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Description

The bayes prefix fits Bayesian regression models. It provides Bayesian support for many likelihood-
based estimation commands. The bayes prefix uses default or user-supplied priors for model parameters
and estimates parameters using MCMC by drawing simulation samples from the corresponding posterior
model. Also see [BAYES] bayesmh and [BAYES] bayesmh evaluators for fitting more general Bayesian
models.

Quick start
Bayesian linear regression of y on x, using default normal priors for the regression coefficients and

an inverse-gamma prior for the variance
bayes: regress y x

Same as above, but use a standard deviation of 10 instead of 100 for the default normal priors and
shape of 2 and scale of 1 instead of values of 0.01 for the default inverse-gamma prior

bayes, normalprior(10) igammaprior(2 1): regress y x

Same as above, but simulate four chains
bayes, normalprior(10) igammaprior(2 1) nchains(4): regress y x

Bayesian logistic regression of y on x1 and x2, showing model summary without performing estimation
bayes, dryrun: logit y x1 x2

Same as above, but estimate model parameters and use uniform priors for all regression coefficients
bayes, prior({y: x1 x2 _cons}, uniform(-10,10)): logit y x1 x2

Same as above, but use a shortcut notation to refer to all regression coefficients
bayes, prior({y:}, uniform(-10,10)): logit y x1 x2

Same as above, but report odds ratios and use uniform priors for the slopes and a normal prior for
the intercept

bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)) or: logit y x1 x2

Report odds ratios for the logit model on replay
bayes, or

Bayesian ordered logit regression of y on x1 and x2, saving simulation results to simdata.dta and
using a random-number seed for reproducibility

bayes, saving(simdata) rseed(123): ologit y x1 x2 x3

Bayesian multinomial regression of y on x1 and x2, specifying 20,000 MCMC samples, setting length
of the burn-in period to 5,000, and requesting that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): mlogit y x1 x2
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Bayesian Poisson regression of y on x1 and x2, putting regression slopes in separate blocks and
showing block summary

bayes, block({y:x1}) block({y:x2}) blocksummary: poisson y x1 x2

Bayesian multivariate regression of y1 and y2 on x1, x2, and x3, using Gibbs sampling and requesting
90% HPD credible interval instead of the default 95% equal-tailed credible interval

bayes, gibbs clevel(90) hpd: mvreg y1 y2 = x1 x2 x3

Same as above, but use mvreg’s option level() instead of bayes’s option clevel()

bayes, gibbs hpd: mvreg y1 y2 = x1 x2 x3, level(90)

Suppress estimates of the covariance matrix from the output
bayes, noshow(Sigma, matrix)

Bayesian Weibull regression of stset survival-time outcome on x1 and x2, specifying starting values
of 1 for {y:x1} and of 2 for {y:x2}

bayes, initial({y:x1} 1 {y:x2} 2): streg x1 x2, distribution(weibull)

Bayesian panel-data regression of y on x1 and x2 with random intercepts by id, after xtseting id
as the panel variable

xtset id
bayes: xtreg y x1 x2

Bayesian two-level linear regression of y on x1 and x2 with random intercepts by id

bayes: mixed y x1 x2 || id:

Menu
Statistics > Bayesian analysis > Regression models > estimation command
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Syntax

bayes
[
, bayesopts

]
: estimation command

[
, estopts

]

estimation command is a likelihood-based estimation command, and estopts are command-specific
estimation options; see [BAYES] Bayesian estimation for a list of supported commands, and see
the command-specific entries for the supported estimation options, estopts.

bayesopts Description

Priors
∗gibbs specify Gibbs sampling; available only with regress, xtreg, or

mvreg for certain prior combinations
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and other real scalar parameters;
default is normalprior(100)

∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for
variances; default is igammaprior(0.01 0.01)

∗iwishartprior(#
[
. . .

]
) specify degrees of freedom and, optionally, scale matrix of default

inverse-Wishart prior for unstructured random-effects covariance
prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results
restubs(restub1 restub2 . . .) specify stubs for random-effects parameters for all levels; allowed

only with multilevel models

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation

∗noisily display output from the estimation command during initialization

https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhSyntaxpriorspec
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhSyntaxparamref
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhSyntaxparamref


4 bayes — Bayesian regression models using the bayes prefix

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform option display coefficient table in exponentiated form
remargl compute log marginal-likelihood for random-effects models
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
nomesummary suppress multilevel-structure summary; allowed only with

multilevel models
chainsdetail display detailed simulation summary for each chain[
no

]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is command-specific
dots(#

[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output; allowed only with panel-data and multilevel
commands

melabel display estimation table using the same row labels as
estimation command; allowed only with multilevel commands

nogroup suppress table summarizing groups; allowed only with multilevel
models

notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.

The full specification of iwishartprior() is iwishartprior(#
[

matname
] [

, relevel(levelvar)
]
).

Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Priors �

gibbs specifies that Gibbs sampling be used to simulate model parameters instead of the default
adaptive Metropolis–Hastings sampling. This option is allowed only with the regress, xtreg,
and mvreg estimation commands. It is available only with certain prior combinations such as
normal prior for regression coefficients and an inverse-gamma prior for the variance. Specifying
the gibbs option is equivalent to specifying block()’s gibbs suboption for all default blocks of
parameters. If you use the block() option to define your own blocks of parameters, the gibbs
option will have no effect on those blocks, and an MH algorithm will be used to update parameters
in those blocks unless you also specify block()’s gibbs suboption.

With panel-data and multilevel linear models, Gibbs sampling is used by default for regression
coefficients and variance components, and Metropolis–Hastings sampling is used for random effects.
For panel-data linear models, you can specify option gibbs to use Gibbs sampling also for random
effects.

normalprior(#) specifies the standard deviation of the default normal priors. The default is nor-
malprior(100). The normal priors are used for scalar parameters defined on the whole real line;
see Default priors for details.

igammaprior(# #) specifies the shape and scale parameters of the default inverse-gamma priors.
The default is igammaprior(0.01 0.01). The inverse-gamma priors are used for positive scalar
parameters such as a variance; see Default priors for details. Instead of a number #, you can
specify a missing value (.) to refer to the default value of 0.01.

iwishartprior(#
[

matname
] [

, relevel(levelvar)
]
) specifies the degrees of freedom and,

optionally, the scale matrix matname of the default inverse-Wishart priors used for unstructured
covariances of random effects with multilevel models. The degrees of freedom # is a positive real
scalar with the default value of d+1, where d is the number of random-effects terms at the level of
hierarchy levelvar. Instead of a number #, you can specify a missing value (.) to refer to the default
value. Matrix name matname is the name of a positive-definite Stata matrix with the default of
I(d), the identity matrix of dimension d. If relevel(levelvar) is omitted, the specified parameters
are used for inverse-Wishart priors for all levels with unstructured random-effects covariances.
Otherwise, they are used only for the prior for the specified level levelvar. See Default priors for
details.

prior(priorspec) specifies a prior distribution for model parameters. This option may be repeated.
A prior may be specified for any of the model parameters, except the random-effects parameters
in multilevel models. Model parameters with the same prior specifications are placed in a separate
block. Model parameters that are not included in prior specifications are assigned default priors;
see Default priors for details. Model parameters may be scalars or matrices, but both types may not
be combined in one prior statement. If multiple scalar parameters are assigned a single univariate
prior, they are considered independent, and the specified prior is used for each parameter. You
may assign a multivariate prior of dimension d to d scalar parameters. Also see Referring to model
parameters in [BAYES] bayesmh.

All prior() distributions are allowed, but they are not guaranteed to correspond to proper posterior
distributions for all likelihood models. You need to think carefully about the model you are building
and evaluate its convergence thoroughly; see Convergence of MCMC in [BAYES] bayesmh.

dryrun specifies to show the summary of the model that would be fit without actually fitting the
model. This option is recommended for checking specifications of the model before fitting the
model. The model summary reports the information about the likelihood model and about priors
for all model parameters.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhSyntaxpriorspec
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� � �
Simulation �

nchains(#) specifies the number of Markov chains to simulate. You must specify at least two
chains. By default, only one chain is produced. Simulating multiple chains is useful for convergence
diagnostics and to improve precision of parameter estimates. Four chains are often recommended in
the literature, but you can specify more or less depending on your objective. The reported estimation
results are based on all chains. You can use bayesstats summary with option sepchains to see
the results for each chain. The reported acceptance rate, efficiencies, and log marginal-likelihood
are averaged over all chains. You can use option chainsdetail to see these simulation summaries
for each chain. Also see Convergence diagnostics using multiple chains in [BAYES] bayesmh and
Gelman–Rubin convergence diagnostic in [BAYES] bayesstats grubin.

mcmcsize(#) specifies the target MCMC sample size. The default MCMC sample size is mcmc-
size(10000). The total number of iterations for the MH algorithm equals the sum of the burn-in
iterations and the MCMC sample size in the absence of thinning. If thinning is present, the total
number of MCMC iterations is computed as burnin() + (mcmcsize()− 1)× thinning() + 1.
Computation time of the MH algorithm is proportional to the total number of iterations. The
MCMC sample size determines the precision of posterior summaries, which may be different for
different model parameters and will depend on the efficiency of the Markov chain. With multiple
chains, mcmcsize() applies to each chain. Also see Burn-in period and MCMC sample size in
[BAYES] bayesmh.

burnin(#) specifies the number of iterations for the burn-in period of MCMC. The values of parameters
simulated during burn-in are used for adaptation purposes only and are not used for estimation.
The default is burnin(2500). Typically, burn-in is chosen to be as long as or longer than the
adaptation period. The burn-in period may need to be larger for multilevel models because these
models introduce high-dimensional random-effects parameters and thus require longer adaptation
periods. With multiple chains, burnin() applies to each chain. Also see Burn-in period and
MCMC sample size in [BAYES] bayesmh and Convergence of MCMC in [BAYES] bayesmh.

thinning(#) specifies the thinning interval. Only simulated values from every (1+k×#)th iteration
for k = 0, 1, 2, . . . are saved in the final MCMC sample; all other simulated values are discarded.
The default is thinning(1); that is, all simulation values are saved. Thinning greater than one
is typically used for decreasing the autocorrelation of the simulated MCMC sample. With multiple
chains, thinning() applies to each chain.

rseed(#) sets the random-number seed. This option can be used to reproduce results. With one
chain, rseed(#) is equivalent to typing set seed # prior to calling the bayes prefix; see [R] set
seed. With multiple chains, you should use rseed() for reproducibility; see Reproducing results
in [BAYES] bayesmh.

exclude(paramref) specifies which model parameters should be excluded from the final MCMC
sample. These model parameters will not appear in the estimation table, and postestimation
features for these parameters and log marginal-likelihood will not be available. This option is
useful for suppressing nuisance model parameters. For example, if you have a factor predictor
variable with many levels but you are only interested in the variability of the coefficients associated
with its levels, not their actual values, then you may wish to exclude this factor variable from the
simulation results. If you simply want to omit some model parameters from the output, see the
noshow() option. paramref can include individual random-effects parameters.

restubs(restub1 restub2 . . .) specifies the stubs for the names of random-effects parameters. You
must specify stubs for all levels—one stub per level. This option overrides the default random-effects
stubs. See Likelihood model for details about the default names of random-effects parameters.
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� � �
Blocking �

blocksize(#) specifies the maximum block size for the model parameters; default is blocksize(50).
This option does not apply to random-effects parameters. Each group of random-effects parameters
is placed in one block, regardless of the number of random-effects parameters in that group.

block( paramref
[
, blockopts

]
) specifies a group of model parameters for the blocked MH algorithm.

By default, model parameters, except the random-effects parameters, are sampled as independent
blocks of 50 parameters or of the size specified in option blocksize(). Regression coefficients
from different equations are placed in separate blocks. Auxiliary parameters such as variances
and correlations are sampled as individual separate blocks, whereas the cutpoint parameters of
the ordinal-outcome regressions are sampled as one separate block. With multilevel models, each
group of random-effects parameters is placed in a separate block, and the block() option is not
allowed with random-effects parameters. The block() option may be repeated to define multiple
blocks. Different types of model parameters, such as scalars and matrices, may not be specified
in one block(). Parameters within one block are updated simultaneously, and each block of
parameters is updated in the order it is specified; the first specified block is updated first, the
second is updated second, and so on. See Improving efficiency of the MH algorithm—blocking
of parameters in [BAYES] bayesmh.

blockopts include gibbs, split, scale(), covariance(), and adaptation().

gibbs specifies to use Gibbs sampling to update parameters in the block. This option is al-
lowed only for hyperparameters and only for specific combinations of prior and hyperprior
distributions; see Gibbs sampling for some likelihood-prior and prior-hyperprior configura-
tions in [BAYES] bayesmh. For more information, see Gibbs and hybrid MH sampling in
[BAYES] bayesmh. gibbs may not be combined with scale(), covariance(), or adapta-
tion().

split specifies that all parameters in a block are treated as separate blocks. This may be useful
for levels of factor variables.

scale(#) specifies an initial multiplier for the scale factor corresponding to the specified block.
The initial scale factor is computed as #/

√
np for continuous parameters and as #/np for discrete

parameters, where np is the number of parameters in the block. The default is scale(2.38).
If specified, this option overrides the respective setting from the scale() option specified with
the command. scale() may not be combined with gibbs.

covariance(matname) specifies a scale matrix matname to be used to compute an initial
proposal covariance matrix corresponding to the specified block. The initial proposal covariance
is computed as rho×Sigma, where rho is a scale factor and Sigma = matname. By default,
Sigma is the identity matrix. If specified, this option overrides the respective setting from the
covariance() option specified with the command. covariance() may not be combined with
gibbs.

adaptation(tarate()) and adaptation(tolerance()) specify block-specific TAR and ac-
ceptance tolerance. If specified, they override the respective settings from the adaptation()
option specified with the command. adaptation() may not be combined with gibbs.

blocksummary displays the summary of the specified blocks. This option is useful when block()
is specified.

noblocking requests that no default blocking is applied to model parameters. By default, model
parameters are sampled as independent blocks of 50 parameters or of the size specified in option
blocksize(). For multilevel models, this option has no effect on random-effects parameters;
blocking is always applied to them.
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� � �
Initialization �

initial(initspec) specifies initial values for the model parameters to be used in the simulation.
With multiple chains, this option is equivalent to specifying option init1(). You can specify a
parameter name, its initial value, another parameter name, its initial value, and so on. For example,
to initialize a scalar parameter alpha to 0.5 and a 2x2 matrix Sigma to the identity matrix I(2),
you can type

bayes, initial({alpha} 0.5 {Sigma,m} I(2)) : . . .

You can also specify a list of parameters using any of the specifications described in Referring to
model parameters in [BAYES] bayesmh. For example, to initialize all regression coefficients from
equations y1 and y2 to zero, you can type

bayes, initial({y1:} {y2:} 0) : . . .

The general specification of initspec is

paramref initval
[

paramref initval
[
. . .

] ]
where initval is a number, a Stata expression that evaluates to a number, or a Stata matrix for
initialization of matrix parameters.

Curly braces may be omitted for scalar parameters but must be specified for matrix parameters.
Initial values declared using this option override the default initial values or any initial values
declared during parameter specification in the likelihood() option. See Initial values for details.

init#(initspec) specifies initial values for the model parameters for the #th chain. This option requires
option nchains(). init1() overrides the default initial values for the first chain, init2() for
the second chain, and so on. You specify initial values in init#() just like you do in option
initial(). See Initial values for details.

initall(initspec) specifies initial values for the model parameters for all chains. This option requires
option nchains(). You specify initial values in initall() just like you do in option initial().
You should avoid specifying fixed initial values in initall() because then all chains will use the
same initial values. initall() is useful to specify random initial values when you define your
own priors within prior()’s density() and logdensity() suboptions. See Initial values for
details.

nomleinitial suppresses using maximum likelihood estimates (MLEs) as starting values for model
parameters. With multiple chains, this option and discussion below apply only to the first chain. By
default, when no initial values are specified, MLE values from estimation command are used as initial
values. For multilevel commands, MLE estimates are used only for regression coefficients. Random
effects are assigned zero values, and random-effects variances and covariances are initialized with
ones and zeros, respectively. If nomleinitial is specified and no initial values are provided, the
command uses ones for positive scalar parameters, zeros for other scalar parameters, and identity
matrices for matrix parameters. nomleinitial may be useful for providing an alternative starting
state when checking convergence of MCMC. This option cannot be combined with initrandom.

initrandom specifies that the model parameters be initialized randomly. Random initial values are
generated from the prior distributions of the model parameters. If you want to use fixed initial
values for some of the parameters, you can specify them in the initial() option or during
parameter declarations in the likelihood() option. Random initial values are not available for
parameters with flat, jeffreys, density(), logdensity(), and jeffreys() priors; you
must provide your own initial values for such parameters. This option cannot be combined with
nomleinitial. See Specifying initial values in [BAYES] bayesmh for details.

initsummary specifies that the initial values used for simulation be displayed.
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noisily specifies that the output from the estimation command be shown during initialization. The
estimation command is executed once to set up the model and calculate initial values for model
parameters.

� � �
Adaptation �

adaptation(adaptopts) controls adaptation of the MCMC procedure. Adaptation takes place every
prespecified number of MCMC iterations and consists of tuning the proposal scale factor and proposal
covariance for each block of model parameters. Adaptation is used to improve sampling efficiency.
Provided defaults are based on theoretical results and may not be sufficient for all applications.
See Adaptation of the MH algorithm in [BAYES] bayesmh for details about adaptation and its
parameters.

adaptopts are any of the following options:

every(#) specifies that adaptation be attempted every #th iteration. The default is every(100).
To determine the adaptation interval, you need to consider the maximum block size specified
in your model. The update of a block with k model parameters requires the estimation
of a k × k covariance matrix. If the adaptation interval is not sufficient for estimating the
k(k + 1)/2 elements of this matrix, the adaptation may be insufficient.

maxiter(#) specifies the maximum number of adaptive iterations. Adaptation includes tuning
of the proposal covariance and of the scale factor for each block of model parameters.
Once the TAR is achieved within the specified tolerance, the adaptation stops. However, no
more than # adaptation steps will be performed. The default is variable and is computed as
max{25, floor(burnin()/adaptation(every()))}.
maxiter() is usually chosen to be no greater than (mcmcsize() + burnin())/
adaptation(every()).

miniter(#) specifies the minimum number of adaptive iterations to be performed regardless of
whether the TAR has been achieved. The default is miniter(5). If the specified miniter()
is greater than maxiter(), then miniter() is reset to maxiter(). Thus, if you specify
maxiter(0), then no adaptation will be performed.

alpha(#) specifies a parameter controlling the adaptation of the AR. alpha() should be in
[0, 1]. The default is alpha(0.75).

beta(#) specifies a parameter controlling the adaptation of the proposal covariance matrix.
beta() must be in [0,1]. The closer beta() is to zero, the less adaptive the proposal
covariance. When beta() is zero, the same proposal covariance will be used in all MCMC
iterations. The default is beta(0.8).

gamma(#) specifies a parameter controlling the adaptation rate of the proposal covariance
matrix. gamma() must be in [0,1]. The larger the value of gamma(), the less adaptive the
proposal covariance. The default is gamma(0).

tarate(#) specifies the TAR for all blocks of model parameters; this is rarely used. tarate()
must be in (0,1). The default AR is 0.234 for blocks containing continuous multiple parameters,
0.44 for blocks with one continuous parameter, and 1/n maxlev for blocks with discrete
parameters, where n maxlev is the maximum number of levels for a discrete parameter in
the block.

tolerance(#) specifies the tolerance criterion for adaptation based on the TAR. tolerance()
should be in (0,1). Adaptation stops whenever the absolute difference between the current
AR and TAR is less than tolerance(). The default is tolerance(0.01).

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesAdaptationoftheMHalgorithm
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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scale(#) specifies an initial multiplier for the scale factor for all blocks. The initial scale factor is
computed as #/

√
np for continuous parameters and #/np for discrete parameters, where np is the

number of parameters in the block. The default is scale(2.38).

covariance(cov) specifies a scale matrix cov to be used to compute an initial proposal covariance
matrix. The initial proposal covariance is computed as ρ × Σ, where ρ is a scale factor and
Σ = matname. By default, Σ is the identity matrix. Partial specification of Σ is also allowed.
The rows and columns of cov should be named after some or all model parameters. According
to some theoretical results, the optimal proposal covariance is the posterior covariance matrix of
model parameters, which is usually unknown. This option does not apply to the blocks containing
random-effects parameters.

� � �
Reporting �

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.
The default is clevel(95) or as set by [BAYES] set clevel.

hpd displays the HPD credible intervals instead of the default equal-tailed credible intervals.

eform option causes the coefficient table to be displayed in exponentiated form; see [R] eform option.
The estimation command determines which eform option is allowed (eform(string) and eform
are always allowed).

remargl specifies to compute the log marginal-likelihood for panel-data and multilevel models. It
is not reported by default for these models. Bayesian panel-data and multilevel models contain
many parameters because, in addition to regression coefficients and variance components, they also
estimate individual random effects. The computation of the log marginal-likelihood involves the
inverse of the determinant of the sample covariance matrix of all parameters and loses its accuracy
as the number of parameters grows. For high-dimensional models such as multilevel models, the
computation of the log marginal-likelihood can be time consuming, and its accuracy may become
unacceptably low. Because it is difficult to access the levels of accuracy of the computation for
all panel-data and multilevel models, the log marginal-likelihood is not reported by default. For
models containing a small number of random effects, you can use the remargl option to compute
and display the log marginal-likelihood.

batch(#) specifies the length of the block for calculating batch means and an MCSE using batch
means. The default is batch(0), which means no batch calculations. When batch() is not
specified, the MCSE is computed using effective sample sizes instead of batch means. batch()
may not be combined with corrlag() or corrtol().

saving(filename
[
, replace

]
) saves simulation results in filename.dta. The replace option

specifies to overwrite filename.dta if it exists. If the saving() option is not specified, the bayes
prefix saves simulation results in a temporary file for later access by postestimation commands.
This temporary file will be overridden every time the bayes prefix is run and will also be erased
if the current estimation results are cleared. saving() may be specified during estimation or on
replay.

The saved dataset has the following structure. Variable chain records chain identifiers. Variable
index records iteration numbers. The bayes prefix saves only states (sets of parameter values) that

are different from one iteration to another and the frequency of each state in variable frequency.
(Some states may be repeated for discrete parameters.) As such, index may not necessarily
contain consecutive integers. Remember to use frequency as a frequency weight if you need to
obtain any summaries of this dataset. Values for each parameter are saved in a separate variable
in the dataset. Variables containing values of parameters without equation names are named as
eq0 p#, following the order in which parameters are declared in the bayes prefix. Variables
containing values of parameters with equation names are named as eq# p#, again following the

https://www.stata.com/manuals/bayessetclevel.pdf#bayessetclevel
https://www.stata.com/manuals/reform_option.pdf#reform_option
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
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order in which parameters are defined. Parameters with the same equation names will have the
same variable prefix eq#. For example,

. bayes, saving(mcmc): . . .

will create a dataset, mcmc.dta, with variable names eq1 p1 for {y:x1}, eq1 p2 for {y: cons},
and eq0 p1 for {var}. Also see macros e(parnames) and e(varnames) for the correspondence
between parameter names and variable names.

In addition, the bayes prefix saves variable loglikelihood to contain values of the log likelihood
from each iteration and variable logposterior to contain values of the log posterior from each
iteration.

nomodelsummary suppresses the detailed summary of the specified model. The model summary is
reported by default.

nomesummary suppresses the summary about the multilevel structure of the model. This summary is
reported by default for multilevel commands.

chainsdetail specifies that acceptance rates, efficiencies, and log marginal-likelihoods be reported
separately for each chain. By default, the header reports these statistics averaged over all chains.
This option requires option nchains().

nodots, dots, and dots(#) specify to suppress or display dots during simulation. With multiple
chains, these options affect all chains. dots(#) displays a dot every # iterations. During the
adaptation period, a symbol a is displayed instead of a dot. If dots(. . ., every(#)) is specified,
then an iteration number is displayed every #th iteration instead of a dot or a. dots(, every(#)) is
equivalent to dots(1, every(#)). dots displays dots every 100 iterations and iteration numbers
every 1,000 iterations; it is a synonym for dots(100, every(1000)). dots is the default with
multilevel commands, and nodots is the default with other commands.

show(paramref) or noshow(paramref) specifies a list of model parameters to be included in the output
or excluded from the output, respectively. By default, all model parameters (except random-effects
parameters with multilevel models) are displayed. Do not confuse noshow() with exclude(),
which excludes the specified parameters from the MCMC sample. When the noshow() option
is specified, for computational efficiency, MCMC summaries of the specified parameters are not
computed or stored in e(). paramref can include individual random-effects parameters.

showreffects and showreffects(reref) are used with panel-data and multilevel commands and
specify that all or a list reref of random-effects parameters be included in the output in addition to
other model parameters. By default, all random-effects parameters are excluded from the output
as if you have specified the noshow() option. This option computes, displays, and stores in e()
MCMC summaries for the random-effects parameters.

melabel specifies that the bayes prefix use the same row labels as estimation command in the
estimation table. This option is allowed only with multilevel commands. It is useful to match the
estimation table output of bayes: mecmd with that of mecmd. This option implies nomesummary
and nomodelsummary.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header. This option is for use with multilevel
commands.

notable suppresses the estimation table from the output. By default, a summary table is displayed
containing all model parameters except those listed in the exclude() and noshow() options.
Regression model parameters are grouped by equation names. The table includes six columns
and reports the following statistics using the MCMC simulation results: posterior mean, posterior
standard deviation, MCMC standard error or MCSE, posterior median, and credible intervals.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhSyntaxparamref
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhSyntaxparamref
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
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noheader suppresses the output header either at estimation or upon replay.

title(string) specifies an optional title for the command that is displayed above the table of the
parameter estimates. The default title is specific to the specified likelihood model.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] Estimation options.

� � �
Advanced �

search(search options) searches for feasible initial values. search options are on, repeat(#),
and off.

search(on) is equivalent to search(repeat(500)). This is the default.

search(repeat(k)), k > 0, specifies the number of random attempts to be made to find
a feasible initial-value vector, or initial state. The default is repeat(500). An initial-value
vector is feasible if it corresponds to a state with positive posterior probability. If feasible initial
values are not found after k attempts, an error will be issued. repeat(0) (rarely used) specifies
that no random attempts be made to find a feasible starting point. In this case, if the specified
initial vector does not correspond to a feasible state, an error will be issued.

search(off) prevents the command from searching for feasible initial values. We do not recom-
mend specifying this option.

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes. The
default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of all lag-k
autocorrelation values for k from 0 to either corrlag() or the index at which the autocorrelation
becomes less than corrtol() if the latter is less than corrlag(). Options corrlag() and
batch() may not be combined.

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The
default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-k
autocorrelation is less than corrtol(), then all autocorrelation lags beyond the kth lag are
discarded. Options corrtol() and batch() may not be combined.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Remarks and examples stata.com

Remarks and examples are presented under the following headings:

Using the bayes prefix
Likelihood model
Default priors
Initial values
Command-specific options

Introductory example
Linear regression: A case of informative default priors
Logistic regression with perfect predictors
Multinomial logistic regression
Generalized linear model
Truncated Poisson regression
Zero-inflated negative binomial model
Parametric survival model
Heckman selection model
Multilevel models

Two-level models
Crossed-effects model
Blocked-diagonal covariance structures

Panel-data models
Time-series and DSGE models
Video examples

For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduc-
tion to Bayesian estimation using adaptive MH and Gibbs algorithms, see [BAYES] bayesmh. See
[BAYES] Bayesian estimation for a list of supported estimation commands. For a quick overview
example of all Bayesian commands, see Overview example in [BAYES] Bayesian commands.

Using the bayes prefix

The bayes prefix provides Bayesian estimation for many likelihood-based regression models.
Simply prefix your estimation command with bayes to get Bayesian estimates—bayes: esti-
mation command; see [BAYES] Bayesian estimation for a list of supported commands. Also see
[BAYES] bayesmh for other Bayesian models.

Similarly to the bayesmh command, the bayes prefix sets up a Bayesian posterior model, uses MCMC
to simulate parameters of this model, and summarizes and reports results. The process of specifying
a Bayesian model is similar to that described in Setting up a posterior model in [BAYES] bayesmh,
except the likelihood model is now determined by the specified estimation command and default
priors are used for model parameters. The bayes prefix and the bayesmh command share the same
methodology of MCMC simulation and the same summarization and reporting of simulation results;
see [BAYES] bayesmh for details. In the following sections, we provide information specific to the
bayes prefix.

Likelihood model

With the bayes prefix, the likelihood component of the Bayesian model is determined by the
prefixed estimation command, and all posterior model parameters are defined by the likelihood model.
For example, the parameters of the model

. bayes: streg age smoking, distribution(lognormal)

are the regression coefficients and auxiliary parameters you see when you fit

. streg age smoking, distribution(lognormal)

http://stata.com
https://www.stata.com/manuals/bayesintro.pdf#bayesIntro
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommandsRemarksandexamplesOverviewexample
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommands
https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesSettingupaposteriormodel
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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All estimation commands have regression coefficients as their model parameters. Some commands
have additional parameters such as variances and correlation coefficients.

The bayes prefix typically uses the likelihood parameterization and the naming convention of the
estimation command to define model parameters, but there are exceptions. For example, the truncreg
command uses the standard deviation parameter {sigma} to parameterize the likelihood, whereas
bayes: truncreg uses the variance parameter {sigma2}.

Most model parameters are scalar parameters supported on the whole real line such as regression
coefficients, log-transformed positive parameters, and atanh-transformed correlation coefficients. For
example, positive scalar parameters are the variance parameters in bayes: regress, bayes: tobit,
and bayes: truncreg, and matrix parameters are the covariance matrix {Sigma, matrix} in
bayes: mvreg and covariances of random effects in multilevel commands such as bayes: meglm.

The names of model parameters are provided in the model summary displayed by the bayes prefix.
Knowing these names is useful when specifying the prior distributions, although the bayes prefix does
provide default priors; see Default priors. You can use the dryrun option with the bayes prefix to see
the names of model parameters prior to the estimation. In general, the names of regression coefficients
are formed as {depvar:indepvar}, where depvar is the name of the specified dependent variable and
indepvar is the name of an independent variable. There are exceptions such as bayes: streg, for
which depvar is replaced with t. Variance parameters are named {sigma2}, log-standard-deviation
parameters are named {lnsigma}, atanh-transformed correlation parameters are named {athrho},
and the covariance matrix of bayes: mvreg is named {Sigma, matrix} (or {Sigma, m} for short).

For panel-data and multilevel models such as bayes: xtreg and bayes: meglm, in addition
to regression coefficients and variance components, the bayes prefix also estimates random-effects
parameters. This is different from the corresponding frequentist commands, such as xtreg and meglm,
in which random effects are integrated out and thus are not among the final model parameters. (They
can be predicted after estimation.) As such, the bayes prefix has its own naming convention for model
parameters of multilevel commands. Before moving on to Bayesian analysis of multilevel models,
you should be familiar with the syntax of the multilevel commands; see, for example, Syntax in
[ME] meglm.

For panel-data models, the regression coefficients are labeled as usual, {depvar:indepvar}. Random-
effects parameters are labeled as {U[panelvar]} (or simply {U}), where panelvar is the panel variable.
For multinomial logistic models, each outcome can have its own random effect, so the random effects
are labeled as {U1[panelvar]}, {U2[panelvar]}, etc. (or simply {U1}, {U2}, etc.), for each outcome
level except the baseline outcome. See command-specific entries for the naming convention of
additional parameters such as cutpoints with ordinal models. Also see Different ways of specifying
model parameters for how to refer to individual random effects during postestimation. For examples,
see Panel-data models.

For multilevel models, the regression coefficients are labeled as usual, {depvar:indepvar}. Random-
effects parameters are labeled as outlined in tables 1 and 2. You can change the default names by
specifying the restubs() option. The common syntax of {rename} is {restub#}, where restub is
a capital letter, U for the level specified first, or a sequence of capital letters that is unique to each
random-effects level, and # refers to the group of random effects at that level: 0 for random intercepts,
1 for random coefficients associated with the variable specified first in the random-effects equation,
2 for random coefficients associated with the variable specified second, and so on. The full syntax of
{rename}, {fullrename}, is {restub#[levelvar]}, where levelvar is the variable identifying the level
of hierarchy and is often omitted from the specification for brevity. Random effects at the observation
level or crossed effects, specified as all: R.varname with multilevel commands, are labeled as
{U0}, {V0}, {W0}, and so on. Random effects at nesting levels, or nested effects, are labeled using
a sequence of capital letters starting with the letter corresponding to the top level. For example, the
multilevel model

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryrandom_effects_parameters
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryrandom_effects_parameters
https://www.stata.com/manuals/memeglm.pdf#memeglmSyntax
https://www.stata.com/manuals/memeglm.pdf#memeglm
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
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. bayes: melogit y x1 x2 || id1: x1 x2 || id2: x1 || id3:

will have random-effects parameters {U0}, {U1}, and {U2} to represent, respectively, random
intercepts, random coefficients for x1, and random coefficients for x2 at the id1 level; parameters
{UU0} and {UU1} for random intercepts and random coefficients for x1 at the id2 level; and random
intercepts {UUU0} at the id3 level. See Multilevel models for more examples. Also see Different ways
of specifying model parameters for how to refer to individual random effects during postestimation.

Table 1. Random effects at nesting levels of hierarchy (nested effects)

Hierarchy Random effects {rename}

lev1 Random intercepts {U0}
Random coefficients {U1}, {U2}, etc.

lev1>lev2 Random intercepts {UU0}
Random coefficients {UU1}, {UU2}, etc.

lev1>lev2>lev3 Random intercepts {UUU0}
Random coefficients {UUU1}, {UUU2}, etc.

. . .

Table 2. Random effects at the observation level, all (crossed effects)

Hierarchy Random effects {rename}

lev1 Random intercepts {U0}
lev2 Random intercepts {V0}
lev3 Random intercepts {W0}
. . .

Variance components for independent random effects are labeled as {rename:sigma2}. In the
above example, there are six variance components: {U0:sigma2}, {U1:sigma2}, {U2:sigma2},
{UU0:sigma2}, {UU1:sigma2}, and {UUU0:sigma2}.

Covariance matrices of correlated random effects are labeled as {restub:Sigma,matrix} (or
{restub:Sigma,m} for short), where restub is the letter stub corresponding to the level at which
random effects are defined. For example, if we specify an unstructured covariance for the random
effects at the id1 and id2 levels (with cov(un) short for covariance(unstructured))

. bayes: melogit y x1 x2 || id1: x1 x2, cov(un) || id2: x1, cov(un) || id3:

we will have two covariance matrix parameters, a 3 × 3 covariance {U:Sigma,m} at the id1 level
and a 2×2 covariance {UU:Sigma,m} at the id2 level, and the variance component {UUU0:sigma2}
at the id3 level.

For Gaussian multilevel models such as bayes: mixed, the error variance component is labeled
as {e.depvar:sigma2}.

Also see command-specific entries for the naming convention of additional parameters such as
cutpoints with ordinal models or overdispersion parameters with negative binomial models.

https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
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Default priors

For convenience, the bayes prefix provides default priors for model parameters. The priors are
chosen to be general across models and are fairly uninformative for a typical combination of a
likelihood model and dataset. However, the default priors may not always be appropriate. You should
always inspect their soundness and, if needed, override the prior specification for some or all model
parameters using the prior() option.

All scalar parameters supported on the whole real line, such as regression coefficients and log-
transformed positive parameters, are assigned a normal distribution with zero mean and variance
σ2
prior, N(0, σ2

prior), where σprior is given by the normalprior() option. The default value for
σprior is 100, and thus the default priors for these parameters are N(0, 10000). These priors are fairly
uninformative for parameters of moderate size but may become informative for large-scale parameters.
See the Linear regression: A case of informative default priors example below.

All positive scalar parameters, such as the variance parameters in bayes: regress and
bayes: tobit, are assigned an inverse-gamma prior with shape parameter α and scale parame-
ter β, InvGamma(α, β). The default values for α and β are 0.01, and thus the default prior for these
parameters is InvGamma(0.01, 0.01).

All cutpoint parameters of ordinal-outcome models, such as bayes: ologit and bayes: oprobit
are assigned flat priors, improper uniform priors with a constant density of 1, equivalent to specifying
the flat prior option. The reason for this choice is that the cutpoint parameters are sensitive to the
range of the outcome variables, which is usually unknown a priori.

For panel-data models except bayes: xtpoisson and bayes: xtnbreg, the random effects
are assigned normal priors with zero mean and variance {var U}, and {var U} is assigned an
inverse-gamma prior InvGamma(0.01, 0.01). For a Poisson model, the random effects are assigned
an exponential gamma prior with a hyperprior parameter {alpha} having an inverse-gamma prior
InvGamma(0.01, 0.01). For a negative binomial model, the random effects are assigned a beta prior
with hyperparameters {r} and {s}, which are assigned a Pareto-type prior as described in Methods
and formulas of [BAYES] bayes: xtnbreg.

For multilevel models with independent and identity random-effects covariance structures,
variances of random effects are assigned inverse-gamma priors, InvGamma(0.01, 0.01). For unstruc-
tured random-effects covariances, covariance matrix parameters are assigned fairly uninformative
inverse-Wishart priors, InvWishart(d + 1, I(d)), where d is the dimension of the random-effects
covariance matrix and I(d) is the identity matrix of dimension d. Setting the degrees-of-freedom
parameter of the inverse-Wishart prior to d + 1 is equivalent to specifying uniform on (−1, 1)
distributions for the individual correlation parameters.

The model summary displayed by the bayes prefix describes the chosen default priors, which you
can see prior to estimation if you specify bayes’s dryrun option. You can use the prior() option
repeatedly to override the default prior specifications for some or all model parameters.

Initial values

By default, the bayes prefix uses the ML estimates from the prefixed estimation command as
initial values for all scalar model parameters.

For example, the specification
. bayes: logit y x

will use the ML estimates from
. logit y x

as default initial values for the regression coefficients.

https://www.stata.com/manuals/bayesbayesxtnbreg.pdf#bayesbayesxtnbregMethodsandformulas
https://www.stata.com/manuals/bayesbayesxtnbreg.pdf#bayesbayesxtnbregMethodsandformulas
https://www.stata.com/manuals/bayesbayesxtnbreg.pdf#bayesbayesxtnbreg
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You can override the default initial values by using the initial() option; see Specifying initial
values in [BAYES] bayesmh.

If the nomleinitial option is specified, instead of using the estimates from the prefixed command,
all scalar model parameters are initialized with zeros, except for the variance parameters, which are
initialized with ones.

The covariance matrix parameter {Sigma, matrix} of bayes: mvreg is always initialized with
the identity matrix.

For panel-data and multilevel models, regression coefficients are initialized using the ML estimates
from the corresponding model without random effects, variances of random effects are initialized
with ones, covariances of random effects are initialized with zeros, and random effects themselves
are initialized with zeros.

With multiple chains, the following default initialization takes place. The first chain is initialized
as described above. The subsequent chains use random initial values. In general, random initial values
are generated from the prior distributions. For some improper priors such as flat and jeffreys, to
avoid extremely large values, random initial values are sampled from a normal distribution with the
mean centered at the initial values of the first chain and with standard deviations proportional to the
magnitudes of the respective initial estimates.

See Specifying initial values in [BAYES] bayesmh for more information about default initial values
and for how to specify your own.

Command-specific options

Not all command-specific options, that is, options specified with the estimation command, are
applicable within the Bayesian framework. One example is the group of maximum-likelihood opti-
mization options such as technique() and gradient. For a list of supported options, refer to the
entry specific to each command; see [BAYES] Bayesian estimation for a list of commands.

Some of the command-specific reporting options, such as eform option and display options, can be
specified either with estimation command or with the bayes prefix. For example, to obtain estimates
of odds ratios instead of coefficients after the logit model, you can specify the or option with the
command

. bayes: logit y x, or

or with the bayes prefix

. bayes, or: logit y x

You can also specify this option on replay with the bayes prefix

. bayes: logit y x

. bayes, or

Introductory example

We start with a simple linear regression model applied to womenwage.dta, which contains income
data for a sample of working women.

. use https://www.stata-press.com/data/r18/womenwage
(Wages of women)

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesSpecifyinginitialvalues
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesSpecifyinginitialvalues
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesSpecifyinginitialvalues
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/reform_option.pdf#reform_option
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Suppose we want to regress women’s yearly income, represented by the wage variable, on their age,
represented by the age variable. We can fit this model using the regress command.

. regress wage age

Source SS df MS Number of obs = 488
F(1, 486) = 43.53

Model 3939.49247 1 3939.49247 Prob > F = 0.0000
Residual 43984.4891 486 90.503064 R-squared = 0.0822

Adj R-squared = 0.0803
Total 47923.9816 487 98.406533 Root MSE = 9.5133

wage Coefficient Std. err. t P>|t| [95% conf. interval]

age .399348 .0605289 6.60 0.000 .2804173 .5182787
_cons 6.033077 1.791497 3.37 0.001 2.513041 9.553112

Example 1: Bayesian simple linear regression

We can fit a corresponding Bayesian regression model by simply adding bayes: in front of the
regress command. Because the bayes prefix is simulation based, we set a random-number seed to
get reproducible results.

. set seed 15

. bayes: regress wage age
Burn-in ...
Simulation ...

Model summary

Likelihood:
wage ~ regress(xb_wage,{sigma2})

Priors:
{wage:age _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_wage.

Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 488
Acceptance rate = .3739
Efficiency: min = .1411

avg = .1766
Log marginal-likelihood = -1810.1432 max = .2271

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

wage
age .4008591 .0595579 .001586 .4005088 .2798807 .5183574

_cons 5.969069 1.737247 .043218 5.997571 2.60753 9.396475

sigma2 90.76252 5.891887 .123626 90.43802 79.71145 102.8558

Note: Default priors are used for model parameters.

The Bayesian model has two regression coefficient parameters, {wage:age} and {wage: cons},
and a positive scalar parameter, {sigma2}, representing the variance of the error term. The model
summary shows the default priors used for the model parameters: normal(0, 10000) for the
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regression coefficients and igamma(0.01, 0.01) for the variance parameter. The default priors are
provided for convenience and should be used with caution. These priors are fairly uninformative in
this example, but this may not always be the case; see the example in Linear regression: A case of
informative default priors.

The first two columns of the bayes prefix’s estimation table report the posterior means and standard
deviations of the model parameters. We observe that for the regression coefficients {wage:age} and
{wage: cons}, the posterior means and standard deviations are very similar to the least-square
estimates and their standard errors as reported by the regress command. The posterior mean
estimate for {sigma2}, 90.76, is close to the residual mean squared estimate, 90.50, listed in the
ANOVA table of the regress command. The estimation table of the bayes prefix also reports Monte
Carlo standard errors (MCSEs), medians, and equal-tailed credible intervals.

The Bayesian estimates are stochastic in nature and, by default, are based on an MCMC sample of size
10,000. It is important to verify that the MCMC simulation has converged; otherwise, the Bayesian
estimates cannot be trusted. The simulation efficiencies reported in the header of the estimation
table can serve as useful initial indicators of convergence problems. The minimum efficiency in our
example is about 0.14, and the average efficiency is about 0.17. These numbers are typical for the
MH sampling algorithm used by bayes and do not indicate convergence problems; see example 1 in
[BAYES] bayesstats grubin for convergence diagnostics using multiple chains for this example. Also
see Convergence of MCMC in [BAYES] bayesmh for details about convergence diagnostics.

Example 2: Predictions

There are several postestimation commands available after the bayes prefix; see [BAYES] Bayesian
postestimation. Among them is the bayesstats summary command, which we can use to compute
simple predictions. Suppose that we want to predict the expected wage of a 40-year-old woman
conditional on the above fitted posterior model. Based on our model, this expected wage corresponds
to the linear combination {wage : cons}+ {wage : age} × 40. We name this expression wage40
and supply it to the bayesstats summary command.

. bayesstats summary (wage40: {wage:_cons} + {wage:age}*40)

Posterior summary statistics MCMC sample size = 10,000

wage40 : {wage:_cons} + {wage:age}*40

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

wage40 22.00343 .81679 .024045 21.99231 20.39435 23.6718

The posterior mean estimate for the expected wage is about 22 with a 95% credible interval
between 20.39 and 23.67.

Example 3: Gibbs sampling

The bayes prefix uses adaptive MH as its default sampling algorithm. However, in the special case
of linear regression, a more efficient Gibbs sampling is available. We can request Gibbs sampling by
specifying the gibbs option.

https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf#bayesbayesstatsgrubinRemarksandexamplesex1
https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf#bayesbayesstatsgrubin
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
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. set seed 15

. bayes, gibbs: regress wage age
Burn-in ...
Simulation ...

Model summary

Likelihood:
wage ~ normal(xb_wage,{sigma2})

Priors:
{wage:age _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_wage.

Bayesian linear regression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 488
Acceptance rate = 1
Efficiency: min = 1

avg = 1
Log marginal-likelihood = -1810.087 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

wage
age .3999669 .0611328 .000611 .4005838 .2787908 .518693

_cons 6.012074 1.804246 .018042 6.000808 2.488816 9.549921

sigma2 90.84221 5.939535 .059395 90.54834 79.8132 103.0164

Note: Default priors are used for model parameters.

The posterior summary results obtained by Gibbs sampling and MH sampling are very close except
for the MCSEs. The Gibbs sampler reports substantially lower MCSEs than the default sampler because
of its higher efficiency. In fact, in this example, the Gibbs sampler achieves the highest possible
efficiency of 1.

Linear regression: A case of informative default priors

Our example in Introductory example used the default priors, which were fairly uninformative for
those data and that model. This may not always be true. Consider a linear regression model using the
familiar auto.dta. Let us regress the response variable price on the covariate length and factor
variable foreign.



bayes — Bayesian regression models using the bayes prefix 21

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)

. regress price length i.foreign

Source SS df MS Number of obs = 74
F(2, 71) = 16.35

Model 200288930 2 100144465 Prob > F = 0.0000
Residual 434776467 71 6123612.21 R-squared = 0.3154

Adj R-squared = 0.2961
Total 635065396 73 8699525.97 Root MSE = 2474.6

price Coefficient Std. err. t P>|t| [95% conf. interval]

length 90.21239 15.83368 5.70 0.000 58.64092 121.7839

foreign
Foreign 2801.143 766.117 3.66 0.000 1273.549 4328.737

_cons -11621.35 3124.436 -3.72 0.000 -17851.3 -5391.401

Example 4: Default priors

We first fit a Bayesian regression model using the bayes prefix with default priors. Because the
range of the outcome variable price is at least an order of magnitude larger than the range of
the predictor variables length and foreign, we anticipate that some of the model parameters may
have large scale, and longer adaptation may be necessary for the MCMC algorithm to reach optimal
sampling for these parameters. We allow for longer adaptation by increasing the burn-in period from
the default value of 2,500 to 5,000.

. set seed 15

. bayes, burnin(5000): regress price length i.foreign
Burn-in ...
Simulation ...

Model summary

Likelihood:
price ~ regress(xb_price,{sigma2})

Priors:
{price:length 1.foreign _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_price.
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Bayesian linear regression MCMC iterations = 15,000
Random-walk Metropolis--Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3272
Efficiency: min = .05887

avg = .1093
Log marginal-likelihood = -699.23257 max = .1958

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

price
length 33.03301 1.80186 .060848 33.07952 29.36325 36.41022

foreign
Foreign 32.77011 98.97104 4.07922 34.3237 -164.1978 222.0855

_cons -8.063175 102.9479 3.34161 -9.110308 -205.9497 196.9341

sigma2 7538628 1297955 29334.9 7414320 5379756 1.04e+07

Note: Default priors are used for model parameters.

The posterior mean estimates of the regression coefficients are smaller (in absolute value) than the
corresponding estimates from the regress command, because the default prior for the coefficients,
normal(0, 10000), is informative and has a strong shrinkage effect. For example, the least-square
estimate of the constant term from regress is about −11,621, and its scale is much larger than
the default prior standard deviation of 100. As a result, the default prior shrinks the estimate of the
constant toward 0 and, specifically, to −8.06.

You should be aware that the default priors are provided for convenience and are not guaranteed
to be uninformative in all cases. They are designed to have little effect on model parameters, the
maximum likelihood estimates of which are of moderate size, say, less than 100 in absolute value.
For large-scale parameters, as in this example, the default priors can become informative.

Example 5: Flat priors

Continuing with example 4, we can override the default priors using the prior() option. We can,
for example, apply the completely uninformative flat prior, a prior with the density of 1, for the
coefficient parameters.

. set seed 15

. bayes, prior({price:}, flat) burnin(5000): regress price length i.foreign
Burn-in ...
Simulation ...

Model summary

Likelihood:
price ~ regress(xb_price,{sigma2})

Priors:
{price:length 1.foreign _cons} ~ 1 (flat) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_price.
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Bayesian linear regression MCMC iterations = 15,000
Random-walk Metropolis--Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3404
Efficiency: min = .07704

avg = .1086
Log marginal-likelihood = -669.62603 max = .1898

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

price
length 89.51576 16.27187 .586237 89.60969 57.96996 122.7961

foreign
Foreign 2795.683 770.6359 26.0589 2787.139 1305.773 4298.785

_cons -11478.83 3202.027 113.271 -11504.65 -17845.87 -5244.189

sigma2 6270294 1089331 25002.1 6147758 4504695 8803268

Note: Default priors are used for some model parameters.

The posterior mean estimates for the coefficient parameters are now close to the least-square
estimates from regress. For example, the posterior mean estimate for {price: cons} is about
−11,479, whereas the least-square estimate is −11,621.

However, the flat priors should be used with caution. Flat priors are improper and may result in
improper posterior distributions for which Bayesian inference cannot be carried out. You should thus
choose the priors carefully, accounting for the properties of the likelihood model.

Example 6: Zellner’s g-prior

A type of prior specific to the normal linear regression model is Zellner’s g-prior. We can apply it
to our example using the zellnersg0() prior. For this prior, we need to specify the dimension of the
prior, which is the number of regression coefficients (3), a degree of freedom (50) and the variance
parameter of the error term in the regression model, {sigma2}; the mean parameter is assumed to be
0 by zellnersg0(). See example 9 in [BAYES] bayesmh for more details about Zellner’s g-prior.

. set seed 15

. bayes, prior({price:}, zellnersg0(3, 50, {sigma2})) burnin(5000):
> regress price length i.foreign
Burn-in ...
Simulation ...

Model summary

Likelihood:
price ~ regress(xb_price,{sigma2})

Priors:
{price:length 1.foreign _cons} ~ zellnersg(3,50,0,{sigma2}) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_price.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesex9
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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Bayesian linear regression MCMC iterations = 15,000
Random-walk Metropolis--Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3019
Efficiency: min = .06402

avg = .105
Log marginal-likelihood = -697.84862 max = .1944

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

price
length 87.53039 16.24762 .569888 87.72965 55.5177 119.9915

foreign
Foreign 2759.267 794.043 31.3829 2793.241 1096.567 4202.283

_cons -11223.95 3211.553 113.34 -11308.39 -17534.25 -4898.139

sigma2 6845242 1159035 26286.9 6716739 4978729 9521252

Note: Default priors are used for some model parameters.

We see that using this Zellner’s g-prior has little effect on the coefficient parameters, and the
simulated posterior mean estimates are close to the least-square estimates from regress.

Logistic regression with perfect predictors

Let’s revisit the example in Logistic regression model: A case of nonidentifiable parameters of
[BAYES] bayesmh. The example uses heartswitz.dta to model the binary outcome disease, the
presence of a heart disease, using the predictor variables restecg, isfbs, age, and male. The
dataset is a sample from Switzerland.

. use https://www.stata-press.com/data/r18/heartswitz, clear
(Subset of Switzerland heart disease data from UCI Machine Learning Repository)

Example 7: Perfect prediction

The logistic regression model for these data is

. logit disease restecg isfbs age male
(output omitted )

To fit a Bayesian logistic regression, we prefix the logit command with bayes. We also specify
the noisily option to show the estimation output of the logit command, which is run by the bayes
prefix to set up the model and compute starting values for the parameters.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesLogisticregressionmodelAcaseofnonidentifiableparameters
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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. set seed 15

. bayes, noisily: logit disease restecg isfbs age male

note: restecg != 0 predicts success perfectly;
restecg omitted and 17 obs not used.

note: isfbs != 0 predicts success perfectly;
isfbs omitted and 3 obs not used.

note: male != 1 predicts success perfectly;
male omitted and 2 obs not used.

Iteration 0: Log likelihood = -4.2386144
Iteration 1: Log likelihood = -4.2358116
Iteration 2: Log likelihood = -4.2358076
Iteration 3: Log likelihood = -4.2358076

Logistic regression Number of obs = 26
LR chi2(1) = 0.01
Prob > chi2 = 0.9403

Log likelihood = -4.2358076 Pseudo R2 = 0.0007

disease Coefficient Std. err. z P>|z| [95% conf. interval]

restecg 0 (omitted)
isfbs 0 (omitted)

age -.0097846 .1313502 -0.07 0.941 -.2672263 .2476572
male 0 (omitted)

_cons 3.763893 7.423076 0.51 0.612 -10.78507 18.31285

Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Prior:
{disease:age _cons} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 26
Acceptance rate = .2337
Efficiency: min = .1076

avg = .1113
Log marginal-likelihood = -14.795726 max = .115

Equal-tailed
disease Mean Std. dev. MCSE Median [95% cred. interval]

restecg (omitted)
isfbs (omitted)

age -.0405907 .1650514 .004868 -.0328198 -.4005246 .2592641
male (omitted)

_cons 6.616447 9.516872 .290075 5.491008 -8.852858 28.99392

Note: Default priors are used for model parameters.

As evident from the output of the logit command, the covariates restecg, isfbs, and male
are omitted because of perfect prediction. Although these predictors cannot be identified using the
likelihood alone, they can be identified, potentially, in a posterior model with an informative prior.
The default prior normal(0, 10000), used by the bayes prefix for the regression coefficients, is not
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informative enough to resolve the perfect prediction, and we must override it with a more informative
prior.

Example 8: Informative prior

In the example in Logistic regression model: A case of nonidentifiable parameters of
[BAYES] bayesmh, we use information from another similar dataset, hearthungary.dta, to come up
with informative priors for the regression coefficients. We use the same priors with the bayes prefix.
We specify the asis option with the logit command to prevent dropping the perfect predictors from
the model. We also specify the nomleinitial option to prevent the bayes prefix from trying to
obtain ML estimates to use as starting values; reliable ML estimates cannot be provided by the logit
command when the perfect predictors are retained.

. set seed 15

. bayes, prior({disease:restecg age}, normal(0,10))
> prior({disease:isfbs male}, normal(1,10))
> prior({disease:_cons}, normal(-4,10)) nomleinitial:
> logit disease restecg isfbs age male, asis
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Priors:
{disease:restecg age} ~ normal(0,10) (1)
{disease:isfbs male} ~ normal(1,10) (1)

{disease:_cons} ~ normal(-4,10) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 48
Acceptance rate = .2121
Efficiency: min = .01885

avg = .04328
Log marginal-likelihood = -11.006071 max = .06184

Equal-tailed
disease Mean Std. dev. MCSE Median [95% cred. interval]

restecg 1.965122 2.315475 .115615 1.655961 -2.029873 6.789415
isfbs 1.708631 2.726071 .113734 1.607439 -3.306837 7.334592

age .1258811 .0707431 .003621 .1245266 -.0016807 .2719748
male .2671381 2.237349 .162967 .3318061 -4.106425 4.609955

_cons -2.441911 2.750613 .110611 -2.538183 -7.596747 3.185172

For this posterior model with informative priors, we successfully estimate all regression parameters
in the logistic regression model.

The informative prior in this example is based on information from an independent dataset,
hearthungary.dta, which is a sample of observations on the same heart condition and predictor
attributes as heartswitz.dta but sampled from Hungary’s population. Borrowing information from
independent datasets to construct informative priors is justified only when the datasets are compatible
with the currently analyzed data.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesLogisticregressionmodelAcaseofnonidentifiableparameters
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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Multinomial logistic regression

Consider the health insurance dataset, sysdsn1.dta, to model the insurance outcome, insure,
which takes the values Indemnity, Prepaid, and Uninsure, using the predictor variables age,
male, nonwhite, and site. This model is considered in more detail in example 4 in [R] mlogit.

. use https://www.stata-press.com/data/r18/sysdsn1, clear
(Health insurance data)

First, we use the mlogit command to fit the model

. mlogit insure age male nonwhite i.site, nolog

Multinomial logistic regression Number of obs = 615
LR chi2(10) = 42.99
Prob > chi2 = 0.0000

Log likelihood = -534.36165 Pseudo R2 = 0.0387

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity (base outcome)

Prepaid
age -.011745 .0061946 -1.90 0.058 -.0238862 .0003962

male .5616934 .2027465 2.77 0.006 .1643175 .9590693
nonwhite .9747768 .2363213 4.12 0.000 .5115955 1.437958

site
2 .1130359 .2101903 0.54 0.591 -.2989296 .5250013
3 -.5879879 .2279351 -2.58 0.010 -1.034733 -.1412433

_cons .2697127 .3284422 0.82 0.412 -.3740222 .9134476

Uninsure
age -.0077961 .0114418 -0.68 0.496 -.0302217 .0146294

male .4518496 .3674867 1.23 0.219 -.268411 1.17211
nonwhite .2170589 .4256361 0.51 0.610 -.6171725 1.05129

site
2 -1.211563 .4705127 -2.57 0.010 -2.133751 -.2893747
3 -.2078123 .3662926 -0.57 0.570 -.9257327 .510108

_cons -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134

Next, we use the bayes prefix to perform Bayesian estimation of the same multinomial logistic
regression model.

. set seed 15

. bayes: mlogit insure age male nonwhite i.site
Burn-in ...
Simulation ...

Model summary

Likelihood:
Prepaid Uninsure ~ mlogit(xb_Prepaid,xb_Uninsure)

Priors:
{Prepaid:age male nonwhite i.site _cons} ~ normal(0,10000) (1)

{Uninsure:age male nonwhite i.site _cons} ~ normal(0,10000) (2)

(1) Parameters are elements of the linear form xb_Prepaid.
(2) Parameters are elements of the linear form xb_Uninsure.

https://www.stata.com/manuals/rmlogit.pdf#rmlogitRemarksandexamplesex_mlogit_insurance4
https://www.stata.com/manuals/rmlogit.pdf#rmlogit
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Bayesian multinomial logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Base outcome: Indemnity Number of obs = 615

Acceptance rate = .2442
Efficiency: min = .01992

avg = .03086
Log marginal-likelihood = -614.49286 max = .05659

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

Prepaid
age -.0125521 .006247 .000396 -.0125871 -.024602 -.0005809

male .5462718 .2086422 .012818 .5573004 .1263754 .9271802
nonwhite .9796293 .2275709 .015746 .9737777 .53642 1.401076

site
2 .098451 .214039 .012887 .0994476 -.3172914 .5260208
3 -.6043961 .2348319 .011596 -.6072807 -1.045069 -.1323191

_cons .3183984 .3309283 .021325 .3219128 -.3423583 .956505

Uninsure
age -.008377 .0118479 .000581 -.0082922 -.0323571 .0140366

male .4687524 .3537416 .02376 .4748359 -.2495656 1.147333
nonwhite .1755361 .42708 .022566 .198253 -.7214481 .938098

site
2 -1.298562 .4746333 .033628 -1.27997 -2.258622 -.4149035
3 -.2057122 .3533365 .020695 -.2009649 -.904768 .4924401

_cons -1.305083 .5830491 .02451 -1.296332 -2.463954 -.1758435

Note: Default priors are used for model parameters.

For this model and these data, the default prior specification of the bayes prefix is fairly uninformative
and, as a result, the posterior mean estimates for the parameters are close to the ML estimates obtained
with mlogit.

We can report posterior summaries for the relative-risk ratios instead of the regression coefficients.
This is equivalent to applying an exponential transformation, exp(b), to the simulated values of
each of the regression coefficients, b, and then summarizing them. We can obtain relative-risk ratio
summaries by replaying the bayes command with the rrr option specified. We use the already
available simulation results from the last estimation and do not refit the model. We could have also
specified the rrr option during the estimation.

. bayes, rrr

Model summary

Likelihood:
Prepaid Uninsure ~ mlogit(xb_Prepaid,xb_Uninsure)

Priors:
{Prepaid:age male nonwhite i.site _cons} ~ normal(0,10000) (1)

{Uninsure:age male nonwhite i.site _cons} ~ normal(0,10000) (2)

(1) Parameters are elements of the linear form xb_Prepaid.
(2) Parameters are elements of the linear form xb_Uninsure.
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Bayesian multinomial logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Base outcome: Indemnity Number of obs = 615

Acceptance rate = .2442
Efficiency: min = .02149

avg = .03181
Log marginal-likelihood = -614.49286 max = .06007

Equal-tailed
RRR Std. dev. MCSE Median [95% cred. interval]

Prepaid
age .9875456 .0061686 .000391 .9874918 .9756982 .9994192

male 1.764212 .3634348 .022268 1.745953 1.134708 2.527372
nonwhite 2.732931 .6240495 .042568 2.647929 1.709875 4.059566

site
2 1.129077 .2450092 .015242 1.104561 .7281185 1.692189
3 .5617084 .1338774 .00665 .5448304 .3516675 .8760614

_cons 1.451983 .4904589 .029972 1.379764 .7100938 2.60259

Uninsure
age .9917276 .0117452 .000575 .991742 .9681608 1.014136

male 1.699605 .6045513 .040763 1.60775 .7791391 3.149782
nonwhite 1.301138 .5448086 .027742 1.219271 .4860479 2.555117

site
2 .3045686 .1461615 .009698 .2780457 .1044944 .6604046
3 .8663719 .3155926 .01806 .8179411 .4046357 1.636304

_cons .3203309 .1976203 .008063 .2735332 .0850978 .8387492

Note: _cons estimates baseline relative risk for each outcome.
Note: Default priors are used for model parameters.

Generalized linear model

Consider the insecticide experiment dataset, beetle.dta, to model the number of beetles killed,
r, on the number of subjected beetles, n; the type of beetles, beetle; and the log-dose of insecticide,
ldose. More details can be found in example 2 of [R] glm.

. use https://www.stata-press.com/data/r18/beetle, clear

https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplesex_glm_insectexp
https://www.stata.com/manuals/rglm.pdf#rglm
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Consider a generalized linear model with a binomial family and a complementary log–log link
function for these data.

. glm r i.beetle ldose, family(binomial n) link(cloglog) nolog

Generalized linear models Number of obs = 24
Optimization : ML Residual df = 20

Scale parameter = 1
Deviance = 73.76505595 (1/df) Deviance = 3.688253
Pearson = 71.8901173 (1/df) Pearson = 3.594506

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log--log]

AIC = 6.74547
Log likelihood = -76.94564525 BIC = 10.20398

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.0910396 .1076132 -0.85 0.398 -.3019576 .1198783
Mealworm -1.836058 .1307125 -14.05 0.000 -2.09225 -1.579867

ldose 19.41558 .9954265 19.50 0.000 17.46458 21.36658
_cons -34.84602 1.79333 -19.43 0.000 -38.36089 -31.33116

To fit a Bayesian generalized linear model with default priors, we type

. set seed 15

. bayes: glm r i.beetle ldose, family(binomial n) link(cloglog)
Burn-in ...
Simulation ...

Model summary

Likelihood:
r ~ glm(xb_r)

Prior:
{r:i.beetle ldose _cons} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_r.

Bayesian generalized linear models MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Family: binomial n Number of obs = 24
Link: complementary log--log Scale parameter = 1

Acceptance rate = .2003
Efficiency: min = .03414

avg = .05094
Log marginal-likelihood = -102.9776 max = .08012

Equal-tailed
r Mean Std. dev. MCSE Median [95% cred. interval]

beetle
Red flour -.0903569 .106067 .004527 -.093614 -.2964984 .112506
Mealworm -1.843952 .130297 .004603 -1.848374 -2.091816 -1.594582

ldose 19.52814 .9997765 .054106 19.52709 17.6146 21.6217
_cons -35.04832 1.800461 .096777 -35.0574 -38.81427 -31.61378

Note: Default priors are used for model parameters.
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The posterior mean estimates of the regression parameters are not that different from the ML estimates
obtained with glm.

If desired, we can request highest posterior density intervals be reported instead of default equal-
tailed credible intervals by specifying the hpd option. We can also change the credible-interval level;
for example, to request 90% credible intervals, we specify the clevel(90) option. We also could
specify these options during estimation.

. bayes, clevel(90) hpd

Model summary

Likelihood:
r ~ glm(xb_r)

Prior:
{r:i.beetle ldose _cons} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_r.

Bayesian generalized linear models MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Family: binomial n Number of obs = 24
Link: complementary log--log Scale parameter = 1

Acceptance rate = .2003
Efficiency: min = .03414

avg = .05094
Log marginal-likelihood = -102.9776 max = .08012

HPD
r Mean Std. dev. MCSE Median [90% cred. interval]

beetle
Red flour -.0903569 .106067 .004527 -.093614 -.2444412 .1020305
Mealworm -1.843952 .130297 .004603 -1.848374 -2.03979 -1.620806

ldose 19.52814 .9997765 .054106 19.52709 17.86148 21.16389
_cons -35.04832 1.800461 .096777 -35.0574 -37.96057 -32.00411

Note: Default priors are used for model parameters.

Truncated Poisson regression

The semiconductor manufacturing dataset, probe.dta, contains observational data of failure rates,
failure, of silicon wafers with width, width, and depth, depth, tested at four different probes,
probe. A wafer is rejected if more than 10 failures are detected. See example 2 in [R] tpoisson.

. use https://www.stata-press.com/data/r18/probe, clear
(Silicon wafers)

We fit a truncated Poisson regression model with a truncation point of 10. We suppress the constant
regression term from the likelihood equation using the noconstant option to retain all four probe
levels by including ibn.probe in the list of covariates, which declares probe to be a factor variable
with no base level.

https://www.stata.com/manuals/rtpoisson.pdf#rtpoissonRemarksandexamplesex2
https://www.stata.com/manuals/rtpoisson.pdf#rtpoisson
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. tpoisson failures ibn.probe depth width, noconstant ll(10) nolog

Truncated Poisson regression
Limits: lower = 10 Number of obs = 88

upper = +inf Wald chi2(6) = 11340.50
Log likelihood = -239.35746 Prob > chi2 = 0.0000

failures Coefficient Std. err. z P>|z| [95% conf. interval]

probe
1 2.714025 .0752617 36.06 0.000 2.566515 2.861536
2 2.602722 .0692732 37.57 0.000 2.466949 2.738495
3 2.725459 .0721299 37.79 0.000 2.584087 2.866831
4 3.139437 .0377137 83.24 0.000 3.065519 3.213354

depth -.0005034 .0033375 -0.15 0.880 -.0070447 .006038
width .0330225 .015573 2.12 0.034 .0025001 .063545

Example 9: Default priors

We first apply the bayes prefix with default priors to perform Bayesian estimation of the model.
The estimation takes a little longer, so we specify the dots option to see the progress.

. set seed 15

. bayes, dots: tpoisson failures ibn.probe depth width, noconstant ll(10)
Burn-in 2500 aaaaaaaaa1000.........2000..... done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
failures ~ tpoisson(xb_failures)

Prior:
{failures:i.probe depth width} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_failures.

Bayesian truncated Poisson regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Limits: Lower = 10 Number of obs = 88

Upper = +inf Acceptance rate = .1383
Efficiency: min = .004447

avg = .01322
Log marginal-likelihood = -288.22663 max = .04082

Equal-tailed
failures Mean Std. dev. MCSE Median [95% cred. interval]

probe
1 2.689072 .0696122 .008596 2.688881 2.557394 2.833737
2 2.581567 .0644141 .00966 2.588534 2.436973 2.701187
3 2.712054 .0695932 .006415 2.717959 2.55837 2.844429
4 3.13308 .0397521 .004592 3.133433 3.055979 3.208954

depth -.000404 .0033313 .000165 -.000504 -.0067928 .0061168
width .036127 .0165308 .001821 .0360637 .001239 .067552

Note: Default priors are used for model parameters.
Note: There is a high autocorrelation after 500 lags.
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With the default prior specification, the posterior mean estimates for the regression parameters are
similar to the ML estimates obtained with the tpoisson command. However, the bayes prefix issues
a high autocorrelation warning note and reports a minimum efficiency of only 0.004. The posterior
model with default priors seems to be somewhat challenging for the MH sampler. We could allow for
longer burn-in and increase the MCMC sample size to improve the MCMC convergence and increase
the estimation precision. Instead, we will provide an alternative prior specification that will increase
the model flexibility and improve its fit to the data.

Example 10: Hyperpriors

We now assume that the four probe coefficients, {failures:ibn.probe}, have a normal prior
distribution with mean parameter {probe mean} and a variance of 10,000. It is reasonable to assume
that all four probes have positive failure rates and that {probe mean} is a positive hyperparameter.
We decide to assign {probe mean} a gamma(2, 1) hyperprior, which is a distribution with a
positive domain and a mean of 2. We use this prior for the purpose of illustration; this prior is not
informative for this model and these data. We initialize {probe mean} with 1 to give it a starting
value compatible with its hyperprior.

. set seed 15

. bayes, prior({failures:ibn.probe}, normal({probe_mean}, 10000))
> prior({probe_mean}, gamma(2, 1)) initial({probe_mean} 1) dots:
> tpoisson failures ibn.probe depth width, noconstant ll(10)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
failures ~ tpoisson(xb_failures)

Priors:
{failures:i.probe} ~ normal({probe_mean},10000) (1)

{failures:depth width} ~ normal(0,10000) (1)

Hyperprior:
{probe_mean} ~ gamma(2,1)

(1) Parameters are elements of the linear form xb_failures.
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Bayesian truncated Poisson regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Limits: Lower = 10 Number of obs = 88

Upper = +inf Acceptance rate = .304
Efficiency: min = .04208

avg = .0775
Log marginal-likelihood = -287.91504 max = .127

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

failures
probe

1 2.703599 .0770656 .003757 2.704613 2.551404 2.848774
2 2.592738 .0711972 .002796 2.594628 2.446274 2.728821
3 2.716223 .0755001 .003549 2.719622 2.568376 2.863064
4 3.137069 .0388127 .001317 3.136773 3.062074 3.211616

depth -.000461 .0033562 .000109 -.0004457 -.0067607 .0062698
width .0337508 .0152654 .000532 .0337798 .003008 .0622191

probe_mean 2.051072 1.462867 .041051 1.71286 .2211973 5.809428

Note: Default priors are used for some model parameters.

The MCMC simulation achieves an average efficiency of about 8% with no indication of convergence
problems. The posterior mean estimates for the regression parameters are similar to the ML estimates;
moreover, the MCMC standard errors are much lower than those achieved by the previous model with
default priors. By introducing the hyperparameter {probe mean}, we have improved the goodness
of fit of the model.

Zero-inflated negative binomial model

In this example, we consider a Bayesian model using zero-inflated negative binomial likelihood.
We revisit example 1 in [R] zinb, which models the number of fish caught by visitors to a national
park. The probability that a particular visitor fished is assumed to depend on the variables child and
camper, which are supplied as covariates to the inflate() option of zinb.

https://www.stata.com/manuals/rzinb.pdf#rzinbRemarksandexamplesex1
https://www.stata.com/manuals/rzinb.pdf#rzinb
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. use https://www.stata-press.com/data/r18/fish, clear
(Fictional fishing data)

. zinb count persons livebait, inflate(child camper) nolog

Zero-inflated negative binomial regression Number of obs = 250
Inflation model: logit Nonzero obs = 108

Zero obs = 142
LR chi2(2) = 82.23

Log likelihood = -401.5478 Prob > chi2 = 0.0000

count Coefficient Std. err. z P>|z| [95% conf. interval]

count
persons .9742984 .1034938 9.41 0.000 .7714543 1.177142

livebait 1.557523 .4124424 3.78 0.000 .7491503 2.365895
_cons -2.730064 .476953 -5.72 0.000 -3.664874 -1.795253

inflate
child 3.185999 .7468551 4.27 0.000 1.72219 4.649808

camper -2.020951 .872054 -2.32 0.020 -3.730146 -.3117567
_cons -2.695385 .8929071 -3.02 0.003 -4.44545 -.9453189

/lnalpha .5110429 .1816816 2.81 0.005 .1549535 .8671323

alpha 1.667029 .3028685 1.167604 2.380076

Let’s fit a Bayesian model with default normal prior distributions.

. set seed 15

. bayes, dots: zinb count persons livebait, inflate(child camper)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
count ~ zinb(xb_count,xb_inflate,{lnalpha})

Priors:
{count:persons livebait _cons} ~ normal(0,10000) (1)

{inflate:child camper _cons} ~ normal(0,10000) (2)
{lnalpha} ~ normal(0,10000)

(1) Parameters are elements of the linear form xb_count.
(2) Parameters are elements of the linear form xb_inflate.
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Bayesian zero-inflated negative binomial model MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Inflation model: logit Number of obs = 250

Acceptance rate = .3084
Efficiency: min = .03716

avg = .0791
Log marginal-likelihood = -438.47876 max = .1613

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

count
persons .9851217 .1084239 .003601 .985452 .7641609 1.203561

livebait 1.536074 .4083865 .013509 1.515838 .753823 2.3539
_cons -2.805915 .4700702 .014974 -2.795244 -3.73847 -1.89491

inflate
child 46.95902 36.33974 1.87977 38.77997 3.612863 138.3652

camper -46.123 36.34857 1.88567 -37.66796 -137.4568 -2.544566
_cons -46.62439 36.36232 1.88355 -38.5171 -137.5522 -3.272469

lnalpha .7055935 .1591234 .003962 .7048862 .3959316 1.025356

Note: Default priors are used for model parameters.

The posterior mean estimates for the main regression coefficients {count:persons},
{count:livebait}, and {count: cons} are relatively close to the ML estimates from the
zinb command, but the inflation coefficients, {inflate:child}, {inflate:camper}, and
{inflate: cons}, are quite different. For example, zinb estimates {inflate: cons} are about
−2.7, whereas the corresponding posterior mean estimate is about −46.6. To explain this large
discrepancy, we draw the diagnostic plot of {inflate: cons}.
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. bayesgraph diagnostic {inflate:_cons}
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The marginal posterior distribution of {inflate: cons} is highly skewed to the left, and it is
apparent that its posterior mean is much smaller than its posterior mode. In large samples, under
proper noninformative priors, the posterior mode estimator and the ML estimator are equivalent.
Therefore, it is not surprising that the posterior mean of {inflate: cons} is much smaller than its
ML estimate. We can obtain a rough estimate of the posterior mode in this example.

First, we need to save the simulation results in a dataset, say, sim zinb.dta. You can do this
during estimation or on replay by specifying the saving() option with the bayes prefix.

. bayes, saving(sim_zinb)
note: file sim_zinb.dta saved.
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Next, we load the dataset and identify the variable that represents the parameter {inflate: cons}.

. use sim_zinb, clear

. describe

Contains data from sim_zinb.dta
Observations: 6,874

Variables: 12 23 Mar 2023 14:48

Variable Storage Display Value
name type format label Variable label

_chain int %8.0g Chain identifier
_index int %8.0g Iteration number
_loglikelihood double %10.0g Log likelihood
_logposterior double %10.0g Log posterior
eq1_p1 double %10.0g {count:persons}
eq1_p2 double %10.0g {count:livebait}
eq1_p3 double %10.0g {count:_cons}
eq2_p1 double %10.0g {inflate:child}
eq2_p2 double %10.0g {inflate:camper}
eq2_p3 double %10.0g {inflate:_cons}
eq0_p1 double %10.0g {lnalpha}
_frequency int %8.0g Frequency weight

Sorted by:

Variable eq2 p3 with the variable label {inflate: cons} contains MCMC estimates for the
{inflate: cons} parameter.

We use the egen’s mode() function to generate a constant variable, mode, which contains the
mode estimate for {inflate: cons}.

. egen mode = mode(eq2_p3)

. display mode[1]
-3.417458

The mode estimate for {inflate: cons} is about −3.42, and it is indeed much closer to the ML
estimate of −2.70 than its posterior mean estimate.

The inflation parameter α in the likelihood of the zero-inflated negative binomial model is log-
transformed, and it is represented by {lnalpha} in our posterior model. To summarize the simulation
result for α directly, we can use the bayesstats summary command to exponentiate {lnalpha}.

. bayesstats summary (alpha: exp({lnalpha}))

Posterior summary statistics MCMC sample size = 10,000

alpha : exp({lnalpha})

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

alpha 2.050889 .3292052 .008191 2.023616 1.485768 2.788087

Parametric survival model

Consider example 7 in [ST] streg, which analyzes the effect of a hip-protection device, age, and
sex on the risk of hip fractures in patients. The survival dataset is hip3.dta with time to event
variable time1 and failure variable fracture. The data are already stset.

https://www.stata.com/manuals/ststreg.pdf#ststregRemarksandexamplesex7
https://www.stata.com/manuals/ststreg.pdf#ststreg
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. use https://www.stata-press.com/data/r18/hip3, clear
(Hip-fracture study)

. stset
-> stset time1, id(id) failure(fracture) time0(time0)

Survival-time data settings

ID variable: id
Failure event: fracture!=0 & fracture<.

Observed time interval: (time0, time1]
Exit on or before: failure

206 total observations
0 exclusions

206 observations remaining, representing
148 subjects
37 failures in single-failure-per-subject data

1,703 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 39

It is assumed that the hazard curves for men and women have different shapes. We use the streg
command to fit a model with Weibull survival distribution and the ancillary variable male to account
for the difference between men and women.

. streg protect age, distribution(weibull) ancillary(male) nolog

Failure _d: fracture
Analysis time _t: time1

ID variable: id

Weibull PH regression

No. of subjects = 148 Number of obs = 206
No. of failures = 37
Time at risk = 1,703

LR chi2(2) = 39.80
Log likelihood = -69.323532 Prob > chi2 = 0.0000

_t Coefficient Std. err. z P>|z| [95% conf. interval]

_t
protect -2.130058 .3567005 -5.97 0.000 -2.829178 -1.430938

age .0939131 .0341107 2.75 0.006 .0270573 .1607689
_cons -10.17575 2.551821 -3.99 0.000 -15.17722 -5.174269

ln_p
male -.4887189 .185608 -2.63 0.008 -.8525039 -.1249339

_cons .4540139 .1157915 3.92 0.000 .2270667 .6809611

We then perform Bayesian analysis of the same model using the bayes prefix. We apply more
conservative normal priors, normal(0, 100), by specifying the normalprior(10) option. To allow
for longer adaptation of the MCMC sampler, we increase the burn-in period to 5,000, burnin(5000).
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. set seed 15

. bayes, normalprior(10) burnin(5000) dots:
> streg protect age, distribution(weibull) ancillary(male)

Failure _d: fracture
Analysis time _t: time1

ID variable: id
Burn-in 5000 aaaaaaaaa1000aaaaaaaaa2000aaaaaaaaa3000aaaaaaaaa4000aaaaaaaaa5000
> done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
_t ~ streg_weibull(xb__t,xb_ln_p)

Priors:
{_t:protect age _cons} ~ normal(0,100) (1)

{ln_p:male _cons} ~ normal(0,100) (2)

(1) Parameters are elements of the linear form xb__t.
(2) Parameters are elements of the linear form xb_ln_p.

Bayesian Weibull PH regression MCMC iterations = 15,000
Random-walk Metropolis--Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
No. of subjects = 148 Number of obs = 206
No. of failures = 37
Time at risk = 1703

Acceptance rate = .3418
Efficiency: min = .01

avg = .03421
Log marginal-likelihood = -91.348814 max = .05481

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

_t
protect -2.114715 .3486032 .017409 -2.105721 -2.818483 -1.46224

age .0859305 .0328396 .001403 .0862394 .0210016 .1518009
_cons -9.57056 2.457818 .117851 -9.551418 -14.49808 -4.78585

ln_p
male -.5753907 .2139477 .014224 -.5468488 -1.07102 -.2317242

_cons .4290642 .11786 .011786 .4242712 .203933 .6548229

The posterior mean estimates for the regression parameters { t:protect}, { t:age}, and
{ t: cons} are close to the estimates reported by the streg command. However, the estimate
for {ln p:male} is somewhat different. If we inspect the diagnostic plot for {ln p:male}, we will
see that the reason for this is the asymmetrical shape of its marginal posterior distribution.
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. bayesgraph diagnostic {ln_p:male}
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As evident from the density plot, the posterior distribution of {ln p:male} is skewed to the left,
so the posterior mean estimate, −0.58, is expected to be smaller than the ML estimate, −0.49, given
that we used fairly uninformative priors; see Zero-inflated negative binomial model for the comparison
of posterior mean, posterior mode, and ML estimates for highly skewed posterior distributions.

Heckman selection model

Example 11

A representative example of a Heckman selection model is provided by wagenwk.dta, which
contains observations on the income of women who choose to work. See example 1 in [R] heckman.

. use https://www.stata-press.com/data/r18/womenwk, clear

The women’s income (wage) is assumed to depend on their education (educ) and their age (age).
In addition, the selection decision, or the choice of a woman to work, is assumed to depend on their
marital status (married), number of children (children), education, and age. We fit this selection
model using the heckman command.

https://www.stata.com/manuals/rheckman.pdf#rheckmanRemarksandexamplesex1
https://www.stata.com/manuals/rheckman.pdf#rheckman
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. heckman wage educ age, select(married children educ age) nolog

Heckman selection model Number of obs = 2,000
(regression model with sample selection) Selected = 1,343

Nonselected = 657

Wald chi2(2) = 508.44
Log likelihood = -5178.304 Prob > chi2 = 0.0000

wage Coefficient Std. err. z P>|z| [95% conf. interval]

wage
education .9899537 .0532565 18.59 0.000 .8855729 1.094334

age .2131294 .0206031 10.34 0.000 .1727481 .2535108
_cons .4857752 1.077037 0.45 0.652 -1.625179 2.59673

select
married .4451721 .0673954 6.61 0.000 .3130794 .5772647

children .4387068 .0277828 15.79 0.000 .3842534 .4931601
education .0557318 .0107349 5.19 0.000 .0346917 .0767718

age .0365098 .0041533 8.79 0.000 .0283694 .0446502
_cons -2.491015 .1893402 -13.16 0.000 -2.862115 -2.119915

/athrho .8742086 .1014225 8.62 0.000 .6754241 1.072993
/lnsigma 1.792559 .027598 64.95 0.000 1.738468 1.84665

rho .7035061 .0512264 .5885365 .7905862
sigma 6.004797 .1657202 5.68862 6.338548

lambda 4.224412 .3992265 3.441942 5.006881

LR test of indep. eqns. (rho = 0): chi2(1) = 61.20 Prob > chi2 = 0.0000

We then apply the bayes prefix to perform Bayesian estimation of the Heckman selection model.

. set seed 15

. bayes, dots: heckman wage educ age, select(married children educ age)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
wage ~ heckman(xb_wage,xb_select,{athrho} {lnsigma})

Priors:
{wage:education age _cons} ~ normal(0,10000) (1)

{select:married children education age _cons} ~ normal(0,10000) (2)
{athrho lnsigma} ~ normal(0,10000)

(1) Parameters are elements of the linear form xb_wage.
(2) Parameters are elements of the linear form xb_select.
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Bayesian Heckman selection model MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 2,000

Selected = 1,343
Nonselected = 657

Acceptance rate = .3484
Efficiency: min = .02314

avg = .03657
Log marginal-likelihood = -5260.2024 max = .05013

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

wage
education .9919131 .051865 .002609 .9931531 .8884407 1.090137

age .2131372 .0209631 .001071 .2132548 .1720535 .2550835
_cons .4696264 1.089225 .0716 .4406188 -1.612032 2.65116

select
married .4461775 .0681721 .003045 .4456493 .3178532 .5785857

children .4401305 .0255465 .001156 .4402145 .3911135 .4903804
education .0559983 .0104231 .000484 .0556755 .0360289 .076662

age .0364752 .0042497 .000248 .0362858 .0280584 .0449843
_cons -2.494424 .18976 .011327 -2.498414 -2.861266 -2.114334

athrho .868392 .099374 .005961 .8699977 .6785641 1.062718
lnsigma 1.793428 .0269513 .001457 1.793226 1.740569 1.846779

Note: Default priors are used for model parameters.

The posterior mean estimates for the Bayesian model with default normal priors are similar to the
ML estimates obtained with the heckman command.

We can calculate posterior summaries for the correlation parameter, ρ, and the standard error, σ,
in their natural scale by inverse-transforming the model parameters {athrho} and {lnsigma} using
the bayesstats summary command. We also include posterior summaries for the selectivity effect
λ = ρσ.

. bayesstats summary (rho:1-2/(exp(2*{athrho})+1))
> (sigma:exp({lnsigma}))
> (lambda:exp({lnsigma})*(1-2/(exp(2*{athrho})+1)))

Posterior summary statistics MCMC sample size = 10,000

rho : 1-2/(exp(2*{athrho})+1)
sigma : exp({lnsigma})

lambda : exp({lnsigma})*(1-2/(exp(2*{athrho})+1))

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

rho .6970522 .0510145 .003071 .701373 .5905851 .7867018
sigma 6.012205 .1621422 .008761 6.008807 5.700587 6.339366

lambda 4.196646 .3937209 .024351 4.212609 3.411479 4.946325

Again, the posterior mean estimates of ρ, σ, and λ agree with the ML estimates reported by heckman.
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Multilevel models

The bayes prefix supports several multilevel commands such as mixed and meglm; see
[BAYES] Bayesian estimation. Multilevel models introduce effects at different levels of hierarchy
such as hospital effects and doctor-nested-within-hospital effects, which are often high-dimensional.
These effects are commonly referred to as random effects in frequentist models. Bayesian multi-
level models estimate random effects together with other model parameters. In contrast, frequentist
multilevel models integrate random effects out, but provide ways to predict them after estimation,
conditional on other estimated model parameters. Thus, in addition to regression coefficients and
variance components (variances and covariances of random effects), Bayesian multilevel models
include random effects themselves as model parameters. With a slight abuse of the terminology, we
will sometimes refer to regression coefficients as fixed effects, keeping in mind that they are still
random quantities from a Bayesian perspective.

Multilevel models are more difficult to simulate from because of the existence of high-dimensional
random-effects parameters. They typically require longer burn-in periods to achieve convergence and
larger MCMC sample sizes to obtain precise estimates of random effects and variance components.

Prior specification is particularly important for multilevel models. Using noninformative priors
for all model parameters will likely result in nonconvergence or high autocorrelation of the MCMC
sample, especially with small datasets. The default priors provided by the bayes prefix are chosen
to be fairly uninformative, which may often lead to low simulation efficiencies for model parameters
and, especially, for variance components; see Default priors. So, do not be surprised to see high
autocorrelation with default priors, and be prepared to investigate various prior specifications during
your analysis. For example, you may need to use the iwishartprior() option to increase the
degrees of freedom and to specify a different scale matrix of the inverse-Wishart prior distribution
used for the covariance matrices of random effects.

To change the default priors, you will need to know the names of the model parameters. See
Likelihood model to learn how the bayes prefix labels the parameters. You can specify your own name
stubs for the groups of random-effects parameters using the restubs() option. After simulation,
see Different ways of specifying model parameters for how to refer to individual random effects to
evaluate MCMC convergence or to obtain their MCMC summaries.

By default, the bayes prefix does not compute or display MCMC summaries of individual random
effects to conserve computation time and space. You can specify the showreffects() or show()
option to compute and display them for chosen groups of random effects.

Also, the bayes prefix does not compute the log marginal-likelihood by default for multilevel
models. The computation involves the inverse of the determinant of the sample covariance matrix of
all parameters and loses accuracy as the number of parameters grows. For high-dimensional models
such as multilevel models, the computation can be time consuming, and its accuracy may become
unacceptably low. Because it is difficult to access the levels of accuracy of the computation for all
multilevel models, the log marginal-likelihood is not computed by default. For multilevel models
containing a small number of random effects, you can use the remargl option to compute and display
it.

Assessing convergence of MCMC for multilevel models is challenging because of the high dimen-
sionality. Technically, the convergence of all parameters, including the random-effects parameters,
must be explored. In practice, this may not always be feasible. Many applications focus on the
regression coefficients and variance components and treat random-effects parameters as nuisance. In
this case, it may be sufficient to check convergence only for the parameters of interest, especially
because their convergence is adversely affected whenever there are convergence problems for many of
the random-effects parameters. If the random-effects parameters are of primary interest in your study,
you should evaluate their convergence. For models with a small to moderate number of random-effects

https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimationDescriptionmecmds
https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryrandom_effects_parameters
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryfixed_effects_parameters
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
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parameters, it may be beneficial to always check the convergence of the random-effects parameters.
Also see Convergence of MCMC in [BAYES] bayesmh.

Two-level models

Consider example 1 from [ME] mixed that analyzed the weight gain of 48 pigs over 9 successive
weeks. Detailed Bayesian analysis of these data using bayesmh are presented in Panel-data and
multilevel models in [BAYES] bayesmh. Here, we use bayes: mixed to fit Bayesian two-level
random-intercept and random-coefficient models to these data.

. use https://www.stata-press.com/data/r18/pig
(Longitudinal analysis of pig weights)

Example 12: Random-intercept model, using option melabel

We first consider a simple random-intercept model of dependent variable weight on covariate
week with variable id identifying pigs. The random-intercept model assumes that all pigs share a
common growth rate but have different initial weight.

For comparison purposes, we first use the mixed command to fit this model by maximum likelihood.

. mixed weight week || id:

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -1014.9268
Iteration 1: Log likelihood = -1014.9268

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(_cons) 14.81751 3.124225 9.801716 22.40002

var(Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesex1
https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesPanel-dataandmultilevelmodels
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesPanel-dataandmultilevelmodels
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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To fit a Bayesian analog of this model, we simply prefix the mixed command with bayes. We
also specify the melabel option with bayes to label model parameters in the output table as mixed
does.

. set seed 15

. bayes, melabel: mixed weight week || id:
note: Gibbs sampling is used for regression coefficients and variance

components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = .8112
Efficiency: min = .007005

avg = .5064
Log marginal-likelihood max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.209734 .0390718 .000391 6.209354 6.133233 6.285611

_cons 19.46511 .6239712 .07455 19.48275 18.2534 20.67396

id
var(_cons) 15.7247 3.436893 .049048 15.26104 10.31182 23.60471

var(Residual) 4.411155 .3193582 .004397 4.396044 3.834341 5.080979

Note: Default priors are used for model parameters.

The estimates of posterior means and posterior standard deviations are similar to the ML estimates
and standard errors from mixed. The results are also close to those from bayesmh in example 23 in
[BAYES] bayesmh.

The average efficiency of the simulation is about 51% and there is no indication of any im-
mediate convergence problems, but we should investigate convergence more thoroughly; see, for
example, example 5 in [BAYES] Bayesian commands and, more generally, Convergence of MCMC
in [BAYES] bayesmh.

Because Bayesian multilevel models are generally slower than other commands, the bayes prefix
displays dots by default with multilevel commands. You can specify the nodots option to suppress
them.

Also, as we described in Multilevel models, the log marginal-likelihood is not computed for
multilevel models by default because of the high dimensionality of the models. This is also described
in the help file that appears when you click on Log marginal-likelihood in the output header in
the Results window. For models with a small number of random effects, you can specify the remargl
option to compute the log marginal-likelihood.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesex23
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommandsRemarksandexamplesex5
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommands
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh


bayes — Bayesian regression models using the bayes prefix 47

An important note about bayes: mixed is the default simulation method. Most bayes prefix
commands use an adaptive MH algorithm to sample model parameters. The high-dimensional nature of
multilevel models greatly decreases the simulation efficiency of this algorithm. For Gaussian multilevel
models, such as bayes: mixed, model parameters can be sampled using a more efficient, albeit slower,
Gibbs algorithm under certain prior distributions. The default priors used for regression coefficients
and variance components allow the bayes prefix to use Gibbs sampling for these parameters with
the mixed command. If you change the prior distributions or the default blocking structure for some
parameters, Gibbs sampling may not be available for those parameters and an adaptive MH sampling
will be used instead.

Example 13: Random-intercept model, default output

When we specified the melabel option with bayes in example 12, we intentionally suppressed
some of the essential output from bayes: mixed. Here is what we would have seen had we not
specified melabel.

. bayes

Multilevel structure

id
{U0}: random intercepts

Model summary

Likelihood:
weight ~ normal(xb_weight,{e.weight:sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{e.weight:sigma2} ~ igamma(.01,.01)

Hyperprior:
{U0:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_weight.
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Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = .8112
Efficiency: min = .007005

avg = .5064
Log marginal-likelihood max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.209734 .0390718 .000391 6.209354 6.133233 6.285611

_cons 19.46511 .6239712 .07455 19.48275 18.2534 20.67396

id
U0:sigma2 15.7247 3.436893 .049048 15.26104 10.31182 23.60471

e.weight
sigma2 4.411155 .3193582 .004397 4.396044 3.834341 5.080979

Note: Default priors are used for model parameters.

Let’s go over the default output in detail, starting with the model summary. For multilevel models,
in addition to the model summary, which describes the likelihood model and prior distributions, the
bayes prefix displays information about the multilevel structure of the model.

Multilevel structure

id
{U0}: random intercepts

Our multilevel model has one set of random effects, labeled as U0, which represent random intercepts
at the id level. Recall that in Bayesian models, random effects are not integrated out but estimated
together with other model parameters. So, {U0}, or using its full name {U0[id]}, represent random-
effects parameters in our model. See Likelihood model to learn about the default naming convention
for random-effects parameters.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryrandom_effects_parameters
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryrandom_effects_parameters
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According to the model summary below, the likelihood of the model is a normal linear regression
with the linear predictor containing regression parameters {weight:week} and {weight: cons}
and random-effects parameters {U0}, and with the error variance labeled as {e.weight:sigma2}.
Regression coefficients {weight:week} and {weight: cons} have default normal priors with zero
means and variances of 10,000. The random intercepts {U0} are normally distributed with mean zero
and variance {U0:sigma2}. The variance components, error variance {e.weight:sigma2}, and
random-intercept variance {U0:sigma2} have default inverse-gamma priors, InvGamma(0.01, 0.01).
The random-intercept variance is a hyperparameter in our model.

Model summary

Likelihood:
weight ~ normal(xb_weight,{e.weight:sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{e.weight:sigma2} ~ igamma(.01,.01)

Hyperprior:
{U0:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_weight.

The default output table of bayes: mixed uses the names of model parameters as they are defined
by the bayes prefix.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.209734 .0390718 .000391 6.209354 6.133233 6.285611

_cons 19.46511 .6239712 .07455 19.48275 18.2534 20.67396

id
U0:sigma2 15.7247 3.436893 .049048 15.26104 10.31182 23.60471

e.weight
sigma2 4.411155 .3193582 .004397 4.396044 3.834341 5.080979

Note: Default priors are used for model parameters.

Becoming familiar with the native parameter names of the bayes prefix is important for prior
specification and for later postestimation. The melabel option is provided for easier comparison of
the results between the bayes prefix and the corresponding frequentist multilevel command.

Example 14: Displaying random effects

By default, the bayes prefix does not compute or display MCMC summaries for the random-effects
parameters to conserve space and computational time. You can specify the showreffects option
to display all random effects or the showreffects() or show() option to display specific random
effects. For example, continuing example 13, we can display the random-effects estimates for the
first five pigs as follows.
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. bayes, show({U0[1/5]}) noheader

Equal-tailed
U0[id] Mean Std. dev. MCSE Median [95% cred. interval]

1 -1.778442 .8873077 .074832 -1.761984 -3.542545 .0062218
2 .7831408 .8775376 .071421 .7961802 -.9547035 2.491798
3 -2.052634 .9038672 .072325 -2.061559 -3.822966 -.3246834
4 -1.891103 .878177 .075611 -1.858056 -3.642227 -.1028766
5 -3.316584 .8894319 .074946 -3.320502 -5.0469 -1.568927

These posterior mean estimates of random-effects parameters should be comparable with those predicted
by predict, reffects after mixed. Posterior standard deviations, however, will generally be larger
than the corresponding standard errors of random effects predicted after mixed, because the latter do
not incorporate the uncertainty about the estimated model parameters.

You can also use [BAYES] bayesstats summary to obtain MCMC summaries of random-effects
parameters after estimation:

. bayesstats summary {U0[1/5]}
(output omitted )

If you decide to use the showreffects option to display all random-effects parameters, beware
of the increased computation time for models with many random effects. Then, the bayes prefix will
compute and display the MCMC summaries for only the first M random-effects parameters, where
M is the maximum matrix dimension (c(max matdim). The number of parameters displayed and
stored in e(b) cannot exceed c(max matdim). You can specify the show() option with bayes or
use bayesstats summary to obtain results for other random-effects parameters.

Example 15: Random-coefficient model

Continuing example 13, let’s consider a random-coefficient model that allows the growth rate to
vary among pigs.

Following mixed’s specification, we include the random slope for week at the id level by specifying
the week variable in the random-effects equation.

https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummary
https://www.stata.com/manuals/pcreturn.pdf#pcreturnRemarksandexamplesmax_matdim
https://www.stata.com/manuals/memixed.pdf#memixed


bayes — Bayesian regression models using the bayes prefix 51

. set seed 15

. bayes: mixed weight week || id: week
note: Gibbs sampling is used for regression coefficients and variance

components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Multilevel structure

id
{U0}: random intercepts
{U1}: random coefficients for week

Model summary

Likelihood:
weight ~ normal(xb_weight,{e.weight:sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{U1} ~ normal(0,{U1:sigma2}) (1)

{e.weight:sigma2} ~ igamma(.01,.01)

Hyperpriors:
{U0:sigma2} ~ igamma(.01,.01)
{U1:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_weight.

Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = .7473
Efficiency: min = .003057

avg = .07487
Log marginal-likelihood max = .1503

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.233977 .0801192 .01449 6.237648 6.05268 6.387741

_cons 19.44135 .3426786 .044377 19.44532 18.76211 20.11843

id
U0:sigma2 7.055525 1.649394 .050935 6.844225 4.466329 10.91587
U1:sigma2 .3941786 .0901945 .002717 .3825387 .2526756 .6044887

e.weight
sigma2 1.613775 .1261213 .003254 1.609296 1.386427 1.880891

Note: Default priors are used for model parameters.
Note: There is a high autocorrelation after 500 lags.
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In addition to random intercepts {U0}, we now have random coefficients for week, labeled as
{U1}, with the corresponding variance parameter {U1:sigma2}. Compared with the random-intercept
model, by capturing the variability of slopes on week, we reduced the estimates of the error variance
and the random-intercept variance.

The average simulation efficiency decreased to only 7%, and we now see a note about a high
autocorrelation after 500 lags. We can use, for example, bayesgraph diagnostics to verify that
the high autocorrelation in this example is not an indication of nonconvergence but rather of a slow
mixing of our MCMC sample. If we use bayesstats ess, we will see that the coefficient on weight
and the constant term have the lowest efficiency, which suggests that these parameters are likely to be
correlated with some of the random-effects estimates. If we want to reduce the autocorrelation and
improve precision of the estimates for these parameters, we can increase the MCMC sample size by
specifying the mcmcsize() option or thin the MCMC chain by specifying the thinning() option.

Example 16: Random-coefficient model, unstructured covariance

In example 15, we assumed independence between random intercepts {U0} and random slopes on
week, {U1}. We relax this assumption here by specifying an unstructured covariance matrix.

Before we proceed with estimation, let’s review our model summary first by specifying the dryrun
option.

. bayes, dryrun: mixed weight week || id: week, covariance(unstructured)

Multilevel structure

id
{U0}: random intercepts
{U1}: random coefficients for week

Model summary

Likelihood:
weight ~ normal(xb_weight,{e.weight:sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U0 U1} ~ mvnormal(2,{U:Sigma,m}) (1)
{e.weight:sigma2} ~ igamma(.01,.01)

Hyperprior:
{U:Sigma,m} ~ iwishart(2,3,I(2))

(1) Parameters are elements of the linear form xb_weight.

The prior distributions for random effects {U0} and {U1} are no longer independent. Instead, they
have a joint prior—a bivariate normal distribution with covariance matrix parameter {U:Sigma,m},
which is short for {U:Sigma,matrix}. The random-effects stub U is used to label the covariance
matrix. The covariance matrix {U:Sigma,m} is assigned a fairly uninformative inverse-Wishart prior
with three degrees of freedom and an identity scale matrix; see Default priors for details.
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Let’s now fit the model but suppress the model summary for brevity.

. set seed 15

. bayes, nomodelsummary: mixed weight week || id: week, covariance(unstructured)
note: Gibbs sampling is used for regression coefficients and variance

components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Multilevel structure

id
{U0}: random intercepts
{U1}: random coefficients for week

Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = .7009
Efficiency: min = .003683

avg = .07461
Log marginal-likelihood max = .1602

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.207086 .0878022 .014469 6.204974 6.041093 6.384891

_cons 19.39551 .4077822 .050353 19.40187 18.53869 20.1993

id
U:Sigma_1_1 6.872161 1.627769 .061568 6.673481 4.282284 10.62194
U:Sigma_2_1 -.0866373 .2702822 .009861 -.0796118 -.645439 .4341423
U:Sigma_2_2 .399525 .0904532 .002488 .3885861 .2575883 .6104775

e.weight
sigma2 1.611889 .1263131 .003155 1.605368 1.381651 1.872563

Note: Default priors are used for model parameters.
Note: There is a high autocorrelation after 500 lags.

The 95% credible interval for the covariance between {U0} and {U1}, labeled as {U:Sigma 2 1}
in the output, is [−.65, 0.43], which suggests independence between {U0} and {U1}.
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The high autocorrelation note is due to the lower sampling efficiency of some of the regression
coefficients as can be seen from the output of bayesstats ess:

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .003683

avg = .07461
max = .1602

ESS Corr. time Efficiency

weight
week 36.83 271.55 0.0037

_cons 65.58 152.48 0.0066

id
U:Sigma_1_1 698.99 14.31 0.0699
U:Sigma_2_1 751.20 13.31 0.0751
U:Sigma_2_2 1321.67 7.57 0.1322

e.weight
sigma2 1602.39 6.24 0.1602

We explore the impact of this high autocorrelation on MCMC convergence in example 17.

Example 17: Random-coefficient model, multiple chains

We continue with the random-coefficient model with unstructured covariance from example 16.
Some of the parameters such as the coefficients {weight:week} and {weight: cons} have low
sampling efficiency, which raises convergence and precision concerns. Simulating multiple Markov
chains of the model may help address these concerns.

We will simulate three chains by specifying the nchains(3) option. We will use the rseed(15)
option to ensure reproducibility with multiple chains; see Reproducing results in [BAYES] bayesmh. We
will also suppress various model summaries by specifying the nomodelsummary and nomesummary
options.

When using multiple chains to assess convergence, it is important to apply overdispersed initial
values for different chains. It is difficult to quantify overdispersion because it is specific to the data
and model. The default initialization provided by the bayes: mixed command may or may not be
sufficient. To be certain, we recommend that you provide initial values explicitly, at least for the
main parameters of interest. In the following specification, we provide initial values for the two
regression coefficients referred to as {weight:}, the variance parameter {e.weight:sigma2}, and
the covariance matrix {U:Sigma, matrix}. We try to generate initial values that are sufficiently
separated. For example, we use rnormal(-10, 100) for the regression coefficients in the second chain
and rnormal(10, 100) in the third chain. Specifying initial values for the random effects {U0} and
{U1} would be more tedious, so we let them be sampled from their corresponding prior distributions.
Because the hyperparameters of these priors have overdispersed initial values, we indirectly provide
some overdispersion for the initial random effects as well.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesReproducingresults
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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. bayes, nchains(3) rseed(15) nomodelsummary nomesummary
> init2({weight:} rnormal(-10,100) {e.weight:sigma2} 0.1 {U:Sigma,m} 100*I(2))
> init3({weight:} rnormal(10,100) {e.weight:sigma2} 100 {U:Sigma,m} (10,-5\-5,10)):
> mixed weight week || id: week, covariance(unstructured)
note: Gibbs sampling is used for regression coefficients and variance

components.
Chain 1

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........

> 5000.........6000.........7000.........8000.........9000.........10000 done
Chain 2

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........

> 5000.........6000.........7000.........8000.........9000.........10000 done
Chain 3

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........

> 5000.........6000.........7000.........8000.........9000.........10000 done

Bayesian multilevel regression Number of chains = 3
Metropolis--Hastings and Gibbs sampling Per MCMC chain:

Iterations = 12,500
Burn-in = 2,500
Sample size = 10,000

Group variable: id Number of groups = 48
Obs per group:

min = 9
avg = 9.0
max = 9

Number of obs = 432
Avg acceptance rate = .6981
Avg efficiency: min = .003059

avg = .07659
max = .1663

Log marginal-likelihood Max Gelman--Rubin Rc = 1.055

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.201475 .0874855 .009133 6.200176 6.032975 6.374917

_cons 19.3941 .4344171 .035266 19.38919 18.52954 20.2323

id
U:Sigma_1_1 6.863804 1.6219 .035988 6.653249 4.329726 10.62575
U:Sigma_2_1 -.0799526 .2684949 .005546 -.0723027 -.6351419 .4354943
U:Sigma_2_2 .3983365 .0890525 .001378 .3869276 .258562 .6048894

e.weight
sigma2 1.612452 .1254983 .001777 1.605632 1.383175 1.874105

Note: Default priors are used for model parameters.
Note: Default initial values are used for multiple chains.
Note: There is a high autocorrelation after 500 lags in at least one of the

chains.

While the sampling efficiency of the chains is about the same as in example 16, having three MCMC
samples instead of one improves the precision of the estimation results, as evident from the lower
MCMC errors for all model parameters.
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Let’s compute Gelman–Rubin diagnostics as a convergence check. We can already see in the
header of bayes: mixed that the maximum Gelman–Rubin statistic Rc of 1.055 is close to 1.

. bayesstats grubin

Gelman--Rubin convergence diagnostic

Number of chains = 3
MCMC size, per chain = 10,000
Max Gelman--Rubin Rc = 1.055383

Rc

weight
week 1.006404

_cons 1.055383

id
U:Sigma_1_1 1.000567
U:Sigma_2_1 1.001168
U:Sigma_2_2 1.002119

e.weight
sigma2 .9999899

Convergence rule: Rc < 1.1

The convergence diagnostic estimates Rc for all reported parameters are lower than 1.1, suggesting the
convergence of the chains. We can also explore MCMC convergence visually; see [BAYES] bayesgraph.

Crossed-effects model

Let’s revisit example 4 from [ME] meglm, which analyzes salamander cross-breeding data. Two
populations of salamanders are considered: whiteside males and females (variables wsm and wsf) and
roughbutt males and females (variables rbm and rbf). Male and female identifiers are recorded in
the male and female variables. The outcome binary variable y indicates breeding success or failure.

https://www.stata.com/manuals/bayesbayesgraph.pdf#bayesbayesgraph
https://www.stata.com/manuals/memeglm.pdf#memeglmRemarksandexamplesex4_meglm
https://www.stata.com/manuals/memeglm.pdf#memeglm
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In example 4 of [ME] meglm, we fit a crossed-effects logistic regression for successful mating,
in which the effects of male and female were crossed. For the purpose of illustration, we will fit a
crossed-effects probit regression here using meglm with the probit link.

. use https://www.stata-press.com/data/r18/salamander

. meglm y wsm##wsf || _all: R.male || female:, family(bernoulli) link(probit)
note: crossed random-effects model specified; option intmethod(laplace)

implied.

Fitting fixed-effects model:

Iteration 0: Log likelihood = -223.01026
Iteration 1: Log likelihood = -222.78736
Iteration 2: Log likelihood = -222.78735

Refining starting values:

Grid node 0: Log likelihood = -216.49485

Fitting full model:

Iteration 0: Log likelihood = -216.49485 (not concave)
Iteration 1: Log likelihood = -214.34477
Iteration 2: Log likelihood = -209.96986
Iteration 3: Log likelihood = -208.2673
Iteration 4: Log likelihood = -208.11936
Iteration 5: Log likelihood = -208.119 (not concave)
Iteration 6: Log likelihood = -208.11897
Iteration 7: Log likelihood = -208.11722
Iteration 8: Log likelihood = -208.11342
Iteration 9: Log likelihood = -208.11183
Iteration 10: Log likelihood = -208.11182

Mixed-effects GLM Number of obs = 360
Family: Bernoulli
Link: Probit

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

_all 1 360 360.0 360
female 60 6 6.0 6

https://www.stata.com/manuals/memeglm.pdf#memeglmRemarksandexamplesex4_meglm
https://www.stata.com/manuals/memeglm.pdf#memeglm
https://www.stata.com/manuals/memeglm.pdf#memeglm
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Integration method: laplace

Wald chi2(3) = 45.09
Log likelihood = -208.11182 Prob > chi2 = 0.0000

y Coefficient Std. err. z P>|z| [95% conf. interval]

1.wsm -.4122695 .2658063 -1.55 0.121 -.9332403 .1087014
1.wsf -1.720396 .3039435 -5.66 0.000 -2.316114 -1.124677

wsm#wsf
1 1 2.121205 .3484936 6.09 0.000 1.43817 2.80424

_cons .5951487 .2217643 2.68 0.007 .1604986 1.029799

_all>male
var(_cons) .3867562 .1779527 .1569589 .9529908

female
var(_cons) .4464295 .1952624 .1894299 1.0521

LR test vs. probit model: chi2(2) = 29.35 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

To fit the corresponding Bayesian model, we prefix the above command with bayes:.

. set seed 15

. bayes: meglm y wsm##wsf || _all: R.male || female:, family(bernoulli)
> link(probit)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Multilevel structure

male
{U0}: random intercepts

female
{V0}: random intercepts

Model summary

Likelihood:
y ~ meglm(xb_y)

Priors:
{y:1.wsm 1.wsf 1.wsm#1.wsf _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{V0} ~ normal(0,{V0:sigma2}) (1)

Hyperpriors:
{U0:sigma2} ~ igamma(.01,.01)
{V0:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_y.



bayes — Bayesian regression models using the bayes prefix 59

Bayesian multilevel GLM MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000

No. of Observations per group
Group variable groups Minimum Average Maximum

_all 1 360 360.0 360
female 60 6 6.0 6

Family: Bernoulli Number of obs = 360
Link: probit Acceptance rate = .3223

Efficiency: min = .008356
avg = .02043

Log marginal-likelihood max = .02773

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

y
1.wsm -.411886 .28122 .016889 -.4158334 -.9645049 .156521
1.wsf -1.722195 .3329918 .023312 -1.713574 -2.381169 -1.094443

wsm#wsf
1 1 2.110366 .3671998 .022643 2.09234 1.443113 2.831923

_cons .5858733 .2512646 .015407 .5906893 .0812177 1.077352

male
U0:sigma2 .4291858 .2195246 .024015 .3876708 .1347684 .9648611

female
V0:sigma2 .4928416 .2189307 .019043 .4576824 .1648551 1.003193

Note: Default priors are used for model parameters.

The variance components for male and female, {U0:sigma2} and {V0:sigma2}, are slightly higher
than the corresponding ML estimates, but the regression coefficients are similar.

For an example of Bayesian estimation of a crossed-effects logistic regression model, see Rabe-
Hesketh and Skrondal (2022, chap. 16).

Blocked-diagonal covariance structures

The 1989 fertility survey considered in example 5 of [ME] me analyzes the use of contraception
among Bangladeshi women. The survey contains data from 60 districts, identified by the district
variable, and includes demographic factors such as whether the woman is from an urban area (urban),
mean-centered age (age), and number of children (children). Here children is a factor variable
coded as children = 0 (no children), children = 1 (one child), children = 2 (two children),
and children = 3 (three or more children). The outcome variable c use is a binary indicator for
the use of contraception.

We consider a two-level logit model for c use with a random intercept and random coefficients
for indicators of having one, two, or three or more children. As “fixed” predictor variables, we use
urban, age, and children.

It seems reasonable to expect positive correlation between the three random coefficients. Following
example 5 in [ME] me, we will use the covariance(exchangeable) option and repeat district:
to specify a blocked-diagonal covariance structure for the random effects.

https://www.stata.com/manuals/meme.pdf#memeRemarksandexamplesex5
https://www.stata.com/manuals/meme.pdf#meme
https://www.stata.com/manuals/meme.pdf#memeRemarksandexamplesex5
https://www.stata.com/manuals/meme.pdf#meme
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Let’s first run bayes: melogit with the dryrun option to see the model parameters.

. use https://www.stata-press.com/data/r18/bangladesh
(Bangladesh Fertility Survey, 1989)

. bayes, dryrun: melogit c_use i.urban age i.children ||
> district: i.children, covariance(exchangeable) ||
> district:

Multilevel structure

district
{U0}: random intercepts
{U1}: random coefficients for 1.children
{U2}: random coefficients for 2.children
{U3}: random coefficients for 3.children

Model summary

Likelihood:
c_use ~ melogit(xb_c_use)

Priors:
{c_use:1.urban age i.children _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{U1 U2 U3} ~ mvn0exchangeable(3,{U:sigma2},{U:rho})

(1)

Hyperpriors:
{U:rho} ~ uniform(-1,1)

{U0:sigma2} ~ igamma(.01,.01)
{U:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_c_use.

The random coefficients {U1}, {U2}, and {U3} are assigned a multivariate normal prior with an
exchangeable covariance structure, mvn0exchangeable(). This prior introduces two hyperparameters:
{U:sigma2}, for the diagonal variance term of the covariance matrix, and {U:rho}, for the off-
diagonal correlation term such that the covariance is equal to {U:sigma2}×{U:rho}. The random
intercept {U0} is assigned a normal prior with hyperparameter {U0:sigma2} for its variance. It is
recommended to assign informative priors to {U0:sigma2}, {U:sigma2}, and {U:rho}. For example,
we believe the correlation parameter to be between 0 and 0.5 and thus assign the uniform(0, 0.5)
prior to {U:rho}. In addition, let’s say that, from historical data, the mean variability for children
random coefficients was found to be about 0.2 and the mean variability for the random intercepts
was found to be about 0.25. We may then assign the igamma(11,2) prior to {U:sigma2} and the
igamma(9,2) prior to {U0:sigma2} to incorporate this prior knowledge. We will also add the or
option to obtain estimates of the odds ratios.

. bayes, prior({U:rho}, uniform(0,0.5)) prior({U:sigma2}, igamma(11,2))
> prior({U0:sigma2}, igamma(9,2)) rseed(17):
> melogit c_use i.urban age i.children ||
> district: i.children, covariance(exchangeable) ||
> district:, or
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Multilevel structure

district
{U0}: random intercepts
{U1}: random coefficients for 1.children
{U2}: random coefficients for 2.children
{U3}: random coefficients for 3.children
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Model summary

Likelihood:
c_use ~ melogit(xb_c_use)

Priors:
{c_use:1.urban age i.children _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{U1 U2 U3} ~ mvn0exchangeable(3,{U:sigma2},{U:rho})

(1)

Hyperpriors:
{U:rho} ~ uniform(0,0.5)

{U:sigma2} ~ igamma(11,2)
{U0:sigma2} ~ igamma(9,2)

(1) Parameters are elements of the linear form xb_c_use.

Bayesian multilevel logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Family: Bernoulli Number of obs = 1,934
Link: logit Acceptance rate = .2401

Efficiency: min = .009968
avg = .02371

Log marginal-likelihood max = .04605

Equal-tailed
Odds ratio Std. dev. MCSE Median [95% cred. interval]

c_use
1.urban 2.153732 .2632265 .023028 2.135123 1.710943 2.728066

age .9734474 .0076718 .000478 .9736178 .9585345 .9887891

children
1 3.043873 .5490154 .03425 3.00129 2.119798 4.241168
2 4.030936 .7761135 .040228 3.949568 2.77722 5.714252
3 3.85945 .724596 .047131 3.778789 2.644804 5.448504

_cons .1850523 .0271077 .002155 .1827656 .1395885 .242633

district
U:rho .3236901 .1286163 .010136 .3422138 .0326351 .4943052

U0:sigma2 .2147372 .0541223 .002522 .2069007 .1315863 .3416939
U:sigma2 .1736623 .0435398 .004361 .1676818 .1039366 .2793393

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
Note: Default priors are used for some model parameters.

The posterior odds-ratio estimates for the fixed-effects parameters are close to the estimates reported
by the melogit command in example 5. Our model reports an estimate of 0.32 for the correlation
between random coefficients, a variance of 0.17 for the random coefficients, and a variance of 0.21
for the random intercepts.

https://www.stata.com/manuals/meme.pdf#memeRemarksandexamplesex5
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Panel-data models

The bayes prefix supports several panel-data commands such as xtreg and xtlogit; see
[BAYES] Bayesian estimation.

Panel-data models, also known as longitudinal-data models, are used for analyzing cross-sectional
time series when there is an explicit time component. Panel-data models require that the panel variable
be specified using the xtset command. See [XT] xt for details.

Panel-data models can also be viewed as two-level random-intercept models, so many comments
from Multilevel models apply to these models too.

All Bayesian panel-data models include random intercepts, referred to as {U[panelvar]} or simply
{U}, with the panel variable panelvar used as the grouping variable. These intercepts are commonly
referred to as random effects in frequentist models.

Random intercepts are assigned default prior distributions specific to the likelihood family of
the model. For linear and generalized linear models, the default prior is normal with zero mean
and unknown variance {var U}. Other models have special random-effects priors, and these are
described in Methods and formulas of the command-specific bayes entries. Positive hyperparameters
such as {var U} are assigned default inverse-gamma priors. Categorical outcome models such as
[BAYES] bayes: xtmlogit have multiple random effects. In cases when these random effects are
correlated, the model includes a matrix hyperparameter {U:Sigma,m} that is assigned a default
inverse-Wishart prior.

You can specify your own priors for regression coefficients, random effects, and auxiliary model
parameters. To change the default priors, you will need to know the names of the model parameters.
See Likelihood model to learn how the bayes prefix labels the parameters. You can also use the
dryrun option to see the names of model parameters specific to each bayes model before estimation.
After estimation, see Different ways of specifying model parameters for how to refer to individual
random effects to evaluate MCMC convergence or to obtain their MCMC summaries.

Bayesian panel-data models estimate random effects together with regression coefficients and other
model parameters. By default, the bayes prefix does not compute or display MCMC summaries of indi-
vidual random effects to conserve computation time and space. You can specify the showreffects()
or show() option to compute and display them for chosen subsets of random effects.

By default, all panel-data models use Gibbs sampling for variance components. Linear panel-
data models, bayes: xtreg, additionally use Gibbs sampling for regression coefficients. With
bayes: xtreg, we can specify Gibbs sampling also for random effects by using the gibbs option.

Unlike other bayes commands, panel-data models support the [BAYES] bayespredict postesti-
mation command to compute Bayesian predictions; see examples in [BAYES] bayes: xtpoisson and
[BAYES] bayes: xtmlogit.

Example 18: Random-effects linear model

In example 12, we considered a random-intercept model analyzing the weight gain of pigs. In that
example, the dependent variable, weight, is regressed on variable week, and random intercepts are
introduced with respect to the group variable id. Let’s fit the same random-intercept model but now
using bayes: xtreg. First, we should declare our data as panel data.

. use https://www.stata-press.com/data/r18/pig
(Longitudinal analysis of pig weights)

. xtset id

Panel variable: id (balanced)

https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimationDescriptionxtcmds
https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/xtxtset.pdf#xtxtset
https://www.stata.com/manuals/xtxt.pdf#xtxt
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryrandom_effects_parameters
https://www.stata.com/manuals/bayesbayesxtmlogit.pdf#bayesbayesxtmlogit
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
https://www.stata.com/manuals/bayesbayesxtpoisson.pdf#bayesbayesxtpoisson
https://www.stata.com/manuals/bayesbayesxtmlogit.pdf#bayesbayesxtmlogit
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We can use bayes: xtreg to fit the same model that we previously fit using bayes: mixed.
Both commands use the same default priors and the same default sampling method.

. bayes, rseed(17): xtreg weight week
note: Gibbs sampling is used for regression coefficients and variance

components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U[id]} ~ normal(0,{var_U}) (1)
{sigma2} ~ igamma(0.01,0.01)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_weight.

Bayesian RE normal regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = .8089
Efficiency: min = .008983

avg = .5507
Log marginal-likelihood max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.209598 .0391057 .000391 6.209511 6.134362 6.28693

_cons 19.2624 .5480876 .057828 19.23869 18.18444 20.36098

var_U 15.75035 3.489106 .042737 15.31299 10.28186 23.8984
sigma2 4.417614 .3188951 .004392 4.401373 3.837572 5.07726

Note: Default priors are used for model parameters.

The results are similar to those from example 12, up to MCMC sampling variation.

To improve efficiency, all panel-data models by default use Gibbs sampling for variance components.
Panel-data linear models (bayes: xtreg) use Gibbs sampling also for regression coefficients. With
bayes: xtreg, we can improve sampling efficiency further by specifying the gibbs option to use
Gibbs sampling also for random effects. Beware that, depending on the number of random effects,
this may increase the computation time substantially.
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. bayes, gibbs rseed(17): xtreg weight week
note: Gibbs sampling is used for all parameters, including random effects.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000...... ...9000.........10000 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U[id]} ~ normal(0,{var_U}) (1)
{sigma2} ~ igamma(0.01,0.01)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_weight.

Bayesian RE normal regression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = 1
Efficiency: min = .01606

avg = .6605
Log marginal-likelihood max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.209921 .0390177 .00039 6.209939 6.132542 6.285744

_cons 19.26382 .6209709 .048995 19.27342 18.0418 20.5063

var_U 15.80222 3.488439 .038688 15.33375 10.3458 24.03719
sigma2 4.412905 .3236225 .00359 4.395282 3.821423 5.095022

Note: Default priors are used for model parameters.

Using full Gibbs sampling, we see that our estimates of regression coefficients and variance components
are similar but that the minimum efficiency is increased to 0.016 from 0.009.

Example 19: Random-effects ordered logit model

Consider example 1 from [XT] xtologit, which analyzes data from a smoking prevention project
in schools. The dependent variable, tobacco and health knowledge score thk, has four categories.
Predictor variables include preintervention score, prethk, classroom curriculum, cc, and television
intervention, tv, as well as the interaction of the last two. The school identifier variable school is
set as the panel variable.

. use https://www.stata-press.com/data/r18/tvsfpors
(Television, School, and Family Project)

. xtset school

Panel variable: school (unbalanced)

https://www.stata.com/manuals/xtxtologit.pdf#xtxtologitRemarksandexamplesex1_xtologit
https://www.stata.com/manuals/xtxtologit.pdf#xtxtologit
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The bayes: xtologit command is used to fit a Bayesian model. The default prior distribution for
regression coefficients is normal with zero mean and variances of 10,000. The default prior distribution
for random effects is normal with mean zero and variance {var U}. The hyperparameter {var U} is
assigned an inverse-gamma hyperprior. The three cutpoints for the ordered logit likelihood, { cut1},
{ cut2}, and { cut3}, are assigned a flat prior.

. bayes, rseed(17): xtologit thk prethk cc##tv
note: Gibbs sampling is used for variance components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000..... done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
thk ~ ologit(xb_thk,{_cut1 ... _cut3})

Priors:
{thk:prethk 1.cc 1.tv 1.cc#1.tv} ~ normal(0,10000) (1)

{U[school]} ~ normal(0,{var_U}) (1)
{_cut1 _cut2 _cut3} ~ 1 (flat)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_thk.

Bayesian RE ordered logistic regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Number of obs = 1,600
Acceptance rate = .506
Efficiency: min = .00404

avg = .01548
Log marginal-likelihood max = .03692

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

thk
prethk .4024205 .03817 .001987 .4016996 .3289603 .480875

1.cc .9329812 .2127196 .019923 .9304351 .5156044 1.367753
1.tv .3037174 .2089864 .03288 .2919775 -.0874367 .7099491

cc#tv
1 1 -.4663504 .2985113 .02669 -.4502481 -1.057705 .0993408

_cut1 -.0960417 .1673066 .016383 -.0987278 -.4235516 .2458889
_cut2 1.151299 .1739417 .020155 1.148734 .8009236 1.49998
_cut3 2.340316 .1798423 .020381 2.338304 1.994793 2.696972
var_U .1089538 .0529856 .002903 .0988449 .0351552 .2362116

Note: Default priors are used for model parameters.
Note: There is a high autocorrelation after 500 lags.

The command issues a high autocorrelation warning because of slower convergence for some of the
parameters. You can use bayesstats ess to find that {thk:1.tv} is the parameter that has the
lowest ESS. Slower convergence of panel-data models is often caused by the presence of many random
effects, which indirectly influences the convergence of regression coefficients as well.
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Sometimes, the sampling efficiency can be improved by simply increasing the burn-in period, thus
prolonging the adaptation phase of the sampling algorithm. In the next run, we double the default
burn-in period.

. bayes, burnin(5000) rseed(17): xtologit thk prethk cc##tv
note: Gibbs sampling is used for variance components.
Burn-in 5000 aaaaaaaaa1000aaaaaaaaa2000.........3000.........4000.........5000
> done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
thk ~ ologit(xb_thk,{_cut1 ... _cut3})

Priors:
{thk:prethk 1.cc 1.tv 1.cc#1.tv} ~ normal(0,10000) (1)

{U[school]} ~ normal(0,{var_U}) (1)
{_cut1 _cut2 _cut3} ~ 1 (flat)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_thk.

Bayesian RE ordered logistic regression MCMC iterations = 15,000
Metropolis--Hastings and Gibbs sampling Burn-in = 5,000

MCMC sample size = 10,000
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Number of obs = 1,600
Acceptance rate = .5038
Efficiency: min = .003954

avg = .015
Log marginal-likelihood max = .0366

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

thk
prethk .4043504 .0380502 .001989 .4033533 .3325402 .4827048

1.cc .9352501 .2010255 .018787 .9288417 .5673248 1.348453
1.tv .3041591 .2085135 .033158 .3009742 -.117611 .7077558

cc#tv
1 1 -.4635365 .2798612 .027015 -.4525074 -1.028432 .0712566

_cut1 -.095777 .1627607 .016387 -.0969997 -.426459 .2438933
_cut2 1.15389 .1684856 .019615 1.154469 .8296157 1.499366
_cut3 2.344848 .1762402 .021575 2.34904 1.993787 2.685564
var_U .1064932 .0524515 .002873 .0964727 .034738 .2305971

Note: Default priors are used for model parameters.

Compared with the frequentist estimates from example 1, the posterior mean estimates of the regression
coefficients and cutpoints are not that different. The most noticeable difference is for the random-effects
variance {var U}, which has a posterior mean of about 0.11, slightly higher than the frequentist
estimate of 0.07.

https://www.stata.com/manuals/xtxtologit.pdf#xtxtologitRemarksandexamplesex1_xtologit
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We can use bayesstats summary to display posterior estimates for the first five random effects
{U[school]} or simply {U}.

. bayesstats summary {U[1/5]}

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
U[school] Mean Std. dev. MCSE Median [95% cred. interval]

193 .0983182 .2360735 .008371 .0949512 -.3319545 .5649471
194 .0910507 .2044525 .013411 .0850659 -.3085782 .5080763
196 .1609138 .2372827 .010454 .159283 -.3000192 .6540844
197 -.0351616 .2304207 .009844 -.036144 -.5106465 .4080927
198 -.1724522 .2164482 .019579 -.1666214 -.6123599 .2548694

We could also replace the default priors with more informative ones. There are two ways to do
this. First, we can simply modify the parameters of the default prior without changing the family of
the distribution. For example, we can use the normalprior(1) option to change the prior standard
deviation for regression coefficients from 100 to 1.

. bayes, normalprior(1) rseed(17): xtologit thk prethk cc##tv
note: Gibbs sampling is used for variance components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
thk ~ ologit(xb_thk,{_cut1 ... _cut3})

Priors:
{thk:prethk 1.cc 1.tv 1.cc#1.tv} ~ normal(0,1) (1)

{U[school]} ~ normal(0,{var_U}) (1)
{_cut1 _cut2 _cut3} ~ 1 (flat)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_thk.
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Bayesian RE ordered logistic regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Number of obs = 1,600
Acceptance rate = .5083
Efficiency: min = .005659

avg = .01438
Log marginal-likelihood max = .0411

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

thk
prethk .3972503 .0386982 .003252 .3967045 .3240223 .4752994

1.cc .8628827 .2182787 .029018 .8597381 .4505967 1.275168
1.tv .2691059 .1952139 .020681 .2561737 -.064717 .6803609

cc#tv
1 1 -.3874974 .2808 .030905 -.3749463 -.954762 .1415334

_cut1 -.1274545 .1812604 .017455 -.1252054 -.4761576 .2116238
_cut2 1.117835 .1811456 .017375 1.120978 .7740603 1.467072
_cut3 2.30662 .1859104 .015007 2.312644 1.958648 2.666062
var_U .1104883 .0550946 .002718 .100217 .0357647 .239713

Note: Default priors are used for some model parameters.

The magnitudes of the regression coefficient estimates shrink slightly toward 0. Similarly, we can use
the igammaprior() option to manipulate the shape and scale of the default inverse-gamma prior for
{var U}.

Another way of changing the default priors is to specify the prior() options for the selected
groups of model parameters. For example, we can change the prior for cutpoints from the default flat
to normal with mean 1 and variance 1.
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. bayes, prior({_cut1 _cut2 _cut3}, normal(1, 1))
> normalprior(1) rseed(17): xtologit thk prethk cc##tv
note: Gibbs sampling is used for variance components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
thk ~ ologit(xb_thk,{_cut1 ... _cut3})

Priors:
{thk:prethk 1.cc 1.tv 1.cc#1.tv} ~ normal(0,1) (1)

{U[school]} ~ normal(0,{var_U}) (1)
{_cut1 _cut2 _cut3} ~ normal(1,1)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_thk.

Bayesian RE ordered logistic regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Number of obs = 1,600
Acceptance rate = .4909
Efficiency: min = .005571

avg = .01344
Log marginal-likelihood max = .04221

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

thk
prethk .3914625 .0344846 .00462 .3902991 .3256868 .4578337

1.cc .832213 .2079096 .024539 .8433861 .4080022 1.20791
1.tv .1969988 .2044468 .016094 .2080927 -.2166963 .5690862

cc#tv
1 1 -.3620582 .2739768 .032021 -.377875 -.9000601 .2192883

_cut1 -.1775701 .1673107 .016436 -.1657233 -.5312352 .1188874
_cut2 1.063019 .1684814 .018284 1.074538 .7075167 1.37078
_cut3 2.240986 .1739471 .017195 2.251752 1.881608 2.556478
var_U .1058796 .0550203 .002678 .0952031 .0334108 .2404828

Note: Default priors are used for some model parameters.
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Time-series and DSGE models

The bayes prefix also supports vector autoregression ([BAYES] bayes: var), linear DSGE models
([BAYES] bayes: dsge), and nonlinear DSGE models ([BAYES] bayes: dsgenl). See the corresponding
entries for examples of these commands.

Video examples

Introduction to Bayesian statistics, part 1: The basic concepts

Introduction to Bayesian statistics, part 2: MCMC and the Metropolis–Hastings algorithm

A prefix for Bayesian regression in Stata

Bayesian linear regression using the bayes prefix

Bayesian linear regression using the bayes prefix: How to specify custom priors

Bayesian linear regression using the bayes prefix: Checking convergence of the MCMC chain

Bayesian linear regression using the bayes prefix: How to customize the MCMC chain

Stored results
In addition to the results stored by bayesmh, the bayes prefix stores the following in e():

Scalars
e(priorsigma) standard deviation of default normal priors
e(priorshape) shape of default inverse-gamma priors
e(priorscale) scale of default inverse-gamma priors
e(blocksize) maximum size for blocks of model parameters

Macros
e(prefix) bayes
e(cmdname) command name from estimation command
e(cmd) same as e(cmdname)
e(command) estimation command line

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.
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[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommands
https://www.stata.com/manuals/bayesintro.pdf#bayesIntro
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossary
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands

