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Description
Lasso selects covariates and estimates coefficients but does not provide the standard errors required

for performing statistical inference. Stata provides three additional lasso-based methods for estimating
the coefficients and standard errors for a subset of the covariates, and the results have the added
advantage of being estimates of values from the true model that generated the data being analyzed.

The methods are double selection, partialing out, and cross-fit partialing out, which is also known
as double machine learning. They can be applied to linear, logistic, and Poisson regression models.
Partialing out and cross-fit partialing out can also be used with endogenous covariates and instrumental
variables in linear models.

Remarks and examples stata.com

Remarks are presented under the following headings:
The problem
Possible solutions
Solutions that focus on the true model

The double-selection solution
The partialing-out solution
The cross-fit partialing-out (double machine-learning) solution

Where to learn more

The problem

You want to know the true effects of z1 and z2 on y, by which we mean the effect in the true
underlying model that generated the data being analyzed. We specify two variables, but you could
specify one or a handful.

You do not know whether z1 and z2 belong in the model, although you have your suspicions.
Your problem is to estimate the effects (coefficients) of z1 and z2 and obtain their standard errors.

At the same time, you do not know the other variables that appear in the model, but you do know
that they are among variables from x1 to 500. You also know that only a small number of them
appear. We will be more precise about the meaning of “small” later.

Possible solutions
If you had a sufficient number of observations in your data, you could fit a linear regression of y

on z1, z2, and x1 to x500:

. regress y z1 z2 x1-x500

The above is a solution because including extra explanatory variables does not cause bias, at least
as long as the number of covariates is not too large. Including extra variables merely causes a loss
of efficiency. Except there may be no merely about it. You may not have a sufficient number of
observations to fit this regression and answer questions about z1 and z2 with any degree of certainty.
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In that case, you could use your scientific judgment to select the covariates that need to appear in
the model:

. regress y z1 z2 x3 x9 x203 x333 x478

The problem here is that you must be correct about the variables you included and excluded. And
the insight that led you to choose them cannot come from the data. And the choice you made is not
testable. And theory seldom provides sufficient guidance about variables or their functional form. In
the age of big data, modern research is increasingly looking for data-dependent guidance and rules.

Here is yet another solution. Select and fit the model using lasso, and force the inclusion of z1
and z2 with parentheses:

. lasso linear y (z1 z2) x1-x500

Now lasso will select a model and obtain its coefficients. Problem is, the lasso procedure does
not provide standard errors. You cannot perform statistical tests of significance of z1 and z2 or obtain
confidence intervals for them. And there is a reason for that. lasso does not account for mistakes
in selecting from the potential covariates x1 to x500. Any mistakes it makes in selecting covariates
that are also correlated with z1 or z2 would lead to bias in estimating the coefficients and standard
errors of z1 and z2.

Here is a solution. Refit the model that lasso selected using regress. We would not recommend
this. Everyone agrees that it would be better to split your data into two samples, use the first to
select the model, and use the second to refit it. You will now have the standard errors you need. But
even this will not provide good estimates and standard errors if your interest is in the true model
that generated the data. The problem is twofold. First, this process still does not account sufficiently
for the sampling variability of the selection process for variables from x1 to x500. Second, it does
not account for the possibility of small coefficients in the true model. This second problem is more
common and more detrimental than you might guess. See, for instance, Leeb and Pötscher (2005,
2006, 2008) and Belloni, Chernozhukov, and Hansen (2014a).

Solutions that focus on the true model

If your interest is inference about z1 and z2 in the true model that generated the data, the solution
is to type

. dsregress y z1 z2, controls(x1-x500)

or

. poregress y z1 z2, controls(x1-x500)

or

. xporegress y z1 z2, controls(x1-x500)

These commands produce the double selection, partialing-out, and cross-fit partialing-out solutions,
respectively, for the linear model, but commands also exist for logistic, Poisson, and instrumental-
variables regression. These solutions all use multiple lassos and moment conditions that are robust to
the model-selection mistakes that lasso makes; namely, that it does not select the covariates of the true
model with probability 1. Of the three, the cross-fit partialing-out solution is best, but it can take a
long time to run. The other two solutions are most certainly respectable. The cross-fit solution allows
the true model to have more coefficients, and it allows the number of potential covariates, x1-x500
in our examples, to be much larger. Technically, cross-fit has a less restrictive sparsity requirement.
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All three of the methods have a sparsity requirement, and we have advice for you.

1. Let the commands fit the lassos using the default method, which is plugin.

2. If meeting the sparsity requirement concerns you, use cross-fit partialing out.

You may think of sparsity requirements as being unique to lasso, but they are not. Think about fitting
an ordinary logistic regression model or any other estimator with only asymptotic properties. How
many variables can be reliably included in the model if you have 100 observations? 500 observations?
1,000? 10,000? There is no answer to those questions except to say more with 1,000 than 500, more
with 10,000 than 1,000, and so on.

The story is the same with the three inference methods. We can tell you more observations are
better, and we can tell you more. Their requirements are stricter than those for logistic regression.
The sparsity requirement for double selection and partialing out is that

s√
N/ ln p

is small

where s is the number of covariates in the true model, N is the number of observations in the data,
and p is the number of potential covariates. The sparsity requirement for cross-fit partialing out is
the same, except that

√
N is replaced by N . It is that

s

N/ ln p
is small

N is much larger than
√
N . That is why we said that, if meeting the sparsity requirement concerns

you, use cross-fit partialing out. It allows more covariates for all values of N .

We recommended that the lassos be fit using plugins because plugins were developed with these
three methods in mind. Plugins tend to produce models with fewer “extra” covariates. Fitting the
lassos using cross-validation for selection, on the other hand, tends to include lots of extra covariates.
Using the Bayesian information criterion function for selection tends to include a number of covariates
that falls between the numbers selected by the other two methods.

All three methods report the estimated coefficients for z1 and z2, their standard errors, test
statistics, and confidence intervals. Understanding how they work will be easier if we reduce the
number of variables from two to one. Let’s consider obtaining estimates for α in the model

y = dα+ xβ+ ε

where d is the covariate of interest.

The double-selection solution

Double selection is the easiest of the three to explain. Its algorithm is the following:

1. Run a lasso of d on x.

2. Run a lasso of y on x.

3. Let x̃ be the union of the selected covariates from steps 1 and 2.

4. Regress y on d and x̃.

The estimate of α and its test statistics are then the coefficient on d and its test statistics.

Step 1 is the extra selection step from which double selection gets its name. It is this step that
causes the method to be robust to the mistakes in model selection that lasso makes.

Stata provides three double-selection commands—dsregress, dslogit, and dspoisson.

https://www.stata.com/manuals/lassodsregress.pdf#lassodsregress
https://www.stata.com/manuals/lassodslogit.pdf#lassodslogit
https://www.stata.com/manuals/lassodspoisson.pdf#lassodspoisson
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The partialing-out solution

The algorithm is the following:

1. Run a lasso of d on x. Let x̃d be the covariates selected.

2. Regress d on x̃d. Let d̃ be the residuals from this regression.

3. Run a lasso of y on x. Let x̃y be the covariates selected.

4. Regress y on x̃y . Let ỹ be the residuals from this regression.

5. Regress ỹ on d̃.

The estimate of α and its test statistics are then the coefficient on d̃ and its test statistics.

This algorithm is a high-dimensional version of the classic partialing-out estimator, which you can
learn about in Wooldridge (2020, chap. 3-2). In the classic estimator, the moment conditions used to
estimate the coefficient on d are orthogonal to the variables in x. In the high-dimensional variant,
the moment conditions in step 5 are orthogonal to the relevant variables in x; thus, small changes in
the variables included do not have a significant effect on the estimator for α.

Stata provides four partialing-out commands—poregress, pologit, popoisson, and
poivregress.

poivregress provides a variation on the algorithm shown above that handles endogenous variables
with instrumental variables in linear models.

The cross-fit partialing-out (double machine-learning) solution

Cross-fit partialing out is a split-sample version of partialing out. Cross-fit partialing out is also
known as double machine learning (DML).

1. Divide the data in roughly equal-sized subsamples 1 and 2.

2. In sample 1:

a. Run a lasso of d on x. Let x̃d1 be the covariates.

b. Regress d on x̃d1. Let β̂1 be the estimated coefficients.

c. Run a lasso of y on x. Let x̃y1 be the covariates selected.

d. Regress y on x̃y1. Let γ̂1 be the estimated coefficients.

3. In sample 2:

a. Fill in d̃ = d− x̃d1β̂1.

b. Fill in ỹ = y − x̃y1γ̂1.

4. Still in sample 2:

a. Run a lasso of d on x. Let x̃d2 be the covariates.

b. Regress d on x̃d2. Let β̂2 be the estimated coefficients.

c. Run a lasso of y on x. Let x̃y2 be the covariates selected.

d. Regress y on x̃y2. Let γ̂2 be the estimated coefficients.

https://www.stata.com/manuals/lassoporegress.pdf#lassoporegress
https://www.stata.com/manuals/lassopologit.pdf#lassopologit
https://www.stata.com/manuals/lassopopoisson.pdf#lassopopoisson
https://www.stata.com/manuals/lassopoivregress.pdf#lassopoivregress
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5. In sample 1:

a. Fill in d̃ = d− x̃d2β̂2.

b. Fill in ỹ = y − x̃y2γ̂2.

6. In the full sample: Regress ỹ on d̃.

The estimate of α and its test statistics are then the coefficient on d̃ and its test statistics.

Cross-fit partialing out has a more relaxed sparsity requirement than partialing out and double
selection, as we mentioned earlier. This is because the sample is split and coefficients are obtained
from one sample and used in another, which is independent, and that adds robustness.

There are two variants of cross-fit partialing out (recall it is also known as DML): DML1 and
DML2. Shown above is the algorithm for DML2, which is Stata’s default method. DML1, available as
an option, predates DML2 and solves the moment conditions within each fold (group) that is cross-fit
and then averages. DML2, by comparison, solves the moment conditions jointly. See Methods and
formulas. DML2 produced better results in simulations in Chernozhukov et al. (2018).

In the algorithm shown, the sample is split in two. The software splits it into K parts, where
K = 10 by default. You could specify K = 2, but you would not want to do that. Larger K works
better and K = 10 is viewed as sufficient. This is known as the 10-fold method.

Stata provides four cross-fit partialing-out commands—xporegress, xpologit, xpopoisson,
and xpoivregress. xpoivregress provides a variation on the algorithms that handles endogenous
variables with instrumental variables in linear models.

Where to learn more

See

[LASSO] dsregress Double-selection lasso linear regression
[LASSO] dslogit Double-selection lasso logistic regression
[LASSO] dspoisson Double-selection lasso Poisson regression
[LASSO] poregress Partialing-out lasso linear regression
[LASSO] pologit Partialing-out lasso logistic regression
[LASSO] popoisson Partialing-out lasso Poisson regression
[LASSO] poivregress Partialing-out lasso instrumental-variables regression
[LASSO] xporegress Cross-fit partialing-out lasso linear regression
[LASSO] xpologit Cross-fit partialing-out lasso logistic regression
[LASSO] xpopoisson Cross-fit partialing-out lasso Poisson regression
[LASSO] xpoivregress Cross-fit partialing-out lasso instrumental-variables regression

And then there is the literature.

For a strikingly readable introduction, see Belloni, Chernozhukov, and Hansen (2014a). For a more
technical discussion, see Belloni and Chernozhukov (2011).

Double selection was developed by Belloni, Chernozhukov, and Hansen (2014b). Their article also
provides first-rate intuition on why the process works.

Partialing out was developed by Belloni et al. (2012). The 2012 date makes it appear that partialing
out predates double selection, but the ordering was due to different publication lags. Their article also
develops the plugin estimator for lasso and then develops the partialing-out instrumental-variables
estimator. Partialing out was extended from linear to nonlinear models by Belloni, Chernozhukov,

https://www.stata.com/manuals/lassoxpoivregress.pdf#lassoxpoivregressMethodsandformulas
https://www.stata.com/manuals/lassoxpoivregress.pdf#lassoxpoivregressMethodsandformulas
https://www.stata.com/manuals/lassoxporegress.pdf#lassoxporegress
https://www.stata.com/manuals/lassoxpologit.pdf#lassoxpologit
https://www.stata.com/manuals/lassoxpopoisson.pdf#lassoxpopoisson
https://www.stata.com/manuals/lassoxpoivregress.pdf#lassoxpoivregress
https://www.stata.com/manuals/lassodsregress.pdf#lassodsregress
https://www.stata.com/manuals/lassodslogit.pdf#lassodslogit
https://www.stata.com/manuals/lassodspoisson.pdf#lassodspoisson
https://www.stata.com/manuals/lassoporegress.pdf#lassoporegress
https://www.stata.com/manuals/lassopologit.pdf#lassopologit
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https://www.stata.com/manuals/lassoxpopoisson.pdf#lassoxpopoisson
https://www.stata.com/manuals/lassoxpoivregress.pdf#lassoxpoivregress
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and Wei (2016). For a three-page introduction to the partialing-out instrumental-variables estimator,
see Chernozhukov, Hansen, and Spindler (2015).

Cross-fit partialing out was developed by Chernozhukov et al. (2018). The researchers of this
article had worked on these issues for years. They later came together to assemble this important
article, which is an odd but appealing mix of intuition and technical derivations, especially concerning
sample splitting.

Bickel, Ritov, and Tsybakov (2009) predates all the above and provided the theoretical foundations
for what would become the plugin estimator. It also provided rates of convergence for the lasso which
was used by subsequent authors. The article is both seminal and technical.
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