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1 Introduction

Royston and Sauerbrei (2008) provide an excellent introduction to building nonlinear
regression models. Their preferred approach is to use fractional polynomial models, a
technique that they have largely developed and on which they are undisputed authorities
(Royston and Altman 1994; Sauerbrei and Royston 1999). This technique is applicable
to models in which the response variable is continuous or dichotomous, to survival
models, and to any generalized linear model.

The text is full of practical examples that Royston and Sauerbrei use to illustrate
their model-building approach. They make extensive use of smoothed residual plots
to evaluate their models and to guide model selection. Their approach is suitable for
epidemiological studies in which the number of observations is at least an order of
magnitude larger than the number of model covariates. For such data, the problems of
multiple comparisons and the overfitting of models are not an overwhelming concern.
The problem of model-building for genomic or other studies in which the number of
covariates greatly exceeds the number of study subjects is not addressed in the text.

Fractional polynomial models are a subset of generalized linear models in which vari-
ous powers of the covariates of interest are entered into the linear predictor. A fractional
polynomial regression model of order 1 (FP1) is one in which the linear predictor takes
the form

β0 + β1x
p
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where p takes one of the values in S = {−2, −1, −0.5, 0, 0.5, 1, 2, 3} and x > 0. For
example, the linear regression model

y = β0 + β1/
√
x

is an example of an FP1 model, as is the logistic regression model

logit(π[x]) = β0 + β1x
2

A fractional polynomial model of order 2 (FP2) is one in which the linear predictor
takes the form

β0 + β1x
p1 + β2x

p2

or
β0 + β1x

p + β2x
p log x

for p1, p2, and p in S and x > 0. This definition generalizes in a natural way: in an
mth order model (FPm), the linear predictor equals

β0 +
∑m

j=1
βjhj (x)

where

hj (x) =

{
xpj , pj 6= pj−1

hj−1 (x) log x, pj = pj−1

and p1, p2, . . . , pm are chosen from S.

The fact that these models all involve linear combinations of the model parameters
means that the extensive theory of generalized linear models applies and that many
sophisticated programs for building and evaluating such models are already available.

2 Contents

Royston and Sauerbrei’s text (2008) starts with an introductory chapter that explains
the need for robust ways to fit nonlinear regression models. The authors consider
polynomial regression models and find them wanting for many situations. Then they
introduce fractional polynomial models and illustrate the use of smoothed residual plots
to evaluate model fit. They recommend using the simplest model that fits the data
well. Royston and Sauerbrei also illustrate the application of the fractional polynomial
approach to Cox proportional hazards regression analysis. They contrast models using
age at entry as a continuous covariate with two models with categorical age intervals
and with FP1 and FP2 models. They make a convincing argument in favor of the optimal
FP2 model over these other alternatives.

Royston and Sauerbrei briefly discuss other modeling approaches, and they make
an important distinction between global influence models, such as fractional polynomial
models, and local influence models, such as those using restricted cubic splines. They
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discuss different types of residuals along with those residuals’ roles in guiding model
selection.

Chapter 2 introduces the authors’ approach to multivariable model selection. Their
overall preference is to use backward elimination based on repeated significance tests.
They stress the importance of assessing the stability of the selected model by boot-
strapping. They distinguish between the modeling goals of prediction and explanation.
They place considerable emphasis on reducing the often daunting complexity of obser-
vational data and finding comparatively simple models that identify prognostically and
diagnostically important variables. Royston and Sauerbrei discuss the pros and cons of
different stepwise approaches to model selection, and they describe Akaike’s and the
Bayesian information criteria (AIC and BIC, respectively). They also discuss shrinkage
methods to reduce the effects of selection bias.

Chapter 3 details how to handle categorical and continuous predictors. It contains
good advice that is applicable to any exploratory multivariable regression analysis. The
multiple-comparisons problems associated with choosing an optimal cutpoint for a con-
tinuous covariate are nicely illustrated. Royston and Sauerbrei provide an interesting
discussion of the pros and cons of local-influence models, such as lowess regression or
cubic splines, and global models, such as those using fractional polynomials.

Chapters 4 and 5 describe in detail the use of fractional polynomials for one vari-
able. Royston and Sauerbrei give the shapes of FP1 and FP2 curves along with their
justification of the set of powers, S, that they consider. They explain both näıve and
bootstrapped confidence intervals for the linear predictor; the latter adjust for overfit-
ting because of the model-selection algorithm. They discuss methods of graphical and
tabular presentation of results from fractional polynomial models along with a worked
example on the relationship between systolic blood pressure and all-cause mortality.
The authors also describe transformations to improve the robustness of fractional poly-
nomial models.

Chapter 6 introduces multivariable model-building with fractional polynomials—
what Royston and Sauerbrei describe as the heart of their text. They present their
algorithm for selecting multivariable models, which they illustrate with an example. In
essence, they use backward elimination while allowing significant covariates to be fit
with an optimal fractional polynomial model. They use functional plots to describe the
effect of a covariate on the response variable adjusted for other variables in the model.
They consider graphical analysis of residuals from multivariable models. And they use
an R2-like statistic to evaluate the contribution of individual variables.

Chapter 7 describes adding interaction terms to multivariable fractional polynomial
models. Royston and Sauerbrei urge the use of graphical checks, sensitivity, and stabil-
ity analyses as well as a cautious interpretation of the results of such models. Chapter
8 describes the use of bootstrap analyses to assess the stability of complex models.

Chapter 9 compares multivariable fractional polynomial models with spline models.
Restricted cubic spline models are a major alternative to fractional polynomial models.
They require the specification of three or more knots and fit curves that are cubic
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polynomials between adjacent knots, are straight lines before the first and after the
last knot, and have the property that the splines and their first and second derivatives
are continuous at all knots. This latter property makes restricted cubic splines fairly
insensitive to the precise location of their knots. Royston and Sauerbrei present an
algorithm for fitting multivariate models with restricted cubic splines. They analyze
several datasets with this algorithm and find that it gives models that are roughly
comparable with those obtained using multivariable fractional polynomial models.

Chapter 10 provides further guidance on fitting multivariable fractional polynomial
models. Chapter 11 describes hazard regression models with time-varying hazard ra-
tios and other topics. Chapter 12, an epilogue, summarizes Royston and Sauerbrei’s
major recommendations as to how to build useful multivariable models with fractional
polynomials.

3 Strengths and weaknesses

This book’s greatest strength is its lucid writing style and practical guidance on how
to build complex multivariable models. It contains many examples with models that
are extensively evaluated using smoothed residual plots and partial predictor plots. I
was also intrigued by Royston and Sauerbrei’s approach to automated model fitting.
Many statisticians have a negative attitude toward such methods because of the risk
of overfitting and because of multiple-comparisons concerns (Harrell 2001). I found
Royston and Sauerbrei’s emphasis on bootstrap analyses to assess model stability to be
reassuring. Software to implement their methods is available in Stata, either as part of
Stata 11 or as user-contributed programs that can be downloaded over the Internet.

Weaknesses are few. Given that restricted cubic splines are, perhaps, the major
competitor to fractional polynomial models, I would have preferred that the authors give
a more thorough evaluation of this approach, particularly in regard to fitting univariate
models.

4 Fractional polynomials versus restricted cubic splines

I must start this section with a disclaimer: I have been an advocate of restricted cubic
splines for several years (Dupont 2009), while my knowledge of fractional polynomial
models was limited prior to reading this book. This perhaps gives me a bias in favor of
the former over the latter technique.

An argument that the authors make in favor of fractional polynomial models is
their simplicity. FP1 models are simpler than restricted cubic spline models, and for
this reason, I would recommend an FP1 model whenever it fits the data well. For FP2

models, I am not really sure. My best guess is that most statisticians, and virtually all
medical scientists, will lack a visual image of what, say, a linear predictor of the form
β0 + β1x

2 + β2/
√
x looks like without drawing it. A restricted cubic spline with three

knots takes the form β0 +β1x+β2f2(x). Now I must admit the function f2(x) is neither
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pretty nor edifying, but it is readily calculated by any computer. Just as some sausages
are best appreciated by eating them without too much knowledge of their contents, a
restricted cubic spline can be best understood by drawing it, without paying too much
attention to the form of f2(x). Thus I would argue that FP2 models and three-knot
restricted cubic spline models have similar complexity. For data that can be fit well by
an FP2 model, my sense is that the two approaches give roughly comparable results.
For more complicated data, I believe that restricted cubic splines may have an edge. In
particular, my experiments fitting restricted cubic splines to bimodal data have worked
well, while fractional polynomial models have either missed the bimodal nature of the
data or have provided poor fits to very high or very low values of x.

Another advantage of restricted cubic splines is that the linear model is always nested
within more complex models. This means that it is always possible to conduct a Wald
or likelihood-ratio test of whether the linear predictor is, in fact, linear in x.

5 Conclusions

This is a very well-written book that provides a thoughtful approach to fitting nonlinear
models. The authors are very experienced biostatisticians who have worked extensively
in observational and experimental medical science. They make a convincing argument
that fractional polynomials can be a valuable tool for building such models in many
situations. Their many examples and excellent illustrations make their book accessible
to a broad audience within statistical science. Their software will make this book
particularly useful to the Stata community. I highly recommend this text.
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