization
foreign float %9.0g Fraction speaking language other

than English
french byte %8.0g French colony dummy
gdp60 float %9.0g Log of GDP per capita in 1960
highenroll float %9.0g Higher education enrollment
hindu float %9.0g Fraction Hindu
jewish float %9.0g Fraction Jewish
labforce float %9.0g Labor force (in 1,000s)
latamerica byte %8.0g Latin America dummy
lifeexp float %9.0g Life expectancy
mining float %9.0g Fraction of GDP in mining
muslim float %9.0g Fraction Muslim
nequipinv float %9.0g Share of output invested in items

other than equipment
outwaror byte %8.0g Outward orientation
polrights float %9.0g * Political rights index
popg float %9.0g Annual percent change in the

population
prexports float %9.0g Proportion of exports that are

primary, 1970
protestants float %9.0g Fraction Protestants
prscenroll float %9.0g Primary school enrollment

(proportion)
publedupct float %9.0g Public education share
revncoup float %9.0g Revolutions and coups
rfexdist int %8.0g Exchange rate distortions
ruleoflaw float %9.0g Index developed by the World

Justice Project (WJP)
spanish byte %8.0g Spanish colony dummy
stdbmp float %9.0g Std. dev. of black market premium
subsahara byte %8.0g Sub-Saharan dummy
wardummy byte %8.0g War dummy
workpop float %9.0g Log of employment-population

ratio
yrsopen float %9.0g Fraction of years an economy has

been open between 1950 and 1990
y float %9.0g * Average annual growth in GDP per

capita, 1960-1992
* indicated variables have notes

Sorted by:
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We are interested in identifying the factors explaining the growth rate by considering a regression
model of GDP growth over a host of country characteristics. BMA will be used to account for model
uncertainty.

Example 17: BMA linear regression of economic growth

We fit the same BMA regression model as described in Fernández, Ley, and Steel (2001b). It uses
a uniform prior on the model space, where each model has the same prior probability and a Zellner’s
g-prior for the regression coefficients with g = max(n, p2) = 1,681, where n = 72 is the sample
size and p = 41 is the number of predictors. This benchmark prior, gprior(benchmark), is the
default in bmaregress.

With so many possible predictors, the model space is too big to explore by model enumeration,
so the MC3 sampling will be used. We increase the MCMC sample size to 200,000 and set a random-
number seed for reproducibility. With that many iterations, the command will take a few moments to
run, so we display a dot every 5,000 iterations to monitor the progress.

. bmaregress gdpgrowth abslat-yrsopen, mprior(uniform) mcmcsize(200000)
> rseed(18) dots(5000)

Burn-in (2500): done
Simulation (200000): ........................................ done

Computing model probabilities ...

Bayesian model averaging No. of obs = 72
Linear regression No. of predictors = 41
MC3 sampling Groups = 41

Always = 0
No. of models = 22,019

For CPMP >= .9 = 3,911
Priors: Mean model size = 9.593

Models: Uniform Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 200,000
Coef.: Zellner’s g Acceptance rate = 0.1724

g: Benchmark, g = 1,681 Shrinkage, g/(1+g) = 0.9994
sigma2: Noninformative Mean sigma2 = .000055

Sampling correlation = 0.9427
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gdpgrowth Mean Std. dev. Group PIP

gdp60 -.0161835 .0029825 16 .99977
confucian .0563652 .0128534 9 .99861

lifeexp .0008438 .0003119 22 .95731
equipinv .1648326 .0619083 12 .95457

subsahara -.0118906 .0079718 38 .77207
muslim .0087556 .007237 24 .67147

ruleoflaw .0082255 .0084833 35 .53652
yrsopen .0071409 .008048 41 .48922
ecoorg .0013196 .0014889 10 .48642

protestants -.0058382 .0070492 30 .46548
nequipinv .0252486 .0319193 25 .4349

mining .0169622 .0224533 23 .41827
latamerica -.0014542 .0036659 21 .16994
prscenroll .0035024 .0087742 31 .16556

buddha .0018523 .0050603 6 .14496
blmktpm -.0010587 .0029964 4 .13458

catholic -.0003605 .0027147 7 .098655
hindu -.0018908 .007526 18 .079742

civllib -.0001846 .0007183 8 .078893
prexports -.0005476 .002645 29 .054696
polrights -.0000816 .0004163 27 .050608
rfexdist -2.71e-06 .0000142 34 .046846

age -1.79e-06 .0000106 2 .038836
wardummy -.000138 .0008583 39 .035901
foreign .0001651 .0010763 14 .035183
english -.0002166 .0013975 11 .034352

labforce 1.95e-09 1.77e-08 20 .029665
ethnol .0001246 .0010726 13 .023176
french .000088 .0007816 15 .021807

spanish .000089 .0009374 36 .021585
stdbmp -3.24e-07 2.83e-06 37 .021269
abslat 1.84e-07 .000019 1 .016268

workpop -.0001042 .0013305 40 .015206
outwaror -.0000245 .00035 26 .014345

popg .0021388 .0272493 28 .01341
highenroll -.0003523 .0045785 17 .01317

brit -.000021 .0003203 5 .010822
jewish -.000091 .0016002 19 .010737

publedupct .000255 .0143465 32 .010524

Always
_cons .0705111 .0208966 0 1

Note: Coefficient posterior means and std. dev. estimated from 22,019 models.
Note: Default prior is used for parameter g.
Note: 2 predictors with PIP less than .01 not shown.
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The number of models visited by MC3 is 22,019. Of those, 3,911 contribute to the CPMP of at least 0.9,
so we can expect many models with low PMPs. The mean model size is 9.6, so, on average, models
tend to include about 10 predictors. The overall acceptance rate is about 17%, which is a reasonable
value for MC3 sampling in a high-dimensional space. The sampling correlation is about 0.94, so
nonconvergence should not be suspected. Recall that this is the correlation between the analytical
posterior model probabilities and their MCMC sampling frequencies. We can use the bmagraph pmp
command to plot these frequencies for visual inspection.

. bmagraph pmp
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For the first 100 models, the frequency PMPs are below the analytical PMPs because we explored only
a small fraction of all possible models, and the PMP distribution has a long and heavy tail. With the
increase of the MCMC sample size, the differences will diminish. We do not have a reason to suspect
nonconvergence.

https://www.stata.com/manuals/bmabmagraphpmp.pdf#bmabmagraphpmp
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bmaregress reports results for 39 out of 41 predictors. Two of the predictors have PIPs less than
0.01 and thus are not reported. If we want, we can specify the allcoef option on replay to see all
coefficients.

. bmaregress, allcoef noheader

gdpgrowth Mean Std. dev. Group PIP

gdp60 -.0161835 .0029825 16 .99977
confucian .0563652 .0128534 9 .99861

lifeexp .0008438 .0003119 22 .95731
equipinv .1648326 .0619083 12 .95457

subsahara -.0118906 .0079718 38 .77207
muslim .0087556 .007237 24 .67147

ruleoflaw .0082255 .0084833 35 .53652
yrsopen .0071409 .008048 41 .48922
ecoorg .0013196 .0014889 10 .48642

protestants -.0058382 .0070492 30 .46548
nequipinv .0252486 .0319193 25 .4349

mining .0169622 .0224533 23 .41827
latamerica -.0014542 .0036659 21 .16994
prscenroll .0035024 .0087742 31 .16556

buddha .0018523 .0050603 6 .14496
blmktpm -.0010587 .0029964 4 .13458

catholic -.0003605 .0027147 7 .098655
hindu -.0018908 .007526 18 .079742

civllib -.0001846 .0007183 8 .078893
prexports -.0005476 .002645 29 .054696
polrights -.0000816 .0004163 27 .050608
rfexdist -2.71e-06 .0000142 34 .046846

age -1.79e-06 .0000106 2 .038836
wardummy -.000138 .0008583 39 .035901
foreign .0001651 .0010763 14 .035183
english -.0002166 .0013975 11 .034352

labforce 1.95e-09 1.77e-08 20 .029665
ethnol .0001246 .0010726 13 .023176
french .000088 .0007816 15 .021807

spanish .000089 .0009374 36 .021585
stdbmp -3.24e-07 2.83e-06 37 .021269
abslat 1.84e-07 .000019 1 .016268

workpop -.0001042 .0013305 40 .015206
outwaror -.0000245 .00035 26 .014345

popg .0021388 .0272493 28 .01341
highenroll -.0003523 .0045785 17 .01317

brit -.000021 .0003203 5 .010822
jewish -.000091 .0016002 19 .010737

publedupct .000255 .0143465 32 .010524
revncoup 7.98e-06 .0005547 33 .0090622

area -2.05e-09 5.24e-08 3 .0088675

Always
_cons .0705111 .0208966 0 1

Note: Coefficient posterior means and std. dev. estimated from 22,019 models.
Note: Default prior is used for parameter g.
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Commonly in BMA, a predictor is considered important if its PIP is greater than 0.5. In this example,
we see that several predictors, such as log of GDP in 1960, fraction Confucian, life expectancy,
equipment investment, sub-Saharan indicator, fraction Muslim, and rule of law, play an important
role in explaining economic growth. On the other hand, predictors with low PIPs, such as surface area
with PIP below 0.01, contribute little to explaining the economic growth.

Example 18: Model and variable-inclusion summaries

Let’s continue with example 17 and use bmastats models to explore the top models visited by
bmaregress. To limit the number of predictors displayed for each model to only those with PIP
above 0.1, we specify the pipcutoff(0.1) option.

. bmastats models, pipcutoff(0.1)

Computing model probabilities ...

Model summary Number of models:
Visited = 22,019

Reported = 5

Analytical PMP Frequency PMP Model size

Rank
1 .01869 .01019 10
2 .01632 .008705 9
3 .01088 .00448 8
4 .007274 .00335 7
5 .006697 .00289 7

Note: Using analytical PMP for model ranking.

Variable-inclusion summary

Rank Rank Rank Rank Rank
1 2 3 4 5

confucian x x x x x
ecoorg x x

equipinv x x x x x
gdp60 x x x x x

lifeexp x x x x x
muslim x x x x x

nequipinv x x
protestants x x

ruleoflaw x x
subsahara x x x x

mining x
yrsopen x x x

Legend:
x - estimated

By default, the command displays the top five models ranked by PMP. It reports both analytical and
frequency PMPs, which are similar because the model converged. It also reports the model sizes. The
predictors included in each reported model are displayed in a separate table. The pipcutoff(0.1)
option did not have an effect in our example, because all predictors in these top five models have a
PIP greater than 0.1, which can be verified by running the command without this option.

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexecongrowth
https://www.stata.com/manuals/bmabmastatsmodels.pdf#bmabmastatsmodels
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The top model has a rather low PIP of 0.019 and includes 10 predictors, among which there are
all 7 important predictors. We can list the PIPs for the predictors of the top model by using bmastats
pip:

. bmastats pip confucian ecoorg equipinv gdp60 lifeexp muslim nequipinv
> protestants ruleoflaw subsahara

Posterior inclusion probability (PIP)

No. of obs = 72
No. of predictors = 41

Groups = 41
Always = 0

Reported = 10
No. of models = 22,019
Mean model size = 9.593

PIP Group

gdp60 .99977 16
confucian .99861 9

lifeexp .95731 22
equipinv .95457 12

subsahara .77207 38
muslim .67147 24

ruleoflaw .53652 35
ecoorg .48642 10

protestants .46548 30
nequipinv .4349 25

Always
_cons 1 0

Note: Using analytical PMPs.

The other three predictors have PIPs above 0.4.

The rank 2 model with a PMP of 0.016 includes the same predictors as the top model, except for
protestants. The remaining models have relatively lower PMPs. The presence of so many models
with similar low probabilities means that there are many plausible models that can be considered for
these data. Thus, if we were to choose just one, it would have been difficult to select the “best” one.

We may be also interested in some specific regression models from the BMA model sample. For
example, we may be interested in models that include any of the seven important predictors, which
we can specify in the include() option. And, in addition to the HPM, we may want to explore the
median probability model (MPM). MPM is the model that includes only predictors with a PIP greater
or equal to 0.5 (Fletcher 2018). The include() option may select many models, so we consider
only those with PMP above 0.0025.

https://www.stata.com/manuals/bmabmastatspip.pdf#bmabmastatspip
https://www.stata.com/manuals/bmabmastatspip.pdf#bmabmastatspip
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. bmastats models, hpm mpm pmpcutoff(0.0025)
> include(gdp60 confucian lifeexp equipinv subsahar muslim ruleoflaw)

Computing model probabilities ...

Model summary Number of models:
Visited = 22,019

Reported = 13

Analytical PMP Frequency PMP Model size

Rank
(HPM) 1 .01869 .01019 10

2 .01632 .008705 9
7 .005889 .003555 8
9 .005764 .0039 10

15 .004007 .00218 11
16 .003959 .00171 9
17 .003956 .001865 11
18 .003762 .002795 11
21 .003527 .001275 8
22 .003362 .00143 11
26 .003097 .00111 10
30 .002701 .00149 11

(MPM) 33 .002628 .00183 7

Notes: Using analytical PMP for model ranking.
3,932 models with PMP less than .0025 not shown.

Note: Use option vartable to display variable-inclusion table for more than
12 models.

There are 13 models that include the important predictors and have a PMP above 0.0025, and there
are 3,932 more models with a PMP below that. The MPM includes our seven important predictors. Its
PMP is only 0.0026. With many predictors, it is not unreasonable to see so many models with low
PMP in the absence of the strong information in the data about the model.

The bmastats msize command summarizes the sizes of the explored models. The model size
is the number of predictors included in the model. In addition to the posterior mean size, which is
also reported in the header of bmaregress, the command reports the posterior median size and the
minimum and maximum model sizes. For comparison, it also reports the summaries for the prior
model-size distribution.

. bmastats msize

Model-size summary

Number of models = 22,019
Model size:

Minimum = 4
Maximum = 22

Mean Median

Prior
Analytical 11.0877 11

Posterior
Analytical 9.5933 10
Frequency 10.4171 10

The smallest model includes only 4 predictors, and the largest model includes 22 predictors. The
analytical posterior median size is 10 compared with the mean of 9.59. The posterior model-size

https://www.stata.com/manuals/bmabmastatsmsize.pdf#bmabmastatsmsize
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summaries are similar to the prior ones. And frequency model-size summaries computed from the
MCMC sample are similar to the analytical ones, as would be expected for the converged model.

We can plot the entire distributions of model sizes by using bmagraph msize.
. bmagraph msize
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The model-size distributions are fairly similar with the posterior one shifted to the left, favoring
slightly smaller models than what was assumed a priori.

Example 19: Coefficient summaries

Let’s use bmagraph coefdensity to look at the distributions of regression coefficients for gdp60
and ruleoflaw.

. bmagraph coefdensity {gdp60}
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For coefficient {gdp60} (or using its full name {gdpgrowth:gdp60}), the probability of noninclusion
is very low, 0.0002, so the red line that represents it is not even visible on the graph. Thus the
posterior density of {gdp60} is essentially a continuous normal-like density, centered at about −0.015
with most of its mass between roughly −0.025 and −0.005, away from 0.

https://www.stata.com/manuals/bmabmagraphmsize.pdf#bmabmagraphmsize
https://www.stata.com/manuals/bmabmagraphcoefdensity.pdf#bmabmagraphcoefdensity
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We now look at the posterior density for the {ruleoflaw} coefficient.

. bmagraph coefdensity {ruleoflaw}
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The probability of noninclusion for {ruleoflaw} is about 0.46, so we see the red vertical line meets
the horizontal reference line at roughly 0.46. Conditional on the inclusion, the continuous density is
centered around 0.015 with most of its mass between 0 and 0.03.

The posterior means and standard deviations reported by bmaregress are computed with respect
to the above mixtures of distributions.

If we want to compute CrIs, we need to use bmacoefsample first to obtain samples of regression
coefficients from their posterior distributions, shown above for {gdp60} and {ruleoflaw}. To run
bmacoefsample, we need to save our BMA sampling results first, which we can do on replay:

. bmaregress, saving(bmadata_econgrowth)
note: file bmadata_econgrowth.dta saved.

. bmacoefsample, mcmcsize(10000) rseed(18)

Simulation (10000): ....5000....10000 done

bmacoefsample uses the same MCMC size as bmaregress to generate the sample, unless the
mcmcsize() option is specified. Here we do not need 200,000 samples of coefficients, so we
specify a smaller number of 10,000. The size of this sample affects the accuracy of the MCMC-based
computations of the posterior summaries of regression coefficients.

Once we have an MCMC sample of coefficients, many Bayesian postestimation commands are
available. For example, we can use bayesstats summary to compute the 95% HPD CrIs for the
coefficients of, say, equipinv and ruleoflaw.

. bayesstats summary {gdpgrowth: equipinv ruleoflaw}, hpd

Posterior summary statistics MCMC sample size = 10,000

HPD
gdpgrowth Mean Std. dev. MCSE Median [95% cred. interval]

equipinv .1653323 .0627102 .000627 .1684731 0 .2607861
ruleoflaw .0082453 .0084968 .000085 .0078141 0 .0219461

The first two columns report the posterior means and standard deviations based on the MCMC simulation,
which approximate the analytical ones reported by bmaregress. The MCMC-based estimates are similar

https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummary
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to the analytical ones. The MCSE column reports the Monte Carlo standard errors, which describes
the precision of the posterior-mean estimates and depends on the size of the MCMC sample specified
in mcmcsize() with bmacoefsample. The last two columns report the 95% HPD CrIs. For instance,
the reported 95% CrI for {ruleoflaw} is consistent with its posterior density shown above.

We can also use bayesstats summary to compute posterior summaries for expressions of
coefficients. Suppose we are interested in estimating the posterior probability that both coefficients
for equipinv and ruleoflaw are positive. We can do this as follows:

. bayesstats summary
((({gdpgrowth:ruleoflaw} > 0) & ({gdpgrowth:equipinv} > 0)))

Posterior summary statistics MCMC sample size = 10,000

expr1 : ({gdpgrowth:ruleoflaw} > 0) & ({gdpgrowth:equipinv} > 0)

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

expr1 .496 .500009 .004948 0 0 1

The probability of both of these coefficients being positive is about 50%.

Example 20: Jointness measures

In the context of BMA, we can explore additional characteristics about the included predictors
such as their tendencies of being included in a model together, separately, or independently. This is
described by the so-called jointness measures.

Let’s compute jointness measures for some predictors. First, we compute these measures for a pair
of predictors with high PIPs: gdp60 and lifeexp. We use the bmastats jointness command for
this.

. bmastats jointness gdp60 lifeexp

Computing model probabilities ...

Variables: gdp60 lifeexp

Jointness

Doppelhofer--Weeks 6.944544
Ley--Steel type 1 .9575255
Ley--Steel type 2 22.54354

Yule’s Q .9980741

Notes: Using analytical PMPs. See
thresholds.

All reported jointness measures suggest that the two predictors are complements, which means that they
each contain additional information that helps explain the outcome. For instance, the Doppelhofer–
Weeks measure is 6.94 > 2, which means “strong jointness”, and the Ley–Steel type 2 measure is
22.54 > 10, which also indicates “strong jointness”; see [BMA] bmastats jointness for details.

https://www.stata.com/manuals/bmaglossary.pdf#bmaGlossaryjointness
https://www.stata.com/manuals/bmabmastatsjointness.pdf#bmabmastatsjointness
https://www.stata.com/manuals/bmabmastatsjointness.pdf#bmabmastatsjointness
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Second, let’s compute jointness measures for a pair of predictors with lower PIPs, for example,
polrights and civllib.

. bmastats jointness polrights civllib

Computing model probabilities ...

Variables: polrights civllib

Jointness

Doppelhofer--Weeks -2.669263
Ley--Steel type 1 .0024346
Ley--Steel type 2 .0024405

Yule’s Q -.8703767

Notes: Using analytical PMPs. See
thresholds.

All reported jointness measures suggest that the two predictors are substitutes, which means that they
do not bring any additional information to help explain the outcome when included together. For
instance, the Doppelhofer–Weeks measure is −2.67 < −2, which means “strong disjointness”, and
the Ley–Steel type 2 measure is 0.0024 < 0.01, which indicates “decisive disjointness”.

Example 21: BMA regression of economic growth using random parameter g

By default, bmaregress uses a fixed value for the g parameter of a Zellner’s g-prior, which
limits the class of explored regression models. There is no one optimal value for g. A more general
class of models can be considered by allowing g to vary between models according to a prespecified
hyperprior distribution.

The bmaregress command supports a number of hyperpriors for g: betashrink, betabench,
hyperg, hypergn, zsiow, and robust. Below, we use the betabench prior for illustration. This
hyperprior is controlled by a parameter a, a > 0, and it is equivalent to specifying the Beta{a ×
max(n, p2), a} prior distribution on the shrinkage δ = g/(g + 1). We choose a = 10, which
corresponds to the Beta(16,810, 10) prior. The prior mean for the shrinkage is thus very close to 1,
0.9994 to be exact. We first run the model without showing the output table. We do not want to focus
on the results before we check the MCMC convergence and make sure that the sample we generated
is representative of the model posterior distribution.

. bmaregress gdpgrowth abslat-yrsopen, mprior(uniform) gprior(betabench 10)
> rseed(18) notable

Burn-in ...
Simulation ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 72
Linear regression No. of predictors = 41
MC3 and adaptive MH sampling Groups = 41

Always = 0
No. of models = 1,685

For CPMP >= .9 = 1,070
Priors: Mean model size = 10.870

Models: Uniform Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.5655

g: Benchmark-beta-shrinkage(10)
sigma2: Noninformative Mean sigma2 = .000054

Sampling correlation = 0.1080
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Here the MC3 algorithm did not converge. It visited only 1,685 models, a very small portion of the
entire model space, and, not surprisingly, the sampling correlation is relatively low, about 11%, which
suggests inadequate exploration of the model space.

But if we look at the diagnostics plot of the g parameter, it shows sufficient mixing with diminishing
autocorrelation after 10 lags and does not raise any convergence issues.

. bayesgraph diagnostics {g}
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So the convergence for g does not imply convergence over the model space. To improve the latter,
we specify a larger initial value for g, 1,000, which is closer to the prior mean of g, and increase the
MCMC sample size to 40,000.

. bmaregress gdpgrowth abslat-yrsopen, mprior(uniform) gprior(betabench 10)
> ginit(1000) mcmcsize(40000) rseed(18)

Burn-in ...
Simulation ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 72
Linear regression No. of predictors = 41
MC3 and adaptive MH sampling Groups = 41

Always = 0
No. of models = 5,985

For CPMP >= .9 = 3,683
Priors: Mean model size = 10.974

Models: Uniform Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 40,000
Coef.: Zellner’s g Acceptance rate = 0.5590

g: Benchmark-beta-shrinkage(10)
sigma2: Noninformative Mean sigma2 = .000053

Sampling correlation = 0.3115
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gdpgrowth Mean Std. dev. Group PIP

gdp60 -.0162014 .0031171 16 1
confucian .0571647 .0148002 9 .98813

lifeexp .0008541 .0003227 22 .95098
equipinv .1569886 .0662325 12 .93085

muslim .0098991 .0079137 24 .69912
subsahara -.0105384 .0087295 38 .68073

yrsopen .0072551 .007865 41 .51823
ruleoflaw .0072071 .0081836 35 .4953

protestants -.0060056 .0070656 30 .48492
mining .0191716 .0228082 23 .47828
ecoorg .0012255 .0014384 10 .47625

nequipinv .0271594 .0324673 25 .46795
prscenroll .0047258 .0098377 31 .24322

buddha .0030845 .0063681 6 .23272
latamerica -.0016883 .0041869 21 .21848

blmktpm -.0014396 .0033853 4 .18812
civllib -.0004035 .0010327 8 .17472

catholic -.0000176 .0032274 7 .14413
polrights -.0001868 .0006425 27 .12987

hindu -.0033699 .0118713 18 .11532
prexports -.0010904 .0037068 29 .1103

age -4.86e-06 .0000174 2 .10203
english -.000586 .0022521 11 .099375

wardummy -.0003553 .0013681 39 .099225
rfexdist -4.92e-06 .0000187 34 .09735
foreign .0004337 .0017529 14 .09035

labforce 7.55e-09 3.71e-08 20 .07665
abslat -5.66e-07 .0000433 1 .06855
ethnol .0003364 .0017694 13 .06445

spanish .0002713 .0016564 36 .060425
outwaror -.0001108 .0007231 26 .05725
workpop -.0002883 .0023882 40 .052925

popg .0066005 .0543594 28 .052025
stdbmp -5.66e-07 3.70e-06 37 .049025

brit -.0000933 .0007186 5 .046375
area -9.87e-09 1.34e-07 3 .04465

jewish -.0003108 .0031789 19 .0432
french .0001371 .0009942 15 .04185

highenroll -.0008954 .0075328 17 .03785
publedupct .0009074 .0244793 32 .03205

revncoup -8.58e-06 .0009061 33 .03055

Always
_cons .0709041 .0237199 0 1

Note: Coefficient posterior means and std. dev. estimated from 5,985 models.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

g 1184.255 343.643 5.20567 1128.086 700.552 2033.428
Shrinkage .9990924 .000239 3.5e-06 .9991143 .9985746 .9995085

The sampling correlation improves; it is 31% now compared with 11% earlier. In absolute terms, this
may still seem low but, given the size of the model space, 241, is probably acceptable. Achieving
very high sampling correlation, say, 90%, for this model may take a long time. The diagnostic plots
for g are better too.
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. bayesgraph diagnostics {g}
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We obtain results similar to those for a fixed g in example 17. The estimated shrinkage posterior
mean of 0.999 matches closely the fixed value of 0.994. Thus, the chosen prior for g does not seem
to have much of an effect on the results.

Stored results
bmaregress stores the following in e():

Scalars
e(N) number of observations
e(p) number of predictors
e(p groups) number of groups of predictors
e(p always) number of always included predictors
e(k models) number of visited models
e(k models cpmp) number of highest PMP models accounting for at least 90% of CPMP
e(k models all) number of all available models
e(msize mean) posterior mean model size as displayed in the header
e(msize mean a) analytical posterior mean model size; not available with random g

e(msize mean f) frequency posterior mean model size; not available with model enumeration
e(msize mean prior) prior mean model size
e(mcmcsize) MCMC size with sampling
e(burnin) number of burn-in iterations with sampling
e(thinning) thinning interval with sampling
e(arate) acceptance rate with sampling
e(sampcorr) correlation between frequency and analytical PMP; not available with model enu-

meration
e(sigma2) posterior mean of the error variance
e(g) value of g when g is a fixed constant
e(g init) initial g-value with sampling
e(shrinkage) shrinkage with fixed g

e(groupfv) 1 if groupfv is specified; 0 otherwise
e(clevel) credible interval level with random g

e(hpd) 1 if hpd is specified; 0 otherwise (random g)

https://www.stata.com/manuals/bma.pdf#bmabmaregressRemarksandexamplesbmaregexecongrowth
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Macros
e(cmd) bmaregress
e(cmdline) command as typed
e(title) first title appearing in header
e(title2) second title appearing in header
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(indepvars) names of predictors included in the models
e(alwaysvars) names of predictors that are always included
e(omitvars) names of predictors marked as omitted
e(sampling) sampling algorithm
e(sampling lab) label for sampling algorithm
e(heredity) heredity rule; only available in the presence of interactions
e(mprior) model prior option
e(mprior dist) name of model prior distribution
e(mprior lab) label for model prior distribution
e(gprior) g-prior option
e(gprior dist) name of g-prior distribution
e(gprior lab) label for g-prior distribution
e(minitial) model prior initial option
e(ginitial) g-prior initial option
e(modelfilename) name of the file with simulation results
e(rngstate) random-number state at the time of simulation

Matrices
e(b bma) posterior means
e(V bma) posterior variance–covariance matrix
e(b bma c) posterior means in estimation (recentered) metric
e(V bma c) posterior variance–covariance matrix in estimation (recentered) metric
e(pip) probabilities of inclusion
e(group) group indices for predictors
e(mprior params) parameters of model prior distribution (if any)
e(gprior params) parameters of g-prior (if any)
e(modelinit) initial model state binary vector with sampling

Functions
e(sample) marks estimation sample

Methods and formulas
Methods and formulas are presented under the following headings:

Model assumptions and generic formulas
Priors on the model space
Priors for parameter g

Fixed g priors
Random g priors

Centering
Conditional posterior distribution of model parameters
Conditional posterior predictive distribution
MCMC algorithms

Fixed g parameter
Random g parameter

Inference
Posterior model probability
Posterior inclusion probability
Posterior distributions of regression coefficients
Posterior means and variances of model parameters
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Model assumptions and generic formulas

Consider a regression model with p predictors. Let MF = {M1,M2, . . . ,M2p} denote the
full space of models formed by considering all 2p possible subsets of p variables, and let JF =
{1, 2, . . . , 2p} denote the full set of the corresponding indices. Let model Mj ∈ MF include a
distinct subset of the p variables for each j ∈ JF , and let pj be the number of variables included in
Mj ; that is, the model size |Mj | = pj .

Consider a sample of observations yi’s and xik’s on, respectively, outcome Y and p predictors
X1, X2, . . ., Xp, where i = 1, 2, . . . , n and k = 1, 2, . . . , p. For each j ∈ JF , consider a linear
regression model Mj using a subset of pj variables,

yi = α+ xi,jβj + εi,j

where α is an unknown intercept, βj is a pj × 1 vector of unknown (model-specific) regression
coefficients, xi,j is a 1 × pj vector of observed values on the variables included in the model, and
error terms εi,j’s ∼ i.i.d. N(0, σ2).

We can write the above using a matrix notation,

y = α1n + Xjβj + εj

where y = (y1, y2, . . . , yn)′ is an n × 1 vector of outcome values, 1n is a n × 1 vector of ones,
Xj is an n× pj design matrix, and εj = (ε1,j , ε2,j , . . . , εn,j)

′ is an n× 1 vector of model-specific
error terms.

In a Bayesian linear regression, model parameters α, βj , and σ2 (or, equivalently, σ) are assumed
to have prior distributions, which are conditional on model Mj . In a BMA framework, model Mj or,
more precisely, its index is an unknown itself and thus assigned a prior distribution just like any other
model parameter. A model prior is a discrete prior, {P (Mj)}j∈JF , specified over model spaceMF .

The priors for a BMA linear regression are

Mj ∼ P (Mj)

βj |α, σ,Mj ∼ Npj{0, σ2g(Xj
′Xj)

−1}
α|σ,Mj ∝ 1

σ|Mj ∝ σ−1

where Npj (·, ·) denotes a pj-dimensional multivariate normal distribution and the choices for P (Mj)
are described in Priors on the model space. The intercept α and the error standard deviation σ
are assumed to have noninformative priors. The regression coefficients βj are assumed to follow a
Zellner’s g-prior (1986), where g > 0 controls the shrinkage of coefficients toward 0, and the excluded
coefficients are assumed to have a prior point mass at 0; that is, they are assumed to be exact zeros.
In the above and throughout, we also implicitly condition on Xj .

The parameter g in Zellner’s g-prior can be viewed as fixed or random. With a random g, a joint
prior P (g,Mj) = P (g|Mj)P (Mj) is considered, where P (g|Mj) is a hyperprior (or the so-called
g-prior) assumed for g. The choices for a g-prior are discussed in Priors for parameter g.

https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulasPriorsonthemodelspace
https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulasPriorsforparameterg
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With a random g, the priors for a BMA linear regression are

Mj ∼ P (Mj)

g ∼ P (g|Mj)

βj |α, σ, g,Mj ∼ Npj{0, σ2g(Xj
′Xj)

−1}
α|σ, g,Mj ∝ 1

σ|g,Mj ∝ σ−1

In Bayesian analysis, the inference about model parameters is based on their posterior distributions,
and the prediction of new data is based on the posterior predictive density. So the estimation of these
distributions is central to Bayesian estimation. In BMA, we are also interested in estimating PMPs
and PIPs. And, because we consider multiple models, we need to distinguish between the posterior
distributions conditional on a model and those over all models. In what follows, we give general
definitions for these distributions and probabilities and provide specific formulas in later sections.

The PMP for model Mj is

P (Mj |y) =
f(y|Mj)P (Mj)∑
l∈JF f(y|Ml)P (Ml)

where f(y|Mj) is the marginal likelihood of Mj .

The PIP for variable k is

PIP(Xk) =
∑
j∈JF

I(Xk ∈Mj)P (Mj |y)

where I(·) is the indicator function.

The posterior distribution of β over all models is

g(β|y) =
∑
j∈JF

g(β|y,Mj)P (Mj |y)

where g(β|y,Mj) is the posterior distribution of β for a Bayesian linear regression model Mj .
Posterior distributions of α and σ2 can be defined in the same fashion.

Similarly, for a new observation (y?,x?), the posterior predictive density over all models is

f(y?|y,X,x?) =
∑
j∈JF

f(y?|y,X,x?j ,Mj)P (Mj |y)

where f(y?|y,X,x?j ,Mj) is the posterior predictive density for model Mj .
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Priors on the model space

The BMA framework incorporates model uncertainty by specifying a prior on the model space.
Each model in the model space can be uniquely represented by a p-dimensional binary vector
γ = {γk: k = 1, 2, . . . , p}, in which element γk equals 1 if and only if the kth predictor is included
in the model. Therefore, specifying a prior on the model space is equivalent to specifying a prior
on the space of p-dimensional binary vectors. The model size, denoted by ω = |M |, refers to the
number of predictors included in the model. That is,

ω =

p∑
k=1

γk

bmaregress supports the following model priors in the mprior() option: betabinomial, the
default, meaning betabinomial 1 1; betabinomial # #; betabinomial #; uniform; binomial
#; binomial (where # = 0.5); and binomial . . . (with predictor-specific IPs). We define these priors
below.

Beta-binomial prior, option mprior(betabinomial . . .). This is the default prior, with shape
parameters of 1. Consider a binomial prior defined below, where all predictors have a common
probability of inclusion pinc. Then specify a hierarchical prior for the parameter pinc as a beta
distribution. Stata provides two options to specify the hyperparameters for this beta prior.

A user can specify mprior(betabinomial #1 #2) with two hyperparameters a = #1 and b = #2,
which are the shape parameters of the beta distribution. In this case, the prior model probability is

p(γ) =
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ ω)Γ(b+ p− ω)

Γ(a+ b+ p)

where Γ(·) is a gamma function.

Under this prior, the expected model size is

E(ω) =
a

a+ b
p

A user can specify mprior(betabinomial #) with the prior expected model size w = # instead,
where 0 < w < p. The distribution for pinc is then Beta{1, (p− w)/w}. In this case, E(ω) = w.

This alternative parameterization may be more convenient because it might be easier to think of
a prior value for the expected model size than for the shape parameters of the beta distribution.

Uniform prior, option mprior(uniform). It assigns an equal probability of 1/2p for each model
Mj in the model space.

Binomial prior, option mprior(binomial . . .). Let pinc,k be the prior probability of inclusion
for the kth predictor. Assume that the inclusion of each predictor is independent; then the binomial
prior specifies

p(γ) =

p∏
k=1

pγkinc,k(1− pinc,k)1−γk
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If all predictors have a common probability of inclusion pinc, the binomial prior becomes

p(γ) = pωinc(1− pinc)p−ω

A detailed discussion of different choices for a prior on the model space can be found in Ley and
Steel (2009).

Priors for parameter g

Parameter g in a Zellner’s g-prior can be fixed or random with a given hyperprior. The fixed g
cases supported by bmaregress in the gprior() option are bench (the default), uip, ric, sqrtn,
fixed #, and ebl. We define these cases below.

Fixed g priors

Benchmark prior, g = max(n, p2), option gprior(bench). This prior is the default. It was
suggested by Fernández, Ley, and Steel (2001a) and is a combination of the unit-information and
risk-inflation-criterion priors, defined below. The authors found it to perform well in a variety of cases
with respect to a model’s predictive performance.

Unit-information prior, g = n, option gprior(uip). Introduced in Kass and Raftery (1995),
the unit-information prior specifies a prior with the variance proportional to the sample size. For this
choice of g, the log Bayes-factors behave asymptotically like the BIC. In this case, the BIC, given
by the negative log likelihood plus a penalty proportional to log(n), corresponds to the negative log
posterior.

Risk inflation criterion, g = p2, option gprior(ric). Proposed by Foster and George (1994),
the risk inflation criterion is based on a minimax criterion for variable selection. Specifically, the
criterion proposed by the authors is the negative log likelihood plus a penalty proportional to 2 log(p),
and this choice corresponds to g = p2.

Square-root n prior, g =
√
n, option gprior(sqrtn). One of the fixed g priors suggested by

Porwal and Raftery (2022b).

Empirical Bayes local, option gprior(ebl). The local empirical Bayes prior (Liang et al.
2008) uses a different fixed gj for each model Mj . It is the maximum marginal-likelihood estimate
constrained to be nonnegative. For model Mj with pj > 0, it is defined as

ĝEBL
j = max(Fj − 1, 0)

where Fj is the standard F statistic for model Mj defined as

Fj =
(n− 1− pj)R2

j,ols

pj(1−R2
j,ols)

R2
j,ols in the above is the R2 from the ordinary least-squares (OLS) linear regression corresponding

to model Mj .

ĝEBL
j maximizes the marginal likelihood (2). For the null model, with pj = 0, we set ĝEBL

j = 1,
by convention.

https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulasbmaregeqlikel
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Random g priors

The supported random g priors in the gprior() option are betashrink #1 #2, betabench #,
hyperg #, hypergn #, zsiow, and robust. These are commonly referred to as g-priors.

Beta-shrinkage prior, option gprior(betashrink #1 #2). This is a general beta-shrinkage prior
that assumes a beta prior with shape parameters a = #1 and b = #2 for the shrinkage δ = g/(g+ 1):

δ ∼ Beta(a, b)

This corresponds to the following prior on g:

p(g) =
Γ(a+ b)

Γ(a)Γ(b)
g(a−1)(1 + g)−(a+b)

Benchmark beta-shrinkage priors, option gprior(betabench #). The benchmark beta-shrinkage
prior is a special case of the beta-shrinkage prior as suggested by Ley and Steel (2012). This prior
considers the following beta prior on the shrinkage δ = g/(g + 1) with b = #:

δ ∼ Beta{b× max(n, p2), b}, b > 0

Hyper-g prior, option gprior(hyperg #). This prior is suggested by Liang et al. (2008). It is
a special case of a beta-shrinkage prior with the following beta prior on shrinkage δ with c = #:

δ ∼ Beta
(

1,
c

2
− 1
)
, 2 < c ≤ 4

Hyper-g/n prior, option gprior(hypergn #). This prior is suggested by Liang et al. (2008). It
considers the following prior on g with c = #:

p(g) =
c− 2

2n

(
1 +

g

n

)− c
2

, 2 < c ≤ 4

This is equivalent to specifying the prior Beta(1, c/2− 1) on g/g + n.

Zellner–Siow prior, option gprior(zsiow). This prior was introduced by Zellner and
Siow (1980):

g ∼ Inverse-gamma
(

1

2
,
n

2

)
Robust prior, option gprior(robust). The robust prior is a special case in a class of priors

introduced in Bayarri et al. (2012). It has the following analytical form:

p(g) ∼ (1 + g)−3/2, g >
n+ 1

pj + 1
− 1

The prior is model specific because it depends on the model size pj . This particular form of the
robust prior has some desired theoretical properties such as model-selection consistency, which states
that the posterior probability of a model that generated the data should go to one as sample size goes
to infinity (Bayarri et al. 2012, sec. 3.4).
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The Zellner–Siow, benchmark beta-shrinkage, and hyper-g/n priors are consistent in the sense
defined in Ley and Steel (2012), while the rest are not. If the data are generated by a single model
from the model space and we use a consistent hyperprior for g, then, as the sample size increases, all
posterior mass will tend to be allocated to the true model. It can be proven that hyperpriors that do
not depend on n cannot be consistent. More details about g-priors and their properties can be found
in Ley and Steel (2012).

Centering

Let’s continue with our BMA setup from Model assumptions and generic formulas.

A BMA linear regression always includes the intercept in all regressions Mj’s. BMA first recenters
predictors to make them orthogonal to the intercept. The computation is then performed using the
recentered predictors, and the results are transformed back for final reporting.

The model parameters before and after centering are related by a linear transformation(
β
α

)
=

(
Ip 0

− 1
n1′nX 1

)(
β̃
α̃

)
where β̃ = β, α̃ are the model parameters associated with the recentered predictor values Z, and Ip
is the identity matrix of dimension p. The only parameter affected by centering is the intercept.

Conditional posterior distribution of model parameters

See Model assumptions and generic formulas for a general BMA model setup.

In this section, we describe a posterior distribution of model parameters conditional on a model
and parameter g. This section is based on Steel (2020) and Fernández, Ley, and Steel (2001b).

Consider model Mj , with j ∈ JF (without loss of generality) and parameter g, fixed or random,
of a Zellner’s g-prior. If g is fixed, it is independent of model parameters, and the conditioning on
it in the formulas below is unnecessary. Consider the following definitions:

θ̃j = (βj
′, α̃)′

δ =
g

1 + g
(shrinkage factor)

β̂j,ols = (Zj
′Zj)

−1Zj
′y

y =
1

n
1′ny

TSSols = (y − y)′(y − y)

RSSj,ols = (y − y − Zjβ̂j,ols)
′(y − y − Zjβ̂j,ols)

R2
j,ols = 1− RSSj,ols/TSSols

where β̂j,ols, TSSols, RSSj,ols and R2
j,ols are, respectively, a pj × 1 vector of regression coefficient

estimates, the total sum of squares, the residual sum of squares, and the R2 for the OLS regression
of y on Zj with the intercept α̃.

https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulasModelassumptionsandgenericformulas
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Define the scale factor:

s2j,δ = δRSSj,ols + (1− δ)TSSols (1)

Conditional likelihood. The marginal distribution of y given g and model Mj has the following
analytical form,

p(y|g,Mj) ∝ TSSols (g + 1)
n−pj−1

2

{
1 + g(1−R2

j,ols)
}−n−1

2 (2)

where the proportionality constant is the same for all the models. If pj = 0, that is, the model includes
only the intercept, the marginal distribution is p(y|g,Mj) ∝ TSSols.

Conditional posterior for model parameters. Given g and model Mj , the posterior distribution
of (βj , α̃) is a multivariate t-distribution with (n − 1) degrees of freedom, a (p + 1) × 1 location
vector µj , and a (p+ 1)× (p+ 1) scale matrix s2j,δΣj/(n− 1), where

µj =

(
δβ̂j,ols

y

)
(3)

and

Σj =

{
δ(Zj

′Zj)
−1 0

0 1
n

}
(4)

The posterior distribution of σ2 given g and Mj is inverse gamma with shape parameter (n−1)/2
and scale parameter s2j,δ/2 defined in (1).

Conditional posterior moments. The conditional posterior mean and variance of (βj , α̃) are

E{(βj , α̃)|y, g,Mj} = µj

Var{(βj , α̃)|y, g,Mj} =
s2j,δ
n− 3

Σj

where µj , Σj , and s2j,δ are defined in (3), (4), and (1), respectively.

The conditional posterior mean of σ2 is

E(σ2|y, g,Mj) =
s2j,δ
n− 3

https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulasbmaregeqsdelta
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78 bmaregress — Bayesian model averaging for linear regression

Conditional posterior predictive distribution

Consider predicted values y∗ of size (q×1) and new centered predictor values Z∗ of size (q×p).
Let q × pj matrix Z∗j be the predictor values corresponding to the centered predictors included in
model Mj . Under model Mj , the posterior predictive distribution is a multivariate t-distribution with
(n− 1) degrees of freedom, q × 1 location parameter vector µ∗j , and q × q scale matrix Σ∗j , where

µ∗j = y 1q + δZ∗j β̂j,ols (5)

Σ∗j =
s2j,δ
n− 1

{
Iq +

1

n
1q1
′
q + δZ∗j (Zj

′Zj)
−1(Z∗j )

′
}

(6)

and s2j,δ is defined in (1).

MCMC algorithms
When the number of predictors is small, p ≤ 24, bmaregress uses model enumeration to visit

all 2p models. In this case, the formulas provided in the previous sections can be computed exactly.
However, when p is large, visiting all possible models is practically infeasible. In this case, MCMC
methods are used to approximate the large model space by sampling from it.

Fixed g parameter

A standard procedure used to explore a large model space is the MC3 algorithm (Madigan and
York 1995). Recall from Priors on the model space that model M can be represented by a binary
inclusion vector γ. A Markov chain {γt}Tt=1 is constructed on the model space with the following
target distribution:

p(γ|y) ∝ p(y|γ)p(γ)

where p(y|γ) ≡ p(y|M) is defined in (2) with M = Mj , except we do not need to condition on g
here because it is fixed.

MC3 sampler for γ.

1. Initialize model γ(0).

2. Let model γ(t) = (γt1, γ
t
2, . . . , γ

t
p) be the current state of the chain at iteration t. Uniformly choose

coordinate i of γ(t), and propose the new model:

γ∗ = (γt1, . . . , 1− γti , . . . , γtp)

3. Jump to the model γ∗ with probability

α(γ,γ∗) = min
{
p(γ∗|y)

p(γ|y)
, 1

}
or stay at γ if α(γ,γ∗) = 1.

https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulasbmaregeqsdelta
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Random g parameter

In this case, both g and γ are random, and we construct a Markov chain based on the following
conditional statements:

p(γ|g,y) ∝ p(y|g,γ)p(γ)

p(g|γ,y) ∝ p(y|g,γ)p(g)

where p(y|g,γ) ≡ p(y|g,M) is defined in (2) with M = Mj .

For sampling the model γ, the MC3 sampler described above is used. For sampling g, an adaptive
random-walk Metropolis sampler is used (Atchadé and Rosenthal 2005). This includes an MH step
with a lognormal proposal centered at the previous value. The variance of the lognormal proposal is
tuned to result in an optimal acceptance rate αopt = 0.44 (Gelman, Gilks, and Roberts 1997).

For a and A, where 0 < a < A, we consider the following truncation function:

ha,A(x) =

 a if x ≤ a
x if a < x ≤ A
A if x > A

Let LN(µ, σ) be the lognormal distribution with mean µ and standard deviation σ. Its density is
denoted by fLN(·;µ, σ).

Modified MC3 sampler for (g,γ).

This algorithm is based on Ley and Steel (2012).

Let {g(t),γ(t)} be the current state of the chain at iteration t, where γ(t) = (γt1, γ
t
2, . . . , γ

t
p). For

each t, we set σ(t) = ha,A(ρ(t)), where ρ(t) is an adaptation parameter updated periodically during
the burn-in period.

1. Initialize {g(0),γ(0)} according to the initialization options minitial() and ginitial(), and
let a = 0.0001, A = 10,000, and ρ(0) = 2.38.

2. Sample γ(t+1).

2.1. Uniformly choose coordinate i of γ and propose a new model:

γ∗ = (γt1, . . . , 1− γti , . . . , γtp)

2.2. Move to a new model, γ(t+1) = γ∗, with probability

α(γ(t),γ∗) = min
{
p(γ∗|g(t),y)

p(γ(t)|g(t),y)
, 1

}
Otherwise, stay at the current model γ(t+1) = γ(t).

3. Sample g(t+1).

3.1. Generate g∗ ∼ LN(g(t), σ(t)).
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3.2. Move to the new value g(t+1) = g∗ with probability

α(g(t), g∗) = min
{
p(g∗|γ(t+1),y)

p(g(t)|γ(t+1),y)

fLN(g(t); g∗, σ(t))

fLN(g∗; g(t), σ(t))
, 1

}
Otherwise, stay at the current value g(t+1) = g(t).

3.3. After each period of a constant number of iterations, 200 by default, update ρ(t) according to
the adaptation procedure explained in Adaptive MH algorithm in [BAYES] bayesmh, and update
σ(t) = ha,A(ρ(t)).

Inference
As we mentioned in Model assumptions and generic formulas, the BMA inference is focused on

PMPs and PIPs. We define these quantities below. We also provide the formulas for the posterior means
and standard deviations of model parameters reported by bmaregress. The formulas in this section
depend on formulas in Conditional posterior distribution of model parameters.

The computations depend on whether parameter g is fixed or random. For a fixed g, the computations
also depend on whether the model space was fully explored by enumeration or sampling was used.
Below, we provide a setup for each case, which will be used in subsequent subsections.

Fixed g, model enumeration. With model enumeration, analytical formulas are available for PMPs,
PIPs, and posterior distributions of model parameters. They depend on the fully enumerated BMA
model spaceMF indexed by JF = {1, 2, . . . , 2p}. In bmaregress, these computations are available
by default when p ≤ 12 or when the enumeration option is specified. enumeration is not available
with p > 24.

Fixed g, sampling. Model enumeration may not feasible with many predictors, for example,
p > 24. Sampling of the model space is used in this case instead of enumeration. So we have a
subspace of distinct models MJ visited by the Markov chain indexed by J ⊂ JF , and we have the
Markov chain, a sample of models, {mt}Tt=1. We can still compute various quantities analytically,
but now they will be conditional on the visited model space MJ . Alternatively, we can compute
these quantities from the MCMC sample of models {mt}Tt=1 by using MCMC frequencies. You can use
bmaregress’s sampling option to request sampling. bmaregress uses it automatically whenever
p > 12. Some postestimation commands also support the frequency option to request that MCMC-
based frequency estimates of PMP, PIP, and other quantities are used instead of the analytical formulas.
Other postestimation commands provide both analytical and frequency computations automatically,
whenever they are available.

Random g. With a random g, model enumeration is difficult (if not impossible), and sampling is
always used. In general, analytical formulas are not available, so all computations are based on an
MCMC sample. In this case, the sample also includes g, {gt,mt}Tt=1, and represents a sample from
the joint posterior distribution of g and M . bmaregress automatically uses sampling with random
g, and it is the only option in this case.

In what follows, we provide formulas for each of the above cases, except we consider a fixed g
as one case, where a subset J is either a full set JF or a subset of the full set.
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Posterior model probability

The PMP of model Mj is denoted by P (Mj |y). There are two ways to compute PMP. The first
way, referred to as analytical PMP, is based on the analytical form of the marginal likelihood in (2).
The second way, referred to as MCMC frequency or simply frequency PMP, is based on the frequency
of the models visited by the Markov chain.

1. Fixed g.

The analytical PMP of a model Mj is computed by the formula

Pa(Mj |y) =
P (y|Mj)P (Mj)∑
l∈J P (y|Ml)P (Ml)

(7)

where J = JF with model enumeration and P (y|Mj) is defined in (2).

When an MCMC sample of models is available, the frequency PMP is computed as follows,

Pf (Mj |y) =
Tj
T

; Tj =

T∑
t=1

I(mt = Mj) (8)

where I(mt = Mj) denotes the indicator function, which is 1 if mt = Mj and 0 otherwise.

The bmaregress command computes results based on analytical PMP whenever it is available.
Therefore, for a fixed g, the term PMP refers to analytical PMP, if not specified otherwise.

The comparison of the frequency PMP to the analytical PMP is used to assess convergence of
MCMC. The sampling correlation reported in the header of bmaregress is the correlation between
the analytical and frequency PMPs.

2. Random g.

In general, when g is random, the formula for the analytical PMP is not available. In this case,
bmaregress uses the frequency PMP as defined in (8).

Because analytical PMP is not available, the sampling correlation in the random g case is computed
as the correlation between the sequences {Ph(Mj |y)} and {Pf (Mj |y)}, where Ph(Mj |y) is the
harmonic-mean estimator of P (Mj |y) (Geweke 1989):

Ph(Mj |y) =
Ph(y|Mj)P (Mj)∑
l∈J Ph(y|Ml)P (Ml)

where

Ph(y|Mj) =

 1

Tj

∑
t: mt=Mj

p−1(y|gt,mt)


−1

https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulasbmaregeqlikel
https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulasbmaregeqlikel
https://www.stata.com/manuals/bma.pdf#bmabmaregressMethodsandformulasbmaregeqpmpf


82 bmaregress — Bayesian model averaging for linear regression

Posterior inclusion probability

Consider a predictor Xk for 1 ≤ k ≤ p. The PIP of Xk is defined as the sum of posterior
probabilities of models that include Xk. Below, we consider fixed and random g cases separately.

1. Fixed g.

For a model Mj , denote by Xk ∈Mj that Xk is included in Mj . Then, the analytical PIP of Xk

is computed as

PIPak =
∑
j∈J

I(Xk ∈Mj)Pa(Mj |y) (9)

where I(·) is the indicator function and Pa(Mj |y) is defined in (7). With sampling, you can also
compute the frequency PIP based on the MCMC sample. It is computed by replacing Pa(Mj |y) with
Pf (Mj |y), defined by (8), in the above formula.

2. Random g.

For a random g, the PIP of Xk is computed as follows,

PIPfk =
∑
j∈J

I(Xk ∈Mj)Pf (Mj |y)

where Pf (Mj |y) is defined by (8).

Posterior distributions of regression coefficients

Consider a predictor Xk for 1 ≤ k ≤ p. Let βk be the regression coefficient associated with
predictor Xk. The posterior distribution of βk has a mixed structure, which consists of a continuous
portion (a mixture of location-scale t-distributions) and a discrete portion (point mass at 0). Also see
Methods and formulas of [BMA] bmagraph coefdensity.

1. Fixed g.

The analytical posterior distribution of βk is

p(βk|y) = (1− PIPak) δ0 + PIPak fk

where δ0 denotes the point mass at 0, and

fk =
∑
j∈J

I(Xk ∈Mj)p(βk|Mj ,y)
Pa(Mj |y)

PIPak
(10)

In the above, p(βk|Mj ,y) is a location-scale t-distribution with the model-specific location vector
and scale matrix as defined, respectively, in (3) and (4). Pa(Mj |y) is defined in (7) and PIPak is
defined in (9).

2. Random g.

There is no analytical formula for the posterior distribution of a regression coefficient. A kernel-
density estimator is used to approximate fk in the above based on the sample of coefficients generated
by the bmacoefsample command. See Methods and formulas of [BMA] bmagraph coefdensity for
details.
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Posterior means and variances of model parameters

1. Fixed g.

Let θ̃j be a (pj + 1) × 1 vector of regression coefficients with intercept α̃ for model Mj in
the centered parameterization. Let θ̃ = (β′, α̃)′ be a (p + 1) × 1 parameter vector in the centered
parameterization and θ = (β′, α)′ be a (p + 1) × 1 parameter vector in the original, uncentered
parameterization.

Then,

E(θ̃j |y, g,Mj) = µj

Var(θ̃j |y, g,Mj) = Σj

where µj and Σj are defined in (3) and (4).

The analytical unconditional mean and variance for the centered parameter vector θ̃ are defined
as follows,

E(θ̃|y) =
∑
j∈J

Pa(Mj |y)E(θ̃j |y, g,Mj) =
∑
j∈J

Pa(Mj |y)µj

Var(θ̃|y) =
∑
j∈J

Pa(Mj |y)
(
Σj + µjµ

′
j

)
− E(θ̃|y)E(θ̃|y)′

where Pa(Mj |y) is defined in (7).

The analytical unconditional posterior mean and variance of θ are

E(θ|y) = AE(θ̃|y) (11)

Var(θ|y) = A Var(θ̃|y)A′ (12)

where A =

(
Ip 0

− 1
n1′nX 1

)
.

The analytical unconditional posterior mean of σ2 is

E(σ2|y) =
∑
j∈J

Pa(Mj |y)E(σ2|y, g,Mj) =
∑
j∈J

Pa(Mj |y)
s2j,δ
n− 3

(13)

2. Random g.

Because the analytical form of p(βk|Mj ,y) is not available with a random g, bmaregress
computes Monte Carlo estimators of the posterior mean and variance of βk’s.
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The frequency estimate of the unconditional mean and variance for the centered parameter vector
θ̃ are defined as follows:

Ê(θ̃|y) =
1

T

T∑
t=1

E(θ̃t|y, gt,mt) =
1

T

T∑
t=1

µt

V̂ar(θ̃|y) =
1

T

T∑
t=1

(Σt + µtµ
′
t)− Ê(θ̃|y)Ê(θ̃|y)′

where µt is defined in (3) and Σt is defined in (4), in which index j is replaced with the iteration t.

The frequency estimate of the unconditional posterior mean and variance of θ are

Ê(θ|y) = AÊ(θ̃|y)

V̂ar(θ|y) = A V̂ar(θ̃|y)A′

where A =

(
Ip 0

− 1
n1′nX 1

)
.

The unconditional posterior mean of σ2 estimated based on the MCMC frequencies is

Ê(σ2|y) =
1

T

T∑
t=1

E
[
{σ(t)}2|y, gt,mt

]
=

1

T

T∑
t=1

s2t,δ
n− 3

(14)

where s2t,δ is defined by (1) in Conditional posterior distribution of model parameters but for model
mt (with index j replaced with iteration t).
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Also see
[BMA] BMA postestimation — Postestimation tools for Bayesian model averaging
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[BMA] Glossary
[BAYES] bayes: regress — Bayesian linear regression

[BAYES] bayesmh — Bayesian models using Metropolis–Hastings algorithm

[D] splitsample — Split data into random samples

[D] vl — Manage variable lists

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands
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