
Title stata.com

bayesmh — Bayesian models using Metropolis–Hastings algorithm

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

bayesmh fits a variety of Bayesian models using an adaptive Metropolis–Hastings (MH) algorithm.
It provides various likelihood models and prior distributions for you to choose from. Likelihood models
include univariate normal linear and nonlinear regressions, multivariate normal linear and nonlinear
regressions, generalized linear models such as logit and Poisson regressions, multiple-equations linear
and nonlinear models, multilevel models, and more. Prior distributions include continuous distributions
such as uniform, Jeffreys, normal, gamma, multivariate normal, and Wishart and discrete distributions
such as Bernoulli and Poisson. You can also program your own Bayesian models; see [BAYES] bayesmh
evaluators.

Also see [BAYES] Bayesian estimation for a list of Bayesian regression models that can be fit
more conveniently with the bayes prefix ([BAYES] bayes).

Quick start
Bayesian normal linear regression of y1 on x1 with flat priors for coefficient on x1 and the intercept

and with a Jeffreys prior on the variance parameter {var}
bayesmh y1 x1, likelihood(normal({var})) ///

prior({y1: x1 _cons}, flat) prior({var}, jeffreys)

Add binary variable a using factor-variable notation
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1: x1 i.a _cons}, flat) prior({var}, jeffreys)

Same as above
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1:}, flat) prior({var}, jeffreys)

Specify a different prior for a = 1
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1:x1 _cons}, flat) prior({y1: 1.a}, normal(0,100)) ///
prior({var}, jeffreys)

Specify a starting value of 1 for parameter {var}
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1:}, flat) prior({var}, jeffreys) initial({var} 1)

Same as above
bayesmh y1 x1 i.a, likelihood(normal({var=1})) ///

prior({y1:}, flat) prior({var}, jeffreys)

1

http://stata.com
https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluators
https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluators
https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables

2 bayesmh — Bayesian models using Metropolis–Hastings algorithm

A normal prior with µ = 2 and σ2 = 0.5 for the coefficient on x1, a normal prior with µ = −40 and
σ2 = 100 for the intercept, and an inverse-gamma prior with shape parameter of 0.1 and scale
parameter of 1 for {var}

bayesmh y1 x1, likelihood(normal({var})) ///
prior({y1:x1}, normal(2,.5)) ///
prior({y1:_cons}, normal(-40,100)) ///
prior({var}, igamma(0.1,1))

Place {var} into a separate block
bayesmh y1 x1, likelihood(normal({var})) ///

prior({y1:x1}, normal(2,.5)) ///
prior({y1:_cons}, normal(-40,100)) ///
prior({var}, igamma(0.1,1)) block({var})

Same as above, but simulate four chains
bayesmh y1 x1, likelihood(normal({var})) ///

prior({y1:x1}, normal(2,.5)) ///
prior({y1:_cons}, normal(-40,100)) ///
prior({var}, igamma(0.1,1)) block({var}) ///
nchains(4)

Zellner’s g prior to allow {y1:x1} and {y1: cons} to be correlated, specifying 2 dimensions,
df = 30, µ = 2 for {y1:x1}, µ = −40 for {y1: cons}, and variance parameter {var}

bayesmh y1 x1, likelihood(normal({var})) ///
prior({var}, igamma(0.1,1)) ///
prior({y1:}, zellnersg(2,30,2,-40,{var}))

Model for dichotomous dependent variable y2 regressed on x1 with a logit likelihood
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100))

Same as above, and save model results to simdata.dta, and store estimates in memory as m1

bayesmh y2 x1, likelihood(logit) prior({y2:}, ///
normal(0,100)) saving(simdata.dta)

estimates store m1

Same as above, but save the results on replay
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100))
bayesmh, saving(simdata.dta)
estimates store m1

Show model summary without performing estimation
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) dryrun

Fit model without showing model summary
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

nomodelsummary

Same as above, and specify the random-number seed for reproducibility
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

rseed(1234)

Same as above (set seed method useful only for a single chain)
set seed 1234
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100))

bayesmh — Bayesian models using Metropolis–Hastings algorithm 3

Specify 20,000 MCMC samples, and set length of the burn-in period to 5,000
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

mcmcsize(20000) burnin(5000)

Specify that only observations 1 + 5k, for k = 0, 1, . . . , be saved to the MCMC sample
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

thinning(5)

Set the maximum number of adaptive iterations of the MCMC procedure to 30, and specify that
adaptation of the MCMC procedure be attempted every 25 iterations

bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///
adaptation(maxiter(30) every(25))

Request that a dot be displayed every 100 simulations
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

dots(100)

Also request that an iteration number be displayed every 1,000 iterations
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

dots(100, every(1000))

Same as above
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

dots

Request that the 90% equal-tailed credible interval be displayed
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

clevel(90)

Request that the default 95% highest posterior density credible interval be displayed
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) hpd

Use the batch-means estimator of MCSE with the length of the block of 5
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

batch(5)

Multivariate normal regression of y1 and y3 on x1 and x2, using normal priors with µ = 0 and
σ2 = 100 for the regression coefficients and intercepts, an inverse-Wishart prior for the covariance
matrix parameter {S, matrix} of dimension 2, df = 100, and an identity scale matrix

bayesmh y1 y3 = x1 x2, likelihood(mvnormal({S, matrix})) ///
prior({y1:} {y3:}, normal(0,100)) ///
prior({S, matrix}, iwishart(2,100,I(2)))

Same as above, but use abbreviated declaration for the covariance matrix
bayesmh y1 y3 = x1 x2, likelihood(mvnormal({S,m})) ///

prior({y1:} {y3:}, normal(0,100)) ///
prior({S,m}, iwishart(2,100,I(2)))

Same as above, and specify starting values for matrix {S,m} using previously defined matrix W

bayesmh y1 y3 = x1 x2, likelihood(mvnormal({S,m})) ///
prior({y1:} {y3:}, normal(0,100)) ///
prior({S,m}, iwishart(2,100,I(2))) initial({S,m} W)

4 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Multivariate normal regression with outcome-specific regressors
bayesmh (y1 x1 x2) (y3 x1 x3), likelihood(mvnormal({S,m})) ///

prior({y1:} {y3:}, normal(0,100)) ///
prior({S,m}, iwishart(2,100,I(2)))

Linear multiple-equations model of y1 on x1 and of y3 on y1, x1, and x2 with separate variance
parameters for each equation

bayesmh (y1 x1, likelihood(normal({var1}))) ///
(y3 y1 x1 x2, likelihood(normal({var2}))), ///
prior({y1:} {y3:}, flat) ///
prior({var1}, jeffreys) prior({var2}, jeffreys)

Nonlinear model with parameters {a}, {b}, {c}, and {var} specified using a substitutable expression
bayesmh y1 = ({a}+{b}*x1^{c}), likelihood(normal({var})) ///

prior({a b}, normal(0,100)) prior({c}, normal(0,2)) ///
prior({var}, igamma(0.1,1))

Multivariate nonlinear model with distinct parameters in each equation
bayesmh (y1 = ({a1} + {b1}*x1^{c1})) ///

(y3 = ({a2} + {b2}*x1^{c2})), likelihood(mvnormal({S,m})) ///
prior({a1 a2 b1 b2}, normal(0,100)) ///
prior({c1 c2}, normal(0,2)) prior({S,m}, iwishart(2,100,I(2)))

Random-intercept logistic regression of y1 on x1 with random intercepts U by level variable gr,
with default zero-mean normal prior with variance parameter {var U} for the random-intercept
parameters {U[gr]}, and with Jeffreys prior for {var U}

bayesmh y1 x1 U[gr], likelihood(logit) ///
prior({y1: x1 _cons}, flat) prior({var_U}, jeffreys)

Menu
Statistics > Bayesian analysis > General estimation and regression

bayesmh — Bayesian models using Metropolis–Hastings algorithm 5

Syntax
Linear models

Univariate linear regression

bayesmh depvar
[

indepvarspec
] [

if
] [

in
] [

weight
]
,

likelihood(modelspec) prior(priorspec)
[

options
]

Multivariate normal linear regression with common regressors

bayesmh depvars =
[

indepvarspec
] [

if
] [

in
] [

weight
]
,

likelihood(mvnormal(. . .)) prior(priorspec)
[

options
]

Multivariate normal regression with outcome-specific regressors

bayesmh (
[

eqname1:
]
depvar1

[
indepvarspec1

]
)

(
[

eqname2:
]
depvar2

[
indepvarspec2

]
)
[
. . .
] [

if
] [

in
] [

weight
]
,

likelihood(mvnormal(. . .)) prior(priorspec)
[

options
]

Nonlinear models

Univariate nonlinear regression

bayesmh nleqspec
[

if
] [

in
] [

weight
]
,

likelihood(modelspec) prior(priorspec)
[

options
]

Multivariate normal nonlinear regression

bayesmh (nleqspec1) (nleqspec2)
[
. . .
] [

if
] [

in
] [

weight
]
,

likelihood(mvnormal(. . .)) prior(priorspec)
[

options
]

Multilevel models

Any model can be fit as a multilevel model by including at least one random-effects term respec,
such as random intercepts U[id] at the level variable id, in indepvarspec, indepvarspec#, nlspec, or
nlspec#; see Random effects .

Multiple-equation models

bayesmh (eqspec)
[
(eqspec)

] [
. . .
] [

if
] [

in
] [

weight
]
, prior(priorspec)

[
options

]
Probability distributions

Univariate distributions

bayesmh depvar
[

if
] [

in
] [

weight
]
,

likelihood(distribution) prior(priorspec)
[

options
]

Multiple-equation distribution specifications

bayesmh (deqspec)
[
(deqspec)

] [
. . .
] [

if
] [

in
] [

weight
]
,

prior(priorspec)
[

options
]

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight

6 bayesmh — Bayesian models using Metropolis–Hastings algorithm

indepvarspec is either indepvars or respec.

respec includes an optional list of independent variables indepvars and at least one of random-effects
terms such as random intercepts U[id] at the level variable id. For instance, respec can be x1 x2
U[id]; see Random effects .

The syntax of nleqspec is depvar = (subexprspec), where subexprspec is either subexpr or resubexpr.

subexpr is a substitutable expression; see Substitutable expressions for details.

resubexpr is a substitutable expression that contains model parameters and random effects specified
in braces, {}, as in exp({b}+{U[id]}); see Random effects for details.

The syntax of eqspec is one of the following:

for linear models

varspec
[

if
] [

in
] [

weight
]
, likelihood(modelspec)

[
noconstant

]
for nonlinear models

nlspec
[

if
] [

in
] [

weight
]
, likelihood(modelspec)

The syntax of varspec is one of the following:

for single outcome[
eqname:

]
depvar

[
indepvarspec

]
for multiple outcomes with common regressors

depvars =
[

indepvarspec
]

for multiple outcomes with outcome-specific regressors

(
[

eqname1:
]
depvar1

[
indepvarspec1

]
)

(
[

eqname2:
]
depvar2

[
indepvarspec2

]
)
[
. . .
]

The syntax of nlspec is nleqspec for a single outcome or (nleqspec1) (nleqspec2)
[
. . .
]

for multiple outcomes.

The syntax of deqspec is[
eqname:

]
depvar

[
if
] [

in
] [

weight
]
, likelihood(distribution)

The syntax of modelspec is

model
[
, modelopts

]

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight

bayesmh — Bayesian models using Metropolis–Hastings algorithm 7

model Description

Model

normal(var) normal regression with variance var
t(sigma2, df) t regression with squared scale sigma2 and degrees of freedom df
lognormal(var) lognormal regression with variance var
lnormal(var) synonym for lognormal()
exponential exponential regression
mvnormal(Sigma) multivariate normal regression with covariance matrix Sigma

probit probit regression
logit logistic regression
logistic logistic regression; synonym for logit
binomial(n) binomial regression with logit link and number of trials n
binlogit(n) synonym for binomial()
oprobit ordered probit regression
ologit ordered logistic regression
poisson Poisson regression

stexponential exponential survival regression
stgamma(lns) gamma survival regression with log-scale parameter lns
stloglogistic(lns) loglogistic survival regression with log-scale parameter lns
stlognormal(lnstd) lognormal survival regression with log-standard-deviation

parameter lnstd
stweibull(lnp) Weibull survival regression with log-shape parameter lnp

llf(subexpr) substitutable expression for observation-level log-likelihood
function

A distribution argument is a number for scalar arguments such as var; a variable name, varname (except for matrix
arguments); a matrix for matrix arguments such as Sigma; a model parameter, paramspec; an expression, expr;
or a substitutable expression, subexpr or resubexpr. See Specifying arguments of likelihood models and prior
distributions. For survival models, stmodel, a distribution argument can be only a scalar argument.

modelopts Description

Model

offset(varnameo) include varnameo in model with coefficient constrained to 1;
not allowed with normal() and mvnormal()

exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1;
allowed only with poisson

survivalopts options for survival models

survivalopts are allowed only with survival models stexponential, stgamma(), stloglogistic(), stlognormal(),
and stweibull().

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

8 bayesmh — Bayesian models using Metropolis–Hastings algorithm

survivalopts Description

Model[
no
]
logparam fit survival model using a scale, variance, or shape parameter

in a log (the default) or original metric
ph proportional hazards parameterization; default with survival

models stexponential and stweibull()

aft accelerated failure-time parameterization; default with survival
models other than stexponential and stweibull()

time synonym for aft
failure(varname) indicator for failure event
ltruncated(varname | #) lower limit for left-truncation

ph is allowed only with survival models stexponential and stweibull().

distribution Description

Model

dexponential(beta) exponential distribution with scale parameter beta
dbernoulli(p) Bernoulli distribution with success probability p
dbinomial(p,n) binomial distribution with success probability p and

number of trials n
dpoisson(mu) Poisson distribution with mean mu

A distribution argument is a model parameter, paramspec, or a substitutable expression, subexpr or resubexpr, containing
model parameters. An n argument may be a number; an expression, expr; or a variable name, varname. See
Specifying arguments of likelihood models and prior distributions.

The syntax of priorspec is

paramref, priordist
[
split

]
where the simplest specification of paramref is

paramspec
[

paramspec
[
...

]]
Also see Referring to model parameters for other specifications. When paramref includes multiple
model parameters, the prior suboption split is a convenience option for specifying the same prior
distribution for multiple parameters but sampling them in separate blocks. Using the split option is
equivalent to specifying a separate prior statement for each parameter.

The syntax of paramspec is

{
[
eqname:

]
param

[
, matrix

]
}

where the parameter label eqname and parameter name param are valid Stata names. Model parameters
are either scalars such as {var}, {mean}, and {shape:alpha} or matrices such as {Sigma,
matrix} and {Scale:V, matrix}. For scalar parameters, you can use {param=#} to specify
an initial value. For example, you can specify {var=1}, {mean=1.267}, or {shape:alpha=3}.
param can also be a random-effects name; see Random effects for details.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

bayesmh — Bayesian models using Metropolis–Hastings algorithm 9

priordist Description

Model

normal(mu,var) normal with mean mu and variance var
t(mu,sigma2,df) location–scale t with mean mu, squared scale sigma2, and

degrees of freedom df
lognormal(mu,var) lognormal with mean mu and variance var
lnormal(mu,var) synonym for lognormal()
uniform(a,b) uniform on (a, b)
gamma(alpha,beta) gamma with shape alpha and scale beta
igamma(alpha,beta) inverse gamma with shape alpha and scale beta
exponential(beta) exponential with scale beta
beta(a,b) beta with shape parameters a and b
laplace(mu,beta) Laplace with mean mu and scale beta
cauchy(loc,beta) Cauchy with location loc and scale beta
chi2(df) central χ2 with degrees of freedom df
pareto(alpha,beta) Pareto with shape alpha and scale beta
jeffreys Jeffreys prior for variance of a normal distribution

mvnormal(d,mean,Sigma) multivariate normal of dimension d with mean vector mean and
covariance matrix Sigma; mean can be a matrix name or a list
of d means separated by comma: mu1, mu2, . . ., mud

mvnormal0(d,Sigma) multivariate normal of dimension d with zero mean vector and
covariance matrix Sigma

mvn0(d,Sigma) synonym for mvnormal0()
mvnexchangeable(d,mean,var,rho)

multivariate normal of dimension d with means mean and
exchangeable covariance matrix with diagonal var and
off-diagonal var×rho

mvn0exchangeable(d,var,rho) as mvnexchangeable() but with zero mean vector
mvnindependent(d,mean,vars)multivariate normal of dimension d with means mean and

diagonal covariance matrix; vars can be a Stata vector of
dimension d with fixed variances or a list of d variances
(parameters or fixed values) separated by comma:
var1, var2, . . ., vard

mvn0independent(d,vars) as mvnindependent() but with zero mean vector
mvnidentity(d,mean,var) multivariate normal of dimension d with means mean and

identity covariance matrix with equal variances var
mvn0identity(d,var) as mvnidentity() but with zero mean vector
mvnscaled(d,mean,A,{var}) multivariate normal of dimension d with mean vector mean and

covariance matrix ({var}A); mean can be a matrix name or a list
of d means separated by a comma: mu1, mu2, . . ., mud;
A is a positive-definite scale matrix; {var} is a variance
parameter

mvn0scaled(d,A,{var}) as mvnscaled() but with zero mean vector

10 bayesmh — Bayesian models using Metropolis–Hastings algorithm

zellnersg(d,g,mean,{var}) Zellner’s g-prior of dimension d with g degrees of freedom,
mean vector mean, and variance parameter {var}; mean can
be a matrix name or a list of d means separated by comma:
mu1, mu2, . . ., mud

zellnersg0(d,g,{var}) Zellner’s g-prior of dimension d with g degrees of freedom,
zero mean vector, and variance parameter {var}

dirichlet(a1,a2,. . . ,ad) Dirichlet (multivariate beta) of dimension d with shape
parameters a1, a2, . . . , ad

wishart(d,df,V) Wishart of dimension d with degrees of freedom df and scale
matrix V

iwishart(d,df,V) inverse Wishart of dimension d with degrees of freedom df and
scale matrix V

jeffreys(d) Jeffreys prior for covariance of a multivariate normal distribution
of dimension d

bernoulli(p) Bernoulli with success probability p
geometric(p) geometric for the number of failures before the first success with

success probability on one trial p
index(p1,. . .,pk) discrete indices 1, 2, . . . , k with probabilities p1, p2, . . . , pk
poisson(mu) Poisson with mean mu

flat flat prior; equivalent to density(1) or logdensity(0)
density(f) generic density f
logdensity(logf) generic log density logf

Dimension d is a positive number #.
A distribution argument is a number for scalar arguments such as var, alpha, beta; a Stata matrix for matrix arguments

such as Sigma and V; a model parameter, paramspec; an expression, expr; or a substitutable expression, subexpr
or resubexpr. See Specifying arguments of likelihood models and prior distributions.

f is a nonnegative number, #; an expression, expr; or a substitutable expression, subexpr or resubexpr.
logf is a number, #; an expression, expr; or a substitutable expression, subexpr or resubexpr.

When mvnormal() or mvnormal0() of dimension d is applied to paramref with n parameters (n6=d), paramref
is reshaped into a matrix with d columns, and its rows are treated as independent samples from the specified
mvnormal() distribution. If such reshaping is not possible, an error is issued. See example 25 for application of
this feature.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 11

options Description

Model

noconstant suppress constant term; not allowed with ordered models,
nonlinear models, and probability distributions

∗likelihood(lspec) distribution for the likelihood model
∗prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Model 2

define(label:resubexpr) defines a function of model parameters; this option may be repeated

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation

12 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood for multilevel models
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
noexpression suppress output of expressions from model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Options likelihood() and prior() are required. prior() must be specified for all model parameters.
Options prior() and block() may be repeated.
indepvars and paramref may contain factor variables; see [U] 11.4.3 Factor variables.
indepvars and paramref may contain time-series operators; see [U] 11.4.4 Time-series varlists.
With multiple-equations specifications, a local if specified within an equation is applied together with the global if

specified with the command.
collect is allowed; see [U] 11.1.10 Prefix commands.
Only fweights are allowed; see [U] 11.1.6 weight.
With multiple-equations specifications, local weights (weights specified within an equation) override global weights

(weights specified with the command).
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands

bayesmh — Bayesian models using Metropolis–Hastings algorithm 13

blockopts Description

gibbs requests Gibbs sampling; available for selected models only and
not allowed with scale(), covariance(), or adaptation()

split requests that all parameters in a block be treated as separate blocks
reffects requests that all parameters in a block be treated as random-effects

parameters
scale(#) initial multiplier for scale factor for current block; default is

scale(2.38); not allowed
with gibbs

covariance(cov) initial proposal covariance for the current block; default is the
identity matrix; not allowed with gibbs

adaptation(adaptopts) control the adaptive MCMC procedure of the current block;
not allowed with gibbs

Only tarate() and tolerance() may be specified in the adaptation() option.

adaptopts Description

every(#) adaptation interval; default is every(100)

maxiter(#) maximum number of adaptation loops; default is maxiter(25) or
max{25, floor(burnin()/every())} whenever default values
of these options are modified

miniter(#) minimum number of adaptation loops; default is miniter(5)

alpha(#) parameter controlling acceptance rate (AR); default is alpha(0.75)

beta(#) parameter controlling proposal covariance; default is beta(0.8)

gamma(#) parameter controlling adaptation rate; default is gamma(0)
∗tarate(#) target acceptance rate (TAR); default is parameter specific
∗tolerance(#) tolerance for AR; default is tolerance(0.01)

∗Only starred options may be specified in the adaptation() option specified within block().

Options� � �
Model �

noconstant suppresses the constant term (intercept) from the regression model. By default, bayesmh
automatically includes a model parameter {depname: cons} in all regression models except ordered
and nonlinear models. Excluding the constant term may be desirable when there is a factor variable,
the base level of which absorbs the constant term in the linear combination.

likelihood(lspec) specifies the distribution of the data. This option specifies the likelihood portion
of the Bayesian model. This option is required. lspec is one of modelspec or distribution.

modelspec specifies one of the supported likelihood distributions for regression models. A location
parameter of these distributions is automatically parameterized as a linear combination of the
specified independent variables and needs not be specified. Other parameters may be specified as
arguments to the distribution separated by commas. Each argument may be a real number (#), a
variable name (except for matrix parameters), a predefined matrix, a model parameter specified in
{}, a Stata expression, or a substitutable expression containing model parameters and, optionally,
random effects; see Declaring model parameters and Specifying arguments of likelihood models
and prior distributions. For survival models, a distribution argument may be only a real number
or a model parameter.

14 bayesmh — Bayesian models using Metropolis–Hastings algorithm

distribution specifies one of the supported distributions for modeling the dependent variable. A
distribution argument must be a model parameter specified in {} or a substitutable expression
containing model parameters and, optionally, random effects; see Declaring model parameters and
Specifying arguments of likelihood models and prior distributions. A number of trials, n, of the
binomial distribution may be a real number (#), a Stata expression, or a variable name. For an
example of modeling outcome distributions directly, see Beta-binomial model.

For some regression models, option likelihood() provides suboptions subopts in
likelihood(. . . , subopts). subopts are offset(), exposure(), and, for survival models,
survivalopts.

offset(varnameo) specifies that varnameo be included in the regression model with the coefficient
constrained to be 1. This option is available with probit, logit, binomial(), binlogit(),
oprobit, ologit, and poisson.

exposure(varnamee) specifies a variable that reflects the amount of exposure over which the
depvar events were observed for each observation; ln(varnamee) with coefficient constrained
to be 1 is entered into the log-link function. This option is available with poisson.

survivalopts are logparam, nologparam, ph, aft, time (synonym for aft), failure(varname),
and ltruncated(varname | #).

logparam and nologparam specify the estimation metric for the auxiliary model parameter.
logparam specifies that the survival model be fit using the log of the parameter controlling the
shape of the distribution—scale for stgamma() and stloglogistic(), standard deviation
for stlognormal(), and shape for stweibull(). This is the default. nologparam specifies
that the model be fit using the parameter in the original metric. Which metric to use may
depend on the desired prior distribution for the auxiliary parameter.

ph, aft, failure(), ltruncated(); see survival options in [SEM] gsem family-and-link
options.

prior(priorspec) specifies a prior distribution for model parameters. This option is required and
may be repeated. A prior must be specified for each model parameter. Model parameters may
be scalars or matrices, but both types may not be combined in one prior statement. If multiple
scalar parameters are assigned a single univariate prior, they are considered independent, and the
specified prior is used for each parameter. You may assign a multivariate prior of dimension d to d
scalar parameters. Also see Referring to model parameters and Specifying arguments of likelihood
models and prior distributions.

All likelihood() and prior() combinations are allowed, but they are not guaranteed to correspond
to proper posterior distributions. You need to think carefully about the model you are building and
evaluate its convergence thoroughly; see Convergence of MCMC.

dryrun specifies to show the summary of the model that would be fit without actually fitting the
model. This option is recommended for checking specifications of the model before fitting the
model. The model summary reports the information about the likelihood model and about priors
for all model parameters.

� � �
Model 2 �

define(name:resubexpr) is for use with nonlinear models. It defines a function of model parameters,
resubexpr, and labels it as name. This option can be repeated to define multiple functions. The
define() option is useful for expressions that appear multiple times in the main nonlinear
specification: you define the expression once and then simply refer to it by using {name:} in
the nonlinear specification. This option can also be used for notational convenience. See Random
effects for how to specify resubexpr.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/semgsemfamily-and-linkoptions.pdf#semgsemfamily-and-linkoptionsSyntaxsurvival
https://www.stata.com/manuals/semgsemfamily-and-linkoptions.pdf#semgsemfamily-and-linkoptions
https://www.stata.com/manuals/semgsemfamily-and-linkoptions.pdf#semgsemfamily-and-linkoptions

bayesmh — Bayesian models using Metropolis–Hastings algorithm 15

� � �
Simulation �

nchains(#) specifies the number of Markov chains to simulate. You must specify at least two chains.
By default, only one chain is produced. Simulating multiple chains is useful for convergence
diagnostics and to improve precision of parameter estimates. Four chains are often recommended
in the literature, but you can specify more or less depending on your objective. The reported
estimation results are based on all chains. You can use bayesstats summary with option
sepchains to see the results for each chain. The reported acceptance rate, efficiencies, and log
marginal-likelihood are averaged over all chains. You can use option chainsdetail to see these
simulation summaries for each chain. Also see Convergence diagnostics using multiple chains and
Gelman–Rubin convergence diagnostic in [BAYES] bayesstats grubin.

mcmcsize(#) specifies the target MCMC sample size. The default MCMC sample size is mcmc-
size(10000). The total number of iterations for the MH algorithm equals the sum of the burn-in
iterations and the MCMC sample size in the absence of thinning. If thinning is present, the total
number of MCMC iterations is computed as burnin() + (mcmcsize()− 1)× thinning() + 1.
Computation time of the MH algorithm is proportional to the total number of iterations. The MCMC
sample size determines the precision of posterior summaries, which may be different for different
model parameters and will depend on the efficiency of the Markov chain. With multiple chains,
mcmcsize() applies to each chain. Also see Burn-in period and MCMC sample size.

burnin(#) specifies the number of iterations for the burn-in period of MCMC. The values of parameters
simulated during burn-in are used for adaptation purposes only and are not used for estimation.
The default is burnin(2500). Typically, burn-in is chosen to be as long as or longer than the
adaptation period. With multiple chains, burnin() applies to each chain. Also see Burn-in period
and MCMC sample size and Convergence of MCMC.

thinning(#) specifies the thinning interval. Only simulated values from every (1+k×#)th iteration
for k = 0, 1, 2, . . . are saved in the final MCMC sample; all other simulated values are discarded.
The default is thinning(1); that is, all simulation values are saved. Thinning greater than one
is typically used for decreasing the autocorrelation of the simulated MCMC sample. With multiple
chains, thinning() applies to each chain.

rseed(#) sets the random-number seed. This option can be used to reproduce results. With one
chain, rseed(#) is equivalent to typing set seed # prior to calling bayesmh; see [R] set seed.
With multiple chains, you should use rseed() for reproducibility; see Reproducing results.

exclude(paramref) specifies which model parameters should be excluded from the final MCMC
sample. These model parameters will not appear in the estimation table, and postestimation
features for these parameters and log marginal-likelihood will not be available. This option is
useful for suppressing nuisance model parameters. For example, if you have a factor predictor
variable with many levels but you are only interested in the variability of the coefficients associated
with its levels, not their actual values, then you may wish to exclude this factor variable from the
simulation results. If you simply want to omit some model parameters from the output, see the
noshow() option. paramref can include individual random-effects parameters.

https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummary
https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf#bayesbayesstatsgrubinRemarksandexamplesGelman--Rubinconvergencediagnostic
https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf#bayesbayesstatsgrubin
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/bayes.pdf#bayesbayesmhOptionsnoshow()

16 bayesmh — Bayesian models using Metropolis–Hastings algorithm

� � �
Blocking �

block(paramref
[
, blockopts

]
) specifies a group of model parameters for the blocked MH algorithm.

By default, all parameters except matrices are treated as one block, and each matrix parameter
is viewed as a separate block. You can use the block() option to separate scalar parameters in
multiple blocks. Technically, you can also use block() to combine matrix parameters in one block,
but this is not recommended. The block() option may be repeated to define multiple blocks.
Different types of model parameters, such as scalars and matrices, may not be specified in one
block(). Parameters within one block are updated simultaneously, and each block of parameters
is updated in the order it is specified; the first specified block is updated first, the second is updated
second, and so on. See Improving efficiency of the MH algorithm—blocking of parameters.

blockopts include gibbs, split, reffects, scale(), covariance(), and adaptation().

gibbs specifies to use Gibbs sampling to update parameters in the block. This option is allowed
only for specific combinations of likelihood models and prior distributions; see Gibbs sampling
for some likelihood-prior and prior-hyperprior configurations. For more information, see Gibbs
and hybrid MH sampling. In the presence of multiple random effects, you may combine
options gibbs and split to perform Gibbs sampling separately for each set of random-
effects parameters. gibbs may not be combined with reffects, scale(), covariance(),
or adaptation().

split specifies that all parameters in a block are treated as separate blocks. This may be useful for
levels of factor variables. Option split is convenient in combination with option gibbs with
multiple random effects to perform Gibbs sampling separately for each set of random-effects
parameters.

reffects specifies that the parameters associated with the levels of a factor variable included in
the likelihood specification be treated as random-effects parameters. Random-effects parameters
must be included in one prior statement and are assumed to be conditionally independent
across levels of a grouping variable given all other model parameters. reffects requires that
parameters be specified as {depvar:i.varname}, where i.varname is the corresponding factor
variable in the likelihood specification, and may not be combined with block()’s suboptions
gibbs and split. This option was useful for fitting hierarchical or multilevel models in
previous versions and is now provided for historical reasons. See Random effects for how to
fit multilevel models.

scale(#) specifies an initial multiplier for the scale factor corresponding to the specified block.
The initial scale factor is computed as #/

√
np for continuous parameters and as #/np for discrete

parameters, where np is the number of parameters in the block. The default is scale(2.38).
If specified, this option overrides the respective setting from the scale() option specified with
the command. scale() may not be combined with gibbs.

covariance(matname) specifies a scale matrix matname to be used to compute an initial
proposal covariance matrix corresponding to the specified block. The initial proposal covariance
is computed as rho×Sigma, where rho is a scale factor and Sigma = matname. By default,
Sigma is the identity matrix. If specified, this option overrides the respective setting from the
covariance() option specified with the command. covariance() may not be combined with
gibbs.

adaptation(tarate()) and adaptation(tolerance()) specify block-specific TAR and ac-
ceptance tolerance. If specified, they override the respective settings from the adaptation()
option specified with the command. adaptation() may not be combined with gibbs.

blocksummary displays the summary of the specified blocks. This option is useful when block()
is specified.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 17

� � �
Initialization �

initial(initspec) specifies initial values for the model parameters to be used in the simulation.
With multiple chains, this option is equivalent to specifying option init1(). You can specify a
parameter name, its initial value, another parameter name, its initial value, and so on. For example,
to initialize a scalar parameter alpha to 0.5 and a 2x2 matrix Sigma to the identity matrix I(2),
you can type

bayesmh . . . , initial({alpha} 0.5 {Sigma,m} I(2)) . . .

You can also specify a list of parameters using any of the specifications described in Referring to
model parameters. For example, to initialize all regression coefficients from equations y1 and y2
to zero, you can type

bayesmh . . . , initial({y1:} {y2:} 0) . . .

The general specification of initspec is

paramref initval
[

paramref initval
[
. . .
]]

where initval is a number, a Stata expression that evaluates to a number, or a Stata matrix for
initialization of matrix parameters.

Curly braces may be omitted for scalar parameters but must be specified for matrix parameters.
Initial values declared using this option override the default initial values or any initial values
declared during parameter specification in the likelihood() option. See Specifying initial values
for details.

init#(initspec) specifies initial values for the model parameters for the #th chain. This option requires
option nchains(). init1() overrides the default initial values for the first chain, init2() for
the second chain, and so on. You specify initial values in init#() just like you do in option
initial(). See Specifying initial values for details.

initall(initspec) specifies initial values for the model parameters for all chains. This option requires
option nchains(). You specify initial values in initall() just like you do in option initial().
You should avoid specifying fixed initial values in initall() because then all chains will use the
same initial values. initall() is useful to specify random initial values when you define your
own priors within prior()’s density() and logdensity() suboptions. See Specifying initial
values for details.

nomleinitial suppresses using maximum likelihood estimates (MLEs) as starting values for model
parameters. With multiple chains, this option and discussion below apply only to the first chain.
By default, when no initial values are specified, MLE values (when available) are used as initial
values. If nomleinitial is specified and no initial values are provided, the command uses ones
for positive scalar parameters, zeros for other scalar parameters, and identity matrices for matrix
parameters. nomleinitial may be useful for providing an alternative starting state when checking
convergence of MCMC. This option cannot be combined with initrandom.

initrandom specifies that the model parameters be initialized randomly. Random initial values are
generated from the prior distributions of the model parameters. If you want to use fixed initial
values for some of the parameters, you can specify them in the initial() option or during
parameter declarations in the likelihood() option. Random initial values are not available for
parameters with flat, jeffreys, density(), logdensity(), and jeffreys() priors; you
must provide your own initial values for such parameters. This option cannot be combined with
nomleinitial. See Specifying initial values for details.

initsummary specifies that the initial values used for simulation be displayed.

18 bayesmh — Bayesian models using Metropolis–Hastings algorithm

� � �
Adaptation �

adaptation(adaptopts) controls adaptation of the MCMC procedure. Adaptation takes place every
prespecified number of MCMC iterations and consists of tuning the proposal scale factor and
proposal covariance for each block of model parameters. Adaptation is used to improve sampling
efficiency. Provided defaults are based on theoretical results and may not be sufficient for all
applications. See Adaptation of the MH algorithm for details about adaptation and its parameters.

adaptopts are any of the following options:

every(#) specifies that adaptation be attempted every #th iteration. The default is every(100).
To determine the adaptation interval, you need to consider the maximum block size specified
in your model. The update of a block with k model parameters requires the estimation
of a k × k covariance matrix. If the adaptation interval is not sufficient for estimating the
k(k + 1)/2 elements of this matrix, the adaptation may be insufficient.

maxiter(#) specifies the maximum number of adaptive iterations. Adaptation includes tuning
of the proposal covariance and of the scale factor for each block of model parameters.
Once the TAR is achieved within the specified tolerance, the adaptation stops. However, no
more than # adaptation steps will be performed. The default is variable and is computed as
max{25, floor(burnin()/adaptation(every()))}.
maxiter() is usually chosen to be no greater than (mcmcsize() + burnin())/
adaptation(every()).

miniter(#) specifies the minimum number of adaptive iterations to be performed regardless of
whether the TAR has been achieved. The default is miniter(5). If the specified miniter()
is greater than maxiter(), then miniter() is reset to maxiter(). Thus, if you specify
maxiter(0), then no adaptation will be performed.

alpha(#) specifies a parameter controlling the adaptation of the AR. alpha() should be in
[0, 1]. The default is alpha(0.75).

beta(#) specifies a parameter controlling the adaptation of the proposal covariance matrix.
beta() must be in [0,1]. The closer beta() is to zero, the less adaptive the proposal
covariance. When beta() is zero, the same proposal covariance will be used in all MCMC
iterations. The default is beta(0.8).

gamma(#) specifies a parameter controlling the adaptation rate of the proposal covariance
matrix. gamma() must be in [0,1]. The larger the value of gamma(), the less adaptive the
proposal covariance. The default is gamma(0).

tarate(#) specifies the TAR for all blocks of model parameters; this is rarely used. tarate()
must be in (0,1). The default AR is 0.234 for blocks containing continuous multiple parameters,
0.44 for blocks with one continuous parameter, and 1/n maxlev for blocks with discrete
parameters, where n maxlev is the maximum number of levels for a discrete parameter in
the block.

tolerance(#) specifies the tolerance criterion for adaptation based on the TAR. tolerance()
should be in (0,1). Adaptation stops whenever the absolute difference between the current
AR and TAR is less than tolerance(). The default is tolerance(0.01).

scale(#) specifies an initial multiplier for the scale factor for all blocks. The initial scale factor is
computed as #/

√
np for continuous parameters and #/np for discrete parameters, where np is the

number of parameters in the block. The default is scale(2.38).

covariance(cov) specifies a scale matrix cov to be used to compute an initial proposal covariance
matrix. The initial proposal covariance is computed as ρ × Σ, where ρ is a scale factor and
Σ = matname. By default, Σ is the identity matrix. Partial specification of Σ is also allowed.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 19

The rows and columns of cov should be named after some or all model parameters. According
to some theoretical results, the optimal proposal covariance is the posterior covariance matrix of
model parameters, which is usually unknown. This option does not apply to the blocks containing
random-effects parameters.

� � �
Reporting �

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.
The default is clevel(95) or as set by [BAYES] set clevel.

hpd displays the HPD credible intervals instead of the default equal-tailed credible intervals.

eform and eform(string) specify that the coefficient table be displayed in exponentiated form and
that exp(b) and string, respectively, be used to label the exponentiated coefficients in the table.

remargl specifies to compute the log marginal-likelihood for panel-data and multilevel models. It
is not reported by default for these models. Bayesian panel-data and multilevel models contain
many parameters because, in addition to regression coefficients and variance components, they also
estimate individual random effects. The computation of the log marginal-likelihood involves the
inverse of the determinant of the sample covariance matrix of all parameters and loses its accuracy
as the number of parameters grows. For high-dimensional models such as multilevel models, the
computation of the log marginal-likelihood can be time consuming, and its accuracy may become
unacceptably low. Because it is difficult to access the levels of accuracy of the computation for
all panel-data and multilevel models, the log marginal-likelihood is not reported by default. For
models containing a small number of random effects, you can use the remargl option to compute
and display the log marginal-likelihood.

batch(#) specifies the length of the block for calculating batch means and an MCSE using batch
means. The default is batch(0), which means no batch calculations. When batch() is not
specified, the MCSE is computed using effective sample sizes instead of batch means. batch()
may not be combined with corrlag() or corrtol().

saving(filename
[
, replace

]
) saves simulation results in filename.dta. The replace option

specifies to overwrite filename.dta if it exists. If the saving() option is not specified, bayesmh
saves simulation results in a temporary file for later access by postestimation commands. This
temporary file will be overridden every time bayesmh is run and will also be erased if the current
estimation results are cleared. saving() may be specified during estimation or on replay.

The saved dataset has the following structure. Variable chain records chain identifiers. Variable
index records iteration numbers. bayesmh saves only states (sets of parameter values) that are

different from one iteration to another and the frequency of each state in variable frequency.
(Some states may be repeated for discrete parameters.) As such, index may not necessarily
contain consecutive integers. Remember to use frequency as a frequency weight if you need to
obtain any summaries of this dataset. Values for each parameter are saved in a separate variable
in the dataset. Variables containing values of parameters without equation names are named as
eq0 p#, following the order in which parameters are declared in bayesmh. Variables containing
values of parameters with equation names are named as eq# p#, again following the order in which
parameters are defined. Parameters with the same equation names will have the same variable
prefix eq#. For example,

. bayesmh y x1, likelihood(normal({var})) saving(mcmc) . . .

will create a dataset, mcmc.dta, with variable names eq1 p1 for {y:x1}, eq1 p2 for {y: cons},
and eq0 p1 for {var}. Also see macros e(parnames) and e(varnames) for the correspondence
between parameter names and variable names.

https://www.stata.com/manuals/bayessetclevel.pdf#bayessetclevel
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions

20 bayesmh — Bayesian models using Metropolis–Hastings algorithm

In addition, bayesmh saves variable loglikelihood to contain values of the log likelihood
from each iteration and variable logposterior to contain values of the log posterior from each
iteration.

nomodelsummary suppresses the detailed summary of the specified model. The model summary is
reported by default.

noexpression suppresses the output of expressions from the model summary. Expressions (when
specified) are reported by default.

chainsdetail specifies that acceptance rates, efficiencies, and log marginal-likelihoods be reported
separately for each chain. By default, the header reports these statistics averaged over all chains.
This option requires option nchains().

nodots, dots, and dots(#) specify to suppress or display dots during simulation. With multiple
chains, these options affect all chains. dots(#) displays a dot every # iterations. During the
adaptation period, a symbol a is displayed instead of a dot. If dots(. . ., every(#)) is specified,
then an iteration number is displayed every #th iteration instead of a dot or a. dots(, every(#)) is
equivalent to dots(1, every(#)). dots displays dots every 100 iterations and iteration numbers
every 1,000 iterations; it is a synonym for dots(100, every(1000)). By default, no dots are
displayed (nodots or dots(0)).

show(paramref) or noshow(paramref) specifies a list of model parameters to be included in the
output or excluded from the output, respectively. By default, all model parameters (except random-
effects parameters) are displayed. Do not confuse noshow() with exclude(), which excludes
the specified parameters from the MCMC sample. When the noshow() option is specified, for
computational efficiency, MCMC summaries of the specified parameters are not computed or stored
in e(). paramref can include individual random-effects parameters.

showreffects and showreffects(reref) are used with multilevel models and specify that all or
a list reref of random-effects parameters be included in the output in addition to other model
parameters. By default, all random-effects parameters are excluded from the output as if you
have specified the noshow() option. This option computes, displays, and stores in e() MCMC
summaries for the random-effects parameters.

notable suppresses the estimation table from the output. By default, a summary table is displayed
containing all model parameters except those listed in the exclude() and noshow() options.
Regression model parameters are grouped by equation names. The table includes six columns
and reports the following statistics using the MCMC simulation results: posterior mean, posterior
standard deviation, MCMC standard error or MCSE, posterior median, and credible intervals.

noheader suppresses the output header either at estimation or upon replay.

title(string) specifies an optional title for the command that is displayed above the table of the
parameter estimates. The default title is specific to the specified likelihood model.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] Estimation options.

� � �
Advanced �

search(search options) searches for feasible initial values. search options are on, repeat(#),
and off.

search(on) is equivalent to search(repeat(500)). This is the default.

search(repeat(k)), k > 0, specifies the number of random attempts to be made to find
a feasible initial-value vector, or initial state. The default is repeat(500). An initial-value
vector is feasible if it corresponds to a state with positive posterior probability. If feasible initial

https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions

bayesmh — Bayesian models using Metropolis–Hastings algorithm 21

values are not found after k attempts, an error will be issued. repeat(0) (rarely used) specifies
that no random attempts be made to find a feasible starting point. In this case, if the specified
initial vector does not correspond to a feasible state, an error will be issued.

search(off) prevents the command from searching for feasible initial values. We do not recom-
mend specifying this option.

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes. The
default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of all lag-k
autocorrelation values for k from 0 to either corrlag() or the index at which the autocorrelation
becomes less than corrtol() if the latter is less than corrlag(). Options corrlag() and
batch() may not be combined.

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The
default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-k
autocorrelation is less than corrtol(), then all autocorrelation lags beyond the kth lag are
discarded. Options corrtol() and batch() may not be combined.

Remarks and examples stata.com

Remarks are presented under the following headings:

Using bayesmh
Setting up a posterior model

Likelihood model
Prior distributions
Declaring model parameters
Referring to model parameters
Specifying arguments of likelihood models and prior distributions
Substitutable expressions
Constraints on coefficients in linear combinations
Random effects
Checking model specification

Specifying MCMC sampling procedure
Reproducing results
Burn-in period and MCMC sample size
Improving efficiency of the MH algorithm—blocking of parameters
Gibbs and hybrid MH sampling
Adaptation of the MH algorithm
Specifying initial values

Summarizing and reporting results
Posterior summaries and credible intervals
Saving MCMC results

Convergence of MCMC

Examples are presented under the following headings:

Getting started examples
Mean of a normal distribution with a known variance
Mean of a normal distribution with an unknown variance
Simple linear regression
Multiple linear regression
Improving efficiency of the MH sampling

Convergence diagnostics using multiple chains
Multiple chains using default initial values
Multiple chains using overdispersed initial values

Bayesian predictions
Simulating replicated outcomes
Posterior predictive checks

Logistic regression model: A case of nonidentifiable parameters

http://stata.com

22 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Ordered probit regression
Beta-binomial model
Multivariate regression
Panel-data and multilevel models

Two-level random-intercept model or panel-data model
Linear growth curve model—a random-coefficient model
Multilevel logistic regression
Three-level nonlinear model

Survival models
Bayesian analysis of change-point problem
Bioequivalence in a crossover trial
Random-effects meta-analysis of clinical trials
Item response theory
Latent growth model
Video examples

For a quick overview example of all Bayesian commands, see Overview example in [BAYES] Bayesian
commands.

Using bayesmh

The bayesmh command for Bayesian analysis includes three functional components: setting up
a posterior model, performing MCMC simulation, and summarizing and reporting results. The first
component, the model-building step, requires some experience in the practice of Bayesian statistics
and, as any modeling task, is probably the most demanding. You should specify a posterior model
that is statistically correct and that represents the observed data. Another important aspect is the
computational feasibility of the model in the context of the MH MCMC procedure implemented in
bayesmh. The provided MH algorithm is adaptive and, to a degree, can accommodate various statistical
models and data structures. However, careful model parameterization and well-specified initial values
and MCMC sampling scheme are crucial for achieving a fast-converging Markov chain and consequently
good results. Simulation of MCMC must be followed by a thorough investigation of the convergence
of the MCMC algorithm. Once you are satisfied with the convergence of the simulated chains, you
may proceed with posterior summaries of the results and their interpretation. Below we discuss the
three major steps of using bayesmh and provide recommendations.

Setting up a posterior model

Any posterior model includes a likelihood model that specifies the conditional distribution of the
data given model parameters and prior distributions for all model parameters. The prior distribution of
a parameter can itself be specified conditional on other parameters, also referred to as hyperparameters.
We will refer to their prior distributions as hyperpriors.

Likelihood model

The likelihood model describes the data. You build your likelihood model the same way you do
this in frequentist likelihood-based analysis.

The bayesmh command provides various likelihood models, which are specified in the like-
lihood() option. For a univariate response, there are normal models, generalized linear models
for binary and count response, and more. For a multivariate model, you may choose between a
multivariate normal model with covariates common to all variables and with covariates specific to
each variable. You can also build likelihood models for multiple variables by specifying a distribution
and a regression function for each variable by using bayesmh’s multiple-equations specification.

https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommandsRemarksandexamplesOverviewexample
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommands
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommands

bayesmh — Bayesian models using Metropolis–Hastings algorithm 23

bayesmh is primarily designed for fitting regression models. As we said above, you specify the
likelihood or outcome distribution in the likelihood() option. The regression specification of the
model is the same as for other regression commands. For a univariate response, you specify the
dependent and all independent variables following the command name. (Here we also include the
prior() option that specifies prior distributions to emphasize that it is required in addition to
likelihood(). See the next subsection for details about this option.)

. bayesmh y x1 x2, likelihood() prior() . . .

For a multivariate response, you separate the dependent variables from the independent variables
with the equal sign.

. bayesmh y1 y2 = x1 x2, likelihood(mvnormal(. . .)) prior() . . .

With multiple-equations specification, you follow the syntax for the univariate response, but you
specify each equation in parentheses and you specify the likelihood() option within each equation.

. bayesmh (y1 x1, likelihood()) (y2 x2, likelihood()), prior() . . .

In the above models, the regression function is modeled using a linear combination of the specified
independent variables and regression coefficients. The constant is included by default, but you can
specify the noconstant option to omit it from the linear predictor.

bayesmh also allows you to model the regression function as a nonlinear function of independent
variables and regression parameters. In this case, you must use the equal sign to separate the dependent
variable from the expression and specify the expression in parentheses:

. bayesmh y = ({a}+{b}*x^{c}), likelihood(normal()) prior() . . .

. bayesmh (y1 = ({a1}+{b1}*x^{c1}) ///
(y2 = ({a2}+{b2}*x^{c2}), likelihood(mvnormal()) prior() . . .

You can fit linear and nonlinear multilevel models by including random-effects terms in your
regression specifications.

. bayesmh y x1 x2 U[id], likelihood() prior() . . .

. bayesmh y = ({a}+{b}*x^{c}+{U[id]}), likelihood() prior() . . .

Finally, you can model an outcome distribution directly by specifying one of the supported
probability distributions.

For a not-supported or nonstandard likelihood, you can use the llf() option within likeli-
hood() to specify a generic expression for the observation-level likelihood function; see Substitutable
expressions. When you use the llf() option, it is your responsibility to ensure that the provided
expression corresponds to a valid density. For more complicated Bayesian models, you may consider
writing your own likelihood or posterior function evaluators; see [BAYES] bayesmh evaluators.

Prior distributions

In addition to the likelihood, you must also specify prior distributions for all model parameters in a
Bayesian model (except random effects). Prior distributions or priors are key components in a Bayesian
model specification and should be chosen carefully. They are used to quantify some expert knowledge
or existing information about model parameters. For example, priors can be used for constraining
the domain of some parameters to localize values that we think are more probable for reasons that
are not considered in the likelihood specification. Improper priors (priors with densities that do not
integrate to finite numbers) are also allowed, as long as they yield valid posterior distributions. Priors
are often categorized as informative (subjective) or noninformative (objective). Noninformative priors

https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluators
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryrandom_effects_parameters

24 bayesmh — Bayesian models using Metropolis–Hastings algorithm

are also known as vague priors. Uniform distributions are often used as noninformative priors and
can even be applied to parameters with unbounded domains, in which case they become improper
priors. Normal and gamma distributions with very large variances relative to the expected values
of the parameters are also used as noninformative priors. Another family of noninformative priors,
often chosen for their invariance under reparameterization, are so-called Jeffreys priors, named after
Harold Jeffreys (Jeffreys 1946). For example, the bayesmh command provides built-in Jeffreys priors
for the normal family of distributions. Jeffreys priors are usually improper. As discussed by many
researchers, however, the overuse of noninformative priors contradicts the principles of Bayesian
approach—analysis of a posterior model with noninformative priors would be close to one based on
the likelihood only. Noninformative priors may also negatively influence the MCMC convergence. It
is thus important to find good priors based on earlier studies and use them in the model as well as
perform sensitivity analysis for competing priors. A good choice of prior should minimize the MCMC
standard errors of the parameter estimates.

As for likelihoods, the bayesmh command provides several priors you can choose from by
specifying the prior() options. For example, continuous univariate priors include normal, lognormal,
uniform, inverse gamma, and exponential; discrete priors include Bernoulli and Poisson; multivariate
priors include multivariate normal and inverse Wishart. There are also special priors: jeffreys and
jeffreys(#), which specify Jeffreys priors for the variance of the normal and multivariate normal
distributions, and zellnersg() and zellnersg0(), which specify multivariate priors for regression
coefficients (Zellner and Revankar 1969).

The prior() option is required and may be repeated. You can use the prior() option for each
parameter or you can combine multiple parameters in one prior() specification.

For example, we can specify different priors for parameters {y:x} and {y: cons} by

. bayesmh y x, . . . prior({y:x}, normal(10,100)) prior({y: cons}, normal(20,200)) . . .

or the same univariate prior using one prior() statement, using

. bayesmh y x, . . . prior({y:x _cons}, normal(10,100)) . . .

or a multivariate prior with zero mean and fixed variance–covariance S, as follows:

. bayesmh y x, . . . prior({y:x _cons}, mvnormal0(2,S)) . . .

In the prior() option, we list model parameters following any of the specifications described in
Referring to model parameters and then, following the comma, we specify one of the prior distributions
priordist.

If you want to specify a nonstandard prior or if the prior you need is not supported, you can use
the density() or logdensity() option within the prior() option to specify an expression for
a generic density or log density of the prior distribution; see Substitutable expressions. When you
use the density() or logdensity() option, it is your responsibility to ensure that the provided
expression corresponds to a valid density. For a complicated Bayesian model, you may consider
writing your own posterior function evaluator; see [BAYES] bayesmh evaluators.

Sometimes, you may need to specify a flat prior (a prior with the density equal to one) for some
of the parameters. This is often needed when specifying a noninformative prior. You can specify the
flat option instead of the prior distribution in the prior() option to request the flat prior. This
option is equivalent to specifying density(1) or logdensity(0) in prior().

With multilevel models, random-effects parameters, such as random intercepts {U[id]} at the id
levels, are assigned default normal priors with zero mean and an unknown variance, that is, {var U}.
You must, however, specify the priors for the unknown variance components. For instance, if we
include random intercepts {U[id]} in our model, we will need to specify the prior for {var U}.

https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluators
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryrandom_effects_parameters

bayesmh — Bayesian models using Metropolis–Hastings algorithm 25

You can use the prior() option to change the default priors for random effects, prior({U}, . . .).
See Random effects .

The specified likelihood model for the data and prior distributions for the parameters are not
guaranteed to result in proper posterior distributions of the parameters. Therefore, unless you are
using one of the standard Bayesian models, you should always check the validity of the posterior
model you specified.

Declaring model parameters

Model parameters are typically declared, meaning first introduced, in the arguments of distributions
specified in options likelihood() and prior(). We will refer to model parameters that are declared
in the prior distributions (and not the likelihood distributions) as hyperparameters. Model parameters
may also be declared within the parameter specification of the prior() option, but this is more rare.

bayesmh distinguishes between two types of model parameters: scalar and matrix. There are also
random-effects parameters, but we describe them in detail in Random effects . All parameters must
be specified in curly braces, {}. There are two ways for declaring a scalar parameter: {param} and
{eqname:param}, where param and eqname are valid Stata names.

The specification of a matrix parameter is similar, but you must use the matrix suboptions:
{param, matrix} and {eqname:param, matrix}. The most common application of matrix model
parameters is for specifying the variance–covariance matrix of a multivariate normal distribution.

All matrices are assumed to be symmetric and only the elements in the lower diagonal are reported in
the output. Only a few multivariate prior distributions are available for matrix parameters: wishart(),
iwishart(), and jeffreys(). In addition to being symmetric, these distributions require that the
matrices be positive definite.

It is your responsibility to declare all parameters of your model, except regression coefficients in
linear models. For a linear model, bayesmh automatically creates a regression coefficient with the
name {depvar:indepvar} for each independent variable indepvar in the model and, if noconstant is
not specified, an intercept parameter {depvar: cons}. In the presence of factor variables, bayesmh
will create a parameter {depvar:level} for each level indicator level and a parameter {depvar:inter}
for each interaction indicator inter; see [U] 11.4.3 Factor variables. (It is still your responsibility,
however, to specify prior distributions for the regression parameters.)

For example,
. bayesmh y x, . . .

will automatically have two regression parameters: {y:x} and {y: cons}, whereas
. bayesmh y x, noconstant . . .

will have only one: {y:x}.

For a univariate normal linear regression, we may want to additionally declare the scalar variance
parameter by

. bayesmh y x, likelihood(normal({sig2})) . . .

We can label the variance parameter, as follows:
. bayesmh y x, likelihood(normal({var:sig2})) . . .

We can declare a hyperparameter for {sig2} using
. bayesmh y x, likelihood(normal({sig2})) prior({sig2}, igamma({df},2)) . . .

where the hyperparameter {df} is declared in the inverse-gamma prior distribution for {sig2}.

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables

26 bayesmh — Bayesian models using Metropolis–Hastings algorithm

For a multivariate normal linear regression, in addition to four regression parameters declared
automatically by bayesmh: {y1:x}, {y1: cons}, {y2:x}, and {y2: cons}, we may also declare
a parameter for the variance–covariance matrix:

. bayesmh y1 y2 = x, likelihood(mvnormal({Sigma, matrix})) . . .

or abbreviate matrix to m for short:

. bayesmh y1 y2 = x, likelihood(mvnormal({Sigma, m})) . . .

For a two-level random-intercept model,

. bayesmh y x U[id], . . .

in addition to regression coefficients {y:x} and {y: cons}, bayesmh creates a variance component
{var U} associated with the included random effects {U[id]}. See Random effects for details.

Referring to model parameters

After a model parameter is declared, we may need to refer to it in our further model specification.
We will definitely need to refer to it when we specify its prior distribution. We may also need to use
it as an argument in the prior distributions of other parameters or need to specify it in the block()
option for blocking of model parameters; see Improving efficiency of the MH algorithm—blocking
of parameters.

To refer to one parameter, we simply use its definition: {param}, {eqname:param}, {param,
matrix}, or {eqname:param, matrix}. There are several ways in which you can refer to multiple
parameters. You can refer to multiple model parameters in the parameter specification paramref of the
prior(paramref, . . .) option, of the block(paramref, . . .) option, or of the initial(paramref
#) option.

The most straightforward way to refer to multiple scalar model parameters is to simply list them
individually, as follows:

{param1} {param2} . . .

but there are shortcuts.

For example, the alternative to the above is

{param1 param2} . . .

where we simply list the names of all parameters inside one set of curly braces.

If parameters have the same equation name, you can refer to all the parameters with that equation
name as follows. Suppose that we have three parameters with the same equation name eqname, then
the specification

{eqname:param1} {eqname:param2} {eqname:param3}

is the same as the specification

{eqname:}

or the specification

{eqname:param1 param2 param3}

The above specification is useful if we want to refer to a subset of parameters with the same
equation name. For example, in the above, if we wanted to refer to only param1 and param2, we
could type

{eqname:param1 param2}

bayesmh — Bayesian models using Metropolis–Hastings algorithm 27

If a factor variable is used in the specification of the regression function, you can use the same
factor-variable specification within paramref to refer to the coefficients associated with the levels of
that factor variable; see [U] 11.4.3 Factor variables.

You can mix and match all the specifications above in one parameter specification, paramref.

To refer to multiple matrix model parameters, you can use {paramlist, matrix} to refer to matrix
parameters with names paramlist and {eqname:paramlist, matrix} to refer to matrix parameters
with names in paramlist and with equation name eqname.

For example, the specification
{eqname:Sigma1,m} {eqname:Sigma2,m} {Sigma3,m} {Sigma4,m}

is the same as the specification
{eqname:Sigma1 Sigma2,m} {Sigma3 Sigma4,m}

See Random effects for how to refer to random-effects parameters.

You cannot refer to different types of parameters such as scalar and matrix parameters in one
paramref specification.

For referring to model parameters in postestimation commands, see Different ways of specifying
model parameters in [BAYES] Bayesian postestimation.

Specifying arguments of likelihood models and prior distributions

As previously mentioned, likelihood distributions (or more precisely, likelihood models), modelspec,
are specified in the likelihood(modelspec) option and prior distributions priordist are specified
following the comma in the prior(paramref, priordist) option. For a list of supported models and
distributions, see the corresponding tables in the syntax diagram.

In a likelihood model, mean and location parameters are determined by the specified regression
function and thus need not be specified in the likelihood distributions. For example, for a normal linear
regression, we use likelihood(normal(var)), where we specify only the variance parameter—the
mean is already parameterized as a linear combination of the specified independent variables. In the
prior distributions, we must specify all parameters of the distribution. For example, for a normal prior
specification, we use prior(paramref, normal(mu, var)), where we must specify both mean mu
and variance var. In addition, all multivariate prior distributions require that you specify the dimension
d as the first argument.

Scalar arguments of the distributions may be specified as a number or as a scalar expression
expr. Matrix arguments of the distributions may be specified as a matrix or as a matrix expression
expr. Both types of arguments may be specified as a parameter (see Declaring model parameters) or
as a substitutable expression, subexpr or resubexpr (see Substitutable expressions). All distribution
arguments, except the parameters of survival models and the dimension d of multivariate prior
distributions, support the above specifications. For likelihood models, arguments of the distributions
may also contain variable names.

For example, in a normal linear regression, we can specify the variance as a known value of 25,
. bayesmh y x, likelihood(normal(25)) . . .

or as a squared standard deviation of 5 (scalar expression),
. bayesmh y x, likelihood(normal(5^2)) . . .

or as an unknown variance parameter {var},
. bayesmh y x, likelihood(normal({var})) . . .

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesDifferentwaysofspecifyingmodelparameters
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesDifferentwaysofspecifyingmodelparameters
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation

28 bayesmh — Bayesian models using Metropolis–Hastings algorithm

or as a function of an unknown standard-deviation parameter {sd} (substitutable expression),

. bayesmh y x, likelihood(normal({sd}^2)) . . .

In a multivariate normal linear regression, we can specify the variance–covariance matrix as a
known matrix S,

. bayesmh y1 y2 = x, likelihood(mvnormal(S)) . . .

or as a matrix function S = R*R’ using its Cholesky decomposition,

. bayesmh y1 y2 = x, likelihood(mvnormal(R*R’)) . . .

or as an unknown matrix parameter {Sigma,m},

. bayesmh y1 y2 = x, likelihood(mvnormal({Sigma,m})) . . .

or as a function of an unknown variance parameter {var} (substitutable expression),

. bayesmh y1 y2 = x, likelihood(mvnormal({var}*S)) . . .

Substitutable expressions

You may use substitutable expressions in bayesmh to define nonlinear expressions subexpr,
arguments of outcome distributions in option likelihood(), observation-level log likelihood in
option llf(), arguments of prior distributions in option prior(), and generic prior distributions in
prior()’s suboptions density() and logdensity(). Substitutable expressions are just like any
other mathematical expression in Stata, except that they may include model parameters. Substitutable
expressions may contain factor variables and time-series operators; see [U] 11.4.3 Factor variables
and [U] 11.4.4 Time-series varlists.

To specify a substitutable expression in your bayesmh model, you must comply with the following
rules:

1. Model parameters are bound in braces: {mu}, {var:sigma2}, {Sigma, matrix}, and
{Cov:Sigma, matrix}.

2. Linear combinations can be specified using the notation

{ eqname: varlist
[
, xb noconstant

]
}

For example, {lc:mpg price weight} is equivalent to

{lc:mpg}*mpg + {lc:price}*price + {lc:weight}*weight + {mpg: cons}

The xb option is used to distinguish between the linear combination that contains one variable
and a free parameter that has the same name as the variable and the same group name
as the linear combination. For example, {lc:weight, xb} is equivalent to {lc: cons}
+ {lc:weight}*weight, whereas {lc:weight} refers to either a free parameter weight
with a group name lc or the coefficient of the weight variable, if {lc:} has been previously
defined in the expression as a linear combination that involves variable weight. Thus the xb
option indicates that the specification is a linear combination rather than a single parameter
to be estimated.

When you define a linear combination, a constant term is included by default. The nocon-
stant option suppresses the constant.

See Linear combinations in [ME] menl for details about specifying linear combinations.

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/memenl.pdf#memenlRemarksandexamplesLinearcombinations
https://www.stata.com/manuals/memenl.pdf#memenl

bayesmh — Bayesian models using Metropolis–Hastings algorithm 29

3. Initial values are given by including an equal sign and the initial value inside the braces,
for example, {b1=1.267}, {gamma=3}, etc. If you do not specify an initial value, that
parameter is initialized to one for positive scalar parameters and to zero for other scalar
parameters, or it is initialized to its MLE, if available. The initial() option overrides initial
values provided in substitutable expressions. Initial values for matrices must be specified in
the initial() option. By default, matrix parameters are initialized with identity matrices.

Specifying linear combinations. We can use substitutable expressions to specify linear combinations.

For example, a normal linear regression,

. bayesmh y x1 x2, likelihood(normal(1)) prior({y:}, normal(0,100))

may be equivalently (but less efficiently) fit using a nonlinear regression,

. bayesmh y = ({y:x1 x2}), likelihood(normal(1)) prior({y:}, normal(0,100))

The above nonlinear specification is essentially,

. bayesmh y = ({y:x1}*x1+{y:x2}*x2+{y: cons}), likelihood(normal(1))
> prior({y:}, normal(0,100))

Specifying nonstandard densities. We can use substitutable expressions to define nonstandard or
not-supported probability distributions.

For example, suppose we want to specify a Cauchy distribution with location a and scale b. We
can specify the expression for the observation-level likelihood function in the llf() option within
likelihood().

. bayesmh y, likelihood(llf(ln({b})-ln({b}^2+(y-{a})^2)-ln(_pi))) noconstant . . .

You can also use substitutable expressions to define nonstandard or not-supported prior distributions.
For example, as suggested by Gelman et al. (2014), we can specify a Cauchy prior with location a = 0
and scale b = 2.5 for logistic regression coefficients, where continuous covariate x is standardized
to have mean 0 and standard deviation 0.5. If bayesmh did not support the Cauchy prior (option
prior(, cauchy())), we could have specified this prior using the substitutable expressions as
follows:

. bayesmh y x, likelihood(logit)
> prior({y:x}, logdensity(ln(2.5)-ln(2.5^2+{y:x}^2)-ln(_pi)))
> prior({y:_cons}, logdensity(ln(10)-ln(10^2+{y:_cons}^2)-ln(_pi)))

Including random effects. Substitutable expressions may also contain random effects; see Random
effects .

Constraints on coefficients in linear combinations

If you wish to constrain a coefficient to a specific value, you can specify the @ symbol immediately
after the variable whose coefficient is being constrained and then type the value. For instance,

. bayesmh y x1 x2@1, . . .

will constrain the coefficient parameter {y:x2} to 1, which means that this parameter is a constant
and will not be sampled.

You can also constrain a coefficient to a symbol, which is equivalent to renaming the corresponding
parameter. For instance,

. bayesmh y x1 x2@a, . . .

30 bayesmh — Bayesian models using Metropolis–Hastings algorithm

will replace {y:x2} with the free parameter {a}. This feature may be useful with multiple-equations
models when we want the variable used in several linear combinations to have the same coefficient.
For instance,

. bayesmh (y1 x1 x2@a, . . .) (y2 x1 x2@a, . . .)

will replace the parameters {y1:x2} and {y2:x2} with {a}, thus constraining the two original
coefficients to be the same.

Random effects

You can include random effects in your bayesmh’s specifications to fit multilevel models. Examples
of random effects specified within the bayesmh syntax are U1[id], U2[id1>id2], U3[id1#id3],
c.x1#U4[id], and 2.f1#U5[id], to name a few. These represent a random intercept at the id level,
a random intercept at the id2-within-id1 level, a random interaction between the crossed levels id1
and id3, a random slope for the continuous variable x1, and a random slope associated with the
second level of the factor variable f1, respectively. See the general syntax for the random-effects
terms below.

To fit linear multilevel models, you include random-effects terms just as you include covariates—you
simply list them following the dependent variable. For instance,

. bayesmh y x1 x2 U[id], . . .

. bayesmh y x1 x2 U0[id] c.x1#U1[id], . . .

In multiple-equations models, there are equation-specific coefficients associated with each random-
effect term. The coefficient of the random effect in the first equation in which it appears is constrained
to 1. For example,

. bayesmh (y1 x1 U[id1], . . .) (y2 x1 U[id1] V[id2], . . .)

constrains {y1:U} and {y2:V} to 1 because their associated random effects, {U[id1]} and {V[id2]},
appear for the first time in equations {y1:} and {y2:}, respectively. {y2:U} will be sampled because
the associated random effect, {U[id1]}, had already appeared in the first equation.

The coefficients are constrained to 1 for the purpose of identifiability because you cannot identify
both the coefficients and the variance component, which is introduced automatically by bayesmh, for
each random effect. (Technically, you could identify both parameters with Bayesian models if you
specify strong informative priors for them.)

You can override the coefficient constraints by using @value immediately following the random-
effects term. For example,

. bayesmh (y1 x1 U[id1], . . .) (y2 x1 U[id1]@1 V[id2], . . .)

constrains {y2:U} to 1 and lets {y1:U} be sampled. You may also constrain a random effect to a
symbol as follows:

. bayesmh (y1 x1 U[id1]@y1_U, . . .) (y2 x1 U[id1] V[id2], . . .)

Here both equations will contain coefficient parameters for U[id]: {y1 U} will be the coefficient
in the first equation, and {y2:U} will continue to be the coefficient in the second equation. Notice that
{y1 U} will be treated by bayesmh as a free parameter rather than its native regression coefficient.
The above specification is useful when you want to constrain a variance component instead of one
of the coefficients.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 31

You can also include random effects in nonlinear models. You do this by creating a so-called
random-effects substitutable expression—a substitutable expression that contains random effects.
When you include random effects in substitutable expressions, you must enclose them in {}, just as
you do this with other model parameters. For instance,

. bayesmh y = (({b1}+{U[id]})/(1+exp(-(x-{b2})/{b3}))), . . .

. bayesmh y = (1/({b0}+{b1}*x1+{b2}*x2+{U0[id]}+{c.x1#U1[id]})), . . .

The previous bayesmh model can be specified more elegantly by using a linear-combination
specification within a substitutable expression:

. bayesmh y = (1/({xb:x1 x2 U0[id] c.x1#U1[id]})), . . .

When random effects are specified within a linear-combination specification, as in the above exam-
ple, the curly braces around each random effect are not needed. See Random-effects substitutable
expressions in [ME] menl for examples of substitutable expressions containing random effects.

The general syntax for specifying random-effects terms, reterm, is provided below.

reterm Description

{rename[levelspec]} Random intercepts rename at hierarchy levelspec
{c.varname#rename[levelspec]} Random coefficients rename for continuous variable varname
{#.fvvarname#rename[levelspec]} Random coefficients rename for the #th level of

factor variable fvvarname

rename is a random-effects name. It is a Stata name that starts with a capital letter. levelspec defines
the level of hierarchy and is described below.

levelspec Description

levelvar variable identifying the group structure for the random effect at that level
lv2 > lv1 two-level nesting: levels of variable lv1 are nested within lv2
lv3 > lv2 > lv1 three-level nesting: levels of variable lv1 are nested within lv2,

which is nested within lv3
. . . > lv3 > lv2 > lv1 higher-level nesting
lv1#lv2 two-way interaction between crossed levels lv1 and lv2
lv1#lv2#lv3 three-way interaction between crossed levels lv1, lv2, and lv3
lv1#lv2#lv3#. . . higher-order interactions between crossed levels
all treat entire dataset as one big group
n treat each observation as its own group; defines a latent variable

You can equivalently specify levels in the opposite order, from the lowest level to the highest; for example, lv1 < lv2
< lv3, but they will be displayed in the canonical order, from the highest level to the lowest.

After you define a random-effects term once using its full specification rename[levelspec], you
can refer to it further simply by name rename, or you can continue using the full name.

When you include a random effect in your regression model, bayesmh creates a parameter for each
level of the grouping variable. For example, if you include U[id]—the random intercepts by level
variable id that contains levels 1 through 10—bayesmh will create a separate scalar parameter for
each level of id: {U[1.id]}, {U[2.id]}, . . . , {U[10.id]}. These scalar parameters are sampled
in one block using the sampling algorithm described in Adaptive MH algorithm for random effects
in Methods and formulas.

When you use random effects with user-specified log-likelihood and log-posterior evaluators, they
are sampled by default in one block as regular scalar parameters.

https://www.stata.com/manuals/memenl.pdf#memenlRemarksandexamplesRandom-effectssubstitutableexpressions
https://www.stata.com/manuals/memenl.pdf#memenlRemarksandexamplesRandom-effectssubstitutableexpressions
https://www.stata.com/manuals/memenl.pdf#memenl
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

32 bayesmh — Bayesian models using Metropolis–Hastings algorithm

When you refer to random-effects parameters in bayesmh’s specifications, you typically refer to
them as a group. For example, suppose that you included random intercepts by level variable id in
your model as U[id]. To specify a prior distribution for these random intercepts, you can refer to
them by using the full definition {U[id]} or simply by name {U}. In postestimation commands or,
for instance, in the showreffects() option, you may want to refer to individual random-effects
parameters such as {U[1.id]} and {U[1]} or to the subsets of them such as {U[(1/5).id]} and
{U[1/5]}. See Different ways of specifying model parameters in [BAYES] Bayesian postestimation
for other ways of referring to individual random-effects parameters.

For each random effect {rename[levelspec]} you include in the model, bayesmh automatically
assigns it a normal prior with zero mean and variance component {var rename}. But it is your
responsibility to specify a prior for each variance component {var rename}. You can also use the
prior() option to change the default prior for random effects. This is particularly useful for specifying
a multivariate normal prior with an unstructured covariance matrix for correlated random effects; see
example 25.

With multiple-equations models, you must specify a prior for each equation-specific coefficient
associated with a random effect as long as the coefficient is not constrained. For example, if we write

. bayesmh (y1 x1 U[id1], . . .) (y2 x1 U[id1] V[id2], . . .)

then a prior must be specified for coefficient {y2:U} but not for coefficients {y1:U} and {y2:V}
because these are constrained to 1.

Checking model specification

Specifying a Bayesian model may be a tedious task when there are many model parameters and
possibly hyperparameters. It is thus essential to verify model specification before starting a potentially
time-consuming estimation.

bayesmh displays the summary of the specified model as a part of its standard output. You can
use the dryrun option to obtain the model summary without estimation or simulation. Once you are
satisfied with the specified model, you can use the nomodelsummary option to suppress a potentially
long model summary during estimation. Even if you specify nomodelsummary during estimation,
you will still be able to see the model summary, if desired, by simply replaying the results:

. bayesmh

Specifying MCMC sampling procedure

Once you specify a correct posterior model, bayesmh uses an adaptive random-walk MH algorithm
to obtain MCMC samples of model parameters from their posterior distribution.

Reproducing results

Because bayesmh uses MCMC simulation—a stochastic procedure for sampling from a complicated
and possibly nontractable distribution—it will produce different results each time you run the command.
If the MCMC algorithm converged, the results should not change drastically. To obtain reproducible
results, you must specify the random-number seed.

To specify a random-number seed, you can use bayesmh’s rseed() option. With a single chain,
you can instead use set seed # prior to calling bayesmh; see [R] set seed. With multiple chains,
you should use rseed() for reproducibility because, as we explain later, using set seed is no longer
sufficient.

https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
https://www.stata.com/manuals/rsetseed.pdf#rsetseed

bayesmh — Bayesian models using Metropolis–Hastings algorithm 33

With a single chain, if you forgot to specify the random-number seed before calling bayesmh, you
can retrieve the random-number state used by the command from e(rngstate) and use it later with
set rngstate. With multiple chains, reproducing results after the simulation without specifying the
seed is more difficult. We strongly recommend that you specify the rseed() option with bayesmh
when simulating multiple chains.

When you specify the nchains() option to simulate multiple chains, each chain uses its own
stream of random numbers; see [R] set rngstream. This is important to ensure that the chains are
independent. To reproduce the simulation results, a random-number seed must be used for each stream.
This is why using set seed prior to calling bayesmh will not be sufficient to reproduce results from
multiple chains—set seed will affect only the first random-number stream. bayesmh’s rseed()
option, however, will use the specified random-number seed with each stream. If you forgot to specify
the seed with multiple chains, you can retrieve chain-specific random-number states from stored scalars
e(rngstate1), e(rngstate2), etc. and use them with chain-specific random-number streams; see
[R] set rngstream and set rngstate in [R] set seed. For example, suppose you simulated two
chains and forgot to specify the random-number seed:

. bayesmh . . ., nchains(2) . . .

You can type the following directly after the simulation to reproduce the results:

. set rng mt64s

. set rngstate ‘e(rngstate2)’

. set rngstate ‘e(rngstate1)’

. bayesmh . . ., nchains(2) . . .

Stata’s default random-number generator is mt64; see [R] set rng. To simulate multiple chains, the
nchains() option temporarily switches to the stream random-number generator mt64s. To manually
reproduce the results from multiple chains, you need to use mt64s, but we recommend that you switch
back to mt64 for the rest of your analysis. The set rngstate command sets the corresponding
stream automatically; you do not need to use set rngstream to do this yourself. It is important,
however, that you set the state of the first chain last, just before the next call to bayesmh, so that
the stream used by the first chain is the current stream. Although you can reproduce results after
estimation, we strongly recommend that you use the rseed() option during estimation if you want
reproducibility.

Burn-in period and MCMC sample size

bayesmh has the default burn-in period of 2,500 iterations and the default MCMC sample size of
10,000 iterations. That is, the first 2,500 iterations of the MCMC sampler are discarded and the next
10,000 iterations are used to form the MCMC samples of values of model parameters. You can change
these numbers by specifying options burnin() and mcmcsize().

The burn-in period must be long enough for the algorithm to reach convergence or, in other words,
for the Markov chain to reach its stationary distribution or the desired posterior distribution of model
parameters. The sample size for the MCMC sample is typically determined based on the autocorrelation
present in the MCMC sample. The higher the autocorrelation, the larger the MCMC sample should be
to achieve the same precision of the parameter estimates as obtained from the chain with low or
negligible autocorrelation. Because of the nature of the sampling algorithm, all MCMC exhibit some
autocorrelation and thus MCMC samples tend to have large sizes.

The defaults provided by bayesmh may not be sufficient for all Bayesian models and data types.
You will need to explore the convergence of the MCMC algorithm for your particular data problem
and modify the settings, if needed.

https://www.stata.com/manuals/rsetrngstream.pdf#rsetrngstream
https://www.stata.com/manuals/rsetrngstream.pdf#rsetrngstream
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/rsetrng.pdf#rsetrng

34 bayesmh — Bayesian models using Metropolis–Hastings algorithm

After the burn-in period, bayesmh includes every iteration in the MCMC sample. You can specify
the thinning(#) option to store results from a subset of iterations. This option is useful if you want
to subsample the chain to decrease autocorrelation in the final MCMC sample. If you use this option,
bayesmh will perform a total of thinning()× (mcmcsize()− 1) + 1 iterations, excluding burn-in
iterations, to obtain MCMC sample of size mcmcsize().

When you specify the nchains() option to produce multiple chains, the mcmcsize(), burnin(),
and thinning() options apply to each chain.

Improving efficiency of the MH algorithm—blocking of parameters

Although the MH algorithm is very general and can be applied to any Bayesian model, it is not
the most optimal sampler and may require tuning to achieve higher efficiency.

Efficiency describes mixing properties of the Markov chain. High efficiency means good mixing (low
autocorrelation) in the MCMC sample, and low efficiency means bad mixing (high autocorrelation) in
the MCMC sample. High autocorrelation is often present when fitting multilevel models; see Multilevel
models in [BAYES] bayes.

An AR is the number of accepted proposals of model parameters relative to the total number of
proposals. It should not be confused with sampling efficiency. High AR does not mean high efficiency.

An efficient MH sampler has an AR between 15% and 50% (Roberts and Rosenthal 2001) and low
autocorrelation and thus relatively large effective sample size (ESS) for all model parameters.

One way to improve efficiency of the MH algorithm is by blocking of model parameters. Blocking
of model parameters is an important functional aspect of the MH sampler. By default, all parameters
are used as one block and their covariance matrix is used to adapt the proposal distribution. With
many parameters, estimation of this covariance matrix becomes difficult and imprecise and may lead
to the loss of efficiency of the MH algorithm. In many cases, this matrix has a block diagonal structure
because of independence of some blocks or sets of model parameters and its estimation may be
replaced with estimation of the corresponding blocks, which are typically of smaller dimension. This
may improve the efficiency of the sampler. To achieve optimal blocking, you need to identify the sets
of approximately independent (a posteriori) model parameters and specify them in separate blocks.

To achieve an optimal blocking, you need to know or have some idea about the dependence between
the parameters as determined by the posterior distribution. To improve efficiency, follow this principle:
correlated parameters should be specified together, while independent groups of parameters should
be specified in separate blocks. Because the posterior is usually defined indirectly, the relationship
between the parameters is generally unknown. Often, however, we have some knowledge, either
deduced from the model specification or based on prior experience with the model, about which
parameters are highly correlated. In the worst case, you may need to run some preliminary simulations
and determine an optimal blocking by using trial and error.

An ideal case for the MH algorithm is when all model parameters are independent with respect
to the posterior distribution and are thus placed in separate blocks and sampled independently. In
practice, this is not a realistic or interesting case, but it gives us an idea that we should always try to
parameterize the model in such a way that the correlation between model parameters is minimized.

With bayesmh, you can use options block() to perform blocking. You specify one block()
option for each set of independent model parameters. Model parameters that are dependent with each
other are specified in the same block() option.

To illustrate a typical case, consider the following simple linear regression model:

y = {a} + {b}× x + ε, ε ∼ N(0, {var})

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesMultilevelmodels
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesMultilevelmodels
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes

bayesmh — Bayesian models using Metropolis–Hastings algorithm 35

Even when {a} and {b} have independent prior specifications, the location parameters {a} and {b}
are expected to be correlated a posteriori because of their common dependence on y. Alternatively, if
the variance parameter {var} is independent of {a} and {b} a priori, it is generally less correlated
with the location parameters a posteriori. A good blocking scheme is to use options block({a} {b})
and block({var}) with bayesmh. We can also reparameterize our model to reduce the correlation
between {a} and {b} by recentering. To center the slope parameter, we replace {b} with {b}− #,
where # is a constant close to the mean of {b}. Now {a} and {b}− # can also be placed in separate
blocks. See, for example, Thompson (2014) for more discussion related to model parameterization.

Other options that control MCMC sampling efficiency are scale(), covariance(), and adap-
tation(); see Adaptation of the MH algorithm for details.

With multiple chains, the block() option and other options that control MCMC sampling efficiency
apply to all chains.

Gibbs and hybrid MH sampling

In Improving efficiency of the MH algorithm—blocking of parameters, we discussed blocking of
model parameters as a way of improving efficiency of the MH algorithm. For certain Bayesian models,
further improvement is possible by using Gibbs sampling for certain blocks of parameters. This leads
to what we call a hybrid MH sampling with Gibbs updates.

Gibbs sampling is the most effective sampling procedure with the maximum possible AR of one and
with often very high efficiency. Using Gibbs sampling for some blocks of parameters will typically
lead to higher efficiency of the hybrid MH sampling compared with the simple MH sampling.

To apply Gibbs sampling to a set of parameters, we need to know the full conditional distribution
for each parameter and be able to generate random samples from it. Usually, the full conditionals are
known in various special cases but are not available for general posterior distributions. Thus, Gibbs
sampling is not available for all likelihood and prior combinations. bayesmh provides Gibbs sampling
for Bayesian models with conjugate, or more specifically, semiconjugate prior distributions. See Gibbs
sampling for some likelihood-prior and prior-hyperprior configurations for a list of supported models.

For a supported semiconjugate model, you can request Gibbs sampling for a block of parameters
by specifying the gibbs suboption within option block(). In some cases, the gibbs suboption may
be used in all parameter blocks, in which case we will have full Gibbs sampling.

To use Gibbs sampling for a set of parameters, you must first place them in separate prior()
statements and specify semiconjugate prior distributions and then place them in a separate block and
include the gibbs suboption, block(. . ., gibbs).

Here is a standard application of a full Gibbs sampling to a normal mean-only model. Under the
normal–inverse-gamma prior, the conditional posterior distributions of the mean parameter is normal
and of the variance parameter is inverse gamma.

. bayesmh y, likelihood(normal({var}))
> prior({y: cons}, normal(1,10))
> prior({var}, igamma(10,1))
> block({y: cons}, gibbs)
> block({var}, gibbs)

Because {y: cons} and {var} are approximately independent a posteriori, we specified them in
separate blocks.

Gibbs sampling can be applied to hyperparameters, which are not directly involved in the likelihood
specification of the model. For example, we can use Gibbs sampling for the covariance matrix of
regression coefficients.

36 bayesmh — Bayesian models using Metropolis–Hastings algorithm

. bayesmh y x, likelihood(normal(var))
> prior(var, igamma(10,1))
> prior({y:_cons x}, mvnormal(2,1,0,{Sigma,m}))
> prior({Sigma,m}, iwishart(2,10,V))
> block({Sigma,m}, gibbs)

In the next example, the matrix parameter {Sigma,m} specifies the covariance matrix in the
multivariate normal prior for a pair of model parameters, {y:1.cat} and {y:2.cat}. {Sigma,m} is
a hyperparameter—it is not a model parameter of the likelihood but a parameter of a prior distribution,
and it has an inverse-Wishart hyperprior distribution, which is a semiconjugate prior with respect to
the multivariate normal prior distribution. Therefore, we can request a Gibbs sampler for {Sigma,m}.

bayesmh y x i.cat, likelihood(probit)
> prior(y:x _cons, normal(0, 1000))
> prior(y:1.cat 2.cat, mvnormal0(2,{Sigma,m}))
> prior({Sigma,m}, iwishart(2,10,V))
> block({Sigma,m}, gibbs)

In general, Gibbs sampling, when available, is useful for covariance matrices because MH sam-
pling has low efficiency for sampling positive-definite symmetric matrices. In a multivariate normal
regression, the inverse Wishart distribution is a conjugate prior for the covariance matrix and thus
inverse Wishart is the most common prior specification for a covariance matrix parameter. If an
inverse-Wishart prior (iwishart()) is used for a covariance matrix, you can specify Gibbs sampling
for the covariance matrix. You can do so by placing the matrix in a separate block and specifying
the gibbs suboption in that block, as we showed above. Using Gibbs sampling for the covariance
matrix usually greatly improves the sampling efficiency.

Adaptation of the MH algorithm

The MH algorithm simulates Markov chains by generating small moves or jumps from the current
parameter values (or current state) according to the proposal distribution. At each iteration of the
algorithm, the proposed new state is accepted with a probability that is calculated based on the
newly proposed state and the current state. The choice of a proposal distribution is crucial for the
mixing properties of the Markov chain, that is, the rate at which the chain explores its stationary
distribution. (In a Bayesian context, a Markov chain state is a vector of model parameters, and a
stationary distribution is the target posterior distribution.) If the jumps are too small, almost all moves
will be accepted. If the jumps are too large, almost all moves will be rejected. Either case will cause
the chain to explore the entire posterior domain slowly and will thus lead to poor mixing. Adaptive
MH algorithms try to tune the proposal distribution so that some optimal AR is achieved (Haario,
Saksman, and Tamminen [2001]; Roberts and Rosenthal [2009]; Andrieu and Thoms [2008]).

In the random-walk MH algorithm, the proposal distribution is a Gaussian distribution with a zero
mean and is completely determined by its covariance matrix. It is useful to represent the proposal
covariance matrix as a product of a (scalar) scale factor and a positive-definite scale matrix. Gelman,
Gilks, and Roberts (1997) show that the optimal scale matrix is the true covariance matrix of the
target distribution, and the optimal scale factor is inversely proportional to the number of parameters.
Therefore, in the ideal case when the true covariance matrix is available, it can be used as a proposal
covariance and an MCMC adaptation can be avoided altogether. In practice, the true covariance is
rarely known and the adaptation is thus unavoidable.

In the bayesmh command, the scale factor and the scale matrix that form the proposal covariance
are constantly tuned during the adaptation phase of an MCMC so that the current AR approaches some
predefined value.

You can use scale(), covariance(), and adaptation() options to control adaptation of the MH
algorithm. The TAR is controlled by option adaptation(tarate()). The initial scale factor and scale

bayesmh — Bayesian models using Metropolis–Hastings algorithm 37

matrix can be modified using the scale() and covariance() options. In the presence of blocks of
parameters, these options can be specified separately for each block within the block() option. At each
adaptation step, a new scale matrix is formed as a mixture (a linear combination) of the previous scale
matrix and the current empirical covariance matrix of model parameters. The mixture of the two matrices
is controlled by option adaptation(beta()). A positive adaptation(beta()) is recommended to
have a more stable scale matrix between adaptation periods. The adaptation lasts until the maximum
number adaptation(every())×adaptation(maxiter()) of adaptive iterations is reached or
until adaptation(tarate()) is reached within the adaptation(tolerance()) limit. The default
for maxiter() depends on the specified burn-in and adaptation(every()) and is computed as
max{25, floor(burnin()/adaptation(every()))}. The default for adaptation(every()) is
100. If you change the default values of these parameters, you may want to increase the burnin()
to be as long as the specified adaptation period so that adaptation is finished before the final
simulated sample is obtained. (There are adaptation regimes in which adaptation is performed during
the simulation phase as well, such as continuous adaptation.) Two additional adaptation options,
adaptation(alpha()) and adaptation(gamma()) control the AR and the adaptation rate. For
a detailed description of the adaptation process, see Adaptive random-walk Metropolis–Hastings in
[BAYES] Intro and Adaptive MH algorithm in Methods and formulas.

With multiple chains, adaptation options apply to all chains.

Specifying initial values

When exploring convergence of MCMC, it may be useful to try different initial values to verify
that the convergence is unaffected by starting values. Using different initial values is also essential
for multiple chains. We first describe how to specify initial values for a single chain and later for
multiple chains.

Single chain. There are two different ways to specify initial values of model parameters in bayesmh
for a single chain. First is by specifying an initial value when declaring a model parameter. Second
is by specifying an initial value in the initial() option. Initial values for matrix model parameters
may be specified only in the initial() option.

For example, below we initialize variance parameter {var} with a value of 1 using two equivalent
ways, as follows:

. bayesmh y x, likelihood(normal({var=1})) . . .

or

. bayesmh y x, likelihood(normal({var})) initial({var} 1) . . .

If both initial-value specifications are used, initial values specified in the initial() option override
any initial values specified during parameter declaration for the corresponding parameters.

You can initialize multiple parameters with the same value by supplying a list of parameters
by using any of the specifications described in Referring to model parameters to initial(). For
example, to initialize all regression coefficients from equations y1 and y2 to zero, you can type

. bayesmh . . ., initial({y1:} {y2:} 0) . . .

Stata expressions that evaluate to a number can also be used to specify initial values for scalar
parameters. One particularly useful application of this is specifying random initial values using Stata’s
random-number functions; see [FN] Random-number functions. For example, we can generate
random initial values for parameters {y1:} from a normal distribution with mean 0 and standard
deviation 10 and for parameters {y2:} from a uniform on (0, 1) distribution as follows:

. bayesmh . . ., initial({y1:} rnormal(0,10) {y2:} runiform(0,1)) . . .

https://www.stata.com/manuals/bayesintro.pdf#bayesIntroRemarksandexamplesAdaptiverandom-walkMetropolis--Hastings
https://www.stata.com/manuals/bayesintro.pdf#bayesIntro
https://www.stata.com/manuals/fnrandom-numberfunctions.pdf#fnRandom-numberfunctions

38 bayesmh — Bayesian models using Metropolis–Hastings algorithm

You may also specify the initrandom option to request random initial values for all model
parameters. In that case, initial values are generated from the prior distributions of the parameters,
except for parameters that are assigned flat, jeffreys, density(), logdensity(), or jeffreys()
prior distributions. For such parameters, you must specify your own initial values, or bayesmh will
issue an error message.

Multiple chains. In the presence of multiple chains, you can use the init#() options to specify
initial values for each chain: the init1() option specifies initial values for the first chain, init2()
for the second chain, and so on. You specify initial values within the init#() options just like you
do this within initial() for a single chain. (With multiple chains, initial() is synonymous to
init1().)

For example,

. bayesmh y x, likelihood(normal({var})) nchains(2) init1({var} 1) init2({var} 10) . . .

You can use the initall() option to specify initial values for all chains. This is useful, for
instance, when you want to generate random initial values from the same distribution for all chains.
You should avoid specifying fixed initial values within initall() because then all chains will use
the same starting values.

Default initial values. By default, if no initial value is specified and option nomleinitial is
not used, bayesmh uses MLEs, whenever available, as starting values for model parameters for a
single chain. For random-effects parameters, bayesmh uses zeros as initial values and ones for their
respective variance components. You can specify the initsummary option to see the default initial
values used by bayesmh.

For example, for the previous regression model, bayesmh uses regression coefficients and mean
squared error from linear regression regress y x as the respective starting values for the regression
model parameters and variance parameter {var}.

If MLE is not available and an initial value is not provided, then a scalar model parameter is
initialized with 1 for positive parameters and 0 for other parameters, and a matrix model parameter is
initialized with an identity matrix. Note, however, that this default initialization is not guaranteed to
correspond to the feasible state for the specified posterior model; that is, posterior probability of the
initial state can be 0. When initial values are not feasible, bayesmh makes 500 random attempts to
find a feasible initial-value vector. An initial-value vector is feasible if it corresponds to a state with
positive posterior probability. If feasible initial values are not found after 500 attempts, bayesmh will
issue the following error:

could not find feasible initial state
r(498);

You may use the search() option to modify the default settings for finding feasible initial values.

In the presence of multiple chains, each chain uses a different set of initial values for model
parameters. The above description of default initial values applies to the first chain only. The subsequent
chains use random initial values, which generally are generated from the prior distributions.

For improper priors flat, jeffreys, and jeffreys(#), bayesmh cannot draw random initial
values directly from these priors. Doing so would typically produce extreme values for model
parameters for which log likelihood would be missing. Instead, the command generates initial values
from a normal distribution centered at the initial values of the first chain with standard deviations
proportional to the magnitudes of the respective initial estimates. This approach is also used to generate
default initial values with user-defined priors density() and logdensity().

Random initial values may not always be feasible. Extreme values may be produced for model
parameters for some prior distributions, which may lead to missing log-likelihood values. bayesmh

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(498)

bayesmh — Bayesian models using Metropolis–Hastings algorithm 39

will attempt to generate several different sets of initial values before terminating the simulation of
a particular chain and issuing a warning message. In this case, you must specify your own initial
values for that chain.

Default initial values are provided for convenience! To detect nonconvergence, overdispersed
initial values should be used with multiple chains. Randomly generated default initial values are not
guaranteed to produce overdispersed initial values for all chains. To fully explore convergence, we
recommend that you specify your own initial values with multiple chains, especially with improper
or noninformative priors.

See Convergence diagnostics using multiple chains for an example of specifying initial values with
multiple chains.

You can use the initsummary option to see the initial values used for simulation. The initial
values are also stored in the e(init) matrix after estimation.

Summarizing and reporting results

As we discussed in Checking model specification, it is useful to verify the details about your
model specification before estimation. The dryrun model will display the model summary without
estimation. Once you are satisfied with the model specification, you can use the nomodelsummary
option during estimation to suppress a potentially long model summary from the final output.

In the presence of blocking, you may also display the information about specified blocks by using
the blocksummary option.

Simulation may be time consuming for large datasets and for models with many parameters. You
can specify one of dots or dots(#) option to display a dot every # iterations to see the simulation
progress.

You can also use the initsummary option to see the initial values used in the simulation, which
may be useful with multiple chains.

Posterior summaries and credible intervals

After simulation, bayesmh reports various summaries about the model parameters in the output
table. The summaries include posterior mean and median estimates, estimates of posterior standard
deviation and MCSE, and credible intervals. By default, 95% equal-tailed credible intervals are reported.
You can use the hpd option to request HPD intervals instead. You can also use the clevel() option
to change the default credible level.

bayesmh provides two estimators for MCSE: one using ESS and one using batch means. The ESS-
based estimator is the default. You can request the batch-means estimator by specifying the batch()
option. Options corrlag() and corrtol() affect how ESS is estimated when computing MCSE; see
Methods and formulas in [BAYES] bayesstats summary for details.

For multilevel models, bayesmh does not report MCMC summaries for random-effects parameters
by default, but you can use the showreffects or showreffects() option to display the summaries,
respectively, for all of them or for a subset of them during either estimation or replay.

In the presence of multiple chains, all chains are used to produce posterior summaries. You can
use bayesstats summary’s sepchains option to see the results for each chain separately. Also, the
reported acceptance rate, efficiencies, and log marginal-likelihood are averaged over all chains. You
can use the chainsdetail option to see these simulation summaries for each chain.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryoverdispersed_initial_value
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryoverdispersed_initial_value
https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummaryMethodsandformulas
https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummary
https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummary

40 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Saving MCMC results

In addition to postestimation summaries, bayesmh saves simulation results containing MCMC
samples for all model parameters to a temporary Stata dataset. You can use the saving() option to
save simulation results to a permanent dataset. In fact, if you want to store your estimation results in
memory or save them to a disk, you must specify the saving() option with bayesmh; see Storing
estimation results after Bayesian estimation in [BAYES] Bayesian postestimation. You can also specify
the saving() option on replay.

. bayesmh, saving(. . .)

By default, all model parameters are saved in the dataset. If desired, you can exclude some of the
parameters from the dataset by specifying the exclude() option. Beware that you will not be able
to obtain posterior summaries for these parameters or use them in any way in your analysis, because
no simulation results will be available for them. Also, the Laplace–Metropolis approximation for the
log marginal-likelihood will not be available because its computation requires simulation results for
all model parameters.

When fitting multilevel models containing many random effects, if you are interested only in the
estimates of regression coefficients and variance components, you may consider using the exclude()
option to exclude saving MCMC estimates of random-effects parameters to save time. If you do this,
beware that some of the Bayesian postestimation features may not be available.

Convergence of MCMC

As we discuss in Convergence diagnostics of MCMC in [BAYES] Intro, checking convergence is
an essential step of any MCMC simulation. Bayesian inference based on an MCMC sample is only valid
if the Markov chain has converged and the sample is drawn from the desired posterior distribution.
It is important to emphasize that we need to verify the convergence for all model parameters and
not only for a subset of parameters of interest. Another difficulty in accessing convergence of MCMC
is the lack of a single conclusive convergence criterion. The diagnostic usually involves checking
for several necessary (but not necessarily sufficient) conditions for convergence. In general, the more
aspects of the MCMC sample you inspect, the more reliable your results are.

An MCMC is said to have converged if it reached its stationary distribution. In the Bayesian context,
the stationary distribution is the true posterior distribution of model parameters. Provided that the
considered Bayesian model is well specified (that is, it defines a proper posterior distribution of model
parameters), the convergence of MCMC is determined by the properties of its sampling algorithm.

The main component of the MH algorithm, or any MCMC algorithm, is the number of iterations
it takes for the chain to approach its stationary distribution or for the MCMC sample to become
representative of a sample from the true posterior distribution of model parameters. The period during
which the chain is converging to its stationary distribution from its initial state is called the burn-in
period. The iterations of the burn-in period are discarded from the MCMC sample used for analysis.
Another complication is that adjacent observations from the MCMC sample tend to be positively
correlated; that is, autocorrelation is typically present in MCMC samples. In theory, this should not be
a problem provided that the MCMC sample size is sufficiently large. In practice, the autocorrelation in
the MCMC sample may be so high that obtaining a sample of the necessary size becomes infeasible
and finding ways to reduce autocorrelation becomes important.

Two aspects of the MH algorithm that affect the length of the burn-in (and convergence) are the
starting values of model parameters or, in other words, a starting state and a proposal distribution.
bayesmh has the default burn-in of 2,500 iterations, but you can change it by specifying the burnin()
option. bayesmh uses a Gaussian normal distribution with a zero mean and a covariance matrix that

https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesStoringestimationresultsafterBayesianestimation
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesStoringestimationresultsafterBayesianestimation
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
https://www.stata.com/manuals/bayesintro.pdf#bayesIntroRemarksandexamplesConvergencediagnosticsofMCMC
https://www.stata.com/manuals/bayesintro.pdf#bayesIntro

bayesmh — Bayesian models using Metropolis–Hastings algorithm 41

is updated with current sample values during the adaptation period. You can control the proposal
distribution by changing the initial scale factor in option scale() and an initial scale matrix in option
covariance(); see Adaptation of the MH algorithm.

For the starting values of a single chain, bayesmh uses MLEs whenever available, but you can
specify your own initial values in option initial(); see Specifying initial values. Good initial values
help to achieve fast convergence of MCMC and bad initial values may slow convergence down. A
common approach for eliminating the dependence of the chain on the initial values is to discard an
initial part of the simulated sample: a burn-in period. The burn-in period must be sufficiently large
for a chain to “forget” its initial state and approach its stationary distribution or the desired posterior
distribution.

There are some researchers (for example, Geyer [2011]) who advocate that any starting point in
the posterior domain is equally good and there should be no burn-in. While this is a sensible approach
for a fixed, nonadaptive MH algorithm, it may not be as sensible for an adaptive MH algorithm because
the proposal distribution is changing (possibly drastically) during the adaptation period. Therefore,
adaptive iterations are better discarded from the analysis MCMC sample and thus it is recommended
that the burn-in period is at least as long as the adaptation period. (There are adaptive regimes such
as continuous adaptation in which adaptation continues after the burn-in period as well.)

In addition to fast convergence, an “ideal” MCMC chain will also have good mixing (or low
autocorrelation). A good mixing can be viewed as a rapid movement of the chain around the parameter
space. High autocorrelation in MCMC and consequently low efficiencies are usually indications of bad
mixing. To improve the mixing of the chain, you may need to improve the efficiency of the algorithm
(see Improving efficiency of the MH algorithm—blocking of parameters) or sometimes reparameterize
your model. In the presence of high autocorrelation, you may also consider subsampling or thinning
the chain, option thinning(), to reduce autocorrelation, but this may not always be the best approach.

Even when the chain appears to have converged and has good mixing, you may still have a case
of pseudoconvergence, which is common for multimodal posterior distributions. Specifying different
sets of initial values may help detect pseudoconvergence.

Multiple chains are often used to assess the convergence of MCMC; see Convergence diagnostics
using multiple chains and Balov (2016c). For more information about convergence of MCMC and
its diagnostics, see Convergence diagnostics of MCMC in [BAYES] Intro, [BAYES] bayesgraph,
[BAYES] bayesstats ess, and [BAYES] bayesstats grubin.

In what follows, we concentrate on demonstrating various specifications of bayesmh, which may
not always correspond to the optimal Bayesian analysis for the considered problem. In addition,
although we skip checking convergence for some of our models to keep the exposition short, it is
important that you always check the convergence of all parameters in your model in your analysis
before you make any inferential conclusions. If you are also interested in any functions of model
parameters, you must check convergence of those functions as well.

Video examples

Introduction to Bayesian statistics, part 1: The basic concepts

Introduction to Bayesian statistics, part 2: MCMC and the Metropolis–Hastings algorithm

https://www.stata.com/manuals/bayesintro.pdf#bayesIntroRemarksandexamplesConvergencediagnosticsofMCMC
https://www.stata.com/manuals/bayesintro.pdf#bayesIntro
https://www.stata.com/manuals/bayesbayesgraph.pdf#bayesbayesgraph
https://www.stata.com/manuals/bayesbayesstatsess.pdf#bayesbayesstatsess
https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf#bayesbayesstatsgrubin
https://youtu.be/0F0QoMCSKJ4
https://youtu.be/OTO1DygELpY

42 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Getting started examples

We will use the familiar auto.dta for our introductory examples. This dataset contains information
about 74 automobiles, including their make and model, price, and mileage (variable mpg). In our
examples, we are interested in estimating the average fuel efficiency as measured by the mpg variable
and its relationship with other automobile characteristics such as weight.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. describe mpg weight length

Variable Storage Display Value
name type format label Variable label

mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)
length int %8.0g Length (in.)

Mean of a normal distribution with a known variance

We start with an example of estimating the mean of a normal distribution with known variance.
This corresponds to a constant-only normal linear regression with an unknown constant (or intercept)
and a known error variance.

Suppose we are interested in estimating the average fuel efficiency as measured by the mpg variable.
For illustration purposes, let’s assume that mpg is normally distributed. We are interested in estimating
its mean. Let’s also assume that we know the variance of mpg and it is 36.

Example 1: Noninformative prior for the mean when variance is known

To fit a Bayesian model, we must specify the likelihood model and priors for all model parameters.
We have only one parameter in this model—the constant (or the mean) of mpg. We first consider a
noninformative prior for the constant: the prior distribution with a density equal to one.

To specify this model in bayesmh, we use the likelihood specification mpg, likeli-
hood(normal(36)) and the prior specification prior({mpg: cons}, flat), where suboption
flat requests a flat prior distribution with the density equal to one. This prior is an improper prior
for the constant—the prior distribution does not integrate to one. {mpg: cons}, the constant or the
mean of mpg, is the only model parameter and is declared automatically by bayesmh as a part of
the regression function. (For this reason, we also did not need to specify the mean of the normal()
distribution in the likelihood specification.) All other simulation and reporting options are left at
default.

Because bayesmh uses MCMC sampling, a stochastic procedure, to obtain results, we specify a
random-number seed (for example, 14) for reproducibility of results.

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, flat)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ 1 (flat)

bayesmh — Bayesian models using Metropolis–Hastings algorithm 43

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4161

Log marginal-likelihood = -233.96144 Efficiency = .2292

Equal-tailed
mpg Mean Std. dev. MCSE Median [95% cred. interval]

_cons 21.29812 .703431 .014693 21.28049 19.93155 22.69867

bayesmh first reports the summary of the model. The likelihood model specified for mpg is normal
with mean {mpg: cons} and fixed variance of 36. The prior for {mpg: cons} is flat or completely
noninformative.

Our model is very simple, so its summary is very short. For other models, the model summary
may get very long. You can use the nomodelsummary option to suppress it from the output.
It is useful, however, to review the model summary before estimation for models with many
parameters and complicated specifications. You can use the dryrun option to see the model summary
without estimation. Once you verified the correctness of your model specification, you can specify
nomodelsummary during estimation.

Next, bayesmh reports the header including the title for the fitted model, the used MCMC
algorithm, and various numerical summaries of the sampling procedure. bayesmh performed 12,500
MCMC iterations, of which 2,500 were discarded as burn-in iterations and the next 10,000 iterations
were kept in the final MCMC sample. An overall AR is 0.42, meaning that 42% out of 10,000 proposal
parameter values were excepted by the algorithm. This is a good AR for the MH algorithm. Values
below 10% may be a cause for concern and may indicate problems with convergence of MCMC. Very
low ARs may also mean high autocorrelation. The efficiency is 0.23 and is also considered good for
the MH algorithm. Efficiencies below 1% should be investigated further and would require further
tuning of the algorithm and possibly revisiting the considered model.

Finally, bayesmh reports an estimation table that includes the posterior mean, posterior standard
deviation, MCMC standard error (MCSE), posterior median, and the 95% credible interval.

The estimated posterior mean for {mpg: cons} is 21.298 with a posterior standard deviation of
0.70. The efficiency of the estimator of the posterior mean is about 23%, which is relatively high
for the random-walk MH sampling. In general, you should expect to see lower efficiencies from this
algorithm for models with more parameters. The MCSE, which is an approximation of the error in
estimating the true posterior mean, is about 0.015. Therefore, provided that the MCMC simulation has
converged, the posterior mean of the constant is accurate to 1 decimal position, 21.3. If you want an
estimation precision of, say, 2 decimal positions, you may need to increase the MCMC sample size
101 times; that is, use mcmcsize(100000).

The estimated posterior mean and medians are very close, suggesting that the posterior distribution
of {mpg: cons} may be symmetric. In fact, the posterior distribution of a mean in this model is
known to be a normal distribution.

According to the reported 95% credible interval, the probability that the mean of mpg is between
19.9 and 22.7 is about 0.95. You can use the clevel() option to change the default credible level;
also see [BAYES] set clevel.

Because we used a completely noninformative prior, our results should be the same as frequentist
results. In this Bayesian model, the posterior distribution of the constant parameter is known to be
normal with a mean equal to the sample average. In the frequentist domain, the MLE of the constant

https://www.stata.com/manuals/bayessetclevel.pdf#bayessetclevel

44 bayesmh — Bayesian models using Metropolis–Hastings algorithm

is also the sample average, so the posterior mean estimate and the MLE should be the same in this
model.

The sample average of mpg is 21.2973. Our posterior mean estimate is 21.298, which is very close.
The reason it is not exactly the same is because we estimated the posterior mean of the constant based
on an MCMC sample simulated from its posterior distribution instead of using the known formula.
Closed-form expressions for posterior mean estimators are available only for some Bayesian models.
In general, posterior distributions of parameters are unknown and posterior summaries may only be
estimated from the MCMC samples of parameters.

In practice, we must verify the convergence of MCMC before making any inferential conclusions
about the obtained results.

We start by looking at various graphical diagnostics as produced by bayesgraph diagnostics.

. bayesgraph diagnostics {mpg:_cons}

18

20

22

24

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

.2

.4

.6

18 20 22 24

Histogram

0.00

0.20

0.40

0.60

0 10 20 30 40
Lag

Autocorrelation

0

.2

.4

.6

18 20 22 24

All

1-half

2-half

Density

mpg:_cons

The trace plot represents a “perfect” trace plot. It does not exhibit any trends, and it traverses the
distribution quickly. The chain is centered around 21.3, but also explores the portions of the distribution
where the density is low, which is indicative of good mixing of the chain. The autocorrelation dies
off very quickly. The posterior distribution looks normal. The kernel density estimates based on the
first and second halves of the sample are very similar to each other and are close to the overall
density estimate. We can see that MCMC converged and mixes well. See [BAYES] bayesgraph for
details about this command.

https://www.stata.com/manuals/bayesbayesgraph.pdf#bayesbayesgraph

bayesmh — Bayesian models using Metropolis–Hastings algorithm 45

See Convergence diagnostics using multiple chains for an example of using multiple chains to assess
convergence. Also see Convergence diagnostics of MCMC for more discussion about convergence of
MCMC.

Example 2: Informative prior for the mean when variance is known

In example 1, we used a noninformative prior for {mpg: cons}. Here, we consider a conjugate
normal prior for {mpg: cons}. A parameter is said to have a conjugate prior when the corresponding
posterior belongs to the same family as the prior. In our example, if we assume a normal prior for
the constant, its posterior is known to be normal too.

Suppose that based on previous studies, the distribution of the mean mileage was found to be
normal with mean of 25 and variance of 10. We change the flat prior in bayesmh’s prior() option
from example 1 with normal(25,10).

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, normal(25,10))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ normal(25,10)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4169

Log marginal-likelihood = -236.71627 Efficiency = .2293

Equal-tailed
mpg Mean Std. dev. MCSE Median [95% cred. interval]

_cons 21.47952 .6820238 .014243 21.47745 20.13141 22.82153

Compared with example 1, our results change only slightly: the estimated posterior mean is 21.48
with a posterior standard deviation of 0.68. The 95% credible interval is [20.1, 22.82].

The reason we obtained such similar results is that our specified prior is in close agreement with
what we observed in this sample. The prior mean of 25 with a standard deviation of

√
10 = 3.16

overlaps greatly with what we observe for {mpg: cons} in the data.

https://www.stata.com/manuals/bayesintro.pdf#bayesIntroRemarksandexamplesConvergencediagnosticsofMCMC

46 bayesmh — Bayesian models using Metropolis–Hastings algorithm

If we place a very strong prior on the value for the mean by, for example, substantially decreasing
the variance of the normal prior distribution,

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, normal(25,0.1))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ normal(25,0.1)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4194

Log marginal-likelihood = -246.2939 Efficiency = .2352

Equal-tailed
mpg Mean Std. dev. MCSE Median [95% cred. interval]

_cons 24.37211 .292777 .006037 24.36588 23.79701 24.94403

we obtain very different results. Now the posterior mean and standard deviation estimates are very
close to their prior values, as one would expect with such strong prior information.

Which results are correct? The answer depends on how confident we are in our prior knowledge.
If we previously observed many samples in which the average mileage for the considered population
of cars was essentially 25, our last results are consistent with this and the information about the
mean of {mpg: cons} contained in the observed sample was not enough to counteract our belief.
If, on the other hand, we had no prior information about the mean mileage, then we would use a
noninformative or mildly informative prior in our Bayesian analysis. Also, if we believe that our
observed data should have more weight in our analysis, we would not specify a very strong prior.

Example 3: Noninformative normal prior for the mean when variance is known

In example 1, we used a completely noninformative, flat prior for {mpg: cons}. In example 2,
we considered a conjugate normal prior for {mpg: cons}. We also saw that by varying the variance
of the normal prior distribution, we could control the “informativeness” of our prior. The larger the
variance, the less informative the prior. In fact, if we let the variance approach infinity, we will arrive
at the same posterior distribution of the constant as with the flat prior.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 47

For example, if we specify a very large variance in the normal prior,

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, normal(0,1000000))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ normal(0,1000000)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4161

Log marginal-likelihood = -241.78836 Efficiency = .2292

Equal-tailed
mpg Mean Std. dev. MCSE Median [95% cred. interval]

_cons 21.29812 .7034313 .014693 21.28049 19.93155 22.69868

we will obtain results that are very similar to the results from example 1 with the flat prior.

We do not need to use such an extreme value of the variance for the results to become less sensitive
to the prior specification. As we saw in example 2, using the variance of 10 in that example resulted
in very little impact of the prior on the results.

Mean of a normal distribution with an unknown variance

Let’s now consider the case where both mean and variance of the normal distribution are unknown.

Example 4: Noninformative Jeffreys prior when mean and variance are unknown

A noninformative prior commonly used for the normal model with unknown mean and variance
is the Jeffreys prior, under which the prior for the mean is flat and the prior for the variance is
the reciprocal of the variance. We use the same flat prior for {mpg: cons} as in example 1 and
specify the jeffreys prior for {var} using a separate prior() statement.

48 bayesmh — Bayesian models using Metropolis–Hastings algorithm

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal-likelihood = -234.645 max = .1071

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286

Because we used a noninformative prior, our results should be similar to the frequentist results apart
from simulation uncertainty. Compared with example 1, the average efficiency of the MH algorithm
decreased to 10%, as is expected with more parameters, but is still considered a good efficiency for
the MH algorithm.

The posterior mean estimate of {mpg: cons} is close to the OLS estimate of 21.297, and the
posterior standard deviation is close to the standard error of the OLS estimate 0.673. MCSE is slightly
larger than in example 1 because we have lower efficiency. If we wanted to make MCSE smaller, we
could increase our MCMC sample size. The posterior mean estimate of {var} agrees with the MLE
of the variance 33.02, but we would not expect the two to be necessarily the same. We estimated the
posterior mean of {var}, not the posterior mode, and because posterior distribution of {var} is not
symmetric, the two estimates may not be the same.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 49

Again, as with any MCMC analysis, we must verify the convergence of our MCMC sample before
we can trust our results.

. bayesgraph diagnostics _all

19

20

21

22

23

24

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

.2

.4

.6

19 20 21 22 23 24

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0

.2

.4

.6

19 20 21 22 23 24

All

1-half

2-half

Density

mpg:_cons

20

30

40

50

60

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

.02

.04

.06

.08

20 30 40 50 60

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0

.02

.04

.06

.08

20 30 40 50 60 70

All

1-half

2-half

Density

var

Graphical diagnostic plots do not show any signs of nonconvergence for either of the parameters. We
can also check convergence more formally using multiple chains; see [BAYES] bayesstats grubin and
Convergence diagnostics using multiple chains.

https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf#bayesbayesstatsgrubin

50 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Recall that to access convergence of MCMC, we must explore convergence for all model parameters.

Example 5: Informative conjugate prior when mean and variance are unknown

For a normal distribution with unknown mean and variance, the informative conjugate prior is a
normal prior for the mean and an inverse-gamma prior for the variance. Specifically, if y ∼ N(µ, σ2),
then the informative conjugate prior for the parameters is

µ|σ2 ∼ N(µ0, σ
2)

σ2 ∼ InvGamma(ν0/2, ν0σ
2
0/2)

where µ0 is the prior mean of the normal distribution and ν0 and σ2
0 are the prior degrees of freedom

and prior variance for the inverse-gamma distribution. Let’s assume µ0 = 25, ν0 = 10, and σ2
0 = 30.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 51

Notice that in the specification of the prior for {mpg: cons}, we specify the parameter {var}
as the variance of the normal distribution. We use igamma(5,150) as the prior for the variance
parameter {var}.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, normal(25,{var}))
> prior({var}, igamma(5,150))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ normal(25,{var})

{var} ~ igamma(5,150)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1971
Efficiency: min = .09822

avg = .09923
Log marginal-likelihood = -237.77006 max = .1002

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.314 .6639278 .02097 21.29516 20.08292 22.63049

var 33.54699 5.382861 .171756 32.77635 24.88107 46.0248

Compared with example 4, the variance is slightly smaller, but the results are still very similar.

Example 6: Noninformative inverse-gamma prior when mean and variance are unknown

The Jeffreys prior for the variance from example 4 can be viewed as a limiting case of an
inverse-gamma distribution with the degrees of freedom approaching zero.

52 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Indeed, if we replace the jeffreys prior in example 4 with an inverse-gamma distribution with
very small degrees of freedom,

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, flat)
> prior({var}, igamma(0.0001,0.0001))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ igamma(0.0001,0.0001)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal-likelihood = -243.85656 max = .1071

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.29223 .6828811 .021905 21.27899 19.99154 22.61903

var 34.76569 5.915305 .180753 34.18389 24.91294 47.61275

we obtain results that are very close to the results from example 4.

Simple linear regression

In this example, we consider a simple linear regression with one independent variable. We continue
with auto.dta, but this time we regress mpg on a rescaled covariate weight.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. replace weight = weight/100
variable weight was int now float

(74 real changes made)

We will have three model parameters: the slope and the intercept for the linear predictor and the
variance parameter for the error term. Regression parameters, {mpg:weight} and {mpg: cons},
will be declared implicitly by bayesmh, but we will need to explicitly specify the variance parameter
{var}. We will also need to assign appropriate priors for all parameters.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 53

Example 7: Noninformative prior for regression coefficients and variance

As in our earlier examples, we start with a noninformative prior. For this model, a common
noninformative prior for the parameters includes flat priors for {mpg:weight} and {mpg: cons}
and a Jeffreys prior for {var}.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1768
Efficiency: min = .04557

avg = .06624
Log marginal-likelihood = -198.14389 max = .07961

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.6019838 .0512557 .001817 -.6018433 -.7015638 -.5021532
_cons 39.47227 1.589082 .058601 39.49735 36.26465 42.43594

var 12.22248 2.214665 .10374 11.92058 8.899955 17.47372

Our model summary shows the likelihood model for mpg, flat priors for the two regression coefficients,
and a Jeffreys prior for the variance parameter. Now that we have a covariate in the model, the mean
of the normal distribution is labeled as xb mpg to emphasize that it is now a linear combination of
independent variables. Regression coefficients involved in the linear predictor are marked with (1)
on the right.

The results are again very similar to the frequentist results. Posterior mean estimates of the
coefficients are very similar to the OLS estimates obtained by using regress below. Posterior
standard deviations are similar to the standard errors from regress.

54 bayesmh — Bayesian models using Metropolis–Hastings algorithm

. regress mpg weight

Source SS df MS Number of obs = 74
F(1, 72) = 134.62

Model 1591.99021 1 1591.99021 Prob > F = 0.0000
Residual 851.469254 72 11.8259619 R-squared = 0.6515

Adj R-squared = 0.6467
Total 2443.45946 73 33.4720474 Root MSE = 3.4389

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.6008687 .0517878 -11.60 0.000 -.7041058 -.4976315
_cons 39.44028 1.614003 24.44 0.000 36.22283 42.65774

Example 8: Conjugate prior for regression coefficients and variance

In this example, we use a conjugate prior for the parameters, which corresponds to normal priors
for {mpg:weight} and {mpg: cons} and an inverse-gamma prior for {var},

βweight|σ2 ∼ N(µweight, σ
2)

βcons|σ2 ∼ N(µcons, σ
2)

σ2 ∼ InvGamma(ν0/2, ν0σ
2
0/2)

where regression coefficients have different means but equal variances. µweight and µcons are the
prior means of the normal distributions, and ν0 and σ2

0 are the prior degrees of freedom and prior
variance for the inverse-gamma distribution. Let’s assume µweight = −0.5, µcons = 40, ν0 = 10,
and σ2

0 = 10.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 55

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:weight}, normal(-0.5,{var}))
> prior({mpg:_cons}, normal(40,{var}))
> prior({var}, igamma(5,50))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight} ~ normal(-0.5,{var}) (1)
{mpg:_cons} ~ normal(40,{var}) (1)

{var} ~ igamma(5,50)

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1953
Efficiency: min = .05953

avg = .06394
Log marginal-likelihood = -202.74075 max = .06932

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.6074375 .0480685 .001916 -.6078379 -.6991818 -.5119767
_cons 39.65274 1.499741 .05696 39.63501 36.59486 42.47547

var 11.696 1.929562 .079083 11.52554 8.570938 16.26954

For this mildly informative prior, our regression coefficients are still very similar to the results obtained
using the noninformative prior in example 7, but the variance estimate is slightly smaller.

Example 9: Zellner’s g prior for regression coefficients

In example 8, we assumed that {mpg:weight} and {mpg: cons} are independent a priori. We
can specify Zellner’s g prior (Zellner 1986), often used for regression coefficients in a multiple
regression, which allows correlation between the regression coefficients.

The prior for the coefficients can be written as

β|σ2 ∼ MVN(µ0, gσ
2(X ′X)−1)

where β is a vector of coefficients, µ0 is the vector of prior means, g is the prior degrees of freedom,
and X is the design matrix. Let’s, for example, use g = 30 and µ0 = (µweight, µcons) = (−0.5, 40).
Zellner’s g prior is not strictly a conventional Bayesian prior because it depends on the data.

In bayesmh, we can use prior zellnersg() to specify this prior. The first argument for this prior
is the dimension (2), the second argument is the degrees of freedom (30), the next parameters are
prior means (−0.5 and 40), and the last parameter is the name of the parameter corresponding to the
variance term ({var}).

56 bayesmh — Bayesian models using Metropolis–Hastings algorithm

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, zellnersg(2,30,-0.5,40,{var}))
> prior({var}, igamma(5,50))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ zellnersg(2,30,-0.5,40,{var}) (1)

{var} ~ igamma(5,50)

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2576
Efficiency: min = .05636

avg = .08661
Log marginal-likelihood = -201.1662 max = .1025

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.6004123 .0510882 .001595 -.5998094 -.7040552 -.5058665
_cons 39.55017 1.590016 .050051 39.49377 36.56418 42.79701

var 12.18757 2.038488 .085865 11.90835 8.913695 16.88978

The results are now closer to the results using noninformative prior obtained in example 7, because
we are introducing some information from the observed data by using (X ′X)−1.

Example 10: Specifying expressions as distributional arguments

We can actually reproduce what prior zellnersg() does in example 9 manually.

First, we need to create a matrix that contains (X ′X)−1, S.

. matrix accum xTx = weight
(obs=74)

. matrix S = invsym(xTx)

bayesmh — Bayesian models using Metropolis–Hastings algorithm 57

Then, we can use the multivariate normal prior mvnormal() with the variance specified as an
expression 30*var*S.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, mvnormal(2,-0.5,40,30*{var}*S))
> prior({var}, igamma(5,50))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ mvnormal(2,-0.5,40,30*{var}*S) (1)

{var} ~ igamma(5,50)

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2576
Efficiency: min = .05636

avg = .08661
Log marginal-likelihood = -201.1662 max = .1025

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.6004123 .0510882 .001595 -.5998094 -.7040552 -.5058665
_cons 39.55017 1.590016 .050051 39.49377 36.56418 42.79701

var 12.18757 2.038488 .085865 11.90835 8.913695 16.88978

We obtain results identical to those from example 9.

An alternative way to specify the same model is by using the mvnscaled() prior distribution.

First, we create a Stata matrix A for the expression 30× (X ′X)−1 using the S matrix we created
above.

. matrix A = 30*S

58 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Then, we use the mvnscaled() prior with mean values −0.5 and 40, scale matrix A, and variance
parameter {var}.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, mvnscaled(2,-0.5,40,A,{var}))
> prior({var}, igamma(5,50))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ mvnscaled(2,-0.5,40,A,{var}) (1)

{var} ~ igamma(5,50)

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2576
Efficiency: min = .05636

avg = .08661
Log marginal-likelihood = -201.1662 max = .1025

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.6004123 .0510882 .001595 -.5998094 -.7040552 -.5058665
_cons 39.55017 1.590016 .050051 39.49377 36.56418 42.79701

var 12.18757 2.038488 .085865 11.90835 8.913695 16.88978

Again, we obtain results identical to those from example 9.

The zellnersg() prior is a special case of the mvnscaled() prior where the scaled matrix is
proportional to (X ′X)−1. For a linear model with the mvnscaled() prior for regression coefficients
and inverse Gamma prior for the error variance, bayesmh provides full Gibbs sampling for the
parameters. In our example, Gibbs sampling can be requested by including the options block({var},
gibbs) and block({mpg:}, gibbs).

Multiple linear regression

For a detailed example of a multiple linear regression, see Overview example in [BAYES] Bayesian
commands.

https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommandsRemarksandexamplesOverviewexample
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommands
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommands

bayesmh — Bayesian models using Metropolis–Hastings algorithm 59

Improving efficiency of the MH sampling

In this section, we demonstrate how one can improve efficiency of the MH algorithm by using
blocking of parameters and Gibbs sampling, whenever available. We continue with our simple linear
regression of mpg on rescaled weight from Simple linear regression, but we use different values for
the parameters of prior distributions. We also assume that regression coefficients and the variance
parameter are independent a priori. We use the blocksummary option to include a summary about
each block.

Example 11: First simulation run

Our first simulation is performed using the default settings for the algorithm. Specifically, all three
model parameters are placed in one simulation block and are updated simultaneously, as our block
summary indicates.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. replace weight = weight/100
variable weight was int now float

(74 real changes made)

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10)) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {mpg:weight _cons} {var}

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2432
Efficiency: min = .06871

avg = .08318
Log marginal-likelihood = -226.63723 max = .09063

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5759855 .0471288 .001569 -.5750919 -.6676517 -.4868595
_cons 38.65481 1.468605 .048784 38.70029 35.88062 41.49839

var 9.758003 1.514112 .057762 9.601339 7.302504 13.13189

60 bayesmh — Bayesian models using Metropolis–Hastings algorithm

The mean estimates based on the simulated sample are {mpg:weight} = −0.58, {mpg: cons}
= 38.65, and {var} = 9.8. The MH algorithm achieves an overall AR of 24% and an average
efficiency of about 8%.

Our next step is to perform a visual inspection of the convergence of the chain.

. bayesgraph diagnostics {var}

5

10

15

20

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

.1

.2

.3

5 10 15 20

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0

.1

.2

.3

5 10 15 20

All

1-half

2-half

Density

var

A graphical summary for the {var} parameter does not show any obvious problems. The trace plot
reveals a good coverage of the domain of the marginal distribution, while the histogram and kernel
density plots resemble the shape of an expected inverse-gamma distribution. The autocorrelation dies
off after about lag 20.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 61

Example 12: Second simulation run—blocking of variance

Next, we show how to improve the mixing of the MCMC chain by using more careful blocking
of model parameters. We can use the bayesgraph matrix command to view the scatterplots of the
simulated values for {mpg:weight}, {mpg: cons}, and {var}.

. bayesgraph matrix _all

mpg:weight

mpg:_cons

var

-.8

-.6

-.4

-.8 -.6 -.4

35

40

45

35 40 45

5

10

15

5 10 15

The scatterplots reveal high correlation between {mpg:weight} and {mpg: cons}. On the other
hand, there is no significant correlation between {var} and the other two parameters.

In cases like this, we can expect higher sampling efficiency if we place {var} in a separate block.
We can do this by including the option block({var}). The other two parameters, {mpg:weight}
and {mpg: cons}, will be automatically considered as a second block.

62 bayesmh — Bayesian models using Metropolis–Hastings algorithm

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10))
> block({var}) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {var}
2: {mpg:weight _cons}

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3309
Efficiency: min = .09023

avg = .1202
Log marginal-likelihood = -226.73992 max = .1784

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5744536 .0450094 .001484 -.576579 -.663291 -.4853636
_cons 38.59206 1.397983 .04654 38.63252 35.80229 41.32773

var 9.721684 1.454193 .034432 9.570546 7.303129 12.95105

In this second run, we achieve higher simulation efficiency, about 12% on average. The MCSE for
{var} is 0.034 and is about half the value of 0.058 from example 11, which leads to twice as much
accuracy in the estimation of the posterior mean of {var}.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 63

Again, we can verify the convergence of the MCMC run for {var} by inspecting the bayesgraph
diagnostics plot.

. bayesgraph diagnostics {var}

5

10

15

20

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

.1

.2

.3

5 10 15 20

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0

.1

.2

.3

5 10 15 20

All

1-half

2-half

Density

var

The improved sampling efficiency for {var} is evident by observing that the autocorrelation becomes
negligible after about lag 10. The trace plot reveals more rapid traversing of the marginal posterior
domain as well.

Example 13: Third simulation run—Gibbs update of variance

Further improvement of the mixing can be achieved by requesting a Gibbs sampling for the variance
parameter. This is possible because {var} has an inverse-gamma prior, which is independent of the
mean and is a semiconjugate prior in this model.

64 bayesmh — Bayesian models using Metropolis–Hastings algorithm

To request Gibbs sampling, we specify suboption gibbs within option block().

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10))
> block({var}, gibbs) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {var} (Gibbs)
2: {mpg:weight _cons}

Bayesian normal regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .6285
Efficiency: min = .1141

avg = .3259
Log marginal-likelihood = -226.72192 max = .7441

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5764752 .0457856 .001324 -.5764938 -.6654439 -.486788
_cons 38.64148 1.438705 .04259 38.6177 35.82136 41.38734

var 9.711499 1.454721 .016865 9.585728 7.236344 12.95503

The average efficiency is now 0.33 with the maximum of 0.74 corresponding to the variance parameter.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 65

The diagnostics plot for {var} is an example of almost perfect mixing.

. bayesgraph diagnostics {var}

6

8

10

12

14

16

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

.1

.2

.3

6 8 10 12 14 16

Histogram

-0.02

-0.01

0.00

0.01

0.02

0 10 20 30 40
Lag

Autocorrelation

0

.1

.2

.3

5 10 15 20

All

1-half

2-half

Density

var

Example 14: Fourth simulation run—full Gibbs sampling

Continuing example 13, there is still room for improvement in our model in terms of sampling
efficiency. The efficiency of the regression coefficients is now low relative to the variance efficiency.

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .1141

avg = .3259
max = .7441

ESS Corr. time Efficiency

mpg
weight 1195.57 8.36 0.1196
_cons 1141.12 8.76 0.1141

var 7440.67 1.34 0.7441

66 bayesmh — Bayesian models using Metropolis–Hastings algorithm

For example, diagnostic plots for {weight: cons} do not look as good as diagnostic plots for
the variance parameter in example 13.

. bayesgraph diagnostics {mpg:weight}

-.8

-.7

-.6

-.5

-.4

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

2

4

6

8

10

-.8 -.7 -.6 -.5 -.4

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0

2

4

6

8

10

-.8 -.7 -.6 -.5 -.4

All

1-half

2-half

Density

mpg:weight

Further improvement of the mixing can be achieved by requesting Gibbs sampling for the two
blocks of parameters: regression coefficients and variance. Again, this is possible only because
{mpg:weight}, {mpg: cons}, and {var} have normal and an inverse-gamma priors, which are
independent and are semiconjugate in this model.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 67

To request Gibbs sampling for the regression coefficients, we must place them in a separate block.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10))
> block({var}, gibbs)
> block({mpg:}, gibbs) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {var} (Gibbs)
2: {mpg:weight _cons} (Gibbs)

Bayesian normal regression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = 1
Efficiency: min = .9423

avg = .9808
Log marginal-likelihood = -226.67227 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5751071 .0467837 .000468 -.5757037 -.6659412 -.4823263
_cons 38.61033 1.459511 .014595 38.61058 35.79156 41.45336

var 9.703432 1.460435 .015045 9.564502 7.216982 12.96369

Now we have perfect sampling efficiency (with an average of 0.98) with essentially no autocorrelation.
The estimators of posterior means have the lowest MCSEs among the four simulations.

68 bayesmh — Bayesian models using Metropolis–Hastings algorithm

For example, diagnostic plots for {mpg:weight} now look noticeably better.

. bayesgraph diagnostics {mpg:weight}

-.8

-.7

-.6

-.5

-.4

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

2

4

6

8

-.8 -.7 -.6 -.5 -.4

Histogram

-0.02

-0.01

0.00

0.01

0.02

0 10 20 30 40
Lag

Autocorrelation

0

2

4

6

8

-.8 -.7 -.6 -.5 -.4

All

1-half

2-half

Density

mpg:weight

You can verify that the diagnostic plots of all parameters demonstrate almost perfect mixing as
well.

. bayesgraph diagnostics _all
(output omitted)

Convergence diagnostics using multiple chains

To assess the convergence of MCMC simulations of a Bayesian model, the literature often recommends
comparing the results of multiple simulation sequences or multiple chains; see, for example, Gelman
et al. (2014, chap. 11.4). In this section, we show how one can simulate multiple chains using
bayesmh, visually compare the results using trace and density plots, and perform formal tests for
convergence.

To simulate multiple Markov chains, you can use the nchains() option with bayesmh. When
running multiple chains, it is essential for the chains to have different initial values dispersed over
the range of values of model parameters. bayesmh, nchains() provides default initial values that
are different for each chain, but these values are not guaranteed to be overdispersed and are provided
strictly for your convenience. Often, you may want to specify your own initial values, which you can
do using the init#() options; see Specifying initial values and Multiple chains using overdispersed
initial values.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryoverdispersed_initial_value

bayesmh — Bayesian models using Metropolis–Hastings algorithm 69

Multiple chains using default initial values

Let’s continue with the Bayesian multiple linear regression model from example 11. We specify
the nchains(4) option to simulate four Markov chains of default size 10,000. We use the rseed()
option to ensure reproducibility when running multiple chains. Specifying set seed is not sufficient
in this case; see Reproducing results. We also use nomodelsummary to suppress the output of the
model summary.

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100)) prior({var}, igamma(10,10))
> nomodelsummary nchains(4) rseed(16)
Chain 1

Burn-in ...
Simulation ...

Chain 2
Burn-in ...
Simulation ...

Chain 3
Burn-in ...
Simulation ...

Chain 4
Burn-in ...
Simulation ...

Bayesian normal regression Number of chains = 4
Random-walk Metropolis--Hastings sampling Per MCMC chain:

Iterations = 12,500
Burn-in = 2,500
Sample size = 10,000

Number of obs = 74
Avg acceptance rate = .2275
Avg efficiency: min = .07897

avg = .08265
max = .08827

Avg log marginal-likelihood = -226.73271 Max Gelman--Rubin Rc = 1.002

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5749136 .0463642 .000816 -.5760212 -.6649088 -.4847602
_cons 38.59661 1.447703 .025758 38.62636 35.7311 41.40999

var 9.713168 1.431891 .024098 9.605324 7.332055 12.84306

Note: Default initial values are used for multiple chains.

The important change in the output header of bayesmh with multiple chains is the presence of
the maximum Gelman–Rubin convergence statistic, Max Gelman--Rubin Rc. This is the maximum
value of the statistics across all model parameters. A convergence rule often used in practice is to
declare convergence when convergence statistics of all model parameters are less than 1.1. In our
example, the maximum statistic of 1.002 is less than 1.1, so the convergence rule is satisfied. See
[BAYES] bayesstats grubin for details. Of course, it is important to also inspect convergence visually,
as we demonstrate later in this example.

Because there are multiple simulation chains, bayesmh reports the simulation summaries averaged
over the chains such as the average acceptance rate, average efficiencies, and the average log
marginal-likelihood. You can use the chainsdetail option to see those summaries separately for
each chain.

https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf#bayesbayesstatsgrubin

70 bayesmh — Bayesian models using Metropolis–Hastings algorithm

The average simulation efficiency for all chains is above 8% and seems adequate. The Gelman–Rubin
convergence rule is met. There is no indication of convergence problems. Nevertheless, inspecting the
simulation chains visually can provide additional reassurance. For instance, by comparing the trace
plots of different simulation sequences for a model parameter, we can detect convergence irregularities
and assess the overlap of the simulated marginal distributions for this parameter. If Markov chains
have converged, we should not observe substantial differences between the trace plots or between the
sampled marginal distributions.

For a single chain, we used bayesgraph diagnostics to explore the convergence of MCMC
visually. We can use this command with multiple chains as well. Let’s plot graphical summaries for
the variance parameter {var}.

. bayesgraph diagnostics {var}

5

10

15

20

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

.1

.2

.3

.4

5 10 15 20

Histogram

0

.2

.4

.6

.8

0 10 20 30 40
Lag

Autocorrelation

0

.1

.2

.3

.4

5 10 15 20

All

1-half

2-half

Density

Chains: 1/4

var

Graphical diagnostics look somewhat messy for multiple chains, but the main takeaway from this
graph is that the results of the chains do not look drastically different. The trace plots overlap, the
autocorrelations die off, and the histograms and density plots are similar for all chains. If desired, you
can produce separate plots or graphs for each chain using bayesgraph’s bychain() or sepchains
option; see [BAYES] bayesgraph.

https://www.stata.com/manuals/bayesbayesgraph.pdf#bayesbayesgraph

bayesmh — Bayesian models using Metropolis–Hastings algorithm 71

You can also focus separately on each type of plot. For instance, let’s look more closely at the
trace and density plots.

. bayesgraph trace {var}

5

10

15

20

0 2000 4000 6000 8000 10000
Iteration number

Chains: 1/4

Trace of var

The bayesgraph trace command overlays the traces of the simulated chains for convenient visual
comparison of the chains. The trace plots are similar in terms of coverage and variation.

The overlaid density plots shown by bayesgraph kdensity provide another aspect of comparing
multiple simulation sequences.

. bayesgraph kdensity {var}

0

.1

.2

.3

.4

5 10 15 20

Chains: 1/4

Density of var

The density plots of {var} from all chains mostly overlap with some variations about the marginal
mode.

72 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Similarly, we can explore the MCMC convergence visually for other parameters. For example, we
can draw the trace plots for the coefficient parameters {mpg: cons} and {mpg:weight} and use
bayesgraph’s byparm option to place plots of both parameters on one graph.

. bayesgraph trace {mpg:}, byparm

-.7

-.6

-.5

-.4

30

35

40

45

0 5000 10000

mpg:weight

mpg:_cons

Iteration number
Graphs by parameter
Chains: 1/4

Trace plots

Again, the overlaid trace plots of {mpg: cons} and {mpg:weight} do not show any substantial
differences and indicate good mixing of the chains.

We can use the bayesstats grubin command to compute Gelman–Rubin convergence diagnostics
using multiple chains.

. bayesstats grubin

Gelman--Rubin convergence diagnostic

Number of chains = 4
MCMC size, per chain = 10,000
Max Gelman--Rubin Rc = 1.002068

Rc

mpg
weight 1.000783
_cons 1.000557

var 1.002068

Convergence rule: Rc < 1.1

Estimates of convergence statistics, Rc, larger than 1.2 indicate possible nonconvergence. In our case,
the Rc estimates for all parameters are very close to 1 and do not raise any convergence concerns.
Note that the largest estimate, 1.002, as reported by bayesmh, corresponds to parameter {var}.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 73

Once MCMC convergence is established, we can proceed with our estimation results. We replay
them here for your convenience (without the table header information).

. bayesmh, noheader

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5749136 .0463642 .000816 -.5760212 -.6649088 -.4847602
_cons 38.59661 1.447703 .025758 38.62636 35.7311 41.40999

var 9.713168 1.431891 .024098 9.605324 7.332055 12.84306

The summary results in the estimation table are based on all chains. Because we used more chains,
our results are now more precise (have smaller MCSEs) compared with example 11.

To inspect posterior summaries of each chain, we can use the bayesstats summary command
with the sepchains option.

. bayesstats summary, sepchains

Posterior summary statistics

Chain 1 MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5736929 .0458934 .001611 -.5745238 -.6629738 -.4877666
_cons 38.5649 1.425768 .052564 38.60731 35.75694 41.37725

var 9.64884 1.386373 .044099 9.513188 7.251423 12.70699

Chain 2 MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5747026 .0456178 .001699 -.5759074 -.6618918 -.4851731
_cons 38.59502 1.441276 .053339 38.57138 35.72466 41.40902

var 9.683921 1.39533 .043302 9.60479 7.420058 12.73925

Chain 3 MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5740745 .0468218 .00169 -.576532 -.6631272 -.4817094
_cons 38.57018 1.469792 .053026 38.62822 35.68724 41.37469

var 9.802202 1.508294 .059519 9.68037 7.339275 13.32406

74 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Chain 4 MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5771844 .0470114 .001543 -.5773599 -.6678485 -.4862513
_cons 38.65634 1.451485 .047729 38.69004 35.82901 41.49365

var 9.717709 1.428596 .048662 9.614184 7.33145 12.89246

The results from all chains are similar. The differences between posterior means, for instance, are
within the ranges of the MCMC standard errors of the estimates.

In the presence of multiple chains, bayesmh displays a note beneath the estimation table about
default initial values being used for the chains. The default initial values are provided for convenience,
and often you may want to specify your own; see Specifying initial values for details. Also see Multiple
chains using overdispersed initial values next.

Multiple chains using overdispersed initial values

We continue with our multiple-chains example from Multiple chains using default initial values,
but here we simulate Markov chains using overdispersed initial values. We specify random initial
values manually using the init#() options.

For simplicity, we use only two chains. We generate initial values that are highly overdispersed
and are far away from the maximum-likelihood estimates of model parameters. For the first chain, we
generate initial values for the regression coefficients from the normal distribution with mean 10 and
standard deviation 10 and for the variance from the gamma distribution with shape 1 and scale 50.
For the second chain, we use the same distributions but different parameters, except for the standard
deviation: we use the mean of −10, the standard deviation of 10, the shape of 50, and the scale of 1.
We use the init1() and init2() options, respectively, to specify these initial values. To see the
initial values used, we also specify the initsummary option.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 75

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100)) prior({var}, igamma(10,10))
> init1({mpg:} rnormal(10, 10) {var} rgamma(50, 1))
> init2({mpg:} rnormal(-10, 10) {var} rgamma(1, 50))
> nomodelsummary nchains(2) rseed(16) initsummary
Chain 1

Burn-in ...
Simulation ...

Chain 2
Burn-in ...
Simulation ...

Initial values:
Chain 1: {mpg:weight} .168372 {mpg:_cons} 10.2646 {var} 46.3212
Chain 2: {mpg:weight} -9.07515 {mpg:_cons} -22.1665 {var} 39.3092

Bayesian normal regression Number of chains = 2
Random-walk Metropolis--Hastings sampling Per MCMC chain:

Iterations = 12,500
Burn-in = 2,500
Sample size = 10,000

Number of obs = 74
Avg acceptance rate = .2256
Avg efficiency: min = .04544

avg = .07662
max = .09876

Avg log marginal-likelihood = -245.37212 Max Gelman--Rubin Rc = 42.57

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5334204 .0939955 .002271 -.5468147 -.6670521 -.3335525
_cons 37.27179 2.977634 .067 37.70683 30.95118 41.41418

var 27.45511 25.17659 .835183 30.3807 7.549151 45.8256

Note: There is a high autocorrelation after 500 lags in at least one of the
chains.

The reported maximum Gelman–Rubin convergence statistic, 42.57, is very high and is much larger
than 1. A note beneath the table reports high autocorrelation in one of the chains. Clearly, we have
a problem.

76 bayesmh — Bayesian models using Metropolis–Hastings algorithm

We check the sampling efficiency of the parameters for each chain separately:

. bayesstats ess, sepchains

Efficiency summaries

Chain 1 MCMC sample size = 10,000
Efficiency: min = .07407

avg = .07956
max = .08962

ESS Corr. time Efficiency

mpg
weight 749.91 13.33 0.0750
_cons 740.66 13.50 0.0741

var 896.19 11.16 0.0896

Chain 2 MCMC sample size = 10,000
Efficiency: min = .001253

avg = .07369
max = .1234

ESS Corr. time Efficiency

mpg
weight 963.73 10.38 0.0964
_cons 1234.44 8.10 0.1234

var 12.53 798.09 0.0013

The {var} parameter in the second chain has the lowest ESS of 12.53.

Let’s check the Gelman–Rubin convergence statistics for all parameters.

. bayesstats grubin

Gelman--Rubin convergence diagnostic

Number of chains = 2
MCMC size, per chain = 10,000
Max Gelman--Rubin Rc = 42.57122

Rc

mpg
weight 1.622996
_cons 1.665635

var 42.57122

Convergence rule: Rc < 1.1

The Rc estimates for all three parameters exceed 1, confirming nonconvergence, but {var} has a
particularly large value of the convergence statistic of 42.57.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 77

To investigate the convergence problem further visually, we inspect the trace plots of the {var}
parameter from each chain.

. bayesgraph trace {var}

10

20

30

40

50

0 2000 4000 6000 8000 10000
Iteration number

Chains: 1, 2

Trace of var

The two trace plots are completely separated and show that the chains explore different domains of
the posterior distribution. The trace plot of the second chain, shown in red, has a mean value of about
45. Given a large initial value for {var} and the stochastic nature of the algorithm, the second chain
did not converge by the default number of 2,500 burn-in iterations.

78 bayesmh — Bayesian models using Metropolis–Hastings algorithm

If we look at graphical diagnostics of {var} for the second chain,

. bayesgraph diagnostics {var}, chains(2)

44

44.5

45

45.5

46

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

.5

1

1.5

44 44.5 45 45.5 46

Histogram

-0.50

0.00

0.50

1.00

0 10 20 30 40
Lag

Autocorrelation

0

.5

1

1.5

2

2.5

44 44.5 45 45.5 46

All

1-half

2-half

Density

Chain 2

var

we notice that the autocorrelation stays close to 1 and the trace plot exhibits a slow random walk
behavior, failing to stabilize in a particular region.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 79

When you specify overdispersed initial values, you should give the chains enough time to converge.
This second chain simply has not run long enough to converge to the domain with a high posterior
density. To fix this, we can use a longer burn-in of 10,000, burnin(10000), and longer adaptation
by lowering the adaptation tolerance to 0.002, adaptation(tolerance(0.002)).

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100)) prior({var}, igamma(10,10))
> nomodelsummary nchains(2) rseed(16)
> init1({mpg:} rnormal(10, 10) {var} rgamma(50, 1))
> init2({mpg:} rnormal(-10, 10) {var} rgamma(1, 50))
> burnin(10000) adapt(tolerance(0.002))
Chain 1

Burn-in ...
Simulation ...

Chain 2
Burn-in ...
Simulation ...

Bayesian normal regression Number of chains = 2
Random-walk Metropolis--Hastings sampling Per MCMC chain:

Iterations = 20,000
Burn-in = 10,000
Sample size = 10,000

Number of obs = 74
Avg acceptance rate = .296
Avg efficiency: min = .08096

avg = .09193
max = .1002

Avg log marginal-likelihood = -226.70215 Max Gelman--Rubin Rc = 1.001

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5759702 .0461691 .001061 -.5772111 -.665917 -.4826217
_cons 38.64229 1.440565 .032185 38.66686 35.73169 41.42428

var 9.691232 1.472907 .036603 9.530698 7.264868 13.0381

The maximum Gelman–Rubin statistic is now only 1.001. We use bayesstats grubin for details.

. bayesstats grubin

Gelman--Rubin convergence diagnostic

Number of chains = 2
MCMC size, per chain = 10,000
Max Gelman--Rubin Rc = 1.001315

Rc

mpg
weight 1.001315
_cons 1.00095

var 1.000061

Convergence rule: Rc < 1.1

All Rc estimates satisfy the convergence rule, Rc < 1.1.

80 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Bayesian predictions

Bayesian predictions provide a powerful set of tools for model evaluation and assessing good-
ness of fit, in addition to predicting future observations; see Overview of Bayesian predictions in
[BAYES] bayespredict for details. You can use bayespredict, bayesreps, and bayesstats pp-
values to obtain Bayesian predictions and perform model checks. Here we illustrate some of the
features of Bayesian predictions, which are available after fitting a model using bayesmh. We continue
with the Bayesian multiple linear regression model from example 11.

Simulating replicated outcomes

As a quick model check, we can explore the distribution of the replicated outcomes and compare
them with the observed outcome distribution. Replicated outcomes are new outcome values simulated
from the posterior predictive distribution conditional on the observed set of covariates. Generally,
replicated outcomes compose a sample of T observations, MCMC replicates, and n variables, one
for each observation in the original data. The entire prediction sample is rarely needed in most
applications. Often, it is sufficient to explore a small random subset from all T MCMC replicates. We
can use bayesreps to generate such a subset and save the generated replicates as new variables in
our dataset.

To use bayesreps and bayespredict, we must first save the simulation results from bayesmh.
Let’s refit the linear regression model and save the simulation results in linregsim.dta. We suppress
the output with quietly.

. quietly bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100)) prior({var}, igamma(10,10))
> saving(linregsim) rseed(16)

We can now use bayesreps to generate the replicated outcomes for variable mpg. These will
be samples from the posterior predictive distribution of mpg conditioned on the observed set of
explanatory variables, weight. Each replication sample will be of the same size, 74, as the original
outcome mpg. Let’s generate 5 replication samples and save them in the original dataset as new
variables, mpgrep1 through mpgrep5, specified as the stub mpgrep*.

. bayesreps mpgrep*, nreps(5) rseed(16)

Computing predictions ...

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesOverviewofBayesianpredictions
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues
https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryposterior_predictive_distribution

bayesmh — Bayesian models using Metropolis–Hastings algorithm 81

We can visually inspect the histograms of the replicated samples and compare them with the
histogram for the observed mpg.

. quietly histogram mpg, name(hist0) nodraw

. local histlist hist0

. forvalues i = 1/5 {
2. quietly histogram mpgrep‘i’, name(hist‘i’) nodraw
3. local histlist ‘histlist’ hist‘i’
4. }

. graph combine ‘histlist’

0

.02

.04

.06

.08

.1

D
en

si
ty

10 20 30 40
Mileage (mpg)

0

.02

.04

.06

.08

D
en

si
ty

10 15 20 25 30 35
Replicate 1 for mpg

0

.02

.04

.06

.08

D
en

si
ty

0 10 20 30
Replicate 2 for mpg

0

.02

.04

.06

.08

D
en

si
ty

10 15 20 25 30 35
Replicate 3 for mpg

0

.02

.04

.06

.08

D
en

si
ty

10 15 20 25 30
Replicate 4 for mpg

0

.02

.04

.06

.08

D
en

si
ty

10 15 20 25 30
Replicate 5 for mpg

The histogram of mpg (top, left) looks different from those of the replications. All of them cover the
range of (10, 30), but the observed mpg is skewed to the right and has heavier tails. The normal model
does not appear to capture the observed distribution well. After these initial checks, we proceed with
a more quantitative assessment of model fit.

Posterior predictive checks

A posterior predictive check is one of the main applications of Bayesian predictions. It starts with
defining test statistics that represent different aspects of the outcome distribution. Then, these test
statistics are computed using the observed and replicated outcomes, and their values are compared.
For example, the mean, minimum, and maximum statistics can be used for assessing how well the
model represents the outcome distribution with respect to its center and extremes.

We can simulate the mean, minimum, and maximum statistics using bayespredict, which
supports the use of Mata functions to compute functions of simulated outcomes. Thus, we can use
Mata functions mean(), min(), and max() to compute the desired statistics. We specify the argument
{ ysim} with the functions to request statistics of the simulated outcomes (we can also use { resid}
for residuals). We save the prediction results in mpgsim.dta. See [BAYES] bayespredict for details
about the specification.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryposterior_predictive_checking
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict

82 bayesmh — Bayesian models using Metropolis–Hastings algorithm

. bayespredict (prmean:@mean({_ysim})) (prmin:@min({_ysim}))
> (prmax:@max({_ysim})), saving(mpgsim) rseed(16)

Computing predictions ...

file mpgsim.dta saved.
file mpgsim.ster saved.

We can now access the prediction results within other Bayesian postestimation commands such as
bayesstats summary and bayesstats ppvalues.

Let’s compare the agreement for the mean, minimum, and maximum between the replicated data
and observed data. The bayesstats ppvalues command makes such comparisons easy. It reports
the proportion of cases when the simulated statistics are greater than or equal to the observed values
of statistics, which is an estimate of the so-called posterior predictive p-value.

. bayesstats ppvalues {prmean} {prmin} {prmax} using mpgsim

Posterior predictive summary MCMC sample size = 10,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

prmean 21.24042 .5016505 21.2973 .4511
prmin 8.372033 2.159442 12 .027
prmax 32.92524 1.802402 41 .0004

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

The posterior predictive p-value is 0.45 for the mean statistic, 0.03 for the minimum, and less than
0.001 for the maximum. Our normal model captures the center of the distribution of mpg well but
fails to capture the extreme values. The posterior predictive p-value for the maximum statistic is
particularly small, which agrees with our earlier conclusion based on the histograms that the maximum
values are not well represented by the model. If we believe that the extremely large observations
of mpg are not aberrant outliers, we may need to look for a better-fitting likelihood model than the
normal model.

As the final step, we remove the files generated by bayesmh and bayespredict because we no
longer need them.

. erase linregsim.dta

. erase mpgsim.dta

. erase mpgsim.ster

See [BAYES] bayespredict and [BAYES] bayesstats ppvalues for more examples.

Logistic regression model: A case of nonidentifiable parameters

We use the heart disease dataset from the UCI Machine Learning Repository (Lichman 2013) and,
in particular, we consider a subset of the Switzerland data created by William Steinbrunn, M.D. of
University Hospital in Zurich, Switzerland, and by Matthias Pfisterer, M.D. of University Hospital in
Basel, Switzerland. The dataset is named heartswitz.dta and contains 6 variables, of which num
is the predicted attribute that takes values from 0 (no heart disease) to 4. We dichotomized num to
create a new binary variable disease as an indicator for the presence of a heart disease.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryposterior_predictive_pvalue
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues

bayesmh — Bayesian models using Metropolis–Hastings algorithm 83

. use https://www.stata-press.com/data/r18/heartswitz, clear
(Subset of Switzerland heart disease data from UCI Machine Learning Repository)

. describe

Contains data from https://www.stata-press.com/data/r18/heartswitz.dta
Observations: 123 Subset of Switzerland heart

disease data from UCI Machine
Learning Repository

Variables: 6 5 Feb 2022 16:55
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

age byte %9.0g Age (in years)
male byte %9.0g malelab 1 = male, 0 = female
isfbs byte %9.0g fbslab Indicator for fasting blood sugar

> 120 mg/dl: 0 = no, 1 = yes
restecg byte %28.0g ecglab Resting electrocardiographic

results (3 categories)
num byte %9.0g Presence of heart disease: 0 =

absent and 1,2,3,4 = present
disease byte %9.0g dislab Indicator for heart disease: 0 =

absent, 1 = present (num>0)

Sorted by:

Our goal is to investigate the relationship between the presence of a heart disease and covariates
restecg, isfbs, age, and male.

First, we fit a standard logistic regression model using the logit command.

. logit disease restecg isfbs age male

note: restecg != 0 predicts success perfectly;
restecg omitted and 17 obs not used.

note: isfbs != 0 predicts success perfectly;
isfbs omitted and 3 obs not used.

note: male != 1 predicts success perfectly;
male omitted and 2 obs not used.

Iteration 0: Log likelihood = -4.2386144
Iteration 1: Log likelihood = -4.2358116
Iteration 2: Log likelihood = -4.2358076
Iteration 3: Log likelihood = -4.2358076

Logistic regression Number of obs = 26
LR chi2(1) = 0.01
Prob > chi2 = 0.9403

Log likelihood = -4.2358076 Pseudo R2 = 0.0007

disease Coefficient Std. err. z P>|z| [95% conf. interval]

restecg 0 (omitted)
isfbs 0 (omitted)

age -.0097846 .1313502 -0.07 0.941 -.2672263 .2476572
male 0 (omitted)

_cons 3.763893 7.423076 0.51 0.612 -10.78507 18.31285

We encounter collinearity and dropping of observations because of perfect prediction. As a result, the
regression coefficients corresponding to restecg, isfbs, and male are essentially excluded from
the model. The standard logistic analysis is limited because of the small size of the dataset.

84 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Next we consider Bayesian analysis of the same data. We fit the same logistic regression model
using bayesmh and apply fairly noninformative normal priors N(0, 1e4) for all regression parameters.

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:}, normal(0,10000))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Prior:
{disease:restecg isfbs age male _cons} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 48
Acceptance rate = .2661
Efficiency: min = .01685

avg = .02389
Log marginal-likelihood = -16.709588 max = .02966

Equal-tailed
disease Mean Std. dev. MCSE Median [95% cred. interval]

restecg 81.22007 63.87998 4.29587 68.31417 2.518447 237.8033
isfbs 81.65967 60.07603 4.03945 70.37466 2.035696 229.4291

age -.0191681 .1777758 .013695 -.0154955 -.3833187 .3242438
male -53.69173 42.4866 2.50654 -44.93144 -154.439 .7090207

_cons 59.39037 43.5938 2.53139 51.31836 .1225503 161.2943

The estimated posterior means of {disease:restecg}, {disease:isfbs}, {disease:male}, and
{disease: cons} are fairly large, roughly on the same scale as the prior standard deviation of 100.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 85

Indeed, if we decrease the standard deviation of the priors to 10, we observe that the scale of the
estimates decreases by the same order of magnitude.

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:}, normal(0,100))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Prior:
{disease:restecg isfbs age male _cons} ~ normal(0,100) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 48
Acceptance rate = .3161
Efficiency: min = .02287

avg = .0331
Log marginal-likelihood = -12.418273 max = .05204

Equal-tailed
disease Mean Std. dev. MCSE Median [95% cred. interval]

restecg 8.559131 6.71 .443681 7.447336 -.889714 23.93564
isfbs 6.322615 6.411998 .281084 5.504684 -3.85021 20.56641

age .0526448 .1226056 .00718 .0468937 -.1734675 .3050607
male -3.831954 5.31727 .279435 -3.048654 -15.77187 4.451594

_cons 5.624899 6.641158 .417961 5.181183 -6.408041 20.1234

We can, therefore, conclude that the regression parameters are highly sensitive to the choice of
priors and their scale cannot be determined by the data alone; that is, it cannot be determined by
the likelihood of the model. In other words, these model parameters are not identifiable from the
likelihood alone. This conclusion is in agreement with the results of the logit command.

We may consider applying an informative prior. We can use information from other heart disease
studies from Lichman (2013). For example, we use a subset of the Hungarian data created by Andras
Janosi, M.D. of Hungarian Institute of Cardiology in Budapest, Hungary. hearthungary.dta contains
the same attributes as in heartswitz.dta but from a Hungarian population.

86 bayesmh — Bayesian models using Metropolis–Hastings algorithm

We fit bayesmh with noninformative priors to hearthungary.dta and obtain the following
posterior mean estimates for the regression parameters:

. use https://www.stata-press.com/data/r18/hearthungary
(Subset of Hungarian heart disease data from UCI Machine Learning Repository)

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:}, normal(0,1000))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Prior:
{disease:restecg isfbs age male _cons} ~ normal(0,1000) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 285
Acceptance rate = .2341
Efficiency: min = .03088

avg = .04524
Log marginal-likelihood = -195.7454 max = .06362

Equal-tailed
disease Mean Std. dev. MCSE Median [95% cred. interval]

restecg -.1076298 .2931371 .013664 -.1036111 -.6753464 .4471483
isfbs 1.182073 .541182 .030797 1.169921 .2267485 2.268314

age .042955 .0170492 .000676 .0432923 .0103757 .0763747
male 1.488844 .3612114 .018399 1.484816 .7847398 2.244648

_cons -3.866674 .8904101 .041022 -3.869567 -5.658726 -2.112237

With this additional information, we can form more informative priors for the 5 parameters of
interest—we center {restecg} and {age} at 0, {disease:isfbs} and {disease:male} at 1, and
{disease: cons} at −4, and we use a prior variance of 10 for all coefficients.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 87

. use https://www.stata-press.com/data/r18/heartswitz
(Subset of Switzerland heart disease data from UCI Machine Learning Repository)

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:restecg age}, normal(0,10))
> prior({disease:isfbs male}, normal(1,10))
> prior({disease:_cons}, normal(-4,10))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Priors:
{disease:restecg age} ~ normal(0,10) (1)
{disease:isfbs male} ~ normal(1,10) (1)

{disease:_cons} ~ normal(-4,10) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 48
Acceptance rate = .247
Efficiency: min = .03691

avg = .05447
Log marginal-likelihood = -11.021903 max = .06737

Equal-tailed
disease Mean Std. dev. MCSE Median [95% cred. interval]

restecg 1.74292 2.21888 .097001 1.385537 -2.065912 6.584702
isfbs 1.885653 2.792842 .145375 1.595679 -2.976167 7.976913

age .1221246 .0698409 .002691 .1174274 -.0078114 .2706446
male .2631 2.201574 .089281 .2667496 -4.125275 4.646742

_cons -2.304595 2.706482 .115472 -2.256248 -7.785531 3.098357

We now obtain more reasonable results that also agree with the Hungarian results. For the final
analysis, we may consider other heart disease datasets to verify the reasonableness of our prior
specifications and to check the sensitivity of the parameters to other prior specifications.

Ordered probit regression

Ordered probit and ordered logit regressions are appropriate for modeling ordinal response variables.
You can perform Bayesian analysis of an ordinal outcome by specifying the oprobit or ologit
likelihood function. In addition to regression coefficients in ordered models, bayesmh automatically
introduces parameters representing the cutpoints for the linear predictor. The cutpoint parameters are
declared as {depname: cut1}, {depname: cut2}, and so on, where depname is the name of the
response variable.

In the next example, we consider the full auto dataset and model the ordinal variable rep77, the
repair record, as a function of independent variables foreign, length, and mpg. The variable rep77
has 5 levels, so the cutpoint parameters are {rep77: cut1}, {rep77: cut2}, {rep77: cut3}, and
{rep77: cut4}. The independent variables are all positive, so it seems reasonable to use exponential
prior for the cutpoint parameters. The exponential prior is controlled by a hyperparameter {lambda}.
Based on the range of the independent predictors, we assign {lambda} a prior that is uniform in

88 bayesmh — Bayesian models using Metropolis–Hastings algorithm

the 10 to 40 range. We assign N(0, 1) prior for regression coefficients. To monitor the progress, we
specify dots to request that bayesmh displays dots every 100 iterations and iteration numbers every
1,000 iterations.

. use https://www.stata-press.com/data/r18/fullauto
(Automobile models)

. replace length = length/10
variable length was int now float

(74 real changes made)

. set seed 14

. bayesmh rep77 foreign length mpg, likelihood(oprobit)
> prior({rep77: foreign length mpg}, normal(0,1))
> prior({rep77:_cut1 _cut2 _cut3 _cut4}, exponential({lambda=30}))
> prior({lambda}, uniform(10,40)) block(lambda) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
rep77 ~ oprobit(xb_rep77,{rep77:_cut1 ... _cut4})

Priors:
{rep77:foreign length mpg} ~ normal(0,1) (1)

{rep77:_cut1 ... _cut4} ~ exponential({lambda})

Hyperprior:
{lambda} ~ uniform(10,40)

(1) Parameters are elements of the linear form xb_rep77.

Bayesian ordered probit regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 66
Acceptance rate = .3422
Efficiency: min = .02171

avg = .0355
Log marginal-likelihood = -102.82883 max = .1136

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

rep77
foreign 1.338071 .3750768 .022296 1.343838 .6331308 2.086062
length .3479392 .1193329 .00787 .3447806 .1277292 .5844067

mpg .1048089 .0356498 .002114 .1022382 .0373581 .1761636
_cut1 7.204502 2.910222 .197522 7.223413 1.90771 13.07034
_cut2 8.290923 2.926149 .197229 8.258871 2.983281 14.16535
_cut3 9.584845 2.956191 .197144 9.497836 4.23589 15.52108
_cut4 10.97314 3.003014 .192244 10.89227 5.544563 17.06189

lambda 18.52477 7.252342 .215137 16.40147 10.21155 36.44309

When we specify dots or dots(), bayesmh displays dots as simulation is performed. The burn-in and
simulation iterations are displayed separately. During the adaptation period, iterations are displayed
with a symbol a instead of a dot. This indicates the period during which the proposal distribution is
still changing and thus may not be suitable for sampling from yet. Typically, adaptation is performed
during the burn-in period, the iterations of which are discarded from the MCMC sample. You should
pay closer attention to your results if you see adaptive iterations during the simulation period. This
may happen, for example, if you increase adaptation(maxiter()) without increasing burnin()

bayesmh — Bayesian models using Metropolis–Hastings algorithm 89

correspondingly. In this case, you may need to perform additional checks to verify that the part of
the MCMC sample corresponding to the adaptation period is similar to the rest of the sample.

Posterior credible intervals suggest that foreign, length, and mpg are among the explanatory
factors for rep77. Based on MCSEs, their posterior mean estimates are fairly precise. The posterior
mean estimates of cutpoints, as expected, are not as precise. The estimated posterior mean for
{lambda} is 18.52.

We placed the hyperparameter {lambda} in a separate block because we wanted to sample this
nuisance parameter independently from the other model parameters. Based on the bivariate scatterplots,
this parameter does appear to be independent of other model parameters a posteriori.

. bayesgraph matrix {rep77:foreign} {rep77:length} {rep77:mpg} {lambda}

rep77:foreign

rep77:length

rep77:mpg

lambda

0

1

2

3

0 1 2 3

0

.5

1

0 .5 1

0

.1

.2

0 .1 .2
10

20

30

40

10 20 30 40

90 bayesmh — Bayesian models using Metropolis–Hastings algorithm

As with any MCMC analysis, we should verify convergence of all of our parameters. Here we show
diagnostic plots only for {lambda}.

. bayesgraph diagnostics {lambda}

10

20

30

40

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

.05

.1

10 20 30 40

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0

.02

.04

.06

.08

10 20 30 40

All

1-half

2-half

Density

lambda

The diagnostic plots for {lambda} do not cause any concern.

Beta-binomial model
bayesmh is a regression command, which models the mean of the outcome distribution as a

function of predictors. There are cases when we do not have any predictors and want to model the
outcome distribution directly. For example, we may want to fit a Poisson distribution or a binomial
distribution to our outcome. We can do this by specifying one of the four distributions supported
by bayesmh in the likelihood() option: dexponential(), dbernoulli(), dbinomial(), or
dpoisson().

Let’s revisit the example from What is Bayesian analysis? in [BAYES] Intro, originally from Hoff
(2009, 3), of estimating the prevalence of a rare infectious disease in a small city. The outcome
variable y is the number of infected subjects in a city of 20 subjects, and our data consist of only
one observation, y = 0. We assume a binomial distribution for the outcome y, Binom(20,θ), where
the infection probability θ is a parameter of interest. Based on some previous studies, the model
parameter θ is assigned a Beta(2, 20) prior. For this model, the posterior distribution of θ is known
to be Beta(2, 40).

https://www.stata.com/manuals/bayesintro.pdf#bayesIntroRemarksandexamplesWhatisBayesiananalysis?
https://www.stata.com/manuals/bayesintro.pdf#bayesIntro

bayesmh — Bayesian models using Metropolis–Hastings algorithm 91

To fit a binomial distribution to y using bayesmh, we specify the option
likelihood(dbinomial({theta},20)). The infection probability θ is represented by {theta}.

. set obs 1
Number of observations (_N) was 0, now 1.

. generate y = 0

. set seed 14

. bayesmh y, likelihood(dbinomial({theta},20))
> prior({theta}, beta(2,20)) initial({theta} 0.01)
Burn-in ...
Simulation ...

Model summary

Likelihood:
y ~ binomial({theta},20)

Prior:
{theta} ~ beta(2,20)

Bayesian binomial model MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 1
Acceptance rate = .4527

Log marginal-likelihood = -1.1658052 Efficiency = .1549

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

theta .0467973 .0317862 .000808 .039931 .0051255 .1277823

The estimated posterior mean for {theta} is 0.0468, which is close to the theoretical value of
2/(2 + 40) = 0.0476 and is within the range of the MCSE of 0.0008.

Multivariate regression

We consider a simple multivariate normal regression model without covariates. We use auto.dta,
and we fit a multivariate normal distribution to variables mpg, weight, and length.

We rescale these variables to have approximately equal ranges. Equalizing the range of model
variables is always recommended, because this makes the model computationally more stable.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)

. quietly replace weight = weight/1000

. quietly replace length = length/100

. quietly replace mpg = mpg/10

Example 15: Default MH sampling with inverse-Wishart prior for the covariance

For a multivariate normal distribution, an inverse-Wishart prior is commonly used as a prior for
the covariance matrix. Let’s fit our multivariate model using bayesmh.

We specify the multivariate normal likelihood likelihood(mvnormal({Sigma,m})) for the three
variables mpg, weight, and length, where {Sigma,m} is a matrix parameter for the covariance
matrix. We use vague normal priors normal(0,100) for all three means of the variables. For a
covariance matrix {Sigma,m}, which is of dimension three, we specify an inverse-Wishart prior with
the identity scale matrix. We also specify the mean parameters and the covariance parameter in two
separate blocks. To monitor the simulation process, we specify dots.

92 bayesmh — Bayesian models using Metropolis–Hastings algorithm

. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:_cons} {weight:_cons} {length:_cons}, normal(0,100))
> prior({Sigma,m}, iwishart(3,100,I(3)))
> block({mpg:_cons} {weight:_cons} {length:_cons})
> block({Sigma,m}) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ iwishart(3,100,I(3))

Bayesian multivariate normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3255
Efficiency: min = .001396

avg = .04166
Log marginal-likelihood = -254.88899 max = .1111

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 2.13089 .0455363 .001763 2.129007 2.04435 2.223358

weight
_cons 3.018691 .0671399 .00212 3.020777 2.880051 3.149828

length
_cons 1.879233 .0210167 .00063 1.879951 1.837007 1.920619

Sigma_1_1 .1571554 .0038157 .000183 .1570586 .1499028 .1648159
Sigma_2_1 -.1864936 .0024051 .000343 -.1864259 -.1912537 -.18194
Sigma_3_1 -.0533863 .0033667 .000199 -.053342 -.0601722 -.0468986
Sigma_2_2 .3293518 .0044948 .001203 .329703 .3193904 .3366703
Sigma_3_2 .0894404 .0040487 .000471 .0894156 .0816045 .0976702
Sigma_3_3 .0329253 .002521 .00024 .0328027 .0285211 .0383005

Note: There is a high autocorrelation after 500 lags.

In this first run, we do not achieve good mixing of the MCMC chain. bayesmh issues a note about
significant autocorrelation of the simulated parameters.

A closer inspection of the ESS table reveals very low sampling efficiencies for the elements of the
covariance matrix {Sigma}.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 93

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .001396

avg = .04166
max = .1111

ESS Corr. time Efficiency

mpg
_cons 667.48 14.98 0.0667

weight
_cons 1002.92 9.97 0.1003

length
_cons 1111.14 9.00 0.1111

Sigma_1_1 433.25 23.08 0.0433
Sigma_2_1 49.03 203.96 0.0049
Sigma_3_1 287.03 34.84 0.0287
Sigma_2_2 13.96 716.45 0.0014
Sigma_3_2 73.76 135.57 0.0074
Sigma_3_3 110.41 90.58 0.0110

For example, the diagnostic plots for {Sigma 2 2} provide visual confirmation of the convergence
issues—very poorly mixing trace plot, high autocorrelation, and a bimodal posterior distribution.

. bayesgraph diagnostics Sigma_2_2

.315

.32

.325

.33

.335

.34

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

20

40

60

80

100

.315 .32 .325 .33 .335 .34

Histogram

-0.50

0.00

0.50

1.00

0 10 20 30 40
Lag

Autocorrelation

0

50

100

150

200

.315 .32 .325 .33 .335 .34

All

1-half

2-half

Density

Sigma_2_2

Here, we see a general problem associated with the simulation of covariance matrices. Random-
walk MH algorithm is not well suited for sampling positive-definite matrices. This is why even an
adaptive version of the MH algorithm, as implemented in bayesmh, may not achieve good mixing.

94 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Example 16: Adaptation of MH sampling with inverse-Wishart prior for the covariance

Continuing example 15, we can specify longer adaptation and burn-in periods to improve conver-
gence.

. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:_cons} {weight:_cons} {length:_cons}, normal(0,100))
> prior({Sigma,m}, iwishart(3,100,I(3)))
> block({mpg:_cons} {weight:_cons} {length:_cons})
> block({Sigma,m}) dots burnin(5000) adaptation(maxiter(50))
Burn-in 5000 aaaaaaaaa1000aaaaaaaaa2000aaaaaaaaa3000aaaa.....4000.........5000
> done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ iwishart(3,100,I(3))

Bayesian multivariate normal regression MCMC iterations = 15,000
Random-walk Metropolis--Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2382
Efficiency: min = .02927

avg = .05053
Log marginal-likelihood = -245.83844 max = .07178

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 2.13051 .0475691 .001809 2.13263 2.038676 2.220953

weight
_cons 3.017943 .0626848 .00234 3.016794 2.898445 3.143252

length
_cons 1.878912 .019905 .000769 1.878518 1.840311 1.918476

Sigma_1_1 .1711394 .0089943 .000419 .1706437 .1548036 .1898535
Sigma_2_1 -.1852432 .002432 .000126 -.1852973 -.1898398 -.1803992
Sigma_3_1 -.0517404 .0035831 .000201 -.051688 -.058747 -.0449874
Sigma_2_2 .3054418 .0144859 .000551 .3055426 .2783409 .3340654
Sigma_3_2 .0809091 .0057474 .000314 .080709 .0698331 .0924053
Sigma_3_3 .030056 .002622 .000153 .0299169 .0251627 .0355171

There is no note about high autocorrelation, and the average efficiency increases slightly from 4% to
5%.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 95

Sampling efficiencies of the elements of the covariance matrix improved substantially.

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .02927

avg = .05053
max = .07178

ESS Corr. time Efficiency

mpg
_cons 691.54 14.46 0.0692

weight
_cons 717.82 13.93 0.0718

length
_cons 670.63 14.91 0.0671

Sigma_1_1 459.78 21.75 0.0460
Sigma_2_1 370.45 26.99 0.0370
Sigma_3_1 318.91 31.36 0.0319
Sigma_2_2 692.06 14.45 0.0692
Sigma_3_2 334.08 29.93 0.0334
Sigma_3_3 292.70 34.16 0.0293

The diagnostic plots for {Sigma 2 2} look much better.

. bayesgraph diagnostics Sigma_2_2

.26

.28

.3

.32

.34

.36

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

10

20

30

.26 .28 .3 .32 .34 .36

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0

10

20

30

.26 .28 .3 .32 .34 .36

All

1-half

2-half

Density

Sigma_2_2

96 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Example 17: Gibbs sampling of a covariance matrix

Continuing example 15, the convergence of the chain can be greatly improved if we use Gibbs
sampling for the covariance matrix parameter. For a multivariate normal model, inverse Wishart is
a conjugate prior, or more precisely semiconjugate prior, for the covariance matrix and thus Gibbs
sampling is available. To request Gibbs sampling, we only need to add the gibbs suboption to the
block specification of {Sigma,m}. The mean parameters are still updated by the random-walk MH
algorithm.

. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:_cons} {weight:_cons} {length:_cons}, normal(0,100))
> prior({Sigma,m}, iwishart(3,100,I(3)))
> block({mpg:_cons} {weight:_cons} {length:_cons})
> block({Sigma,m}, gibbs) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaa.. done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ iwishart(3,100,I(3))

Bayesian multivariate normal regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .5942
Efficiency: min = .06842

avg = .6659
Log marginal-likelihood = -240.48717 max = .9781

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 2.128801 .0457224 .00164 2.128105 2.041016 2.215

weight
_cons 3.020533 .0609036 .002328 3.021561 2.908383 3.143715

length
_cons 1.880409 .0197061 .000725 1.881133 1.843106 1.918875

Sigma_1_1 .150733 .0164464 .000166 .1495231 .1219304 .1869429
Sigma_2_1 -.1571622 .0196803 .000201 -.156005 -.1995812 -.1224243
Sigma_3_1 -.0443725 .0060229 .000061 -.0439466 -.0571876 -.0338685
Sigma_2_2 .2673525 .029205 .0003 .2654589 .2163041 .3305366
Sigma_3_2 .0708095 .0085435 .000087 .0702492 .0557448 .0893794
Sigma_3_3 .0273506 .0029932 .000031 .0271362 .0220723 .0337994

Compared with example 15, the results improved substantially. Compared with example 16, the
minimum efficiency increases from about 3% to 7% and the average efficiency from 5% to 67%.
MCSEs of posterior mean estimates, particularly for elements of {Sigma}, are lower.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 97

The diagnostic plots, for example, for Sigma 2 2 also indicate a very good convergence.

. bayesgraph diagnostics Sigma_2_2

.2

.25

.3

.35

.4

.45

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

5

10

15

.2 .25 .3 .35 .4 .45

Histogram

-0.02

-0.01

0.00

0.01

0.02

0 10 20 30 40
Lag

Autocorrelation

0

5

10

15

.2 .25 .3 .35 .4 .45

All

1-half

2-half

Density

Sigma_2_2

98 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Example 18: Gibbs sampling of a covariance matrix with the Jeffreys prior

In this example, we perform a sensitivity analysis of the model by replacing the inverse-Wishart
prior for the covariance matrix with a Jeffreys prior.

. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:} {weight:} {length:}, normal(0,100))
> prior({Sigma,m}, jeffreys(3))
> block({mpg:} {weight:} {length:})
> block({Sigma,m}, gibbs) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ jeffreys(3)

Bayesian multivariate normal regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .6223
Efficiency: min = .08573

avg = .6886
Log marginal-likelihood = -42.728723 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 2.130704 .0709095 .002185 2.129449 1.989191 2.267987

weight
_cons 3.019323 .0950116 .003245 3.019384 2.834254 3.208017

length
_cons 1.879658 .0271562 .000892 1.879859 1.827791 1.933834

Sigma_1_1 .3596673 .0628489 .000628 .3526325 .2575809 .5028854
Sigma_2_1 -.3905511 .0772356 .000772 -.3824458 -.5668251 -.2654059
Sigma_3_1 -.1103824 .0220164 .000223 -.1077659 -.1611913 -.0751177
Sigma_2_2 .6503219 .1141333 .001141 .6378476 .466738 .9140429
Sigma_3_2 .1763159 .0318394 .000323 .1725042 .1248434 .2507866
Sigma_3_3 .0533981 .0093631 .000095 .0522228 .0382405 .0748096

Note: Adaptation tolerance is not met in at least one of the blocks.

Compared with example 17, the estimates of the means of the multivariate distribution do not change
much, but the estimates of the elements of the covariance matrix do change. The estimates for
{Sigma,m} obtained using the Jeffreys prior are approximately twice as big as the estimates obtained
using the inverse-Wishart prior. If we compute correlation matrices corresponding to {Sigma,m} from
the two models, they will be similar. This can be explained by the fact that both the Jeffreys prior and
the inverse-Wishart prior with identity scale matrix are not informative for the correlation structure

bayesmh — Bayesian models using Metropolis–Hastings algorithm 99

because they only depend on the determinant and the trace of {Sigma,m} whereas the correlation
structure is determined by the data alone.

Technical note: Adaptation tolerance is not met

At the bottom of the table in the previous output, the note about the adaptation tolerance not being
met in one of the blocks is displayed. Adaptation is part of MH sampling, so the note refers to the block
of regression coefficients. This note does not necessarily indicate a problem. It simply notifies you that
the default target acceptance rate as specified in adaptation(tarate()) has not been reached within
the tolerance specified in adaptation(tolerance()). The used default for the target acceptance
rate corresponds to the theoretical asymptotically optimal acceptance rate of 0.44 for a block with
one parameter and 0.234 for a block with multiple parameters. The rate is derived for a specific
class of models and does not necessarily represent the optimal rate for all models. If your MCMC
converged, you can safely ignore this note. Otherwise, you need to investigate your model further.
One remedy is to increase the burn-in period, which automatically increases the adaptation period, or
more specifically, the number of adaptive iterations as controlled by adaptation(maxiter()). For
example, if we increase burn-in to 3,000 by specifying option burnin(3000) in the above example,
we will meet the adaptation tolerance.

The diagnostic plots of Sigma 2 2 demonstrate excellent mixing properties.

. bayesgraph diagnostics Sigma_2_2

.4

.6

.8

1

1.2

1.4

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

1

2

3

4

.4 .6 .8 1 1.2 1.4

Histogram

-0.02

-0.01

0.00

0.01

0.02

0 10 20 30 40
Lag

Autocorrelation

0

1

2

3

4

.4 .6 .8 1 1.2 1.4

All

1-half

2-half

Density

Sigma_2_2

100 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Panel-data and multilevel models
Let’s fit two-level random-intercept and random-coefficients models. A two-level random-intercept

model is also known as a panel-data model. Also see [BAYES] Bayesian estimation for fitting panel-data
and multilevel models more conveniently by using the bayes prefix.

Two-level random-intercept model or panel-data model

Ruppert, Wand, and Carroll (2003) and Diggle et al. (2002) analyzed a longitudinal dataset
consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs were identified by the
group variable id.

The following two-level model was considered:

weightij = β0 + β1weekij + uj + εij

where uj is the random effect for pig j, j = 1, . . . , 48, and the counter i = 1, . . . , 9 identifies the
weeks.

We first use mixed to fit this model by using maximum likelihood for comparison purposes; see
[ME] mixed.

. use https://www.stata-press.com/data/r18/pig, clear
(Longitudinal analysis of pig weights)

. mixed weight week || id:

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -1014.9268
Iteration 1: Log likelihood = -1014.9268

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(_cons) 14.81751 3.124225 9.801716 22.40002

var(Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/memixed.pdf#memixed

bayesmh — Bayesian models using Metropolis–Hastings algorithm 101

Consider the following Bayesian model for these data:

weightij = β0 + β1weekij + uj + εij

εij ∼ i.i.d. N(0, σ2
0)

uj ∼ i.i.d. N(0, σ2
u)

β0 ∼ N(0, 100)

β1 ∼ N(0, 100)

σ2
0 ∼ InvGamma(0.001, 0.001)

σ2
u ∼ InvGamma(0.001, 0.001)

The model has four main parameters of interest: regression coefficients β0 and β1 and variance
components σ2

0 and σ2
u. The pig random effects uj’s are considered nuisance parameters. We use

normal priors for the regression coefficients and random effects and inverse-gamma priors for the
variance parameters. The chosen priors are fairly noninformative, so we would expect results to be
similar to the frequentist results.

To fit this model using bayesmh, we need to include random effects for pig in our regression
model. This can be done simply by adding the random-effects term U[id] to the list of variables.

In addition to two regression coefficients and two variance components, we have 48 random-effects
parameters. As for other models, bayesmh will automatically create parameters of the regression
function: {weight:week} for the regression coefficient of week and {weight: cons} for the
constant term. It will also create random-effects parameters {U:1.id}, {U:2.id}, . . ., {U:48.id}
and the corresponding variance component {var U}. So, we only need to create one remaining
parameter for the error variance. We will use {var 0} to match our math notation.

We will perform five simulations for the specified Bayesian model to illustrate some common
difficulties in applying MH MCMC to multilevel models.

Example 19: First simulation—default MH settings

In the first simulation, we use default simulation settings of the MH algorithm. We have many
parameters in our model, so the simulation will take a few moments. For exploration purposes and
to expedite results, here we use a smaller MCMC size of 5,000 instead of the default of 10,000. To
monitor the progress of the simulation, we also specify dots. And we use the rseed() option to
specify the random-number seed instead of set seed.

102 bayesmh — Bayesian models using Metropolis–Hastings algorithm

. bayesmh weight week U[id], likelihood(normal({var_0}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_U}, igamma(0.001, 0.001))
> mcmcsize(5000) dots rseed(14)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aa... done
Simulation 50001000.........2000.........3000.........4000.........
> 5000 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{var_0})

Priors:
{weight:_cons week} ~ normal(0,100) (1)

{U[id]} ~ normal(0,{var_U}) (1)
{var_0} ~ igamma(0.001,0.001)

Hyperprior:
{var_U} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_weight.

Bayesian normal regression MCMC iterations = 7,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .2689
Efficiency: min = .004996

avg = .03269
Log marginal-likelihood max = .05366

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.214207 .038642 .002359 6.213394 6.139342 6.289956

_cons 19.32073 .4780961 .095658 19.33685 18.36352 20.16849

var_0 4.422389 .3193947 .020177 4.397903 3.847674 5.129631
var_U 15.14296 3.299171 .314644 14.65057 10.17046 23.11491

bayesmh reports results that are similar to those from mixed, but the low minimum efficiency of
0.005 may indicate problems with MCMC convergence for some of the parameters. bayesmh does
not report the estimates of random effects by default, but you can use the showreffects option to
display them.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 103

We use bayesstats ess to identify the main model parameter that has the lowest efficiency.

. bayesstats ess

Efficiency summaries MCMC sample size = 5,000
Efficiency: min = .004996

avg = .03269
max = .05366

ESS Corr. time Efficiency

weight
week 268.29 18.64 0.0537

_cons 24.98 200.16 0.0050

var_0 250.58 19.95 0.0501
var_U 109.94 45.48 0.0220

The {weight: cons} parameter has the lowest efficiency of 0.005.

If we look at diagnostic plots for {weight: cons},

. bayesgraph diagnostics {weight:_cons}

17

18

19

20

21

0 1000 2000 3000 4000 5000

Iteration number

Trace

0

.2

.4

.6

.8

1

17 18 19 20 21

Histogram

-0.50

0.00

0.50

1.00

0 10 20 30 40
Lag

Autocorrelation

0

.2

.4

.6

.8

17 18 19 20 21

All

1-half

2-half

Density

weight:_cons

we see that the trace plot exhibits some trend and does not show good mixing and that the autocorrelation
is high. Our MCMC does not seem to converge and thus we should be cautious about the obtained
results.

104 bayesmh — Bayesian models using Metropolis–Hastings algorithm

We can also look at the trace and autocorrelation plots of all main parameters.

. bayesgraph trace _all, byparm(cols(2))

6.1

6.2

6.3

6.4

17

18

19

20

21

3.5

4

4.5

5

5.5

10

15

20

25

30

0 5000 0 5000

weight:week weight:_cons

var_0 var_U

Iteration number
Graphs by parameter

Trace plots

bayesmh — Bayesian models using Metropolis–Hastings algorithm 105

The trace plots of all parameters other than the constant do not appear to have any trend.

. bayesgraph ac _all, byparm

0

.5

1

.7

.8

.9

1

0

.5

1

.2

.4

.6

.8

1

0 10 20 30 40 0 10 20 30 40

0 10 20 30 40 0 10 20 30 40

weight:week weight:_cons

var_0 var_U

Lag
Graphs by parameter

Autocorrelations

The autocorrelation for the constant {weight: cons} and variance component {var U} is high.

106 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Example 20: Second simulation—blocking of parameters

Continuing example 19, we can improve efficiency of the MH algorithm by separating model
parameters into blocks to be sampled independently. We consider a separate block for each model
parameter; random-effects parameters automatically share the same separate block. We also specify
nomodelsummary to suppress the model summary of bayesmh. To block parameters, we can either
specify a separate block() option for each parameter or group all parameters in one block() option
and use block()’s suboption split. We use the second approach.

. bayesmh weight week U[id], likelihood(normal({var_0}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_U}, igamma(0.001, 0.001))
> block({weight:} {var_0 var_U}, split)
> mcmcsize(5000) dots rseed(14) nomodelsummary
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 50001000.........2000.........3000.........4000.........
> 5000 done

Bayesian normal regression MCMC iterations = 7,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .4046
Efficiency: min = .004964

avg = .08105
Log marginal-likelihood max = .1597

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.215408 .0381479 .002808 6.214654 6.140876 6.293443

_cons 19.41979 .5741026 .11524 19.46862 18.24166 20.44603

var_0 4.425198 .3318405 .0134 4.408941 3.84317 5.117833
var_U 15.8305 3.499092 .123841 15.28998 10.28572 23.73757

Blocking certainly improved efficiencies: the average efficiency is now 0.08, but the minimum efficiency
is still low.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 107

The trace and autocorrelation plots below have improved for variance components but not for
regression coefficients.

. bayesgraph trace _all, byparm(cols(2))

6.1

6.2

6.3

6.4

18

19

20

21

3

4

5

6

10

15

20

25

30

0 5000 0 5000

weight:week weight:_cons

var_0 var_U

Iteration number
Graphs by parameter

Trace plots

108 bayesmh — Bayesian models using Metropolis–Hastings algorithm

. bayesgraph ac _all, byparm

0

.5

1

.7

.8

.9

1

0

.2

.4

.6

.8

0

.2

.4

.6

.8

0 10 20 30 40 0 10 20 30 40

0 10 20 30 40 0 10 20 30 40

weight:week weight:_cons

var_0 var_U

Lag
Graphs by parameter

Autocorrelations

bayesmh — Bayesian models using Metropolis–Hastings algorithm 109

Example 21: Third simulation—Gibbs sampling

The most efficient MCMC procedure for our Bayesian model is Gibbs sampling, which can be set
up as follows. To request a Gibbs sampling for a block of model parameters, we must first define
them in a separate prior() statement and then put them in a separate block() with the gibbs
suboption.

. bayesmh weight week U[id], likelihood(normal({var_0}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_U}, igamma(0.001, 0.001))
> block({weight:} {var_0 var_U}, split gibbs)
> mcmcsize(5000) dots rseed(14) nomodelsummary
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 50001000.........2000.........3000.........4000.........
> 5000 done

Bayesian normal regression MCMC iterations = 7,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .8455
Efficiency: min = .007933

avg = .3116
Log marginal-likelihood max = .6695

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.211245 .0394854 .001513 6.211084 6.136556 6.290471

_cons 19.10077 .5413931 .085962 19.0496 18.20506 20.29911

var_0 4.405236 .320582 .00689 4.391879 3.81231 5.076974
var_U 15.76448 3.44687 .059575 15.34651 10.16291 23.5736

The average efficiency increased dramatically to 0.31 but the minimum efficiency is still low.

110 bayesmh — Bayesian models using Metropolis–Hastings algorithm

If we again inspect the diagnostic plots for main model parameters,

. bayesgraph trace _all, byparm(cols(2))

6

6.2

6.4

17

18

19

20

21

3

4

5

6

10

20

30

40

0 5000 0 5000

weight:week weight:_cons

var_0 var_U

Iteration number
Graphs by parameter

Trace plots

bayesmh — Bayesian models using Metropolis–Hastings algorithm 111

. bayesgraph ac _all, byparm

0

.2

.4

.6

.8

.5

1

-.05

0

.05

.1

.15

-.02

0

.02

.04

.06

0 10 20 30 40 0 10 20 30 40

0 10 20 30 40 0 10 20 30 40

weight:week weight:_cons

var_0 var_U

Lag
Graphs by parameter

Autocorrelations

we will see that all but the constant term show nearly perfect mixing.

112 bayesmh — Bayesian models using Metropolis–Hastings algorithm

For linear multilevel models, we can further improve mixing by specifying Gibbs sampling also
for random effects.

. bayesmh weight week U[id], likelihood(normal({var_0}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_U}, igamma(0.001, 0.001))
> block({weight:} {var_0 var_U}, split gibbs)
> block({U}, gibbs)
> mcmcsize(5000) dots rseed(14) nomodelsummary
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 50001000.........2000.........3000.........4000.........
> 5000 done

Bayesian normal regression MCMC iterations = 7,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = 1
Efficiency: min = .02462

avg = .4626
Log marginal-likelihood max = .8788

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.212522 .0391656 .001618 6.212953 6.135002 6.287983

_cons 19.17706 .527013 .047497 19.19138 18.0913 20.1664

var_0 4.412689 .3197871 .004965 4.395271 3.827182 5.094548
var_U 15.76501 3.421817 .051622 15.30836 10.33911 23.6702

bayesmh — Bayesian models using Metropolis–Hastings algorithm 113

The minimum efficiency is now increased to 0.025, and the diagnostics plots for the constant term
look much better:

. bayesgraph trace _all, byparm(cols(2))

6.1

6.2

6.3

6.4

18

19

20

21

3

4

5

6

10

20

30

40

0 5000 0 5000

weight:week weight:_cons

var_0 var_U

Iteration number
Graphs by parameter

Trace plots

114 bayesmh — Bayesian models using Metropolis–Hastings algorithm

. bayesgraph ac _all, byparm

0

.2

.4

.6

.8

.2

.4

.6

.8

1

-.05

0

.05

.1

-.05

0

.05

0 10 20 30 40 0 10 20 30 40

0 10 20 30 40 0 10 20 30 40

weight:week weight:_cons

var_0 var_U

Lag
Graphs by parameter

Autocorrelations

Example 22: Fourth simulation—splitting random-effects parameters

Gibbs sampling typically provides the most efficient sampling of parameters. Full Gibbs sampling
is not always available; see, for example, Multilevel logistic regression below.

In the absence of Gibbs sampling for random effects, block()’s suboption split provides the
next most efficient albeit much slower way of sampling the random-effects parameters in bayesmh.
Taking into account conditional independence of individual random effects, random-effects parameters
associated with levels of the grouping variable can be sampled sequentially (as separate blocks) instead
of being sampled jointly from a high-dimensional proposal distribution (as in example 20).

bayesmh — Bayesian models using Metropolis–Hastings algorithm 115

For example, instead of using Gibbs sampling for the random effects (as in example 21), we use
block()’s suboption split for the random-effects parameters {U[id]}.

. bayesmh weight week U[id], likelihood(normal({var_0}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_U}, igamma(0.001, 0.001))
> block({weight:} {var_0 var_U}, split gibbs)
> block({U}, split)
> mcmcsize(5000) dots rseed(14) nomodelsummary
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 50001000.........2000.........3000.........4000.........
> 5000 done

Bayesian normal regression MCMC iterations = 7,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .8455
Efficiency: min = .007933

avg = .3116
Log marginal-likelihood max = .6695

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.211245 .0394854 .001513 6.211084 6.136556 6.290471

_cons 19.10077 .5413931 .085962 19.0496 18.20506 20.29911

var_0 4.405236 .320582 .00689 4.391879 3.81231 5.076974
var_U 15.76448 3.44687 .059575 15.34651 10.16291 23.5736

The average sampling efficiency, 39%, is lower than with the full Gibbs sampling in example 21 but
is higher compared with the model that did not use Gibbs sampling for random effects. For models
that do not support Gibbs sampling, splitting on random effects may be a good alternative.

116 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Example 23: Fifth simulation—alternative parameterization

In our pig-data example, the difficulty of sampling the constant term efficiently may be explained
by the presence of a high correlation between the constant and one or more random effects. In such
cases, an alternative parameterization of a multilevel model may be useful.

Consider the following formulation of an earlier random-intercept model:

weightij = β0 + β1weekij + uj + εij = β1weekij + τj + εij ,

εij ∼ i.i.d. N(0, σ2
0)

τj ∼ i.i.d. N(β0, σ
2
u)

β0 ∼ N(0, 100)

β1 ∼ N(0, 100)

σ2
0 ∼ InvGamma(0.001, 0.001)

σ2
u ∼ InvGamma(0.001, 0.001)

Here, the constant term is absorbed into the prior for the random effects τj’s, which have a mean
of β0 instead of a zero, as for random effects uj’s.

To specify the above model with bayesmh, we need to use the noconstant option, and we need
to specify the prior for random effects manually.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 117

Continuing with example 21, we now fit a reparameterized model:

. bayesmh weight week U[id], likelihood(normal({var_0})) noconstant
> prior({U[id]}, normal({weight:_cons},{var_U}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_U}, igamma(0.001, 0.001))
> block({weight:} {var_0 var_U}, split gibbs)
> block({U}, gibbs)
> mcmcsize(5000) dots rseed(14)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 50001000.........2000.........3000.........4000.........
> 5000 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{var_0})

Priors:
{weight:week} ~ normal(0,100) (1)

{U[id]} ~ normal({weight:_cons},{var_U}) (1)
{var_0} ~ igamma(0.001,0.001)

{weight:_cons} ~ normal(0,100)

Hyperprior:
{var_U} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_weight.

Bayesian normal regression MCMC iterations = 7,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = 1
Efficiency: min = .1139

avg = .6008
Log marginal-likelihood max = .9366

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.210628 .0389494 .001632 6.21117 6.133097 6.286066

_cons 19.28477 .607197 .012616 19.28279 18.10872 20.50361

var_0 4.412291 .3191009 .004663 4.398022 3.827661 5.090693
var_U 15.82342 3.484342 .052251 15.38458 10.29349 23.88555

The average efficiency increased dramatically to 60% with the minimum efficiency of 11% now.

118 bayesmh — Bayesian models using Metropolis–Hastings algorithm

The diagnostic plots now show perfect mixing for all main model parameters:

. bayesgraph trace _all, byparm(cols(2))

6.1

6.2

6.3

6.4

3

4

5

6

16

18

20

22

10

20

30

40

50

0 5000 0 5000

weight:week var_0

weight:_cons var_U

Iteration number
Graphs by parameter

Trace plots

bayesmh — Bayesian models using Metropolis–Hastings algorithm 119

. bayesgraph ac _all, byparm

0

.2

.4

.6

.8

-.05

0

.05

.1

-.05

0

.05

.1

.15

-.02

0

.02

.04

.06

0 10 20 30 40 0 10 20 30 40

0 10 20 30 40 0 10 20 30 40

weight:week var_0

weight:_cons var_U

Lag
Graphs by parameter

Autocorrelations

All estimates are very close to the MLEs obtained earlier with the mixed command.

Linear growth curve model—a random-coefficient model

Continuing our pig data example from Two-level random-intercept model or panel-data model, we
extend the random-intercept model to include random coefficients for week by using

weightij = β0 + β1weekij + u0j + u1jweekij + εij

where u0j is the random effect for pig and u1j is the pig-specific random coefficient on week for
j = 1, . . . , 48 and i = 1, . . . , 9.

120 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Example 24: Independent covariance structure for the random effects

Let us first assume that the random effects u0j’s and u1j’s are independent. We can use mixed
to fit this model by using maximum likelihood.

. use https://www.stata-press.com/data/r18/pig
(Longitudinal analysis of pig weights)

. mixed weight week || id: week

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -869.03825
Iteration 1: Log likelihood = -869.03825

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4689.51
Log likelihood = -869.03825 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0906819 68.48 0.000 6.032163 6.387629
_cons 19.35561 .3979159 48.64 0.000 18.57571 20.13551

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(week) .3680668 .0801181 .2402389 .5639103

var(_cons) 6.756364 1.543503 4.317721 10.57235

var(Residual) 1.598811 .1233988 1.374359 1.85992

LR test vs. linear model: chi2(2) = 764.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Consider the following Bayesian model for these data:

weightij = β0 + β1weekij + u0j + u1jweekij + εij = τ0j + τ1jweekij + εij ,

εij ∼ i.i.d. N(0, σ2
0)

τ0j ∼ i.i.d. N(β0, σ
2
τ0)

τ1j ∼ i.i.d. N(β1, σ
2
τ1)

β0 ∼ N(0, 100)

β1 ∼ N(0, 100)

σ2
0 ∼ InvGamma(0.001, 0.001)

σ2
τ0 ∼ InvGamma(0.001, 0.001)

σ2
τ1 ∼ InvGamma(0.001, 0.001)

bayesmh — Bayesian models using Metropolis–Hastings algorithm 121

The model has five main parameters of interest: regression coefficients β0 and β1 and variance
components σ2

0 , σ2
τ0 , and σ2

τ1 . β0 and β1 are technically hyperparameters because they are specified
as mean parameters of the prior distributions for random effects τ0j’s and τ1j’s, respectively. Random
effects τ0j and τ1j are considered nuisance parameters. We again use normal priors for the regression
coefficients and random effects and inverse-gamma priors for the variance parameters. We specify
fairly noninformative priors.

To fit this model using bayesmh, we include random effects for pig and their interaction with week
in our regression model. Following Random effects , we add random intercepts for the id variable as
T0[id], and we include random coefficients on week as c.week#T1[id], where T0 and T1 stand
for τ0 and τ1.

We fit our model using bayesmh. Following example 21, we perform blocking of parameters and
use Gibbs sampling for the blocks. For brevity, we also combine the same prior specifications in one
statement but use prior()’s split suboption to continue treating the parameters from the same
prior() statement as separate blocks during simulation.

. bayesmh weight T0[id] c.week#T1[id], likelihood(normal({var_0})) noconstant
> prior({T0[id]}, normal({weight:_cons}, {var_T0}))
> prior({T1[id]}, normal({weight:week}, {var_T1}))
> prior({weight:week _cons}, normal(0, 1e2) split)
> prior({var_0 var_T0 var_T1}, igamma(0.001, 0.001) split)
> block({var_0 var_T0 var_T1}, gibbs split)
> block({weight:}, gibbs split)
> block({T0}, gibbs) block({T1}, gibbs)
> mcmcsize(5000) rseed(17) dots notable
Burn-in 25001000.........2000..... done
Simulation 50001000.........2000.........3000.........4000.........
> 5000 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{var_0})

Priors:
{T0[id]} ~ normal({weight:_cons},{var_T0}) (1)
{T1[id]} ~ normal({weight:week},{var_T1}) (1)
{var_0} ~ igamma(0.001,0.001)

{weight:week _cons} ~ normal(0,1e2)

Hyperprior:
{var_T0 var_T1} ~ igamma(0.001,0.001)

(1) Parameter is an element of the linear form xb_weight.

Bayesian normal regression MCMC iterations = 7,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = 1
Efficiency: min = .4104

avg = .5277
Log marginal-likelihood max = .6875

Our AR is good and efficiencies are high. We do not have a reason to suspect nonconvergence.
Nevertheless, it is important to perform graphical convergence diagnostics to confirm this. We used
the notable option to suppress the estimation summary to focus on checking the MCMC convergence
first and to redisplay the coefficients in the same order as in mixed.

Let’s look at diagnostic plots. We show only diagnostic plots for the mean of random intercepts,
but convergence should be established for all parameters before any inference can be made. We leave
it to you to verify convergence of the remaining parameters.

122 bayesmh — Bayesian models using Metropolis–Hastings algorithm

. bayesgraph diagnostics {weight:_cons}

18

18.5

19

19.5

20

20.5

0 1000 2000 3000 4000 5000

Iteration number

Trace

0

.2

.4

.6

.8

1

18 18.5 19 19.5 20 20.5

Histogram

-0.05

0.00

0.05

0.10

0 10 20 30 40
Lag

Autocorrelation

0

.2

.4

.6

.8

1

17 18 19 20 21

All

1-half

2-half

Density

weight:_cons

The diagnostic plots look good.

Our posterior mean estimates of the main model parameters are in agreement with maximum
likelihood results from mixed, as is expected with noninformative priors.

. bayesstats summary {weight:week _cons} {var_T1 var_T0 var_0}

Posterior summary statistics MCMC sample size = 5,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.213062 .0950649 .001621 6.213753 6.029047 6.401924

_cons 19.31661 .4041825 .007445 19.32041 18.54005 20.13218

var_T1 .3940673 .0927395 .001937 .3815496 .2522003 .6080756
var_T0 7.176892 1.719979 .037968 6.956708 4.424175 11.31125
var_0 1.604662 .1229856 .002478 1.600799 1.377464 1.857627

bayesmh — Bayesian models using Metropolis–Hastings algorithm 123

Example 25: Unstructured covariance structure for the random effects

In this example, we assume that the random effects τ0j’s and τ1j’s are correlated. Again we can
use the mixed command to fit this model by using maximum likelihood.

. mixed weight week || id: week, cov(unstructured)

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -868.96185
Iteration 1: Log likelihood = -868.96185

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4649.17
Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0910745 68.18 0.000 6.031393 6.388399
_cons 19.35561 .3996387 48.43 0.000 18.57234 20.13889

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Unstructured
var(week) .3715251 .0812958 .2419532 .570486

var(_cons) 6.823363 1.566194 4.351297 10.69986
cov(week,_cons) -.0984378 .2545767 -.5973991 .4005234

var(Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear model: chi2(3) = 764.58 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We modify the previous Bayesian model to account for the correlation between the random effects:

(τ0j , τ1j) ∼ i.i.d. MVN(β0, β1,Σ)

Σ ∼ InvWishart{3, I(2)}

Σ =

[
σ2
τ0 σ2

12

σ2
21 σ2

τ1

]
The elements σ2

τ0 and σ2
τ1 of Σ represent the variances of τ0j’s and τ1j’s, respectively, while σ21

is the covariance between them. We apply a weakly informative inverse-Wishart prior with degree of
freedom 3 and identity scale matrix.

124 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Gibbs sampling is not available in bayesmh for the mean parameters ({weight: cons} and
{weight:week}) of the multivariate normal distribution with an unstructured covariance. We thus
remove gibbs from the corresponding block() option.

. bayesmh weight T0[id] c.week#T1[id], likelihood(normal({var_0})) noconstant
> prior({T0 T1}, mvnormal(2, {weight:_cons}, {weight:week}, {Sigma,m}))
> prior({weight:week _cons}, normal(0, 1e2) split)
> prior({var_0}, igamma(0.001,0.001))
> prior({Sigma,m}, iwishart(2,3,I(2)))
> block({var_0} {Sigma,m}, gibbs split)
> block({weight:}, split)
> block({T0}, gibbs) block({T1}, gibbs)
> mcmcsize(5000) rseed(17) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 50001000.........2000.........3000.........4000.........
> 5000 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{var_0})

Priors:
{var_0} ~ igamma(0.001,0.001)

{T0[id] T1[id]} ~ mvnormal(2,{weight:_cons},{weight:week},{Sigma,m}) (1)
{weight:week _cons} ~ normal(0,1e2)

Hyperprior:
{Sigma,m} ~ iwishart(2,3,I(2))

(1) Parameter is an element of the linear form xb_weight.

Bayesian normal regression MCMC iterations = 7,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .8146
Efficiency: min = .177

avg = .3942
Log marginal-likelihood max = .5378

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
_cons 19.32651 .3922638 .013186 19.32816 18.54339 20.11928
week 6.207807 .0986948 .003086 6.20779 6.009859 6.402211

var_0 1.608075 .1253061 .002416 1.60557 1.377569 1.859606
Sigma_1_1 6.845693 1.643541 .034744 6.637035 4.250556 10.62172
Sigma_2_1 -.0947838 .2706155 .005435 -.0897511 -.654002 .4270949
Sigma_2_2 .4021311 .09014 .001798 .3894671 .2606943 .6142174

The average sampling efficiency is about 40% with no indications for convergence problems. The
posterior mean estimates of the main model parameters are close to the maximum likelihood results
from mixed. For example, the estimates of variance components σ2

τ0 , σ21, and σ2
τ1 are 6.85, −0.095,

and 0.40, respectively, from bayesmh and 6.82, −0.098, and 0.37, respectively, from mixed.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 125

Multilevel logistic regression
Here we revisit example 1 [ME] melogit. The example analyzes data from the 1989 Bangladesh

fertility survey (Huq and Cleland 1990). A logistic regression model applied to the response variable
c use uses fixed-effects variables urban, age, and i.children and a random-effects variable,
district, to account for the between-district variability.

A Bayesian analog of this two-level, random-intercept model using bayesmh is as follows.
We include U[district] in the list of covariates to specify the random intercepts for the
group variable district. The corresponding random-effects parameters {U[district]} are as-
signed a zero-mean normal prior distribution with variance {var U}. A relatively weak nor-
mal(0,100) prior is applied to the fixed-effects parameters {c use:urban}, {c use:age},
{c use:i.children}, and {c use: cons}. The variance parameter {var U} is assigned a non-
informative igamma(0.01,0.01) prior, and a Gibbs sampler is used for it.

. use https://www.stata-press.com/data/r18/bangladesh
(Bangladesh Fertility Survey, 1989)

. bayesmh c_use urban age i.children U[district], likelihood(logit)
> prior({c_use:urban age i.children _cons}, normal(0, 100))
> prior({var_U}, igamma(0.01,0.01))
> block({var_U}, gibbs) dots rseed(17)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
c_use ~ logit(xb_c_use)

Priors:
{c_use:urban age i.children _cons} ~ normal(0,100) (1)

{U[district]} ~ normal(0,{var_U}) (1)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_c_use.

Bayesian logistic regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 1,934
Acceptance rate = .4517
Efficiency: min = .01859

avg = .02813
Log marginal-likelihood max = .04373

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

c_use
urban .7364239 .1120843 .007943 .7393282 .4993958 .9511179

age -.0262663 .0076378 .00056 -.02666 -.0418213 -.0116904

children
1 child 1.129249 .1530869 .010718 1.127919 .8263055 1.432189

2 children 1.368097 .1678695 .01045 1.361876 1.040911 1.690345
3 or more.. 1.340399 .1773981 .009683 1.337075 .9809634 1.692562

_cons -1.688619 .1480851 .007926 -1.692551 -1.966011 -1.388868

var_U .2295154 .0797827 .003815 .2180827 .1098954 .4199566

https://www.stata.com/manuals/memelogit.pdf#memelogitRemarksandexamplesex1
https://www.stata.com/manuals/memelogit.pdf#memelogit

126 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Although the average efficiency of 0.03 is not that high, there are no indications for convergence
problems. (We can verify this by looking at convergence diagnostics using bayesgraph diagnostics.)

Our estimates of the main regression parameters are close to those obtained with the melogit
command. The posterior mean estimate of variance parameter {var U}, 0.23, is slightly larger than
the corresponding estimate of 0.22 from melogit.

Three-level nonlinear model

We revisit example 20 from [ME] menl analyzing the affect of dietary additive guar on blood
glucose level after alcohol consumption. A total of seven subjects participated in the study, identified
by the subject variable. Their blood glucose was measured at time points given by the variable
time. The binary variable guar identifies experiments with and without the dietary additive.

. use https://www.stata-press.com/data/r18/glucose
(Glucose levels following alcohol ingestion (Hand and Crowder, 1996))

. describe

Contains data from https://www.stata-press.com/data/r18/glucose.dta
Observations: 196 Glucose levels following

alcohol ingestion (Hand and
Crowder, 1996)

Variables: 4 16 Feb 2023 14:16

Variable Storage Display Value
name type format label Variable label

subject byte %9.0g Subject ID
time byte %9.0g Time since alcohol ingestion

(min/10)
glucose double %9.0g Blood glucose level (mg/dl)
guar byte %12.0g guarlbl Experiment with and without guar

Sorted by:

The expected glucose level is analyzed according to a model proposed in Hand and
Crowder (1996). It is a three-level nonlinear model that includes subject-level random effects
U1[subject] and U2[subject] and guar-within-subject level random effects UU1[subject>guar]
and UU2[subject>guar]. See example 20 for a full description of the model. We consider the model
from that example in which the pairs U1 and U2, and UU1 and UU2, are assumed to be independent.

We fit a Bayesian version of the model using bayesmh. The likelihood specification is similar to the
one used by the menl command, but with bayesmh, we also specify the prior distributions for the model
parameters. Random effects are assigned normal priors by default with the corresponding variance
components {var U1}, {var U2}, {var UU1}, and {var UU2}. The parameters {phi1: cons},
{phi2: cons}, and {phi3} are assigned normal(0, 100) priors, and all variance components
are assigned igamma(0.01, 0.01) priors. Gibbs sampling is used for variance components, and
{phi1: cons}, {phi2: cons}, and {phi3} are sampled in separate blocks. We use the define()
option to define parameters {phi1:} and {phi2:} as a linear combination of the corresponding
random effects, including the constant term.

https://www.stata.com/manuals/memenl.pdf#memenlRemarksandexamplesmenlexgluc
https://www.stata.com/manuals/memenl.pdf#memenl
https://www.stata.com/manuals/memenl.pdf#memenlRemarksandexamplesmenlexgluc

bayesmh — Bayesian models using Metropolis–Hastings algorithm 127

We suppress the estimation table and redisplay results later by using bayesstats summary to
match the output from menl more closely. The model contains many parameters, so it takes about a
minute to run.

. bayesmh glucose = ({phi1:} + {phi2:}*c.time#c.time#c.time*exp(-{phi3}*time)),
> likelihood(normal({var}))
> define(phi1: U1[subject] UU1[subject>guar])
> define(phi2: U2[subject] UU2[subject>guar])
> prior({phi1:_cons} {phi2:_cons} {phi3}, normal(0, 100) split)
> prior({var var_U1 var_UU1 var_U2 var_UU2}, igamma(0.01, 0.01) split)
> block({phi1:_cons} {phi2:_cons}, split)
> block({var var_U1 var_UU1 var_U2 var_UU2}, gibbs split)
> mcmcsize(5000) rseed(17) notable
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 50001000.........2000.........3000.........4000.........
> 5000 done

Model summary

Likelihood:
glucose ~ normal(xb_phi1 + xb_phi2*c.time#c.time#c.time*exp(-{phi3}*time),{v

ar})

Priors:
{var} ~ igamma(0.01,0.01)

{phi3} ~ normal(0,100)
{phi1:_cons} ~ normal(0,100)
{phi2:_cons} ~ normal(0,100)

Hyperpriors:
{var_U1 var_UU1 var_U2 var_UU2} ~ igamma(0.01,0.01)

{U1[subject]} ~ normal(0,{var_U1})
{UU1[subject>guar]} ~ normal(0,{var_UU1})

{U2[subject]} ~ normal(0,{var_U2})
{UU2[subject>guar]} ~ normal(0,{var_UU2})

Bayesian normal regression MCMC iterations = 7,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 196
Acceptance rate = .6232
Efficiency: min = .006257

avg = .1226
Log marginal-likelihood max = .7002

The bayesmh command reports a reasonable average sampling efficiency of about 12% but the minimum
efficiency is below 1%, so we may look into improving sampling efficiency for some parameters.
There is no obvious indication of nonconvergence, but it is important to assess MCMC convergence
visually by using, for instance, bayesgraph diagnostics or more formally by running multiple
chains and evaluating the Gelman–Rubin statistics; see Convergence diagnostics using multiple chains.

128 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Let’s look at the results and compare them with the results reported by the menl command. We
report variance components as standard deviations to more easily match the results from menl

. bayesstats summary {phi1:_cons} {phi2:_cons} {phi3}
> (sd_U1:sqrt({var_U1})) (sd_U2:sqrt({var_U2}))
> (sd_UU1:sqrt({var_UU1})) (sd_UU2:sqrt({var_UU2}))
> (sd:sqrt({var}))

Posterior summary statistics MCMC sample size = 5,000

sd_U1 : sqrt({var_U1})
sd_U2 : sqrt({var_U2})

sd_UU1 : sqrt({var_UU1})
sd_UU2 : sqrt({var_UU2})

sd : sqrt({var})

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

phi1
_cons 3.675754 .1233928 .013441 3.675342 3.426524 3.933746

phi2
_cons .4454892 .075955 .01358 .443041 .2921755 .6014314

phi3 .5990691 .0131787 .001021 .5991885 .5745415 .6255063
sd_U1 .2937574 .1372631 .007882 .2697849 .1069155 .6306559
sd_U2 .1445083 .0633264 .005947 .1322361 .0626003 .2953982

sd_UU1 .1754194 .0793246 .0065 .1606835 .0717868 .3715494
sd_UU2 .1453472 .0411391 .002454 .1393845 .0828334 .2437548

sd .5847464 .033378 .000565 .583425 .5251977 .6544421

The posterior mean estimates for the coefficients {phi1: cons}, {phi2: cons}, and {phi3} and
the residual standard deviation are close to the estimates from menl. The Bayesian estimates of
variance components are higher. In particular, the posterior means for the standard deviations of {U2}
and {UU1} are not only higher but also more concentrated with 95% credible intervals of [0.06, 0.30]
and [0.07, 0.37]. In comparison, the corresponding 95% confidence intervals from menl are rather
wide, [0.0003, 6.3] and [0.0007, 6], which indicates less reliable estimates.

To improve sampling efficiency in this example, we can reparameterize the model by recentering
the random effects U1 and U2 around constants {phi1: cons} and {phi2: cons} so that these
constants become the prior means for the random effects U1 and U2. This will allow us to use Gibbs
sampling for {phi1: cons} and {phi2: cons}.

We fit the reparameterized model using bayesmh with the Gibbs sampling for the prior means.

. bayesmh glucose = ({phi1:} + {phi2:}*c.time#c.time#c.time*exp(-{phi3}*time)),
> likelihood(normal({var}))
> define(phi1: U1[subject] UU1[subject>guar], noconstant)
> define(phi2: U2[subject] UU2[subject>guar], noconstant)
> prior({U1[subject]}, normal({phi1:_cons}, {var_U1}))
> prior({U2[subject]}, normal({phi2:_cons}, {var_U2}))
> prior({phi1:_cons} {phi2:_cons} {phi3}, normal(0, 100) split)
> prior({var var_U1 var_UU1 var_U2 var_UU2}, igamma(0.01, 0.01) split)
> block({phi1:_cons} {phi2:_cons}, gibbs split)
> block({var var_U1 var_UU1 var_U2 var_UU2}, gibbs split)
> mcmcsize(5000) rseed(17) notable
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 50001000.........2000.........3000.........4000.........
> 5000 done

bayesmh — Bayesian models using Metropolis–Hastings algorithm 129

Model summary

Likelihood:
glucose ~ normal(xb_phi1 + xb_phi2*c.time#c.time#c.time*exp(-{phi3}*time),{v

ar})

Priors:
{var} ~ igamma(0.01,0.01)

{phi3} ~ normal(0,100)
{phi1:_cons} ~ normal(0,100)
{phi2:_cons} ~ normal(0,100)

Hyperpriors:
{U1[subject]} ~ normal({phi1:_cons},{var_U1})
{U2[subject]} ~ normal({phi2:_cons},{var_U2})

{var_U1 var_UU1 var_U2 var_UU2} ~ igamma(0.01,0.01)
{UU1[subject>guar]} ~ normal(0,{var_UU1})
{UU2[subject>guar]} ~ normal(0,{var_UU2})

Bayesian normal regression MCMC iterations = 7,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 196
Acceptance rate = .7143
Efficiency: min = .02353

avg = .1242
Log marginal-likelihood max = .5715

The minimum efficiency is now increased to about 2%, but the maximum efficiency is decreased. On
average, we are still at 12%.

. bayesstats summary {phi1:_cons} {phi2:_cons} {phi3}
> (sd_U1:sqrt({var_U1})) (sd_U2:sqrt({var_U2}))
> (sd_UU1:sqrt({var_UU1})) (sd_UU2:sqrt({var_UU2}))
> (sd:sqrt({var}))

Posterior summary statistics MCMC sample size = 5,000

sd_U1 : sqrt({var_U1})
sd_U2 : sqrt({var_U2})

sd_UU1 : sqrt({var_UU1})
sd_UU2 : sqrt({var_UU2})

sd : sqrt({var})

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

phi1
_cons 3.668967 .1514235 .00922 3.671296 3.361262 3.968073

phi2
_cons .4433111 .0754776 .005946 .4447485 .2940002 .5930835

phi3 .6000894 .0115797 .001068 .5994865 .5779582 .6232038
sd_U1 .3106145 .1466302 .008729 .2839151 .1113562 .6797507
sd_U2 .1422476 .0632357 .003645 .1288667 .06242 .30695

sd_UU1 .1805265 .0826131 .007787 .1635459 .0715432 .3957199
sd_UU2 .1508045 .0443954 .003536 .1445271 .0815014 .2546343

sd .5753598 .0314809 .000588 .5737936 .5181599 .6412948

We obtain very similar results to the above.

130 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Survival models
bayesmh provides several likelihood models (stexponential, stgamma(), stloglogistic(),

stlognormal(), and stweibull()) in the likelihood() option to analyze survival-time or
failure-time data. Also see [BAYES] bayes: streg and [BAYES] bayes: mestreg.

You can use these models to analyze failures-only data as well as to account for right-censoring
when you specify the failure() suboption within likelihood() and for left-truncation when you
specify the ltruncated() suboption. You can also choose between the proportional hazards (PH)
and accelerated failure-time (AFT) parameterizations with stexponential and stweibull() via
suboptions ph (the default) and aft.

When fitting survival models, you have two options for the metric of the ancillary parameters of the
survival distributions. For instance, for the Weibull distribution, you can model the shape parameter p
in the log metric by using likelihood(stweibull(lnp)) or likelihood(stweibull(lnp), log-
param) (the default) or in the original metric by using likelihood(stweibull(p), nologparam).
Similarly, for the lognormal distribution, you can model the log-standard deviation by using likeli-
hood(stlognormal(lnstd)) (the default) or the variance by using likelihood(stlognormal(var),
nologparam), and so on. Which parameterization to use for the ancillary parameters often depends
on the chosen priors. For example, in a Weibull model, we may use a normal prior for the log-shape
parameter lnp and a uniform prior for the shape parameter p.

Let’s look at a couple of examples below.

Consider cancer.dta, which records patient survival in a cancer drug trial. Of the 48 participants,
20 receive a placebo (drug = 1), 14 receive one type of treatment (drug = 2), and 14 receive another
type of treatment (drug = 3). We want to analyze time until death, measured in months (variable
studytime), as a function of treatment adjusted for age. The died variable records the failure status
for each subject, where died = 1 means a subject died and died = 0 means a subject is still alive
and is thus considered right-censored.

Initially, let’s ignore the failure status died and assume that studytime records failure times for
all subjects.

https://www.stata.com/manuals/bayesbayesstreg.pdf#bayesbayesstreg
https://www.stata.com/manuals/bayesbayesmestreg.pdf#bayesbayesmestreg

bayesmh — Bayesian models using Metropolis–Hastings algorithm 131

For a reference, let’s fit a classical Weibull regression model first by using streg.

. use https://www.stata-press.com/data/r18/cancer
(Patient survival in drug trial)

. stset studytime

Survival-time data settings

Failure event: (assumed to fail at time=studytime)
Observed time interval: (0, studytime]

Exit on or before: failure

48 total observations
0 exclusions

48 observations remaining, representing
48 failures in single-record/single-failure data

744 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 39

. streg i.drug age, distribution(weibull) nolog

Failure _d: 1 (meaning all fail)
Analysis time _t: studytime

Weibull PH regression

No. of subjects = 48 Number of obs = 48
No. of failures = 48
Time at risk = 744

LR chi2(3) = 27.52
Log likelihood = -42.840673 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

drug
Other .3979255 .1428204 -2.57 0.010 .1969223 .8040971

NA .1526351 .0595183 -4.82 0.000 .0710785 .3277712

age 1.078185 .0309445 2.62 0.009 1.019209 1.140573
_cons .0001469 .0002668 -4.86 0.000 4.18e-06 .0051652

/ln_p .6848375 .1139204 6.01 0.000 .4615576 .9081174

p 1.983449 .2259554 1.586543 2.47965
1/p .5041722 .0574355 .4032827 .6303011

Note: _cons estimates baseline hazard.

We now fit a Bayesian Weibull model by using bayesmh. To compare results with streg, we
use vague priors for model parameters and specify the eform() option to report hazard ratios
(exponentiated coefficients) instead of the coefficients reported by default by bayesmh. We also
sample the shape parameter separately from the coefficients to improve efficiency.

132 bayesmh — Bayesian models using Metropolis–Hastings algorithm

. bayesmh studytime i.drug age, likelihood(stweibull({lnp}))
> prior({studytime:} {lnp}, normal(0,10000))
> rseed(17) eform(Haz. ratio) block({lnp})
Burn-in ...
Simulation ...

Model summary

Likelihood:
studytime ~ stweibull(xb_studytime,{lnp})

Priors:
{studytime:i.drug age _cons} ~ normal(0,10000) (1)

{lnp} ~ normal(0,10000)

(1) Parameters are elements of the linear form xb_studytime.

Bayesian Weibull PH regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
No. of subjects = 48 Number of obs = 48
No. of failures = 48
Time at risk = 744

Acceptance rate = .3523
Efficiency: min = .00462

avg = .02827
Log marginal-likelihood = -200.03961 max = .04609

Equal-tailed
Haz. ratio Std. dev. MCSE Median [95% cred. interval]

studytime
drug

Other .4093515 .1455973 .008398 .3880567 .1930648 .7578985
NA .1586529 .0625765 .004121 .1507637 .0661176 .305668

age 1.07599 .0314129 .001621 1.076738 1.014651 1.138556
_cons .0008647 .0027453 .000128 .000166 4.69e-06 .0064232

lnp .6707761 .1215257 .01788 .6717002 .4291893 .8990958

Note: _cons estimates baseline hazard.

The results between bayesmh and streg are similar, as expected with weak priors.

By default, bayesmh fits a Weibull model by using the log of the shape parameter. We can use
bayesstats summary to display this parameter in the original metric and also to report its reciprocal.

. bayesstats summary (p:exp({lnp})) (reciprocal: 1/exp({lnp}))

Posterior summary statistics MCMC sample size = 10,000

p : exp({lnp})
reciprocal : 1/exp({lnp})

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

p 1.970195 .2388086 .034966 1.957563 1.536012 2.45738
reciprocal .5151116 .0630406 .009313 .5108393 .4069374 .6510367

Depending on the data and desired prior, we may want to parameterize the model to use the shape
parameter in the original metric. We can do this by specifying the nologparam suboption within
likelihood().

bayesmh — Bayesian models using Metropolis–Hastings algorithm 133

Let’s refit the above model by using the direct parameterization of the shape parameter and specify
a uniform prior for it.

. bayesmh studytime i.drug age, likelihood(stweibull({p}), nologparam)
> prior({studytime:}, normal(0,10000)) prior({p}, uniform(0,10))
> rseed(17) eform(Haz. ratio) block({p}) initial({p} 1)
Burn-in ...
Simulation ...

Model summary

Likelihood:
studytime ~ stweibull_nolog(xb_studytime,{p})

Priors:
{studytime:i.drug age _cons} ~ normal(0,10000) (1)

{p} ~ uniform(0,10)

(1) Parameters are elements of the linear form xb_studytime.

Bayesian Weibull PH regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
No. of subjects = 48 Number of obs = 48
No. of failures = 48
Time at risk = 744

Acceptance rate = .3121
Efficiency: min = .003827

avg = .01719
Log marginal-likelihood = -197.19456 max = .0247

Equal-tailed
Haz. ratio Std. dev. MCSE Median [95% cred. interval]

studytime
drug

Other .4254684 .1642118 .011746 .4001081 .1856402 .7999705
NA .1571577 .0637717 .005037 .1477305 .0634229 .3087045

age 1.081398 .0315245 .002132 1.080576 1.023548 1.148237
_cons .0003976 .0009806 .000062 .0000991 2.99e-06 .0029425

p 2.058852 .2210333 .03573 2.06263 1.635212 2.464803

Note: _cons estimates baseline hazard.

We obtain similar results.

Continuing with the cancer dataset, let’s now account for right-censoring, when died = 0.

134 bayesmh — Bayesian models using Metropolis–Hastings algorithm

As before, let’s fit a classical Weibull model first for comparison.

. stset studytime, failure(died)

Survival-time data settings

Failure event: died!=0 & died<.
Observed time interval: (0, studytime]

Exit on or before: failure

48 total observations
0 exclusions

48 observations remaining, representing
31 failures in single-record/single-failure data

744 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 39

. streg i.drug age, distribution(weibull) nolog

Failure _d: died
Analysis time _t: studytime

Weibull PH regression

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(3) = 37.07
Log likelihood = -42.090672 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

drug
Other .1705633 .0831449 -3.63 0.000 .0656067 .4434277

NA .0782594 .0402588 -4.95 0.000 .0285532 .2144953

age 1.124439 .0410087 3.22 0.001 1.046869 1.207757
_cons .0000254 .0000583 -4.60 0.000 2.80e-07 .0022994

/ln_p .5573333 .1402154 3.97 0.000 .2825163 .8321504

p 1.74601 .2448175 1.326463 2.298256
1/p .5727343 .0803062 .4351126 .7538844

Note: _cons estimates baseline hazard.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 135

With bayesmh, we specify the failure indicator in the failure() suboption within likelihood().

. bayesmh studytime i.drug age, likelihood(stweibull({lnp}), failure(died))
> prior({studytime:} {lnp}, normal(0,1000))
> rseed(17) eform(Haz. ratio)
Burn-in ...
Simulation ...

Model summary

Likelihood:
studytime ~ stweibull(xb_studytime,{lnp})

Priors:
{studytime:i.drug age _cons} ~ normal(0,1000) (1)

{lnp} ~ normal(0,1000)

(1) Parameters are elements of the linear form xb_studytime.

Bayesian Weibull PH regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

Acceptance rate = .2097
Efficiency: min = .02624

avg = .05735
Log marginal-likelihood = -144.93174 max = .1121

Equal-tailed
Haz. ratio Std. dev. MCSE Median [95% cred. interval]

studytime
drug

Other .1812423 .0873363 .004128 .1646181 .0552102 .3888732
NA .0862965 .0467029 .001991 .0761287 .023666 .2074524

age 1.12242 .0409687 .001859 1.122171 1.048103 1.207311
_cons .0003249 .0017001 .000051 .0000297 2.47e-07 .0023124

lnp .5360872 .1458155 .009001 .5467961 .2352398 .8087516

Note: _cons estimates baseline hazard.

The results are again similar to those from streg after accounting for right-censoring.

As with right-censoring, we can account for left-truncation by specifying the ltruncated()
option. We can also specify the aft option to fit a Weibull (or exponential) model using the AFT
parameterization instead of the default PH parameterization.

Bayesian analysis of change-point problem

Change-point problems deal with stochastic data, usually time-series data, that undergo some abrupt
change at some time point. It is of interest to localize the point of change and estimate the properties
of the stochastic process before and after the change.

Here we analyze the British coal mining disaster data for the years 1851 to 1962 as given in
table 5 in Carlin, Gelfand, and Smith (1992). The data are originally from Maguire, Pearson, and
Wynn (1952) with updates from Jarrett (1979).

136 bayesmh — Bayesian models using Metropolis–Hastings algorithm

coal.dta contains 112 observations, and it includes the variables id, which records observation
identifiers; count, which records the number of coal mining disasters involving 10 or more deaths;
and year, which records the years corresponding to the disasters.

. use https://www.stata-press.com/data/r18/coal
(British coal-mining disaster data, 1851-1962)

. describe

Contains data from https://www.stata-press.com/data/r18/coal.dta
Observations: 112 British coal-mining disaster

data, 1851-1962
Variables: 3 5 Feb 2022 18:03

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

id int %9.0g Observation identifier
year int %9.0g Year of disasters
count byte %9.0g Number of disasters per year

Sorted by:

The figures below suggest a fairly abrupt decrease in the rate of disasters around the 1887–1895
period, possibly because of the decline in labor productivity in coal mining (Raftery and Akman 1986).
The line plot of count versus year is shown in the left pane and its smoothed version in the right
pane.

0

2

4

6

N
um

be
r

of
 d

is
as

te
rs

 p
er

 y
ea

r

1860 1880 1900 1920 1940 1960
Year of disasters

0

1

2

3

4

M
ed

ia
n

sp
lin

e

1860 1880 1900 1920 1940 1960
Year of disasters

bayesmh — Bayesian models using Metropolis–Hastings algorithm 137

To find the change-point parameter (cp) in the rate of disasters, we apply the following Bayesian
model with noninformative priors for the parameters (accounting for the restricted range of cp):

countsi ∼ Poisson(µ1), if yeari < cp

countsi ∼ Poisson(µ2), if yeari ≥ cp

µ1 ∼ 1

µ2 ∼ 1

cp ∼ Uniform(1851, 1962)

The model has three parameters: µ1, µ2, and cp, which we will declare as {mu1}, {mu2}, and
{cp} with bayesmh. One interesting feature of this model is the specification of a mixture distribution
for count. To accommodate this, we specify the substitutable expression

({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp}))

as the mean of a Poisson distribution dpoisson(). To ensure the feasibility of the initial state,
we specify the desired initial values in option initial(). Because of high autocorrelation in the
MCMC chain, we increase the MCMC size to achieve higher precision of our estimates. We change
the default title to the title specific to our analysis. To monitor the progress of simulation, we request
that bayesmh display a dot every 500 iterations and an iteration number every 5,000 iterations.

. set seed 14

. bayesmh count,
> likelihood(dpoisson({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp})))
> prior({mu1} {mu2}, flat)
> prior({cp}, uniform(1851,1962))
> initial({mu1} 1 {mu2} 1 {cp} 1906)
> mcmcsize(40000) title(Change-point analysis) dots(500, every(5000))
Burn-in 2500 a.... done
Simulation 400005000.........10000.........15000.........20000.......
> ..25000.........30000.........35000.........40000 done

Model summary

Likelihood:
count ~ poisson({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp}))

Priors:
{mu1 mu2} ~ 1 (flat)

{cp} ~ uniform(1851,1962)

Change-point analysis MCMC iterations = 42,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 40,000
Number of obs = 112
Acceptance rate = .215
Efficiency: min = .04909

avg = .07177
Log marginal-likelihood = -173.39572 max = .09142

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

cp 1890.309 2.43097 .05486 1890.523 1886.126 1896.411
mu1 3.151979 .2894379 .005291 3.137662 2.620379 3.741032
mu2 .934086 .1162233 .001922 .9286517 .7184804 1.175782

138 bayesmh — Bayesian models using Metropolis–Hastings algorithm

According to our results, the change occurred in the first half of 1890. The drop of the disaster rate
was significant, from an estimated average of 3.2 to 0.9.

The diagnostic plots, for example, for {cp} do not indicate any convergence problems. (This is
also true for other parameters.)

. bayesgraph diagnostics {cp}

1880

1885

1890

1895

1900

0 10000 20000 30000 40000

Iteration number

Trace

0

.05

.1

.15

.2

.25

1880 1885 1890 1895 1900

Histogram

0.00

0.20

0.40

0.60

0.80

1.00

0 10 20 30 40
Lag

Autocorrelation

0

.05

.1

.15

.2

.25

1880 1885 1890 1895 1900

All

1-half

2-half

Density

cp

The simulated marginal density of {cp} shown in the right bottom corner provides more details. Apart
from the main peak, there are 2 smaller bumps around the years 1886 and 1896, which correspond
to local peaks in the number of disasters at these years: 4 in 1886 and 3 in 1896.

We may be interested in estimating the ratio between the two means. We can use bayesstats
summary to estimate this ratio.

. bayesstats summary (ratio:{mu1}/{mu2})

Posterior summary statistics MCMC sample size = 40,000

ratio : {mu1}/{mu2}

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

ratio 3.424565 .5169099 .008259 3.381721 2.541948 4.554931

The posterior mean estimate of the ratio and its 95% credible intervals confirm the change between
the two means. After 1890, the mean number of disasters decreased by a factor of about 3.4 with a
95% credible range of [2.5, 4.6].

bayesmh — Bayesian models using Metropolis–Hastings algorithm 139

Remember that convergence must be verified not only for all model parameters but also for the
functions of interest. The diagnostic plots for ratio look good.

. bayesgraph diagnostics (ratio:{mu1}/{mu2})

2

3

4

5

6

7

0 10000 20000 30000 40000

Iteration number

Trace

0

.2

.4

.6

.8

2 3 4 5 6 7

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0

.2

.4

.6

.8

2 3 4 5 6 7

All

1-half

2-half

Density

ratio: {mu1}/{mu2}

ratio

Bioequivalence in a crossover trial

Balanced crossover designs are widely used in the pharmaceutical industry for testing the efficacy
of new drugs. Gelfand et al. (1990) analyzed a two-treatment, two-period crossover trial comparing
two Carbamazepine tablets. The data consist of log-concentration measurements and are originally
described in Maas et al. (1987).

A random-effect two-treatment, two-period crossover design is given by

yi(jk) = µ+ (−1)j−1φ

2
+ (−1)k−1π

2
+ di + εi(jk) = µi(jk) + εi(jk)

εi(jk) ∼ i.i.d. N(0, σ2)

di ∼ i.i.d. N(0, τ2)

where i = 1, . . . , n is the subject index, j = 1, 2 is the treatment group, and k = 1, 2 is the period.

140 bayesmh — Bayesian models using Metropolis–Hastings algorithm

bioequiv.dta has four main variables: subject identifier id from 1 to 10, treatment identifier
treat containing values 1 or 2, period identifier period containing values 1 or 2, and outcome y
measuring log concentration for the two tablets.

. use https://www.stata-press.com/data/r18/bioequiv
(Bioequivalent study of Carbamazepine tablets)

. describe

Contains data from https://www.stata-press.com/data/r18/bioequiv.dta
Observations: 20 Bioequivalent study of

Carbamazepine tablets
Variables: 5 5 Feb 2022 23:45

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

obsid byte %9.0g Observation identifier
id byte %9.0g Subject identifier
treat byte %9.0g Assigned treatment
period byte %9.0g Period identifier
y float %9.0g Log-concentration measurement

Sorted by: id period

The outcome is assumed to be normally distributed with mean µi(jk) and variance σ2. To
accommodate the specific structure of the regression function, we use a nonlinear specification of
bayesmh. We specify the expression for the mean function µi(jk) as a nonlinear expression following
the outcome y. We include subject-specific random effects di as {D[id]} in the nonlinear expression.
We specify noninformative priors for parameters and use Gibbs sampling for variance components
{tau} and {var}. To improve convergence, we increase the burn-in period to 5,000. We also specify
the showreffects option to display the estimates of subject-specific effects {D[id]}.

. bayesmh y = ({mu}+(-1)^(treat-1)*{phi}/2+(-1)^(period-1)*{pi}/2+{D[id]}),
> likelihood(normal({var}))
> prior({D[id]}, normal(0,{tau}))
> prior({tau}, igamma(0.001,0.001))
> prior({var}, igamma(0.001,0.001))
> prior({mu} {phi} {pi}, normal(0,1e6))
> block({tau}, gibbs)
> block({var}, gibbs)
> burnin(5000) rseed(17) showreffects
Burn-in 5000 aaaaaaaaa1000aaaaaaaaa2000aaaaaaaaa3000aaaaaaaaa4000aaaaaaaaa5000
> done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
y ~ normal({mu}+(-1)^(treat-1)*{phi}/2+(-1)^(period-1)*{pi}/2+{D[id]},{var})

Priors:
{var} ~ igamma(0.001,0.001)

{D[id]} ~ normal(0,{tau})
{mu phi pi} ~ normal(0,1e6)

Hyperprior:
{tau} ~ igamma(0.001,0.001)

bayesmh — Bayesian models using Metropolis–Hastings algorithm 141

Bayesian normal regression MCMC iterations = 15,000
Metropolis--Hastings and Gibbs sampling Burn-in = 5,000

MCMC sample size = 10,000
Number of obs = 20
Acceptance rate = .641
Efficiency: min = .01171

avg = .03912
Log marginal-likelihood max = .1168

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mu 1.425404 .056644 .005234 1.427506 1.294818 1.527516
phi -.0083643 .0495315 .00145 -.0091141 -.1069416 .0918596
pi -.1800847 .0491643 .00164 -.1808839 -.2760931 -.0797408

var .0124764 .00785 .000371 .0101862 .0041796 .0331787
tau .0242893 .0211577 .000873 .0191958 .0027104 .0766

D[id]
1 .0744192 .0831627 .004779 .074302 -.0849912 .2504312
2 .1364082 .0882816 .00521 .1365127 -.0359345 .3141966
3 .0640035 .0843961 .005008 .0596878 -.0939025 .2507555
4 .0708824 .0797542 .004431 .067086 -.0787817 .2440256
5 .1828674 .0937784 .005368 .184261 .0040691 .3700767
6 -.1694658 .0876467 .006416 -.1729349 -.3306482 .0033349
7 -.1212957 .0836953 .005709 -.1226434 -.2772058 .0448479
8 -.0603565 .0796002 .005112 -.0613437 -.218101 .1017121
9 -.0769446 .0800835 .00564 -.0762672 -.2324788 .088155

10 -.0076075 .0778637 .004483 -.0097928 -.1540721 .1496486

Sampling efficiencies look reasonable considering the number of model parameters. The diagnostic
plots of the main model parameters (not shown here) look reasonable, except there is a high
autocorrelation in the MCMC for {mu}, so you may consider increasing the MCMC size or using
thinning.

Parameter θ = exp(φ) is commonly used as a measure of bioequivalence. Bioequivalence is
declared whenever θ lies in the interval [0.8, 1.2] with a high posterior probability.

We use bayesstats summary to calculate this probability and to also display other main parameters.

. bayesstats summary {mu} {phi} {pi} {tau} {var}
> (theta:exp({phi})) (equiv:exp({phi})>0.8 & exp({phi})<1.2)

Posterior summary statistics MCMC sample size = 10,000

theta : exp({phi})
equiv : exp({phi})>0.8 & exp({phi})<1.2

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mu 1.425404 .056644 .005234 1.427506 1.294818 1.527516
phi -.0083643 .0495315 .00145 -.0091141 -.1069416 .0918596
pi -.1800847 .0491643 .00164 -.1808839 -.2760931 -.0797408

tau .0242893 .0211577 .000873 .0191958 .0027104 .0766
var .0124764 .00785 .000371 .0101862 .0041796 .0331787

theta .9928879 .0492324 .001441 .9909273 .8985782 1.096211
equiv .9999 .01 .0001 1 1 1

We obtain an estimate of 0.9999 for the posterior probability of bioequivalence specified as an
expression equiv. So we would conclude bioequivalence between the two tablets.

142 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Random-effects meta-analysis of clinical trials

In meta-analysis of clinical trials, one considers several distinct studies estimating an effect of
interest. It is convenient to consider the true effect as varying randomly between the studies. A
detailed description of the random-effects meta-analysis can be found in, for example, Carlin (1992).
For traditional meta-analysis, see [META] meta.

We illustrate Bayesian random-effects meta-analysis of 2× 2 tables for the beta-blockers dataset
analyzed in Carlin (1992). These data are also analyzed in Yusuf, Simon, and Ellenberg (1987). The
data summarize the results of 22 clinical trials of beta-blockers used as postmyocardial infarction
treatment.

Example 26: Normal–normal analysis

Here we follow the approach of Carlin (1992) for the normal–normal analysis of the beta-blockers
data.

For our normal–normal analysis, we consider data in wide form and concentrate on modeling
estimates of log odds-ratios from 22 studies.

. use https://www.stata-press.com/data/r18/betablockers_wide
(Beta-blockers data in wide form)

. describe

Contains data from https://www.stata-press.com/data/r18/betablockers_wide.dta
Observations: 22 Beta-blockers data in wide form

Variables: 7 5 Feb 2022 19:02
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

study byte %9.0g Study identifier
deaths0 int %9.0g Number of deaths in the control

group
total0 int %9.0g Number of subjects in the control

group
deaths1 int %9.0g Number of deaths in the treatment

group
total1 int %9.0g Number of subjects in the

treatment group
D double %10.0g Log odds-ratio (based on

empirical logits)
var double %10.0g Squared standard error of log

odds-ratio

Sorted by:

The estimates of log odds-ratios and their squared standard errors are recorded in variables D and var,
respectively. They are computed from variables deaths0, total0, deaths1, and total1 based on
empirical logits; see Carlin [1992, eq. (3) and (4)]. The study variable records study identifiers.

In a normal–normal model, we assume a random-effects model for estimates of log odds-ratios
with normally distributed errors and normally distributed random effects. Specifically,

Di = d+ ui + εi = di + εi

where εi ∼ N(0, vari) and di ∼ N(d, σ2). Errors εi’s represent uncertainty about estimates of log
odds-ratios in each study i and are assumed to have known study-specific variances, vari’s. Random

https://www.stata.com/manuals/metameta.pdf#metameta

bayesmh — Bayesian models using Metropolis–Hastings algorithm 143

effects di’s represent differences in estimates of log odds-ratios from study to study. The estimates of
their mean and variance are of interest in meta-analysis: d estimates a true effect, and σ2 estimates
variation in estimating this effect across studies. Small values of σ2 imply that the estimates of a true
effect agree among studies.

In Bayesian analysis, we additionally specify prior distributions for d and σ2. Following Car-
lin (1992), we use noninformative priors for these parameters: normal with large variance for d and
inverse gamma with very small degrees of freedom for σ2.

d ∼ N(0, 1000)

σ2 ∼ InvGamma(0.001, 0.001)

We specify normal() likelihood with bayesmh and request observation-specific variances by
specifying variable var as normal()’s variance argument. We include D[study] in the list of
covariates to specify the random effects di. We follow the above model formulation for specifying
prior distributions. To improve efficiency, we request that all parameters be placed in separate blocks
and use Gibbs sampling for the mean parameter {d} and the variance parameter {sig2}.

. bayesmh D D[study], likelihood(normal(var)) noconstant
> prior({D[study]}, normal({d},{sig2}))
> prior({d}, normal(0,1000))
> prior({sig2}, igamma(0.001,0.001))
> block({sig2}, gibbs)
> block({d}, gibbs)
> rseed(17)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
D ~ normal(xb_D,var)

Prior:
{D[study]} ~ normal({d},{sig2}) (1)

Hyperpriors:
{d} ~ normal(0,1000)

{sig2} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_D.

Bayesian normal regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 22
Acceptance rate = .7623
Efficiency: min = .02206

avg = .02348
Log marginal-likelihood max = .02491

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

d -.2537001 .0648291 .004107 -.2574083 -.371893 -.1213832
sig2 .0191485 .0212749 .001433 .0115096 .0013426 .078143

Our posterior mean estimates d and sig2 of mean d and variance σ2 are −0.25 and 0.019, respectively,
with posterior standard deviations of 0.06 and 0.02. The estimates are close to those reported by
Carlin (1992). Considering the number of parameters, the AR and efficiency summaries look good.

144 bayesmh — Bayesian models using Metropolis–Hastings algorithm

We can obtain the efficiencies for the main parameters by using bayesstats ess.

. bayesstats ess {d} {sig2}

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .02206

avg = .02348
max = .02491

ESS Corr. time Efficiency

d 249.13 40.14 0.0249
sig2 220.55 45.34 0.0221

The efficiencies are acceptable, but based on the correlation times, the autocorrelation becomes small
only after lag 40 or so. The precision of the mean and variance estimates is comparable with those
based on 249 independent observations for the mean and 220 independent observations for the variance.

We explore convergence visually.

. bayesgraph diagnostics {d} {sig2}

-.6

-.4

-.2

0

.2

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

2

4

6

-.6 -.4 -.2 0 .2

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0

2

4

6

-.6 -.4 -.2 0 .2

All

1-half

2-half

Density

d

bayesmh — Bayesian models using Metropolis–Hastings algorithm 145

0

.05

.1

.15

.2

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

10

20

30

40

50

0 .05 .1 .15 .2

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0

20

40

60

0 .05 .1 .15 .2

All

1-half

2-half

Density

sig2

The diagnostic plots look reasonable for both parameters, but autocorrelation is high. You may consider
increasing the default MCMC size to obtain more precise estimates of posterior means.

Example 27: Binomial-normal model

There is an alternative but equivalent way of formulating the meta-analysis model from example 26
as a binomial-normal model. Instead of modeling estimates of log odds-ratios directly, one can model
probabilities of success (an event of interest) in each group.

Let pTi and pCi be the probabilities of success for the treatment and control groups in the ith trial.
The random-effects meta-analysis model can be given as

logit(pCi) = µi

logit(pTi) = µi + di

where µi is log odds of success in the control group in study i and µi + di is log odds of success in
the treatment group. di’s are viewed as random effects and are assumed to be normally distributed as

di ∼ i.i.d. N(d, σ2)

where d is the population effect and σ2 is its variability across trials.

146 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Suppose that we observe yCi successes out of nCi events in the control group and yTi successes
out of nTi events in the treatment group from the ith trial. Then,

yCi ∼ Binomial(pCi , n
C
i)

yTi ∼ Binomial(pTi , n
T
i)

The random effects are usually assumed to be normally distributed as

di ∼ i.i.d. N(d, σ2)

where d is the population effect and is the main parameter of interest in the model and σ2 is its
variability across trials.

We can rewrite the model above assuming the data are in long form as

logit(pi) = µi + (Ti == 1)di

yi ∼ Binomial(pi, ni)

di ∼ i.i.d. N(d, σ2)

where Ti is a binary treatment with Ti = 0 for the control group and Ti = 1 for the treatment group.

In Bayesian analysis, we additionally specify prior distributions for µi, d, and σ2. We use
noninformative priors.

µi ∼ 1

d ∼ N(0, 1000)

σ2 ∼ InvGamma(0.001, 0.001)

We continue our analysis of beta-blockers data. The analysis of these data using a binomial-normal
model is also provided as an example in OpenBUGS (Thomas et al. 2006).

For this analysis, we use the beta-blockers data in long form.

. use https://www.stata-press.com/data/r18/betablockers_long
(Beta-blockers data in long form)

. describe

Contains data from https://www.stata-press.com/data/r18/betablockers_long.dta
Observations: 44 Beta-blockers data in long form

Variables: 4 5 Feb 2022 19:02
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

study byte %9.0g Study identifier
treat byte %9.0g treatlab Treatment group: 0 - control, 1 -

treatment
deaths int %9.0g Number of deaths in each group
total int %9.0g Number of subjects in each group

Sorted by: study treat

Variable treat records the binary treatment: treat==0 identifies the control group, and treat==1
identifies the treatment group.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 147

We include M[study] to specify the random effects µi’s and 1.treat#D[study] for the random
effects (Ti == 1)di’s. We use a binomial() likelihood model for the number of deaths. We split
the hyperparameters and random effects {D[study]} into separate blocks and request Gibbs sampling
for sig2 to improve efficiency of the algorithm.

. bayesmh deaths M[study] 1.treat#D[study], likelihood(binomial(total))
> noconstant
> prior({M[study]}, flat)
> prior({D[study]}, normal({d},{sig2}))
> prior({d}, normal(0,1000))
> prior({sig2}, igamma(0.001,0.001))
> block({D[study]}, split)
> block({d sig2}, gibbs split)
> rseed(17)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
deaths ~ binlogit(xb_deaths,total)

Priors:
{M[study]} ~ 1 (flat) (1)
{D[study]} ~ normal({d},{sig2}) (1)

Hyperpriors:
{d} ~ normal(0,1000)

{sig2} ~ igamma(0.001,0.001)

(1) Parameter is an element of the linear form xb_deaths.

Bayesian binomial regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 44
Acceptance rate = .4846
Efficiency: min = .01025

avg = .01398
Log marginal-likelihood max = .01771

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

d -.2497927 .0655042 .004923 -.2496163 -.3739794 -.1159871
sig2 .0188492 .0225658 .002229 .0117471 .0005956 .079379

Note: Adaptation tolerance is not met in at least one of the blocks.

This model has 22 more parameters than the model in example 26. The posterior mean estimates
d and sig2 of mean d and variance σ2 are −0.25 and 0.019, respectively, with posterior standard
deviations of 0.07 and 0.02. The estimates of the mean and variance are again close to the ones
reported by Carlin (1992).

148 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Compared with example 26, the efficiencies and other statistics for the main parameters are similar.

. bayesstats ess {d} {sig2}

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .01025

avg = .01398
max = .01771

ESS Corr. time Efficiency

d 177.07 56.47 0.0177
sig2 102.47 97.59 0.0102

The diagnostic plots look similar to those shown in example 26.

. bayesgraph diagnostics {d} {sig2}

-.6

-.4

-.2

0

.2

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

2

4

6

-.6 -.4 -.2 0 .2

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0

2

4

6

8

-.6 -.4 -.2 0 .2

All

1-half

2-half

Density

d

bayesmh — Bayesian models using Metropolis–Hastings algorithm 149

0

.1

.2

.3

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

10

20

30

40

50

0 .1 .2 .3

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0

10

20

30

40

50

0 .1 .2 .3

All

1-half

2-half

Density

sig2

Item response theory

Example 28: 1PL IRT model—Rasch model

If you are not familiar with IRT, see [IRT] irt for an introduction to IRT concepts and terminology.
Here we revisit example 1 of [IRT] irt 1pl. The example analyzes student responses to nine test
questions and uses an abridged version of the mathematics and science data from De Boeck and
Wilson (2004). The goal of the analysis is to estimate the common discrimination of the questions
(items) and their individual difficulties.

An alternative formulation of the one-parameter IRT model is the Rasch (1960) model with logit
link; see, for example, Methods and formulas of [IRT] irt 1pl. A typical IRT dataset consists of
binary outcomes (success or failure) of J subjects, where each subject is tested on I items. Let the
observation yij represent the binary outcome for item i, where i = 1, . . . , I , and subject j, where
j = 1, . . . , J . Each item i is characterized by a level of difficulty bi. The difficulties are not observed
and must be estimated. Associated with each subject j is a latent trait level, θj , that characterizes
the ability of the subject. The model likelihood has a generalized linear regression form

logit{Pr(yij = 1|bi, θj)} = a(θj − bi)

https://www.stata.com/manuals/irtirt.pdf#irtirt
https://www.stata.com/manuals/irtirt1pl.pdf#irtirt1plRemarksandexamplesex1
https://www.stata.com/manuals/irtirt1pl.pdf#irtirt1pl
https://www.stata.com/manuals/irtirt1pl.pdf#irtirt1plMethodsandformulas
https://www.stata.com/manuals/irtirt1pl.pdf#irtirt1pl

150 bayesmh — Bayesian models using Metropolis–Hastings algorithm

where a is a discrimination parameter. According to this likelihood model, the probability of success
increases with the subject ability and decreases with item difficulty. The discrimination parameter
a represents the slope of the item characteristic curves. The subject abilities are assumed to be
standardized so that

θj ∼ i.i.d. N(0, 1)

The discrimination parameter a can be absorbed into θj and bi so that the model is reparameterized
as

logit{Pr(yij = 1|̃bi, θ̃j)} = θ̃j + b̃i (1)

θ̃j ∼ i.i.d. N(0, σ2)

where σ = a and b̃i = −abi. In addition to the above, a Bayesian formulation of the model requires
prior specifications for parameters σ2 and b̃i. In the following example, we use

σ2 ∼ InvGamma(0.01, 0.01)

b̃i ∼ N(0, 10)

To fit this model using bayesmh, we first need to reshape the data from example 1 of [IRT] irt
1pl in long format so that the answers to the nine questions are represented by the response variable
y, while the item and id variables encode the questions and students, respectively.

. use https://www.stata-press.com/data/r18/masc1, clear
(Data from De Boeck & Wilson (2004))

. generate id = _n

. quietly reshape long q, i(id) j(item)

. rename q y

The Rasch likelihood model can be specified with bayesmh using y as a dependent variable and
U[item] and V[id] as crossed random effects. We use the noconstant option in the likelihood
specification to include all levels of U[item] and V[id]. The random-effects parameters {V[id]}
are assigned a zero-mean normal prior with variance {var} [σ2 in model specification (1)]. The
parameter {var} is assigned a noninformative inverse-gamma prior with shape 0.01 and scale 0.01,
whereas the parameters {U[item]} [̃bi’s in model (1)] are applied ad hoc informative normal(0,10)
priors.

. bayesmh y U[item] V[id], noconstant likelihood(logit)
> prior({U[item]}, normal(0, 10))
> prior({V[id]}, normal(0, {var}))
> prior({var}, igamma(0.01,0.01))
> block({var}) rseed(17) showreffects(U[item])
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaa.. done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
y ~ logit(xb_y)

Priors:
{U[item]} ~ normal(0,10) (1)

{V[id]} ~ normal(0,{var}) (1)

Hyperprior:
{var} ~ igamma(0.01,0.01)

https://www.stata.com/manuals/irtirt1pl.pdf#irtirt1plRemarksandexamplesex1
https://www.stata.com/manuals/irtirt1pl.pdf#irtirt1pl
https://www.stata.com/manuals/irtirt1pl.pdf#irtirt1pl

bayesmh — Bayesian models using Metropolis–Hastings algorithm 151

(1) Parameter is an element of the linear form xb_y.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 7,200
Acceptance rate = .3078
Efficiency: min = .01974

avg = .1056
Log marginal-likelihood max = .1371

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

var .7292225 .0742153 .005282 .7267709 .5849949 .8788834

U[item]
1 .6027924 .0848417 .002727 .6033436 .4383438 .7676613
2 .1047865 .0817006 .002411 .1017675 -.0494946 .2691851
3 1.551305 .0953048 .002574 1.549129 1.362338 1.745973
4 -.2759237 .0791898 .002193 -.2752539 -.4319626 -.121707
5 -1.408907 .0940374 .002999 -1.40848 -1.590385 -1.224282
6 -.5913131 .0837824 .002701 -.5902511 -.7540854 -.431315
7 -1.128982 .0921381 .002597 -1.129163 -1.311912 -.9454393
8 2.054062 .1130098 .003294 2.052132 1.842889 2.278157
9 1.018282 .091037 .002634 1.015498 .8454456 1.195609

In the simulation summary, bayesmh reports a modest average efficiency of about 11% with no
indication of any convergence problems. We could have omitted the prior specification for {V[id]},
in which case bayesmh would have labeled the variance component as {var V}.

To match the discrimination and question difficulty parameters of the irt 1pl command, we can
apply the following transformation to the bayesmh model parameters. The common discrimination
parameter equals the square-root of {var}, and the individual question difficulties equal the negative
{U[item]}’s parameters, normalized by their common discrimination. We can obtain estimates of
these parameters using the bayesstats summary command.

152 bayesmh — Bayesian models using Metropolis–Hastings algorithm

. bayesstats summary (discr:sqrt({var}))
> (diff1:-{U[item]:1}/sqrt({var}))
> (diff2:-{U[item]:2}/sqrt({var}))
> (diff3:-{U[item]:3}/sqrt({var}))
> (diff4:-{U[item]:4}/sqrt({var}))
> (diff5:-{U[item]:5}/sqrt({var}))
> (diff6:-{U[item]:6}/sqrt({var}))
> (diff7:-{U[item]:7}/sqrt({var}))
> (diff8:-{U[item]:8}/sqrt({var}))
> (diff9:-{U[item]:9}/sqrt({var})), nolegend

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

discr .8528361 .043511 .003121 .8525086 .7648496 .9374878
diff1 -.708256 .1030494 .003739 -.7075444 -.9076266 -.5087035
diff2 -.1229125 .0957599 .0028 -.1200833 -.3128214 .0586056
diff3 -1.823084 .1372403 .00629 -1.822315 -2.111938 -1.567898
diff4 .3244352 .0946774 .002831 .3225444 .140814 .5142564
diff5 1.655759 .1318078 .005645 1.655727 1.397132 1.91738
diff6 .6948282 .1024367 .003553 .6955096 .500485 .9021124
diff7 1.326701 .1219158 .005173 1.324991 1.092751 1.569114
diff8 -2.413647 .165384 .006845 -2.408337 -2.762421 -2.10808
diff9 -1.196676 .1190397 .004515 -1.194314 -1.438426 -.9766857

We observe that the reported posterior means for the common discrimination and question difficulties
are close to those obtained with irt 1pl, within the limits of the MCMC standard errors.

In this example, we fit the Rasch model and use transformation to estimate parameters of the
corresponding 1PL IRT model. To avoid reparameterization, we could have fit the 1PL model directly
using a nonlinear specification of bayesmh, as we demonstrate in example 29 for the 2PL IRT model.
The shortcoming of the nonlinear specification is slower execution.

Example 29: 2PL IRT model

A more comprehensive IRT model is the 2PL model introduced by Birnbaum (1968), which allows
the discrimination and difficulty parameters to vary between items. For a detailed description and
examples of the model, see [IRT] irt 2pl.

A Bayesian formulation of the 2PL model allows the item-specific discrimination and difficulty
parameters as well as the subject abilities to be modeled, either individually or as groups, using prior
distributions.

The 2PL model likelihood has the following form,

Pr(Yij = 1) =
exp{ai(θj − bi)}

1 + exp{ai(θj − bi)}

where ai’s and bi’s are discrimination and difficulty parameters and θj’s are subject abilities. This
is a logistic regression model with probability of success modeled using the linear form ai(θj − bi).
We assume that the probability of success increases with subject ability, which implies ai > 0.
Subject ability parameters are assumed independent and distributed according to the standard normal
distribution

θj ∼ N(0, 1)

https://www.stata.com/manuals/irtirt2pl.pdf#irtirt2pl

bayesmh — Bayesian models using Metropolis–Hastings algorithm 153

For Bayesian modeling, we additionally assume the following prior specifications:

ln(ai) ∼ N(µa, σ
2
a)

bi ∼ N(µb, σ
2
b)

µa, µb ∼ N(0, 1)

σ2
a, σ

2
b ∼ Gamma(1, 1)

In the absence of prior knowledge about parameters ai’s and bi’s, we want to specify proper priors
that are not subjective. Because ai’s must be positive, a common choice is to assume that ln(ai)’s
are normally distributed with mean µa and variance σ2

a. We assume that bi’s are normally distributed
with mean µb and variance σ2

b . Our prior assumption is that the questions in the study are fairly
balanced in terms of discrimination and difficulty, and we express this expectation by specifying
N(0, 1) hyperpriors for µa and µb; that is, we assume that µa and µb are not that different from zero.
We also put a slight prior constraint on the variability of the discrimination and difficulty parameters
by assigning a gamma distribution with shape 1 and scale 1 as hyperprior distributions for σ2

a and
σ2
b . To demonstrate a Bayesian 2PL model, we use again the mathematics and science dataset masc1,

reshaped in long format as in example 28.

. bayesmh y = ({Discr[item]}*({V[id]}-{Diff[item]})), likelihood(logit)
> prior({V[id]}, normal(0, 1))
> prior({Discr[item]}, lognormal({mua}, {vara}))
> prior({D[iffitem]}, normal({mub}, {varb}))
> prior({vara varb}, gamma(1, 1))
> prior({mua mub}, normal(0, 1))
> . . .

To specify the 2PL model likelihood in bayesmh, we need to use a nonlinear specifica-
tion to accommodate the varying coefficients ai’s. For masc1.dta, we have 9 items, where
i = 1, . . . , 9, and 800 subjects, where j = 1, . . . , 800. A straightforward nonlinear specification is
({Discr[item]}*({V[id]}-{Diff[item]})), where random effects Discr[item], Diff[item],
and V[id] represent discrimination, item difficulty, and student ability, respectively.

To achieve better sampling efficiency, we place the hyperparameters {mua}, {mub}, {vara},
and {varb} into separate blocks using the block()’s suboption split. We also initialize the
discrimination and difficulty random effects with 1 because the default 0s result in an invalid initial
state. Because the random effects are not shown by default, we use the showreffects() option to
display the discrimination and difficulty parameters.

154 bayesmh — Bayesian models using Metropolis–Hastings algorithm

. bayesmh y = ({Discr[item]}*({V[id]}-{Diff[item]})), likelihood(logit)
> prior({V[id]}, normal(0, 1))
> prior({Discr}, lognormal({mua}, {vara}))
> prior({Diff}, normal({mub}, {varb}))
> prior({vara varb},gamma(1, 1)) prior({mua mub}, normal(0, 1))
> block({vara varb mua mub}, split) init({Discr} 1 {Diff} 1)
> showreffects({Discr} {Diff}) rseed(17)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
y ~ logit({Discr[item]}*({V[id]}-{Diff[item]}))

Priors:
{V[id]} ~ normal(0,1)

{Discr[item]} ~ lognormal({mua},{vara})
{Diff[item]} ~ normal({mub},{varb})

Hyperpriors:
{vara varb} ~ gamma(1,1)

{mua mub} ~ normal(0,1)

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 7,200
Acceptance rate = .3681
Efficiency: min = .008642

avg = .04421
Log marginal-likelihood max = .2174

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mua -.1532513 .172939 .006185 -.1512495 -.5066464 .1898917
vara .2459257 .1732519 .009683 .1981045 .0580936 .7308169
mub -.067519 .4272602 .009163 -.068848 -.905363 .7854128

varb 1.954127 .8517321 .030869 1.810081 .8276775 4.021905

Discr[item]
1 1.474051 .226756 .016747 1.461149 1.085353 1.977109
2 .6710171 .1110106 .004925 .6675754 .4590724 .8893063
3 .9238635 .1454797 .011848 .9209288 .6422116 1.217656
4 .8076416 .1221467 .006042 .8019258 .5810136 1.057661
5 .8825339 .1445803 .011687 .8722941 .6319481 1.197729
6 .9497897 .1401296 .007687 .944759 .6944811 1.236898
7 .4846824 .0881389 .006968 .4791858 .3258165 .6695858
8 1.353603 .219108 .023569 1.362743 .9303272 1.772465
9 .6649918 .1198973 .01178 .6650413 .444871 .90068

Diff[item]
1 -.5069895 .0818094 .004323 -.5031544 -.6849757 -.3521039
2 -.1502343 .121276 .003424 -.1455632 -.407207 .0784043
3 -1.742259 .2430085 .019752 -1.706428 -2.331342 -1.357637
4 .3328318 .1101783 .003805 .3282234 .1280959 .555568
5 1.638084 .2356449 .018557 1.616757 1.247654 2.160822
6 .6465024 .116495 .005363 .6380789 .4409175 .8947524
7 2.158884 .4045901 .031847 2.101079 1.528233 3.101399
8 -1.779656 .2166062 .022939 -1.742365 -2.300026 -1.453126
9 -1.490028 .2781509 .025778 -1.451536 -2.13252 -1.065914

bayesmh — Bayesian models using Metropolis–Hastings algorithm 155

bayesmh reports an acceptable average efficiency of about 4%. A close inspection of the estimation
table shows that the posterior mean estimates for item discrimination and difficulty are similar to the
MLE estimates obtained with the irt 2pl command; see example 1 in [IRT] irt 2pl.

Latent growth model

We revisit [SEM] Example 18, which analyzes crime rate in four quarters of 1995. The crime-rate
variables lncrime0 through lncrime3 record measurements of crime rate on the log scale. The
observed crime rates are assumed to follow a linear growth model with random intercept I and random
slope S,

lncrimei = I + iS + ε,

where I and S are latent variables and ε is a vector of error terms that are normally distributed
with mean zero and variance σ2. The coefficients for the random intercepts are fixed to 1, and the
coefficients for the slopes are fixed to 0, 1, 2, and 3, corresponding to the 4 quarters. I and S are
assumed to be correlated.

. use https://www.stata-press.com/data/r18/sem_lcm

. describe

Contains data from https://www.stata-press.com/data/r18/sem_lcm.dta
Observations: 359

Variables: 4 25 May 2022 11:08
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

lncrime0 float %9.0g ln(crime rate) in Jan & Feb
lncrime1 float %9.0g ln(crime rate) in Mar & Apr
lncrime2 float %9.0g ln(crime rate) in May & Jun
lncrime3 float %9.0g ln(crime rate) in Jul & Aug

Sorted by:

To fit the model using bayesmh, we need to specify four normal likelihood equations, one for each
crime-rate variable, that include latent variables {I[n]} and {S[n]} (see Random effects). The
error variance σ2 is given by the parameter {var}. As in a classical SEM model, the latent variables are
assumed to have a bivariate normal distribution, which we will model using the mvnormal() prior with
means {meani} and {means} and variance–covariance matrix {Sigma,m}. In a Bayesian model, we
additionally specify prior distributions for all other model parameters. Specifically, the error variance
is assigned the inverse-gamma prior, igamma(1, 1). The hyperparameters {meani} and {means} are
assigned normal(0, 100) priors. And the covariance {Sigma,m} matrix hyperparameter is assigned
an inverse-Wishart prior, iwishart(2,3,I(2)).

We place parameters in separate blocks and use Gibbs sampling for the covariance {Sigma,m}.
To do this, we must specify each parameter in separate prior() and block() options. More
conveniently, we can use prior()’s and block()’s split suboptions to combine similar parameters
in one prior() and one block() specifications.

https://www.stata.com/manuals/irtirt2pl.pdf#irtirt2plRemarksandexamplesex1
https://www.stata.com/manuals/irtirt2pl.pdf#irtirt2pl
https://www.stata.com/manuals/semexample18.pdf#semExample18

156 bayesmh — Bayesian models using Metropolis–Hastings algorithm

. bayesmh (lncrime0 I[_n]@1 S[_n]@0, likelihood(normal({var})) noconstant)
> (lncrime1 I[_n]@1 S[_n]@1, likelihood(normal({var})) noconstant)
> (lncrime2 I[_n]@1 S[_n]@2, likelihood(normal({var})) noconstant)
> (lncrime3 I[_n]@1 S[_n]@3, likelihood(normal({var})) noconstant),
> prior({I} {S}, mvnormal(2, {meani}, {means}, {Sigma,m}))
> prior({var}, igamma(1, 1)) prior({meani} {means}, normal(0, 100) split)
> prior({Sigma,m}, iwishart(2, 3, I(2)))
> block({meani means var}, split) block({Sigma,m}, gibbs) rseed(17) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
lncrime0 ~ normal(xb_lncrime0,{var})
lncrime1 ~ normal(xb_lncrime1,{var})
lncrime2 ~ normal(xb_lncrime2,{var})
lncrime3 ~ normal(xb_lncrime3,{var})

Priors:
{var} ~ igamma(1,1)

{I[_n] S[_n]} ~ mvnormal(2,{meani},{means},{Sigma,m}) (1)

Hyperpriors:
{meani means} ~ normal(0,100)

{Sigma,m} ~ iwishart(2,3,I(2))

(1) Parameter is an element of the linear form xb_lncrime0.

Bayesian normal regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 359
Acceptance rate = .4568
Efficiency: min = .02935

avg = .06287
Log marginal-likelihood max = .112

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

lncrime0
I 1 0 0 1 1 1
S 0 0 0 0 0 0

lncrime1
I 1 0 0 1 1 1
S 1 0 0 1 1 1

lncrime2
I 1 0 0 1 1 1
S 2 0 0 2 2 2

lncrime3
I 1 0 0 1 1 1
S 3 0 0 3 3 3

var .0980241 .0052328 .000288 .0977252 .0883533 .1092536
meani 5.337768 .0414444 .001238 5.338614 5.255186 5.415398
means .1429141 .0113074 .000523 .1430148 .1208266 .1648296

Sigma_1_1 .5346687 .0447749 .001346 .5324011 .4528704 .6270454
Sigma_2_1 -.0389518 .0094347 .000443 -.0388106 -.0580931 -.0212465
Sigma_2_2 .027595 .0032268 .000188 .0274319 .0216741 .0342223

bayesmh — Bayesian models using Metropolis–Hastings algorithm 157

The average sampling efficiency is about 6% with no signs of convergence problems. The posterior
mean estimates are similar to the maximum likelihood estimates reported by the sem command.

As expected, there is a negative correlation between the latent variables I and S of about −0.32.

. bayesstats summary (corr:{Sigma_1_2}/sqrt({Sigma_1_1}*{Sigma_2_2}))

Posterior summary statistics MCMC sample size = 10,000

corr : { Sigma_1_2 } /sqrt({ Sigma_1_1 } * { Sigma_2_2 })

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

corr -.3193145 .064091 .002767 -.3212176 -.4389513 -.1889672

Because the linear growth model assumes that the slope coefficients are constrained to 0, 1, 2, and
3, it may be interesting to check how well the observed average quarterly crime rates are explained
by the model. We can formally address this question by simulating the posterior predictive crime-
rate means from the model and comparing them with the observed quarterly averages. We use the
bayespredict command to simulate the expected outcomes from the posterior predictive distribution.
For example, in the specification below, the first expected outcome is obtained by applying the mean
function to { ysim1}, pmean0:@mean({ ysim1}), and saving it as {pmean0} in a new prediction
dataset predmeans.dta. Once {pmean0}, {pmean1}, {pmean2}, and {pmean3} are simulated, we
use the bayesstats ppvalues command to compute the corresponding posterior predictive p-values
to check model fit. Before using bayespredict, however, we must save our simulation results in a
permanent Stata dataset.

. bayesmh, saving(semex18sim)
note: file semex18sim.dta saved.

. bayespredict (pmean0:@mean({_ysim1})) (pmean1:@mean({_ysim2}))
> (pmean2:@mean({_ysim3})) (pmean3:@mean({_ysim4})),
> saving(predmeans) rseed(17) dots

Computing predictions 100001000.........2000.........3000.........
> 4000.........5000.........6000.........7000.........8000.........9000.........
> 10000 done

file predmeans.dta saved.
file predmeans.ster saved.

. bayesstats ppvalues {pmean0} {pmean1} {pmean2} {pmean3} using predmeans

Posterior predictive summary MCMC sample size = 10,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

pmean0 5.338168 .0211914 5.318657 .8196
pmean1 5.481137 .0188344 5.515685 .0341
pmean2 5.623649 .0187776 5.610934 .7465
pmean3 5.766436 .0211988 5.762558 .5764

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

All expected quarterly crime rates except the second one are consistent with the observed data. For
the second-quarter crime rate, we have a low posterior p-value of 3%. We could relax the assumption
of a linear growth for the second quarter and check whether this improves model fit.

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues

158 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Stored results
bayesmh stores the following in e():
Scalars

e(N) number of observations
e(N sub) number of subjects (only with survival models)
e(N fail) number of failures (only with survival models)
e(risk) total time at risk (only with survival models)
e(k) number of parameters
e(k sc) number of scalar parameters
e(k mat) number of matrix parameters
e(n eq) number of equations
e(nchains) number of MCMC chains
e(mcmcsize) MCMC sample size
e(burnin) number of burn-in iterations
e(mcmciter) total number of MCMC iterations
e(thinning) thinning interval
e(arate) overall AR
e(eff min) minimum efficiency
e(eff avg) average efficiency
e(eff max) maximum efficiency
e(Rc max) maximum Gelman–Rubin convergence statistic (only with nchains())
e(clevel) credible interval level
e(hpd) 1 if hpd is specified; 0 otherwise
e(batch) batch length for batch-means calculations
e(corrlag) maximum autocorrelation lag
e(corrtol) autocorrelation tolerance
e(dic) deviance information criterion
e(lml lm) log marginal-likelihood using Laplace–Metropolis method
e(scale) initial multiplier for scale factor; scale()
e(block# gibbs) 1 if Gibbs sampling is used in #th block, 0 otherwise
e(block# reffects) 1 if the parameters in #th block are random effects, 0 otherwise
e(block# scale) #th block initial multiplier for scale factor
e(block# tarate) #th block target adaptation rate
e(block# tolerance) #th block adaptation tolerance
e(adapt every) adaptation iterations adaptation(every())
e(adapt maxiter) maximum number of adaptive iterations adaptation(maxiter())
e(adapt miniter) minimum number of adaptive iterations adaptation(miniter())
e(adapt alpha) adaptation parameter adaptation(alpha())
e(adapt beta) adaptation parameter adaptation(beta())
e(adapt gamma) adaptation parameter adaptation(gamma())
e(adapt tolerance) adaptation tolerance adaptation(tolerance())
e(repeat) number of attempts used to find feasible initial values

Macros
e(cmd) bayesmh
e(cmdline) command as typed
e(method) sampling method
e(depvars) names of dependent variables
e(eqnames) names of equations
e(likelihood) likelihood distribution (one equation)
e(likelihood#) likelihood distribution for #th equation
e(prior) prior distribution
e(prior#) prior distribution, if more than one prior() is specified
e(priorparams) parameter specification in prior()
e(priorparams#) parameter specification from #th prior(), if more than one prior() is specified
e(parnames) names of model parameters except exclude()
e(postvars) variable names corresponding to model parameters in e(parnames)
e(subexpr) substitutable expression
e(subexpr#) substitutable expression, if more than one
e(wtype) weight type (one equation)
e(wtype#) weight type for #th equation
e(wexp) weight expression (one equation)

bayesmh — Bayesian models using Metropolis–Hastings algorithm 159

e(wexp#) weight expression for #th equation
e(block# names) parameter names from #th block
e(exclude) names of excluded parameters
e(filename) name of the file with simulation results
e(scparams) scalar model parameters
e(matparams) matrix model parameters
e(pareqmap) model parameters in display order
e(title) title in estimation output
e(rngstate) random-number state at the time of simulation (only with single chain)
e(rngstate#) random-number state for #th chain (only with nchains())
e(search) on, repeat(), or off

Matrices
e(mean) posterior means
e(sd) posterior standard deviations
e(mcse) MCSE
e(median) posterior medians
e(cri) credible intervals
e(Cov) variance–covariance matrix of parameters
e(ess) effective sample sizes
e(init) initial values vector
e(dic chains) deviance information criterion for each chain (only with nchains())
e(arate chains) acceptance rate for each chain (only with nchains())
e(eff min chains) minimum efficiency for each chain (only with nchains())
e(eff avg chains) average efficiency for each chain (only with nchains())
e(eff max chains) maximum efficiency for each chain (only with nchains())
e(lml lm chains) log marginal-likelihood for each chain (only with nchains())

Functions
e(sample) mark estimation sample

Methods and formulas
Methods and formulas are presented under the following headings:

Adaptive MH algorithm
Adaptive MH algorithm for random effects
Gibbs sampling for some likelihood-prior and prior-hyperprior configurations

Likelihood-prior configurations
Prior-hyperprior configurations

Marginal likelihood

Adaptive MH algorithm

The bayesmh command implements an adaptive random-walk Metropolis–Hastings algorithm with
optional blocking of parameters. Providing an efficient MH procedure for simulating from a general
posterior distribution is a difficult task, and various adaptive methods have been proposed (Haario,
Saksman, and Tamminen 2001; Giordani and Kohn 2010; Roberts and Rosenthal 2009; Andrieu and
Thoms 2008). The essence of the problem is in choosing an optimal proposal covariance matrix and
a scale for parameter updates. Below we describe the implemented adaptation algorithm, assuming
one block of parameters. In the presence of multiple blocks, the adaptation is applied to each block
independently. The adaptation() option of bayesmh controls all the tuning parameters for the
adaptation algorithm.

160 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Let θ be a vector of d scalar model parameters. Let T0 be the length of a burn-in period
(iterations that are discarded) as specified in burnin() and T be the size of the MCMC sample
(iterations that are retained) as specified in mcmcsize(). The total number of MCMC iterations is
then Ttotal = T0 + (T − 1) × thinning() + 1. Also, let ALEN be the length of the adaptation
interval (option adaptation(every())) and AMAX be the maximum number of adaptations (option
adaptation(maxiter())).

The steps of the adaptive MH algorithm are the following. At t = 0, we initialize θt = θ
f
0 , where

θ
f
0 is the initial feasible state, and we set adaptation counter k = 1 and initialize ρ0 = 2.38/

√
d,

where d is the number of considered parameters. Σ0 is the identity matrix. For t = 1, . . . , Ttotal, do
the following:

1. Generate proposal parameters: θ∗ = θt−1 + e, e ∼ N(0, ρ2
kΣk), where ρk and Σk are current

values of the proposal scale and covariance for adaptation iteration k.

2. Calculate the acceptance probability using

α(θ∗|θt−1) = min
{

p(θ∗|y)

p(θt−1|y)
, 1

}
where p(θ|y) = f(y|θ)p(θ) is the posterior distribution of θ corresponding to the likelihood
function f(y|θ) and prior p(θ).

3. Draw u ∼ Uniform(0, 1) and set θt = θ∗ if u < α(θ∗|θt−1) or θt = θt−1, otherwise.

4. Perform adaptive iteration k. This step is performed only if k ≤ AMAX and t mod ALEN = 0.
Update ρk according to (2), update Σk according to (3), and set k = k + 1.

5. Repeat steps 1–4. Note that the adaptation in step 4 is not performed at every MCMC iteration.

The output is the MCMC sequence {θt}Ttotal

t=T0+1 or θ1, θ1+l, θ1+2l, . . . , where l is the thinning
interval as specified in the thinning() option.

If the parameter vector θ is split into B blocks θ1, θ2, . . . , θB , then steps 1 through 3 are repeated
for each θb, b = 1, . . . , B sequentially. The adaptation in step 4 is then applied sequentially to each
block b = 1, 2, . . . , B. See Blocking of parameters in [BAYES] Intro for details about blocking.

Initialization. We recommend that you carefully choose starting values for model parameters, θ0,
to be within the domain of the posterior distribution; see Specifying initial values. By default, for a
single chain, MLEs are used as initial values, whenever available. If MLEs are not available, parameters
with positive support are initialized with 1, probabilities are initialized with 0.5, and the remaining
parameters are initialized with 0. Matrix parameters are initialized as identity matrices. If specified
initial values θ0 are within the domain of the posterior, then θ

f
0 = θ0. Otherwise, bayesmh performs

500 attempts (or as specified in search(repeat())) to find a feasible state θ
f
0 , which is used as

the initial state in the algorithm. If the command cannot find feasible values, it exits with an error.

You can specify the initrandom option to request random initial values for all model parameters.
In this case, bayesmh generates random initial values from the corresponding prior distributions of
the parameters, except for those that are assigned improper priors such as flat and jeffreys() or
user-defined priors using the density() and logdensity() prior options. You must specify your
own initial values for all model parameters for which random initial values cannot be generated.

With multiple chains, the initial values for the first chain are generated as described above and
random initial values are generally generated from prior distributions for subsequent chains.

See Specifying initial values for details.

https://www.stata.com/manuals/bayesintro.pdf#bayesIntroRemarksandexamplesBlockingofparameters
https://www.stata.com/manuals/bayesintro.pdf#bayesIntro

bayesmh — Bayesian models using Metropolis–Hastings algorithm 161

Adaptation. The adaptation step is performed as follows. At each adaptive iteration k of the
tth MCMC iteration, the proposal covariance Σk and scale ρk are tuned to achieve an optimal AR.
Some asymptotic results (for example, Gelman, Gilks, and Roberts [1997]) show that the optimal
AR, hereafter referred to as a TAR, for a single model parameter is 0.44 and is 0.234 for a block of
multiple parameters.

Adaptation is performed periodically after a constant number of iterations as specified by the adap-
tation(every()) option. At least adaptation(miniter()) adaptive iterations are performed not
to exceed adaptation(maxiter()). bayesmh does not perform adaptation if the absolute difference
between the current AR and TAR is within the tolerance given by adaptation(tolerance()).

The bayesmh command allows you to control the calculation of AR through the adapta-
tion(alpha()) option with the default of 0.75, as follows,

ARk = (1− α)ARk−1 + αÂRk

where ÂRk is the expected acceptance probability, which is computed as the average of the acceptance
probabilities, α(θ∗|θt−1), since the last adaptive iteration (for example, Andrieu and Thoms [2008]),
and AR0 is defined as described in the adaptation(tarate()) option. Choosing α ∈ (0, 1) allows
for smoother change in the current AR between adaptive iterations.

The tuning of the proposal scale ρ is based on results in Gelman, Gilks, and Roberts (1997),
Roberts and Rosenthal (2001), and Andrieu and Thoms (2008). The initial ρ0 is set to 2.38/

√
d,

where d is the number of parameters in the considered block. Then, ρk is updated according to

ρk = ρk−1e
βk{Φ−1(ARk/2)−Φ−1(TAR/2)} (2)

where Φ(·) is the standard normal cumulative distribution function and βk is defined below.

The adaptation of the covariance matrix is performed when multiple parameters are in the block
and is based on Andrieu and Thoms (2008). You may specify an initial proposal covariance matrix Σ0

in covariance() or use the identity matrix by default. Then, at time of adaptation k, the proposal
covariance Σk is recomputed according to the formula

Σk = (1− βk)Σk−1 + βkΣ̂k, βk =
β0

kγ
(3)

where Σ̂k = (Θtk − µk−1)(Θtk − µk−1)′/(tk − tk−1) is the empirical covariance of the recent
MCMC sample Θtk = {θs}tks=tk−1

and tk−1 is the MCMC iteration corresponding to the adaptive
iteration k − 1 or 0 if adaptation did not take place. µk is defined as

µk = µk−1 + βk(Θtk − µk−1), k > 1

and µ1 = Θtk , where Θtk is the sample mean of Θtk .

The constants β0 ∈ [0, 1] and γ ∈ [0, 1] in (3) are specified in the options adaptation(beta())
and adaptation(gamma()), respectively. The default values are 0.8 and 0, respectively. When
γ > 0, we have a diminishing adaptation regime, which means that Σk is not changing much from
one adaptive iteration to another. Random-walk Metropolis–Hastings algorithms with diminishing
adaptation are shown to preserve the ergodicity of the Markov chain (Roberts and Rosenthal 2007;
Andrieu and Moulines 2006; Atchadé and Rosenthal 2005).

The above algorithm is also used for discrete parameters, but discretization is used to obtain
samples of discrete values. The default initial scale factor ρ0 is set to 2.38/d for a block of d
discrete parameters. The default TAR for discrete parameters with priors bernoulli() and index()
is max{0.1353, 1/nmaxbins}, where nmaxbins is the maximum number of discrete values a parameter
can take among all the parameters specified in the same block. Blocks containing a mixture of
continuous and discrete parameters are not allowed.

162 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Adaptive MH algorithm for random effects

Suppose that u is a random-effects variable that takes discrete values 1, . . . ,m. For an independent
sample Y = {yij}, where j = 1, . . . ,m and where i = 1, . . . , nj , we assume that u takes value j
for all yij , where i = 1, . . . , nj . Consider a two-level Bayesian model that includes random-effect
parameters ηj , where j = 1, . . . ,m, one for each level of u, and additional parameter vector θ. We
assume that, with respect to the posterior distribution of the model, the random-effects parameters
ηj are conditionally independent given θ and the data sample Y . The latter can be ensured the prior
distribution of ηj’s satisfies the conditional independence condition

π(η1, . . . , ηm|θ) =

m∏
j=1

π(ηj |θ)

In this case, the posterior distribution admits the following factorization,

Pr(η1, . . . , ηm, θ|Y) = π(θ)

{ m∏
j=1

π(ηj |θ)

nj∏
i=1

Pr(yij |ηj , θ)

}

where π(θ) is the prior distribution of θ. This form of the posterior allows the parameters ηj’s to be
placed in one block and steps 1, 2, and 3 of the adaptive MH algorithm to be performed for all of
them simultaneously in a vector form, as if they were a single scalar parameter.

To request the random-effects MH algorithm in bayesmh, use block’s suboption reffects. The
same algorithm is used if one includes the random effects in the model. A random-effects block of
parameters has a default acceptance rate of 0.44, performs adaptation of the scale ρk according to
(2), but uses a fixed identity matrix for the proposal covariance Σk.

Gibbs sampling for some likelihood-prior and prior-hyperprior configurations

In some cases, when a block of parameters θb has a conjugate prior, or more appropriately,
a semiconjugate prior, with respect to the respective likelihood distribution for this block, you can
request Gibbs sampling instead of random-walk MH sampling. Then, steps 1 through 4 of the algorithm
described in Adaptive MH algorithm are replaced with just one step of Gibbs sampling as follows:

1’. Simulate proposal parameters: θb∗ ∼ Fb(θb|θ1
∗, . . . , θ

b−1
∗ , θb+1

∗ , . . . , θB∗ ,y)

Here Fb(·|·) is the full conditional distribution of θb with respect to the rest of the parameters.

Below we list the full conditional distributions for the likelihood-prior specifications for which
bayesmh provides Gibbs sampling. All priors except Jeffreys priors are semiconjugate, meaning that
full conditional distributions belong to the same family as the specified prior distributions for the
chosen data model. This contrasts with a concept of conjugacy under which the posterior distribution
of all parameters belongs to the same family as the joint prior distribution. All the combinations
below assume prior independence; that is, all parameters are independent a priori. Thus their joint
prior distribution is simply the product of the individual prior distributions.

bayesmh — Bayesian models using Metropolis–Hastings algorithm 163

Likelihood-prior configurations

Let y = (y1, y2, . . . , yn)′ be a data sample of size n. For multivariate data, Y =

(y1,y2, . . . ,yn)′ = {yij}n,di,j=1 is an n× d data matrix.

1. Normal–normal model: θb is a mean of a normal distribution of yi’s with a variance σ2; mean
and variance are independent a priori,

yi|θb, σ2 ∼ N(θb, σ2), i = 1, 2, . . . , n

θb ∼ N(µ0, τ
2
0)

θb|σ2,y ∼ Fb = N(µn, τ
2
n)

where µ0 and τ2
0 are hyperparameters (prior mean and prior variance) of a normal prior distribution

for θb and
µn =

(
µ0τ

−2
0 +

∑
yiσ
−2
)
τ2
n

τ2
n = (τ−2

0 + nσ−2)−1

2. Normal–normal regression: θb is a p1×1 subvector of a p×1 vector of regression coefficients β
from a normal linear regression model for y with an n× p design matrix X = (x′1,x

′
2, . . . ,x

′
n)′

and with a variance σ2; regression coefficients and variance are independent a priori,

yi|θb, σ2 ∼ N(x′iβ, σ
2), i = 1, 2, . . . , n

θbk ∼ i.i.d. N(β0, τ
2
0), k = 1, 2, . . . , p1

θb|σ2,y ∼ Fb = MVN(µn,Λn)

where β0 and τ2
0 are hyperparameters (prior regression coefficient and prior variance) of normal

prior distributions for θbk and

µn = (β0τ
−2
0 +X ′byσ

−2)Λn

Λn = (τ−2
0 Ip1 + σ−2X ′bXb)

−1

In the above, Ip1 is a p1 × p1 identity matrix, and Xb = (x′1b,x
′
2b, . . . ,x

′
nb)
′ is an n × p1

submatrix of X corresponding to the regression coefficients θb.

3. Normal–inverse-gamma model: θb is a variance of a normal distribution of yi’s with a mean µ;
mean and variance are independent a priori,

yi|µ, θb ∼ N(µ, θb), i = 1, 2, . . . , n

θb ∼ InvGamma(α, β)

θb|µ,y ∼ Fb = InvGamma(α+ n/2, β +

n∑
i=1

(yi − µ)2/2)

where α and β are hyperparameters (prior shape and prior scale) of an inverse-gamma prior
distribution for θb.

164 bayesmh — Bayesian models using Metropolis–Hastings algorithm

4. Multivariate-normal–multivariate-normal model: θb is a mean vector of a multivariate normal
distribution of y’s with a d × d covariance matrix Σ; mean and covariance are independent a
priori,

yi|θb,Σ ∼ MVN(θb,Σ), i = 1, 2, . . . , n

θb ∼ MVN(µ0,Λ0)

θb|Σ, Y ∼ Fb = MVN(µn,Λn)

where µ0 and Λ0 are hyperparameters (prior mean vector and prior covariance) of a multivariate
normal prior distribution for θb and

µn = ΛnΛ−1
0 µ0 + ΛnΣ−1

(
n∑
i=1

yi

)
Λn = (Λ−1

0 + nΣ−1)−1

5. Multivariate-normal–inverse-Wishart model: Θb is a d× d covariance matrix of a multivariate
normal distribution of y’s with a mean vector µ; mean and covariance are independent a priori,

yi|µ,Θb ∼ MVN(µ,Θb), i = 1, 2, . . . , n

Θb ∼ InvWishart(ν,Ψ)

Θb|µ, Y ∼ Fb = InvWishart(n+ ν,Ψ +

n∑
i=1

(yi − µ)(yi − µ)′)

where ν and Ψ are hyperparameters (prior degrees of freedom and prior scale matrix) of an
inverse-Wishart prior distribution for Θb.

6. Multivariate-normal–Jeffreys model: Θb is a d× d covariance matrix of a multivariate normal
distribution of y’s with a mean vector µ; mean and covariance are independent a priori,

yi|µ,Θb ∼ MVN(µ,Θb), i = 1, 2, . . . , n

Θb ∼ |Θb|−
d+1
2 (multivariate Jeffreys)

Θb|µ, Y ∼ Fb = InvWishart(n− 1,

n∑
i=1

(yi − µ)(yi − µ)′)

where | · | denotes the determinant of a matrix.

7. Normal–scaled-multivariate-normal regression: θb is the vector of regression coefficients β from
a normal linear regression model for y with an n× p design matrix X = (x′1,x

′
2, . . . ,x

′
n)′ and

variance σ2,
yi|θb, σ2 ∼ N(x′iβ, σ

2), i = 1, 2, . . . , n

The prior for θb conditional on σ2 is multivariate normal with covariance Λ0 proportional to σ2

with a scale matrix A (mvnscaled() prior distribution),

θb|σ2 ∼ MVN(µ0,Λ0 = σ2A)

The posterior for θb conditional on σ2 is also multivariate normal,

θb|σ2,y ∼ Fb = MVN(µn,Λn = σ2B)

bayesmh — Bayesian models using Metropolis–Hastings algorithm 165

where
µn = B(X ′y +A−1µ0)

Λn = σ2B = σ2(X ′X +A−1)−1

8. Probit–multivariate-normal model: θb is the vector of regression coefficients β from a probit
regression model for y,

P (yi = 1|θb) = Φ(x′iβ), i = 1, 2, . . . , n

θb ∼ MVN(µ0,Λ0)

θb|y ∼ Fb = MVN(µn,Λn)

where
µn = Λn(X ′y∗ + Λ−1

0 µ0)

Λn = (X ′X + Λ−1
0)−1

and y∗ = (y∗1 , y
∗
2 , . . . , y

∗
n)′ is an auxiliary vector such that

y∗i ∼ TruncatedNormal(−∞,0)(x
′
iβ, 1), yi = 0

y∗i ∼ TruncatedNormal(0,∞)(x
′
iβ, 1), yi = 1

Prior-hyperprior configurations

Suppose that a prior distribution of a parameter of interest θ has hyperparameters θh for which a
prior distribution is specified. We refer to the former prior distribution as a hyperprior. You can also
request Gibbs sampling for the following prior-hyperprior combinations.

We use θbh and θbh to refer to the hyperparameters from the block b.

1. Normal–normal model: θbh is a mean of a normal prior distribution of θ with a variance σ2
h;

mean and variance are independent a priori,

θ|θbh, σ2
h ∼ N(θbh, σ

2
h)

θbh ∼ N(µ0, τ
2
0)

θbh|σ2
h, θ ∼ Fb = N(µ1, τ

2
1)

where µ0 and τ2
0 are the prior mean and prior variance of a normal hyperprior distribution for θbh

and
µ1 =

(
µ0τ

−2
0 + θσ−2

h

)
τ2
1

τ2
1 = (τ−2

0 + σ−2
h)−1

2. Normal–inverse-gamma model: θbh is a variance of a normal prior distribution of θ with a mean
µh; mean and variance are independent a priori,

θ|µh, θbh ∼ N(µh, θ
b
h)

θbh ∼ InvGamma(α, β)

θbh|µh, θ ∼ Fb = InvGamma(α+ 0.5, β + (θ − µ)2/2)

where α and β are the prior shape and prior scale, respectively, of an inverse-gamma hyperprior
distribution for θbh.

166 bayesmh — Bayesian models using Metropolis–Hastings algorithm

3. Bernoulli–beta model: θbh is a probability of success of a Bernoulli prior distribution of θ,

θ|θbh ∼ Bernoulli(θbh)

θbh ∼ Beta(α, β)

θbh|θ ∼ Fb = Beta(α+ θ, β + 1− θ)

where α and β are the prior shape and prior scale, respectively, of a beta hyperprior distribution
for θbh.

4. Poisson–gamma model: θbh is a mean of a Poisson prior distribution of θ,

θ|θbh ∼ Poisson(θbh)

θbh ∼ Gamma(α, β)

θbh|θ ∼ Fb = Gamma(α+ θ, β/(β + 1))

where α and β are the prior shape and prior scale, respectively, of a gamma hyperprior distribution
for θbh.

5. Multivariate-normal–multivariate-normal model: θbh is a mean vector of a multivariate normal
prior distribution of θ with a d× d covariance matrix Σh; mean and covariance are independent
a priori,

θ|θbh,Σh ∼ MVN(θbh,Σh)

θbh ∼ MVN(µ0,Λ0)

θbh|Σh, θ ∼ Fb = MVN(µ1,Λ1)

where µ0 and Λ0 are the prior mean vector and prior covariance of a multivariate normal hyperprior
distribution for θbh and

µ1 = Λ1Λ−1
0 µ0 + Λ1Σ−1

h θ

Λ1 = (Λ−1
0 + Σ−1

h)−1

6. Multivariate-normal–inverse-Wishart model: Θb
h is a d× d covariance matrix of a multivariate

normal prior distribution of θ with a mean vector µh; mean and covariance are independent a
priori,

θ|µh,Θb
h ∼ MVN(µh,Θ

b
h)

Θb
h ∼ InvWishart(ν,Ψ)

Θb
h|µh, θ ∼ Fb = InvWishart(ν + 1,Ψ + (θ− µh)(θ− µh)′)

where ν and Ψ are the prior degrees of freedom and prior scale matrix of an inverse-Wishart
hyperprior distribution for Θb

h.

Marginal likelihood

The marginal likelihood is defined as

m(y) =

∫
p(y|θ)π(θ)dθ

bayesmh — Bayesian models using Metropolis–Hastings algorithm 167

where p(y|θ) is the probability density of data y given θ and π(θ) is the density of the prior
distribution for θ.

Marginal likelihood m(y), being the denominator term in the posterior distribution, has a major
role in Bayesian analysis. It is sometimes referred to as “model evidence”, and it is used as a
goodness-of-fit criterion. For example, marginal likelihoods are used in calculating Bayes factors for
the purpose of model comparison; see Methods and formulas in [BAYES] bayesstats ic.

The simplest approximation to m(y) is provided by the Monte Carlo integration,

m̂p =
1

M

M∑
s=1

p(y|θs)

where {θs}Ms=1 is an independent sample from the prior distribution π(θ). This estimation is very
inefficient, however, because of the high variance of the likelihood function. MCMC samples are not
independent and cannot be used directly for calculating m̂p.

An improved estimation of the marginal likelihood can be obtained by using importance sampling.
For a sample {θt}Tt=1, not necessarily independent, from the posterior distribution, the harmonic
mean of the likelihood values,

m̂h =

{
1

T

T∑
t=1

p(y|θt)−1

}−1

approximates m(y) (Geweke 1989).

Another method for estimating m(y) uses the Laplace approximation,

m̂l = (2π)p/2| − H̃|−1/2p(y|θ̃)π(θ̃)

where p is the number of parameters (or dimension of θ), θ̃ is the posterior mode, and H̃ is the
Hessian matrix of l(θ) = p(y|θ)π(θ) calculated at the mode θ̃.

Using the fact that the posterior sample covariance matrix, which we denote as Σ̂, is asymptot-
ically equal to (−H̃)−1, Raftery (1996) proposed what he called the Laplace–Metropolis estimator
(implemented by bayesmh):

m̂lm = (2π)p/2|Σ̂|1/2p(y|θ̃)π(θ̃)

Raftery (1996) recommends that a robust and consistent estimator be used for the posterior covariance
matrix.

Estimation of the log marginal-likelihood becomes unstable for high-dimensional models such as
multilevel models and may result in a missing value.

With multiple chains, an average of the log-marginal-likelihood values over the chains is reported.

https://www.stata.com/manuals/bayesbayesstatsic.pdf#bayesbayesstatsicMethodsandformulas
https://www.stata.com/manuals/bayesbayesstatsic.pdf#bayesbayesstatsic

168 bayesmh — Bayesian models using Metropolis–Hastings algorithm� �
Nicholas Constantine Metropolis (1915–1999) was born in Chicago. He completed his PhD in
experimental physics at the University of Chicago in 1941. In 1943, Metropolis moved to Los
Alamos, where he spent much of his time working on computers and computational algorithms.
He first worked with analog and then IBM punch card machines. Beginning in 1948, he helped
design the MANIAC I computer, one of the first digital computers. He later oversaw the construction
of the MANIAC II and MANIAC III. He collaborated with Stanislaw Ulam to develop the Monte
Carlo method, and he coauthored a paper in 1953 introducing the Monte Carlo algorithm. The
algorithm would later be extended to general cases by W. K. Hastings and would be known as
the Metropolis–Hastings algorithm. In 1957, Metropolis returned to the University of Chicago,
where he taught physics and helped found the Institute for Computer Research.

The American Physical Society elected Metropolis as a fellow in 1953 and created an award in his
honor that recognizes extraordinary work in computational physics. Also, in 1984, the Institute
of Electrical and Electronics Engineers (IEEE) awarded him the Computer Pioneer Award. In his
late 70s, Metropolis appeared in a Woody Allen film, portraying a scientist.� �

� �
Wilfred Keith Hastings (1930–2016) was born in Toronto, Ontario, Canada. He studied applied
mathematics at the University of Toronto, obtaining his bachelors in 1953 and later working
as a computer applications consultant. In this position, he was exposed to statistics and gained
experience with simulations. In 1962, he obtained his PhD, also from the University of Toronto.
His dissertation was on fiducial distributions, but after attending a statistics conference, he learned
that people were abandoning the study of fiducial probability. Shortly after graduation, he joined
the faculty at the University of Canterbury for two years and then worked at the research company
Bell Labs for two years as well. In 1966, he became an associate professor at his alma mater,
and three years later he published his work on the Markov chain Monte Carlo (MCMC) method.
His publication on Monte Carlo sampling methods was an extension of the algorithm introduced
in the 1953 publication by Nicholas Metropolis et al. The idea originated from his interactions
and consultations with the chemistry department’s application of the Metropolis algorithm to
estimating the energy of particles. Hastings’s publication was cited over 2,000 times and gave
rise to the Metropolis–Hastings algorithm. After this publication, Hastings served as a professor
at the University of Victoria for 21 years and conducted research with multiple grants from the
Natural Sciences and Engineering Research Council of Canada (NSERC).� �

� �
Harold Jeffreys (1891–1989) was born near Durham, England, and spent more than 75 years
studying and working at the University of Cambridge, principally on theoretical and observational
problems in geophysics, astronomy, mathematics, and statistics. He developed a systematic
Bayesian approach to inference in his monograph Theory of Probability.� �

References
Andrieu, C., and É. Moulines. 2006. On the ergodicity properties of some adaptive MCMC algorithms. Annals of

Applied Probability 16: 1462–1505. https://doi.org/10.1214/105051606000000286.

Andrieu, C., and J. Thoms. 2008. A tutorial on adaptive MCMC. Statistics and Computing 18: 343–373.
https://doi.org/10.1007/s11222-008-9110-y.

https://www.stata.com/giftshop/bookmarks/series10/metropolis/
https://doi.org/10.1214/105051606000000286
https://doi.org/10.1007/s11222-008-9110-y

bayesmh — Bayesian models using Metropolis–Hastings algorithm 169

Atchadé, Y. F., and J. S. Rosenthal. 2005. On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11: 815–828.
https://doi.org/10.3150/bj/1130077595.

Balov, N. 2016a. Bayesian binary item response theory models using bayesmh. The Stata Blog: Not Elsewhere
Classified. http://blog.stata.com/2016/01/18/bayesian-binary-item-response-theory-models-using-bayesmh/.

. 2016b. Fitting distributions using bayesmh. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2016/03/30/fitting-distributions-using-bayesmh/.

. 2016c. Gelman–Rubin convergence diagnostic using multiple chains. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2016/05/26/gelman-rubin-convergence-diagnostic-using-multiple-chains/.

. 2020. Bayesian inference using multiple Markov chains. The Stata Blog: Not Elsewhere Classified.
https://blog.stata.com/2020/02/24/bayesian-inference-using-multiple-markov-chains/.

. 2022. Bayesian threshold autoregressive models. The Stata Blog: Not Elsewhere Classified.
https://blog.stata.com/2022/05/18/bayesian-threshold-autoregressive-models/.

Birnbaum, A. 1968. Some latent trait models and their use in inferring an examinee’s ability. In Statistical Theories
of Mental Test Scores, ed. F. M. Lord and M. R. Novick, 395–479. Reading, MA: Addison–Wesley.

Carlin, B. P., A. E. Gelfand, and A. F. M. Smith. 1992. Hierarchical Bayesian analysis of changepoint problems.
Journal of the Royal Statistical Society, Series C 41: 389–405. https://doi.org/10.2307/2347570.

Carlin, J. B. 1992. Meta-analysis for 2×2 tables: A Bayesian approach. Statistics in Medicine 11: 141–158.
https://doi.org/10.1002/sim.4780110202.

De Boeck, P., and M. Wilson, ed. 2004. Explanatory Item Response Models: A Generalized Linear and Nonlinear
Approach. New York: Springer.

Diggle, P. J., P. J. Heagerty, K.-Y. Liang, and S. L. Zeger. 2002. Analysis of Longitudinal Data. 2nd ed. Oxford:
Oxford University Press.

Gelfand, A. E., S. E. Hills, A. Racine-Poon, and A. F. M. Smith. 1990. Illustration of Bayesian inference
in normal data models using Gibbs sampling. Journal of the American Statistical Association 85: 972–985.
https://doi.org/10.2307/2289594.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian Data Analysis.
3rd ed. Boca Raton, FL: Chapman and Hall/CRC.

Gelman, A., W. R. Gilks, and G. O. Roberts. 1997. Weak convergence and optimal scaling of random walk Metropolis
algorithms. Annals of Applied Probability 7: 110–120. https://doi.org/10.1214/aoap/1034625254.

Geweke, J. 1989. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57:
1317–1339. https://doi.org/10.2307/1913710.

Geyer, C. J. 2011. Introduction to Markov chain Monte Carlo. In Handbook of Markov Chain Monte Carlo, ed. S. P.
Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, 3–48. Boca Raton, FL: Chapman and Hall/CRC.

Giordani, P., and R. J. Kohn. 2010. Adaptive independent Metropolis–Hastings by fast estimation of mixtures of
normals. Journal of Computational and Graphical Statistics 19: 243–259. https://doi.org/10.1198/jcgs.2009.07174.

Grant, R. L., B. Carpenter, D. C. Furr, and A. Gelman. 2017a. Introducing the StataStan interface for fast, complex
Bayesian modeling using Stan. Stata Journal 17: 330–342.

. 2017b. Fitting Bayesian item response models in Stata and Stan. Stata Journal 17: 343–357.

Haario, H., E. Saksman, and J. Tamminen. 2001. An adaptive Metropolis algorithm. Bernoulli 7: 223–242.
https://doi.org/10.2307/3318737.

Hand, D. J., and M. J. Crowder. 1996. Practical Longitudinal Data Analysis. Boca Raton, FL: Chapman and Hall.

Hoff, P. D. 2009. A First Course in Bayesian Statistical Methods. New York: Springer.

Huber, C. 2016a. Introduction to Bayesian statistics, part 1: The basic concepts. The Stata Blog: Not Elsewhere
Classified. http://blog.stata.com/2016/11/01/introduction-to-bayesian-statistics-part-1-the-basic-concepts/.

. 2016b. Introduction to Bayesian statistics, part 2: MCMC and the Metropolis–Hastings algorithm. The Stata
Blog: Not Elsewhere Classified. http://blog.stata.com/2016/11/15/introduction-to-bayesian-statistics-part-2-mcmc-and-
the-metropolis-hastings-algorithm/.

Huq, N. M., and J. Cleland. 1990. Bangladesh Fertility Survey 1989 (Main Report). National Institute of Population
Research and Training.

https://doi.org/10.3150/bj/1130077595
http://blog.stata.com/2016/01/18/bayesian-binary-item-response-theory-models-using-bayesmh/
http://blog.stata.com/2016/03/30/fitting-distributions-using-bayesmh/
http://blog.stata.com/2016/03/30/fitting-distributions-using-bayesmh/
http://blog.stata.com/2016/05/26/gelman-rubin-convergence-diagnostic-using-multiple-chains/
https://blog.stata.com/2020/02/24/bayesian-inference-using-multiple-markov-chains/
https://blog.stata.com/2022/05/18/bayesian-threshold-autoregressive-models/
https://blog.stata.com/2022/05/18/bayesian-threshold-autoregressive-models/
https://doi.org/10.2307/2347570
https://doi.org/10.1002/sim.4780110202
https://doi.org/10.2307/2289594
https://doi.org/10.1214/aoap/1034625254
https://doi.org/10.2307/1913710
https://doi.org/10.1198/jcgs.2009.07174
http://www.stata-journal.com/article.html?article=st0476
http://www.stata-journal.com/article.html?article=st0476
http://www.stata-journal.com/article.html?article=st0477
https://doi.org/10.2307/3318737
http://blog.stata.com/2016/11/01/introduction-to-bayesian-statistics-part-1-the-basic-concepts/
http://blog.stata.com/2016/11/15/introduction-to-bayesian-statistics-part-2-mcmc-and-the-metropolis-hastings-algorithm/
http://blog.stata.com/2016/11/15/introduction-to-bayesian-statistics-part-2-mcmc-and-the-metropolis-hastings-algorithm/

170 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Jarrett, R. G. 1979. A note on the intervals between coal-mining disasters. Biometrika 66: 191–193.
https://doi.org/10.2307/2335266.

Jeffreys, H. 1946. An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society
of London, Series A 186: 453–461. https://doi.org/10.1098/rspa.1946.0056.

Lichman, M. 2013. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml.

Maas, B., W. R. Garnett, I. M. Pellock, and T. J. Comstock. 1987. A comparative bioavailability study of Carbamazepine
tablets and chewable formulation. Therapeutic Drug Monitoring 9: 28–33. https://doi.org/10.1097/00007691-
198703000-00006.

Maguire, B. A., E. S. Pearson, and A. H. A. Wynn. 1952. The time intervals between industrial accidents. Biometrika
39: 168–180. https://doi.org/10.2307/2332475.

Marchenko, Y. V. 2015. Bayesian modeling: Beyond Stata’s built-in models. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2015/05/26/bayesian-modeling-beyond-statas-built-in-models/.

Raftery, A. E. 1996. Hypothesis testing and model selection. In Markov Chain Monte Carlo in Practice, ed. W. R.
Gilks, S. Richardson, and D. J. Spiegelhalter, 163–187. Boca Raton, FL: Chapman and Hall.

Raftery, A. E., and V. E. Akman. 1986. Bayesian analysis of a Poisson process with a change-point. Biometrika 73:
85–89. https://doi.org/10.2307/2336274.

Rasch, G. 1960. Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen: Danish Institute of
Educational Research.

Roberts, G. O., and J. S. Rosenthal. 2001. Optimal scaling for various Metropolis–Hastings algorithms. Statistical
Science 16: 351–367. https://doi.org/10.1214/ss/1015346320.

. 2007. Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. Journal of Applied Probability
44: 458–475. https://doi.org/10.1239/jap/1183667414.

. 2009. Examples of adaptive MCMC. Journal of Computational and Graphical Statistics 18: 349–367.
https://doi.org/10.1198/jcgs.2009.06134.

Ruppert, D., M. P. Wand, and R. J. Carroll. 2003. Semiparametric Regression. Cambridge: Cambridge University
Press.

Thomas, A., B. O’Hara, U. Ligges, and S. Sturtz. 2006. Making BUGS Open. R News 6: 12–17.

Thompson, J. 2014. Bayesian Analysis with Stata. College Station, TX: Stata Press.

Yusuf, S., R. Simon, and S. S. Ellenberg. 1987. Proceedings of the workshop on methodological issues in overviews
of randomized clinical trials, May 1986. In Statistics in Medicine, vol. 6.

Zellner, A. 1986. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In
Vol. 6 of Bayesian Inference and Decision Techniques: Essays in Honor of Bruno De Finetti (Studies in Bayesian
Econometrics and Statistics), ed. P. K. Goel and A. Zellner, 233–343. Amsterdam: North-Holland.

Zellner, A., and N. S. Revankar. 1969. Generalized production functions. Review of Economic Studies 36: 241–250.
https://doi.org/10.2307/2296840.

Also see
[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] bayesmh evaluators — User-defined evaluators with bayesmh

[BAYES] bayes — Bayesian regression models using the bayes prefix

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary

[BMA] bmaregress — Bayesian model averaging for linear regression

https://doi.org/10.2307/2335266
https://doi.org/10.1098/rspa.1946.0056
http://archive.ics.uci.edu/ml
https://doi.org/10.1097/00007691-198703000-00006
https://doi.org/10.1097/00007691-198703000-00006
https://doi.org/10.2307/2332475
http://blog.stata.com/2015/05/26/bayesian-modeling-beyond-statas-built-in-models/
https://doi.org/10.2307/2336274
https://doi.org/10.1214/ss/1015346320
https://doi.org/10.1239/jap/1183667414
https://doi.org/10.1198/jcgs.2009.06134
http://www.stata-press.com/books/bayesian-analysis-with-stata/
https://doi.org/10.2307/2296840
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluators
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommands
https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/bayesintro.pdf#bayesIntro
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossary
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregress

bayesmh — Bayesian models using Metropolis–Hastings algorithm 171

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

