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Description

mestreg fits a mixed-effects parametric survival-time model. The conditional distribution of the
response given the random effects is assumed to be an exponential, Weibull, lognormal, loglogistic,
or gamma distribution. mestreg can be used with single- or multiple-record st data.

Quick start
Without weights

Two-level Weibull survival model with covariates x1 and x2 and random intercepts by lev2 using
stset data

mestreg x1 x2 || lev2:, distribution(weibull)

Mixed-effects model adding random coefficients for x1
mestreg x1 x2 || lev2:x1, distribution(weibull)

Three-level random-intercept model with lev2 nested within lev3

mestreg x1 x2 || lev3: || lev2:, distribution(weibull)

With weights

Two-level Weibull survival model with covariates x1 and x2, random intercepts by lev2, and
observation-level frequency weights wvar1 using stset data

mestreg x1 x2 [fweight=wvar1] || lev2:, distribution(weibull)

Two-level random-intercept model from a two-stage sampling design with PSUs identified by psu
using PSU-level and observation-level sampling weights wvar2 and wvar1

mestreg x1 x2 [pweight=wvar1] || psu:, pweight(wvar2)

Same as above, but svyset the data first
svyset psu, weight(wvar2) || _n, weight(wvar1)
svy: mestreg x1 x2 || psu:, distribution(weibull)

Note: Any supported parametric survival distribution may be specified in place of weibull above.

Menu
Statistics > Multilevel mixed-effects models > Parametric survival regression
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http://stata.com
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/svysvyset.pdf#svysvyset
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Syntax
mestreg fe equation

[
|| re equation

] [
|| re equation . . .

]
,

distribution(distname)
[

options
]

where the syntax of fe equation is[
indepvars

] [
if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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options Description

Model
∗distribution(distname) specify survival distribution
time use accelerated failure-time metric
constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

nohr do not report hazard ratios
tratio report time ratios
noshow do not show st setting information
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
collinear keep collinear variables
coeflegend display legend instead of statistics

∗distribution(distname) is required.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartvalues()
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartgrid()
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vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted

distname Description

exponential exponential survival distribution
loglogistic loglogistic survival distribution
llogistic synonym for loglogistic
weibull Weibull survival distribution
lognormal lognormal survival distribution
lnormal synonym for lognormal
gamma gamma survival distribution

intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models

You must stset your data before using mestreg; see [ST] stset.
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see

[BAYES] bayes: mestreg.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog

box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/bayesbayesmestreg.pdf#bayesbayesmestreg
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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offset(varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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distribution(distname) specifies the survival model to be fit. distname is one of the following:
exponential, loglogistic, llogistic, weibull, lognormal, lnormal, or gamma. This
option is required.

time specifies that the model be fit in the accelerated failure-time metric rather than in the log
relative-hazard metric. This option is valid only for the exponential and Weibull models because
these are the only models that have both a proportional-hazards and an accelerated failure-time
parameterization. Regardless of metric, the likelihood function is the same, and models are equally
appropriate in either metric; it is just a matter of changing interpretation.

time must be specified at estimation.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.

nohr, which may be specified at estimation or upon redisplaying results, specifies that coefficients
rather than exponentiated coefficients be displayed, that is, that coefficients rather than hazard ratios
be displayed. This option affects only how coefficients are displayed, not how they are estimated.

This option is valid only for the exponential and Weibull models because they have a natu-
ral proportional-hazards parameterization. These two models, by default, report hazards ratios
(exponentiated coefficients).

tratio specifies that exponentiated coefficients, which are interpreted as time ratios, be displayed.
tratio is appropriate only for the loglogistic, lognormal, and gamma models or for the exponential
and Weibull models when fit in the accelerated failure-time metric.

tratio may be specified at estimation or upon replay.

noshow prevents mestreg from showing the key st variables. This option is rarely used because most
users type stset, show or stset, noshow to set once and for all whether they want to see these
variables mentioned at the top of the output of every st command; see [ST] stset.

nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-
forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–
Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for mestreg are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with mestreg but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples stata.com

For a general introduction to me commands, see [ME] me.

Remarks are presented under the following headings:

Introduction
Two-level models
Three-level models

https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartval
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartval
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
https://www.stata.com/manuals/meme.pdf#meme
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Introduction

Mixed-effects survival models contain both fixed effects and random effects. In longitudinal data
and panel data, random effects are useful for modeling intracluster correlation; that is, observations
in the same cluster are correlated because they share common cluster-level random effects.

mestreg allows for many levels of random effects. However, for simplicity, we now consider
two-level models, where we have a series of M independent clusters and a set of random effects
uj corresponding to those clusters. Two often-used models for adjusting survivor functions for the
effects of covariates are the accelerated failure-time (AFT) model and the multiplicative or proportional
hazards (PH) model.

In the AFT model, the natural logarithm of the survival time, log t, is expressed as a linear function
of the covariates; when we incorporate random-effects, this yields the model

logtji = xjiβ+ zjiuj + vji

for j = 1, . . . ,M clusters, with cluster j consisting of i = 1, . . . , nj observations. The 1 × p row
vector xji contains the covariates for the fixed effects, with regression coefficients (fixed effects) β.

The 1×q vector zji contains the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zji is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known as
variance components.

Finally, vji are the observation-level errors with density ϕ(·). The distributional form of the error
term determines the regression model. Five regression models are implemented in mestreg using
the AFT parameterization: exponential, gamma, loglogistic, lognormal, and Weibull. The lognormal
regression model is obtained by letting ϕ(·) be the normal density. Similarly, by letting ϕ(·) be the
logistic density, one obtains the loglogistic regression. Setting ϕ(·) equal to the extreme-value density
yields the exponential and the Weibull regression models.

In the PH models fit by mestreg, the covariates have a multiplicative effect on the hazard function

h(tji) = h0(tji) exp(xjiβ+ zjiuj)

for some baseline hazard function h0(t). For the mestreg command, h0(t) is assumed to be parametric.
The exponential and Weibull models are implemented in mestreg for the PH parameterization. These
two models are implemented using both the AFT and PH parameterizations.

mestreg is suitable only for data that have been stset. By using stset on your data, you define
the variables t0, t, and d, which serve as the trivariate response variable (t0, t, d). Each response
corresponds to a period under observation, (t0, t], resulting in either failure (d = 1) or right-censoring
(d = 0) at time t.

mestreg does not allow delayed entry or gaps. However, mestreg is appropriate for data exhibiting
multiple records per subject and time-varying covariates. mestreg requires subjects to be nested within
clusters.

stset weights are not used; instead, weights must be specified at estimation. Weights are not
allowed with crossed models or the Laplacian approximation. See Survey estimation in Methods and
formulas for details.

https://www.stata.com/manuals/ststset.pdf#ststset
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Two-level models

Example 1: Two-level random-intercept PH model

In example 11 of [ST] streg, we fit a Weibull model with an inverse-Gaussian shared frailty to the
recurrence times for catheter-insertion point infection for 38 kidney dialysis patients. In this example,
the subjects are the catheter insertions, not the patients themselves. This is a function of how the
data were recorded—the onset of risk occurs at the time the catheter is inserted and not, say, at the
time of admission of the patient into the study. Thus we have two subjects (insertions) within each
group (patient). Each catheter insertion results in either infection (infect==1) or right-censoring
(infect==0). The stset results are shown below.

. use https://www.stata-press.com/data/r18/catheter
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)

. stset
-> stset time, failure(infect)

Survival-time data settings

Failure event: infect!=0 & infect<.
Observed time interval: (0, time]

Exit on or before: failure

76 total observations
0 exclusions

76 observations remaining, representing
58 failures in single-record/single-failure data

7,424 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 562

While it is reasonable to assume independence of patients, we would not want to assume that
recurrence times within each patient are independent. The model used in [ST] streg allowed us to
model the correlation by assuming that it was the result of a latent patient-level effect, or frailty.

The random-effects approach used by mestreg is more flexible because it allows you to experiment
with several levels of random effects, including random coefficients, or both. You can then choose
the model that best suits your data. Here we use mestreg to fit a random-effects Weibull model
with normally distributed random effects. This model can be viewed as a shared frailty model with
lognormal frailty.

https://www.stata.com/manuals/ststreg.pdf#ststregRemarksandexamplesex11
https://www.stata.com/manuals/ststreg.pdf#ststreg
https://www.stata.com/manuals/ststreg.pdf#ststreg
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. mestreg age female || patient:, distribution(weibull)

Failure _d: infect
Analysis time _t: time

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1700989.9
Iteration 1: Log likelihood = -440.1998
Iteration 2: Log likelihood = -336.62162
Iteration 3: Log likelihood = -334.64937
Iteration 4: Log likelihood = -334.57959
Iteration 5: Log likelihood = -334.57944
Iteration 6: Log likelihood = -334.57944

Refining starting values:

Grid node 0: Log likelihood = -336.03604

Fitting full model:

Iteration 0: Log likelihood = -336.03604 (not concave)
Iteration 1: Log likelihood = -333.14043
Iteration 2: Log likelihood = -330.40952
Iteration 3: Log likelihood = -329.89242
Iteration 4: Log likelihood = -329.87847
Iteration 5: Log likelihood = -329.87832
Iteration 6: Log likelihood = -329.87832

Mixed-effects Weibull PH regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7

Wald chi2(2) = 10.12
Log likelihood = -329.87832 Prob > chi2 = 0.0063

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age 1.007348 .013788 0.53 0.593 .9806828 1.034737
female .1904727 .099992 -3.16 0.002 .0680737 .5329493
_cons .0072901 .0072274 -4.96 0.000 .0010444 .0508881

/ln_p .2243233 .1402795 -.0506195 .4992661

patient
var(_cons) .8308495 .4978425 .256735 2.688808

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011

The results are similar to those in [ST] streg. The likelihood-ratio test compares the random-effects
model with a survival model with fixed-effects only. The results support the random-effects model.

By default, when fitting a model with the PH parameterization, mestreg displays exponentiated
coefficients, labeled as hazard ratios. These hazard ratios should be interpreted as “conditional hazard
ratios”, that is, conditional on the random effects.

For example, the hazard ratio for age is 1.01. This means that according to the model, for a
given patient, the hazard would increase 1% with each year of age. However, at the population level,
marginal hazards corresponding to different levels of the covariates are not necessarily proportional.
Example 5 in [ME] mestreg postestimation illustrates this point with simulated data.

https://www.stata.com/manuals/ststreg.pdf#ststreg
https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimationRemarksandexamplesmestregp_ex5
https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimation
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The exponentiated coefficients of covariates that usually remain constant within a group do not
have a natural interpretation as conditional hazard ratios. However, the magnitude of the exponentiated
coefficients always gives an idea of the effect of the covariates. In this example, female is constant
within the group. The estimated hazard ratio for female is 0.19, which indicates that hazard functions
for females tend to be smaller than hazard functions for males. Both conditional and unconditional
predictions can be obtained with predict. Unconditional predictions can be visualized by using
stcurve. Unconditional effects can be tested and visualized by using margins and marginsplot.
See example 1 in [ME] mestreg postestimation for an example using predict, margins, and
marginsplot.

Example 2: Two-level random-intercept AFT model

Although the PH parameterization is more popular in the literature because the output is easier to
interpret, the AFT parameterization is useful when we need to make comparisons with other models
that have only an AFT parameterization. For example, we might want to compare the Weibull results
from example 1 with the results from a gamma model.

Let’s redisplay the results of a Weibull PH model from example 1 as coefficients:

. mestreg, nohr

Mixed-effects Weibull PH regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7

Wald chi2(2) = 10.12
Log likelihood = -329.87832 Prob > chi2 = 0.0063

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age .0073207 .0136874 0.53 0.593 -.0195062 .0341476
female -1.658247 .5249676 -3.16 0.002 -2.687164 -.629329
_cons -4.921236 .9914009 -4.96 0.000 -6.864346 -2.978126

/ln_p .2243233 .1402795 -.0506195 .4992661

patient
var(_cons) .8308495 .4978425 .256735 2.688808

LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011

https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimationRemarksandexamplesmestregp_ex1
https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimation
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We can refit the Weibull model using the AFT parameterization by specifying option time.

. mestreg age female || patient:, distribution(weibull) time

Failure _d: infect
Analysis time _t: time

Fitting fixed-effects model:

Iteration 0: Log likelihood = -346.46486
Iteration 1: Log likelihood = -343.29515
Iteration 2: Log likelihood = -335.0513
Iteration 3: Log likelihood = -334.58308
Iteration 4: Log likelihood = -334.57944
Iteration 5: Log likelihood = -334.57944

Refining starting values:

Grid node 0: Log likelihood = -335.10428

Fitting full model:

Iteration 0: Log likelihood = -335.10428
Iteration 1: Log likelihood = -332.13546
Iteration 2: Log likelihood = -330.01623
Iteration 3: Log likelihood = -329.88013
Iteration 4: Log likelihood = -329.87832
Iteration 5: Log likelihood = -329.87832

Mixed-effects Weibull AFT regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7

Wald chi2(2) = 13.00
Log likelihood = -329.87832 Prob > chi2 = 0.0015

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0058496 .010872 -0.54 0.591 -.0271585 .0154592
female 1.325034 .3719102 3.56 0.000 .596103 2.053964
_cons 3.932346 .5663757 6.94 0.000 2.82227 5.042422

/ln_p .2243237 .1402794 -.0506189 .4992663

patient
var(_cons) .5304902 .2343675 .2231626 1.261053

LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011

The estimates of coefficients and variance components are different between the two models. In
fact, the coefficients have the opposite signs. This is expected because the two models have different
parameterizations. The relationship between the coefficients and variances of the two parameterizations
for the Weibull model is

βPH = −p× βAFT

varPH = p2 × varAFT

where p denotes the ancillary parameter. It is estimated in the logarithmic metric and is displayed in
the output as /ln p.

For example, we could calculate βPH for female as approximately − exp(0.22)× 1.33 = −1.66.
If we exponentiate this to obtain the hazard ratio that was reported in example 1, we obtain the same
reported result, 0.19.
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For a discussion of the differences between the PH and AFT parameterizations, see, for example,
Cleves, Gould, and Marchenko (2016).

Now, we can compare the results from our Weibull specification with the results from a gamma
specification.

. mestreg age female || patient:, distribution(gamma)

Failure _d: infect
Analysis time _t: time

Fitting fixed-effects model:

Iteration 0: Log likelihood = -351.17349
Iteration 1: Log likelihood = -337.04571
Iteration 2: Log likelihood = -335.10167
Iteration 3: Log likelihood = -335.09115
Iteration 4: Log likelihood = -335.09115

Refining starting values:

Grid node 0: Log likelihood = -334.49759

Fitting full model:

Iteration 0: Log likelihood = -334.49759
Iteration 1: Log likelihood = -331.87827
Iteration 2: Log likelihood = -329.64795
Iteration 3: Log likelihood = -329.52682
Iteration 4: Log likelihood = -329.52635
Iteration 5: Log likelihood = -329.52634

Mixed-effects gamma AFT regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7

Wald chi2(2) = 13.23
Log likelihood = -329.52634 Prob > chi2 = 0.0013

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0060276 .0108267 -0.56 0.578 -.0272475 .0151924
female 1.324745 .3685132 3.59 0.000 .6024726 2.047018
_cons 3.873854 .5628993 6.88 0.000 2.770592 4.977117

/logs -.1835075 .1008892 -.3812467 .0142317

patient
var(_cons) .5071823 .2241959 .213254 1.206232

LR test vs. gamma model: chibar2(01) = 11.13 Prob >= chibar2 = 0.0004

The coefficients and the random-effects variance are very similar for the two AFT models.

We can compare the marginal distributions or hazard functions for the two models by using
stcurve; see example 2 in [ME] mestreg postestimation.

https://www.stata.com/manuals/ststcurve.pdf#ststcurve
https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimationRemarksandexamplesmestregp_ex2
https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimation
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Example 3: Two-level random-slope model

In this example, we use a modified form of the dataset from Rabe-Hesketh and Skrondal (2022,
sec. 15.7), previously published in Danahy et al. (1977) and analyzed by Pickles and Crouchley (1994,
1995) and Rabe-Hesketh, Skrondal, and Pickles (2004).

angina.dta includes data on 21 patients with coronary heart disease who participated in a
randomized crossover trial comparing a drug to prevent angina (chest pain) with a placebo. The
participants are identified by pid.

Before receiving the drug (or placebo), participants were asked to exercise on exercise bikes to the
onset of angina or, if angina did not occur, to exhaustion. The exercise time, seconds, and the result
of the exercise, angina—angina (angina=1) or exhaustion (angina=0)—were recorded. The drug
(treat=1) or placebo (treat=0) was then taken orally, and the exercise test was repeated one, three,
and five hours (variable occasion) after drug or placebo administration. Because each exercise test
can have a failure (the occurrence of angina), the test is the subject. Each test is identified by tid.
Failure is indicated by the variable angina. In this case, we have eight repeated measures per study
participant.

Before fitting the model, we stset our data:

. use https://www.stata-press.com/data/r18/angina
(Angina drug data, Rabe-Hesketh and Skrondal (2021, ch. 15.7))

. stset seconds, failure(angina) id(tid)

Survival-time data settings

ID variable: tid
Failure event: angina!=0 & angina<.

Observed time interval: (seconds[_n-1], seconds]
Exit on or before: failure

168 total observations
0 exclusions

168 observations remaining, representing
168 subjects
155 failures in single-failure-per-subject data

47,267 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 743

To reiterate, we specify seconds as the time variable, angina as the failure variable, and tid as
the variable identifying multiple observations per test.

Rabe-Hesketh and Skrondal (2022) apply several models to this dataset, including a lognormal
model and a Cox model with random effects. We fit a Weibull model with covariates occasion and
treat and interaction between occasion and treat. We include a random effect at the subject
level.
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. mestreg occasion##treat || pid:, distribution(weibull) nofvlabel

Failure _d: angina
Analysis time _t: seconds

ID variable: tid
note: 1.occasion#1.treat identifies no observations in the sample.
note: 4.occasion#1.treat omitted because of collinearity.

(output omitted )
Mixed-effects Weibull PH regression Number of obs = 168
Group variable: pid Number of groups = 21

Obs per group:
min = 8
avg = 8.0
max = 8

Integration method: mvaghermite Integration pts. = 7

Wald chi2(6) = 78.14
Log likelihood = -885.67135 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

occasion
2 .719456 .2031744 -1.17 0.244 .4136423 1.251364
3 .902988 .2542476 -0.36 0.717 .5200146 1.568009
4 1.264262 .3516347 0.84 0.399 .7329746 2.180648

1.treat .3825531 .128784 -2.85 0.004 .1977608 .7400195

occasion#
treat
1 1 1 (empty)
2 1 .1576401 .0804767 -3.62 0.000 .0579589 .4287586
3 1 .4512793 .2127706 -1.69 0.091 .1791093 1.137032
4 1 1 (omitted)

_cons 4.90e-13 9.98e-13 -13.91 0.000 9.03e-15 2.66e-11

/ln_p 1.640297 .0689544 1.505149 1.775445

pid
var(_cons) 4.529641 1.544175 2.322124 8.835725

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 177.40 Prob >= chibar2 = 0.0000

Because individuals were exercising without the administration of a placebo or treatment at the first
occasion (occasion==1), the category for interaction between occasion==1 and treat==1 is empty.

The estimated variance at the individual level (that is, the variance between individuals) is equal
to 4.53. The likelihood-ratio test shows evidence in favor of the random-effects model versus the
fixed-effects model.

The parameter p is exp(1.640297) = 5.16, which is larger than 1. This means that the estimated
hazard (conditional on the covariates and on the random effects) is a monotonically increasing function
if we assume a Weibull distribution.
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The model contains interaction terms for occasion and treat. Interpretation of interaction terms
is usually less straightforward. Briefly, to interpret the exponentiated coefficients as conditional hazard
ratios, we need to examine all the covariates in the interaction. The hazard function for pid = j,
when we set occasion = k and treat = l, will be

h(t) = h0(t)× exp(βocck + βtreatl + βocck×treatl + cons+ uj)

where βocck , βtreatl , and βocck×treatl are, respectively, the coefficients for the dummies for
occasion = k and treat = l and the interaction (occasion = k × treatment = l).

For example, when treat = 0, the hazard function is

h(t|treat = 0, occasion = k, pid = j) = h0(t)× exp(βocck + cons+ uj)

where βocc1 is equal to 0 because occasion = 1 is the base category. This means that for a given
pid,

h(t|treat = 0, occ = k, pid = j)

h(t|treat = 0, occ = 1, pid = j)
= exp(βocck)

Notice that this is only true within pid, because different participants have different ujs.

The coefficients have already been exponentiated, so we can see clearly that according to this
model, when there is no treatment, the hazard for occasion 2 is smaller than the hazard for occasion 1.
The increasing ratios indicate that the hazard increases with the occasion. Similar calculations could
be performed for other interaction terms.

The easiest way to interpret models with interactions is by using margins and marginsplot,
which allow us to compute and then visualize unconditional predictions and marginal effects. See
[R] margins for more information.

Above we assumed a constant treatment effect for all individuals for each occasion. However, we
may instead believe that the treatment effect varies also with individuals. This can be modeled by
adding a random coefficient for the treatment, i.treat, at the individual level; we also include the
covariance(unstructured) option to estimate a covariance term between the random intercept
and the random slope for 1.treat.

https://www.stata.com/manuals/rmargins.pdf#rmargins
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. mestreg occasion##treat || pid: i.treat, distribution(weibull)
> covariance(unstructured) nofvlabel

Failure _d: angina
Analysis time _t: seconds

ID variable: tid
note: 1.occasion#1.treat identifies no observations in the sample.
note: 4.occasion#1.treat omitted because of collinearity.

(output omitted )
Mixed-effects Weibull PH regression Number of obs = 168
Group variable: pid Number of groups = 21

Obs per group:
min = 8
avg = 8.0
max = 8

Integration method: mvaghermite Integration pts. = 7

Wald chi2(6) = 50.18
Log likelihood = -859.50038 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

occasion
2 .5993591 .1861745 -1.65 0.099 .3260503 1.101766
3 .8643306 .2560242 -0.49 0.623 .483665 1.544597
4 1.333201 .3843218 1.00 0.318 .7577392 2.345694

1.treat .2147751 .1280091 -2.58 0.010 .0667814 .6907365

occasion#
treat
1 1 1 (empty)
2 1 .1594337 .0885644 -3.31 0.001 .0536714 .4736058
3 1 .4632936 .2273925 -1.57 0.117 .1770402 1.212385
4 1 1 (omitted)

_cons 6.21e-17 1.75e-16 -13.20 0.000 2.44e-19 1.58e-14

/ln_p 1.91931 .0736166 1.775024 2.063596

pid
var(1.treat) 4.682507 1.956897 2.064178 10.62208

var(_cons) 6.939041 2.372975 3.549852 13.56403

pid
cov(1.treat,

_cons) 1.73782 1.313054 1.32 0.186 -.8357182 4.311357

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chi2(3) = 229.74 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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We obtain somewhat different estimates of hazard ratios, but our inferential conclusions remain the
same. We now observe two variances in the output, the variance for the intercept at the individual level
and the variance for the coefficient for treatment at the individual level. The variance for the intercept
is smaller because some of the variability is now explained by varying coefficients for treatment.
The covariance is positive, meaning that the random slope tends to be larger for individuals who
have a larger random intercept. See example 4 in [ME] mestreg postestimation for an application of
predict that presents a graphical analysis of this relationship.

Three-level models

Example 4: Three-level random-slope model

Blossfeld, Golsch, and Rohwer (2007) analyze a dataset based on the German Life History Study
of Mayer and Brückner (1989), collected in the years 1981–1983. (This dataset is also available in
Blossfeld, Rohwer, and Schneider (2019), a second edition of the 2007 reference.) The jobhistory
dataset contains a modified version of Blossfeld, Golsch, and Rohwer’s anonymization of a random
sample of 201 respondents from the original data. Each of the 600 observations in the dataset
corresponds to a job episode. Variable id contains identification of the individual, tstart contains
the starting point of the job (in months from the beginning of the century), tend is the end of the
job episode, and failure indicates whether the date in tend corresponds to the actual end of the
employment in a certain job or whether it is a censored observation.

We first stset the data. As explained in Cleves (1999) and Therneau and Grambsch (2000), when
analyzing multiple-failure data, we can consider two main approaches. One approach is to define the
study time from the first time that an individual starts being at risk. The second approach is to define
the study time from the last failure. We will take the second approach, which means that we treat
each job episode as the subject.

Therefore, the origin is defined as the start of each job episode, and the study time will be the
time from the start of each episode until the jobs end or the episode is censored.

. use https://www.stata-press.com/data/r18/jobhistory
(Job history data, Event History Analysis with Stata, Blossfeld et al. 2007)

. stset tend, origin(tstart) failure(failure)

Survival-time data settings

Failure event: failure!=0 & failure<.
Observed time interval: (origin, tend]

Exit on or before: failure
Time for analysis: (time-origin)

Origin: time tstart

600 total observations
0 exclusions

600 observations remaining, representing
458 failures in single-record/single-failure data

40,782 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 428

https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimationRemarksandexamplesmestregp_ex4
https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimation
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We want to fit a Weibull model using the education level, the number of previous jobs, the prestige
of the current job, and gender as explanatory variables. education records the highest education level
before entering the labor market, njobs contains the number of previous jobs for each individual,
and prestige is an index for the prestige of the current job. The birthyear variable indicates the
year of birth. female is 1 for women, 0 for men. To account for individual heterogeneity, we include
a random effect at the individual level.

. mestreg education njobs prestige i.female || id:, distribution(weibull)

Failure _d: failure
Analysis time _t: (tend-origin)

Origin: time tstart

Fitting fixed-effects model:

Iteration 0: Log likelihood = -5736904.5
Iteration 1: Log likelihood = -2664.7487
Iteration 2: Log likelihood = -2484.7829
Iteration 3: Log likelihood = -2477.4358
Iteration 4: Log likelihood = -2477.3338
Iteration 5: Log likelihood = -2477.3337

Refining starting values:

Grid node 0: Log likelihood = -2491.2191

Fitting full model:

Iteration 0: Log likelihood = -2491.2191 (not concave)
Iteration 1: Log likelihood = -2468.3995
Iteration 2: Log likelihood = -2450.0938
Iteration 3: Log likelihood = -2443.0739
Iteration 4: Log likelihood = -2442.875
Iteration 5: Log likelihood = -2442.8747
Iteration 6: Log likelihood = -2442.8746

Mixed-effects Weibull PH regression Number of obs = 600
Group variable: id Number of groups = 201

Obs per group:
min = 1
avg = 3.0
max = 9

Integration method: mvaghermite Integration pts. = 7

Wald chi2(4) = 87.38
Log likelihood = -2442.8746 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

education 1.11897 .0463468 2.71 0.007 1.031722 1.213597
njobs .7071195 .0357624 -6.85 0.000 .6403884 .7808043

prestige .9677567 .0069576 -4.56 0.000 .9542157 .98149
1.female 1.75651 .3185526 3.11 0.002 1.231063 2.506228

_cons .0053352 .0029015 -9.62 0.000 .0018376 .0154904

/ln_p .1695545 .0453649 .0806409 .2584681

id
var(_cons) 1.016459 .2149037 .671623 1.538347

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 68.92 Prob >= chibar2 = 0.0000

The estimated variance of the random intercept is equal to 1.02

According to this model, an increase in the number of previous jobs is negatively associated with
job mobility; the same is true for an increase in the prestige of the current job. By contrast, an
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increase in the years of education is positively associated with job mobility. Also, women seem to
be more mobile than men.

We now store our estimates for later use:

. estimates store randint

The dataset has only two natural levels. However, for illustration purposes, let’s consider the
following situation. Assume that we want to account for unobserved variables associated with the
date of birth, such as life experience, level of familiarity with new technologies, and family situation.
We therefore add a random effect for the year of birth. Now, individuals will be nested within birth
years.

. mestreg education njobs prestige i.female || birthyear: || id:,
> distribution(weibull)

Failure _d: failure
Analysis time _t: (tend-origin)

Origin: time tstart

(output omitted )

Mixed-effects Weibull PH regression Number of obs = 600

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

birthyear 12 3 50.0 99
id 201 1 3.0 9

Integration method: mvaghermite Integration pts. = 7

Wald chi2(4) = 83.20
Log likelihood = -2439.9066 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

education 1.120373 .045203 2.82 0.005 1.035189 1.212566
njobs .7181197 .0372039 -6.39 0.000 .6487813 .7948686

prestige .966567 .0069189 -4.75 0.000 .9531009 .9802234
1.female 1.734236 .3022479 3.16 0.002 1.232419 2.440384

_cons .0059091 .0031758 -9.55 0.000 .0020609 .0169429

/ln_p .1685641 .0454824 .0794203 .257708

birthyear
var(_cons) .0950371 .0741445 .0205976 .4385006

birthyear>id
var(_cons) .8728384 .2020938 .5544339 1.374099

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chi2(2) = 74.85 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The results for the fixed part of the model are similar to the ones in the previous model.

Now, we have two estimated variances—one estimate for the random intercept at the individual
level and one estimate for the random intercept at the birth-year level.

The variance component for the individual level is smaller for this model, and it looks as if the first
model might have been trying to explain a variance component at the birth-year level by incorporating
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it into the individual-level variance. We can perform a likelihood-ratio test to compare the stored
model randint with the current model:

. lrtest randint .

Likelihood-ratio test
Assumption: randint nested within .

LR chi2(1) = 5.94
Prob > chi2 = 0.0148

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The test is conservative because we are testing on the boundary of the parameter space; see
Distribution theory for likelihood-ratio test in [ME] me for details. Provided that we are testing only
one variance component, we can adjust the p-value accordingly by dividing the reported value by
two, which results in an adjusted p-value equal to 0.0074.

The test is significant at the 0.05 level. It supports the three-level model with the additional variance
component at the birth-year level.

Stored results
mestreg stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(N clust) number of clusters
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) gsem
e(cmd2) mestreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified

https://www.stata.com/manuals/meme.pdf#memeRemarksandexampleslrtest
https://www.stata.com/manuals/meme.pdf#meme
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e(covariates) list of covariates
e(ivars) grouping variables
e(model) model name
e(title) title in estimation output
e(distribution) distribution
e(clustvar) name of cluster variable
e(offset) offset
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(frm2) hazard or time
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Survival models
Survey data
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Survival models
Survival models have a trivariate response (t0, t, d):

t0 is the starting time under observation t0 ≥ 0;

t is the ending time under observation t ≥ t0; and

d is an indicator for failure d ∈ {0, 1}.
The survival function for a given family is the complement of the cumulative distribution function,
S(t) = 1− F (t). The unconditional density for a failure at time t is given by

g(t) =
∂F (t)

∂t
= −∂S(t)

∂t
Some distributions contain ancillary parameters that are not denoted here.

The conditional density for a failure at time t is

g(t|t ≥ t0, d = 1) = g(t)/S(t0)

and the conditional probability of survival without failure up to time t is

P (T ≥ t|t ≥ t0, d = 0) = S(t)/S(t0)

The conditional likelihood is given by

L(t, t0, d) =

{
g(t)

S(t0)

}d{
S(t)

S(t0)

}1−d

See Survival distributions in [SEM] Methods and formulas for gsem for the specific density function
corresponding to each distribution.

Given a set of cluster-level random effects uj for j = 1, . . . ,M , the conditional distribution of
tj = (tj1, . . . , tjnj

)′ on ηj = Xjβ+Zjuj = (xj1β+ zjiuj , . . . ,xjnj
β+ zjnj

uj) for cluster j is

f(tj |ηj) =
nj∏
i=1

f(tji|ηji)

where f(tji|ηji) is the contribution to the likelihood from observation ji; that is,

f(tji|ηji) =
{
g(tji|xjiβ+ zjiuj)

S(t0ji|xjiβ+ zjiuj)

}dji { S(tji|xjiβ+ zjiuj)

S(t0ji|xjiβ+ zjiuj)

}1−dji
(1)

where g(t|η) and S(t|η) are, respectively, the density and the survivor function conditional on the
linear prediction η.

As mentioned in Introduction under Remarks and examples, mestreg does not allow delayed
entry or gaps. Therefore, the first observation for a given subject will have a value of t0 = 0, and
subsequent spells for the subject must start at the end of the previous spell. That is, if observations
ji and j, i+ 1 belong to the same subject, then t0j,i+1 = tji.

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the jth cluster is obtained by integrating uj out of the joint density
f(tj ,uj),

Lj(β,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(tj |Xjβ+ Zjuj) exp

(
−u′jΣ−1uj/2

)
duj (2)

The integration in (2) has no closed form and thus must be approximated; see Methods and formulas
in [ME] meglm for details.

https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexamplesSurvivaldistributions
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsem
https://www.stata.com/manuals/memeglm.pdf#memeglmMethodsandformulas
https://www.stata.com/manuals/memeglm.pdf#memeglm
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In the presence of sampling weights, following Rabe-Hesketh and Skrondal (2006), the weighted
log pseudolikelihood for a two-level model is given as

L(β,Σ) =
M∑
j=1

wj log
∫ ∞
−∞

exp

{
nj∑
i=1

wi|j logf(tji|ηji)

}
φ(vj1) dvj1

where wj is the inverse of the probability of selection for the jth cluster; wi|j is the inverse of the
conditional probability of selection of individual i, given the selection of cluster j; f(tji|ηji) is as
in (1); and ηji, φ(·), vj1 are defined as in Methods and formulas in [ME] meglm.

Weighted estimation is achieved through the direct application of wj and wi|j into the likelihood
calculations as detailed above to reflect replicated clusters for wj and replicated observations within
clusters for wi|j . Because this estimation is based on replicated clusters and observations, frequency
weights are handled similarly.
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