
STATA LASSO
REFERENCE MANUAL

RELEASE 18

®

A Stata Press Publication
StataCorp LLC
College Station, Texas

® Copyright c© 1985–2023 StataCorp LLC
All rights reserved
Version 18

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845

ISBN-10: 1-59718-387-3
ISBN-13: 978-1-59718-387-1

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored
in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or
otherwise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions
of a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make
improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without
notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto
DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright c© 1979 by Consumers Union of U.S.,
Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, , Stata Press, Mata, , and NetCourse are registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.

StataNow and NetCourseNow are trademarks of StataCorp LLC.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2023. Stata 18. Statistical software. StataCorp LLC.

The suggested citation for this manual is

StataCorp. 2023. Stata 18 Lasso Reference Manual. College Station, TX: Stata Press.

www.stata.com

https://www.stata.com

Contents

Lasso intro . Introduction to lasso 1
Lasso inference intro . Introduction to inferential lasso models 12

bicplot . Plot Bayesian information criterion function after lasso 18

coefpath . Plot path of coefficients after lasso 24

Collinear covariates . Treatment of collinear covariates 36

cvplot . Plot cross-validation function after lasso 39

dslogit . Double-selection lasso logistic regression 45
dspoisson . Double-selection lasso Poisson regression 52
dsregress . Double-selection lasso linear regression 59

elasticnet . Elastic net for prediction and model selection 66

estimates store Saving and restoring estimates in memory and on disk 86

Inference examples . Examples and workflow for inference 89
Inference requirements . Requirements for inference 135

lasso . Lasso for prediction and model selection 136
lasso postestimation . Postestimation tools for lasso for prediction 172

lassocoef . Display coefficients after lasso estimation results 177

lasso examples . Examples of lasso for prediction 193

lasso fitting . The process (in a nutshell) of fitting lasso models 218

lassogof . Goodness of fit after lasso for prediction 231

lasso inference postestimation Postestimation tools for lasso inferential models 240

lassoinfo . Display information about lasso estimation results 242

lassoknots . Display knot table after lasso estimation 251

lasso options . Lasso options for inferential models 270

lassoselect . Select lambda after lasso 278

poivregress . Partialing-out lasso instrumental-variables regression 290
pologit . Partialing-out lasso logistic regression 298
popoisson . Partialing-out lasso Poisson regression 306
poregress . Partialing-out lasso linear regression 314

sqrtlasso . Square-root lasso for prediction and model selection 323

xpoivregress Cross-fit partialing-out lasso instrumental-variables regression 340
xpologit . Cross-fit partialing-out lasso logistic regression 350
xpopoisson . Cross-fit partialing-out lasso Poisson regression 360
xporegress . Cross-fit partialing-out lasso linear regression 370

i

ii Contents

Glossary . 381

Subject and author index . 386

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,
[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first ex-
ample is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide;
the second is a reference to the regress entry in the Base Reference Manual; and the third is a
reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide
[R] Stata Base Reference Manual
[ADAPT] Stata Adaptive Designs: Group Sequential Trials Reference Manual
[BAYES] Stata Bayesian Analysis Reference Manual
[BMA] Stata Bayesian Model Averaging Reference Manual
[CAUSAL] Stata Causal Inference and Treatment-Effects Estimation Reference Manual
[CM] Stata Choice Models Reference Manual
[D] Stata Data Management Reference Manual
[DSGE] Stata Dynamic Stochastic General Equilibrium Models Reference Manual
[ERM] Stata Extended Regression Models Reference Manual
[FMM] Stata Finite Mixture Models Reference Manual
[FN] Stata Functions Reference Manual
[G] Stata Graphics Reference Manual
[IRT] Stata Item Response Theory Reference Manual
[LASSO] Stata Lasso Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[META] Stata Meta-Analysis Reference Manual
[ME] Stata Multilevel Mixed-Effects Reference Manual
[MI] Stata Multiple-Imputation Reference Manual
[MV] Stata Multivariate Statistics Reference Manual
[PSS] Stata Power, Precision, and Sample-Size Reference Manual
[P] Stata Programming Reference Manual
[RPT] Stata Reporting Reference Manual
[SP] Stata Spatial Autoregressive Models Reference Manual
[SEM] Stata Structural Equation Modeling Reference Manual
[SVY] Stata Survey Data Reference Manual
[ST] Stata Survival Analysis Reference Manual
[TABLES] Stata Customizable Tables and Collected Results Reference Manual
[TS] Stata Time-Series Reference Manual
[I] Stata Index

[M] Mata Reference Manual

iii

Title

Lasso intro — Introduction to lasso

Description Remarks and examples Acknowledgments
References Also see

Description

Lasso was originally an acronym for “least absolute shrinkage and selection operator”. Today,
lasso is considered a word and not an acronym.

Lasso is used for prediction, for model selection, and as a component of estimators to perform
inference.

Lasso, elastic net, and square-root lasso are designed for model selection and prediction. Stata’s
lasso, elasticnet, and sqrtlasso commands implement these methods. lasso and elasticnet
fit continuous, binary, count, and failure-time outcomes, while sqrtlasso fits continuous outcomes.

Stata also provides lasso commands for inference. They use lassos to select control variables that
appear in the model, and they estimate coefficients and standard errors for a specified subset of
covariates.

Stata’s lasso inference commands implement methods known as double selection, partialing out,
and cross-fit partialing out. With each of these methods, linear, logistic, or Poisson regression can be
used to model a continuous, binary, or count outcome. Partialing out and cross-fit partialing out also
allow for endogenous covariates in linear models.

Stata also provides a specialized lasso inference command for estimating treatment effects while
using lassos to select control variables. telasso estimates the average treatment effect (ATE), average
treatment effect on the treated (ATET), or potential-outcome means (POMs); see [CAUSAL] telasso.

This entry provides an overview of lasso for prediction, model selection, and inference and an
introduction to Stata’s suite of lasso commands.

Remarks and examples

Remarks are presented under the following headings:

Summary of Stata’s lasso and elastic-net features
What is lasso?
Lasso for prediction

How lasso for prediction works
Stata commands for prediction

Lasso for model selection
Lasso for inference

Why do we need special lasso methods for inference?
Methods of lasso for inference
Stata commands for inference

Where to learn more

1

2 Lasso intro — Introduction to lasso

Summary of Stata’s lasso and elastic-net features

For those of you who are already experts on lasso, here is an overview full of buzz words without
explanations.

Stata provides three estimation commands for prediction and model selection.

lasso fits linear, logit, probit, Poisson, and Cox proportional hazards models.
The final model is selected using cross-validation (CV), adaptive lasso,
plugin estimators, or the Bayesian information criterion (BIC) function.

elasticnet also fits linear, logit, probit, Poisson, and Cox proportional hazards models.
elasticnet uses CV or the BIC function to select models.

sqrtlasso fits square-root lassos for linear models. The final model is selected using
CV, plugin estimators, or the BIC function.

After fitting a model, you obtain out-of-sample predictions by loading another dataset and typing

. predict newvarname

Stata provides another 11 lasso commands for use in inference. These 11 commands are arranged
in three groups.

ds commands perform double-selection lasso:
dsregress for linear models,
dslogit for logit models, and
dspoisson for Poisson models.

po commands perform partialing-out lasso:
poregress for linear models,
pologit for logit models,
popoisson for Poisson models, and
poivregress for linear models with endogenous covariates.

xpo commands perform cross-fit partialing-out lasso, also known as double
machine learning:
xporegress for linear models,
xpologit for logit models,
xpopoisson for Poisson models, and
xpoivregress for linear models with endogenous covariates.

Stata provides one additional lasso command for use in inference when your objective is to estimate
treatment effects.

telasso fits linear, logit, probit, and Poisson models and estimates the ATE, ATET,
or POMs.

Lasso intro — Introduction to lasso 3

Stata provides two preestimation commands that help you prepare your data and specify covariates.

splitsample divides your sample into k random subsamples. Use it for producing
subsamples for training, validation, and prediction.

vl creates named lists of variables to be included in lasso. Sometimes,
you will want to specify many potential covariates without typing every
variable name. vl creates named variable lists that can be used as
command arguments. Lists can contain hundreds or thousands of
variable names.

Stata provides eight postestimation commands that help you evaluate the selected model:

bicplot graphs the BIC function.

cvplot graphs the CV function.

coefpath graphs coefficient paths.

lassoknots displays a knot table for covariates as they enter or leave the model and
measures of fit.

lassogof reports fit statistics that help you evaluate the predictive ability of a model.
It does this for one model or for multiple models in the same table.

lassocoef lists the selected variables in the model. It does this for one model
or for multiple models in the same table.

lassoselect selects a different model from the one chosen by the estimation command.

lassoinfo reports lasso information such as the dependent variable, selection method,
and number of nonzero coefficients for one or more models.

What is lasso?
Lasso is a method for selecting and fitting covariates that appear in a model. The lasso command

can fit linear, logit, probit, Poisson, and Cox proportional hazards models. Let’s consider a linear
model, a model of y on x1, x2, . . . , xp. You would ordinarily fit this model by typing

. regress y x1 x2 . . . xp

Now assume that you are uncertain which variables (covariates) belong in the model, although
you are certain that some of them do and the number of them is small relative to the number of
observations in your dataset, N . In that case, you can type

. lasso linear y x1 x2 . . . xp

You can specify hundreds or even thousands of covariates. You can even specify more covariates
than there are observations in your data! The covariates you specify are the potential covariates from
which lasso selects.

4 Lasso intro — Introduction to lasso

Lasso is used in three ways:

1. Lasso is used for prediction.

2. Lasso is used for model selection.

3. Lasso is used for inference.

By prediction, we mean predicting the value of an outcome conditional on a large set of potential
regressors. And we mean predicting the outcome both in and out of sample.

By model selection, we mean selecting a set of variables that predicts the outcome well. We do
not mean selecting variables in the true model or placing a scientific interpretation on the coefficients.
Instead, we mean selecting variables that correlate well with the outcome in one dataset and testing
whether those same variables predict the outcome well in other datasets.

By inference, we mean inference for interpreting and giving meaning to the coefficients of the fitted
model. Inference is concerned with estimating effects of variables in the true model and estimating
standard errors, confidence intervals, p-values, and the like.

Lasso for prediction

Lasso was invented by Tibshirani (1996) and has been commonly used in building models
for prediction. Hastie, Tibshirani, and Wainwright (2015) provide an excellent introduction to the
mechanics of the lasso and to the lasso as a tool for prediction. See Bühlmann and van de Geer (2011)
for more technical discussion and clear discussion of the properties of lasso under different assumptions.
See Cameron and Trivedi (2022, chap. 28) for an introduction to lasso for prediction and for inference
with examples using Stata.

Lasso does not necessarily select the covariates that appear in the true model, but it does select
a set of variables that are correlated with them. If lasso selects potential covariate x47, that means
x47 belongs in the model or is correlated with variables that belong in the model. If lasso omits
potential covariate x52, that means x52 does not belong in the model or belongs but is correlated
with covariates that were already selected. Because we are interested only in prediction, we are not
concerned with the exact variables selected, only that they are useful for prediction.

The model lasso selects is suitable for making predictions in samples outside the one you used
for estimation. Everyone knows about the danger of overfitting. Fit a model on one set of data and
include too many variables, and the result will exploit features randomly unique to those data that
will not be replicated in other data.

“Oh,” you may be thinking, “you mean that I can split my data into an estimation sample and a
hold-out sample, and after fitting, I can evaluate the model in the hold-out sample.” That is not what
we mean, although you can do this, and it is sometimes a good idea to do so. We mean that lasso
works to avoid the problem of overfitting by minimizing an estimate of the out-of-sample prediction
error.

How lasso for prediction works

Lasso finds a solution for

y = β1 x1 + β2 x2 + · · ·+ βp xp + ε

by minimizing the prediction error subject to the constraint that the model is not too complex—that
is, it is sparse. Lasso measures complexity by the sum of the absolute values of β1, β2, . . . , βp. The
solution is obtained by minimizing

Lasso intro — Introduction to lasso 5

1

2N
(y −Xβ′)′(y −Xβ′) + λ

p∑
j=1

|βj | (1)

The first term, (y−Xβ′)′(y−Xβ′), is the in-sample prediction error. It is the same value that least
squares minimizes.

The second term, λ
∑
j |βj |, is a penalty that increases in value the more complex the model. It is

this term that causes lasso to omit variables. They are omitted because of the nondifferentiable kinks
in the

∑
j |βj | absolute value terms. Had the kinks not been present—think of squared complexity

terms rather than absolute value—none of the coefficients would be exactly zero. The kinks cause
some coefficients to be zero.

If you minimized (1) with respect to the βj’s and λ, the solution would be λ = 0. That would set
the penalty to zero. λ = 0 corresponds to a model with maximum complexity.

Lasso proceeds differently. It minimizes (1) for given values of λ. Lasso then chooses one of those
solutions as best based on another criterion, such as an estimate of the out-of-sample prediction error.

When we use lasso for prediction, we must assume the unknown true model contains few variables
relative to the number of observations, N . This is known as the sparsity assumption. How many true
variables are allowed for a given N? We can tell you that the number cannot be greater than something
proportional to

√
N/ ln q, where q = max{N, p} and p is the number of potential variables. We

cannot, however, say what the constant of proportionality is. That this upper bound decreases with q
can be viewed as the cost of performing covariate selection.

Lasso provides various ways of selecting λ: through CV, adaptive lasso, a plugin estimator, or
minimizing the Bayesian information criterion (BIC) function. CV selects the λ that minimizes an
estimate of the out-of-sample prediction error. Adaptive lasso performs multiple lassos, each with
CV. After each lasso, variables with zero coefficients are removed, and remaining variables are given
penalty weights designed to drive small coefficients to zero. Thus, adaptive lasso typically selects
fewer covariates than CV.

The plugin method was designed to achieve an optimal sparsity rate. It tends to select a larger
λ than CV and, therefore, fewer covariates in the final model. The number of covariates selected by
minimizing BIC typically lies between the number selected by CV and the number selected by the
plugin method; however, BIC tends to be more similar to the number selected by the plugin method.
Furthermore, BIC does not require a complex derivation as does the plugin, so like CV, it can be
applied in a more general context. See [LASSO] lasso and [LASSO] lasso fitting for more information
on the methods of selecting λ, their differences, and how you can control the selection process.

Stata commands for prediction

We described the linear lasso model in the last section, but the concepts we have discussed apply
to models for binary and count outcomes as well.

To fit a linear lasso model, we might type

. lasso linear y x1-x500

and lasso will select a subset of variables from x1 to x500 that can be used in prediction.

If we have a binary outcome, we could instead fit a logit model by typing

. lasso logit y x1-x500

or a probit model by typing

. lasso probit y x1-x500

6 Lasso intro — Introduction to lasso

For a count outcome, we could fit a Poisson model by typing

. lasso poisson y x1-x500

For failure-time data that has been stset, we could fit a Cox proportional hazards model by
typing

. lasso cox x1-x500

After any of these lasso commands, we can use predict to obtain predictions of y.

For examples demonstrating how to use the lasso command to fit models suitable for prediction,
see Remarks and examples in [LASSO] lasso and also see [LASSO] lasso examples.

Stata also has commands for fitting elastic nets and square-root lassos for prediction. See
[LASSO] elasticnet and [LASSO] sqrtlasso for more information and examples.

Lasso for model selection

Model selection is an overloaded term that implies different things in different disciplines. To
some, it implies finding a true model or data-generating process. To some, it implies less. Here model
selection means finding a model that fits the data, not finding a model that allows for interpreting
estimated coefficients as effects. If this is your interest, see Lasso for inference below.

Lasso for model selection builds on lasso for prediction. In fact, the same lasso methods are used
in both cases. However, the goal of the analysis is different.

Model selection uses lasso to select variables in one dataset and then fits models using the
selected variables in other datasets. For example, consider finding genes correlated with an outcome
in microarray data. One approach starts with lasso. Researchers use it as a sieve to select the important
predictors. They go on to test whether those predictors (genetic markers) work in other datasets. Note
that these researchers are not giving scientific meaning to the estimated coefficients. They are looking
only for markers that correlate well with an outcome.

We can perform these types of tests because our interest lies in the selected model rather than the
true coefficients of the data-generating process (DGP), sometimes called the data-generating mechanism
(DGM). Interpretation is conditional on the selected model and cannot be interpreted as causal. See,
for instance, Lee et al. (2016). As Berk et al. (2013) put it, the goal is “. . . to merely describe
association between predictor and response variables; no data generating or causal claims are implied.”

Lasso for inference

When we use lasso for inference, we are interested in interpreting the estimated coefficients. We
are also interested in standard errors, hypothesis tests, confidence intervals, comparisons across levels,
and the like. We want to interpret the results in the same way we interpret results from standard
regression models.

Why do we need special lasso methods for inference?

It may be tempting to use lasso to select covariates and then use regress (or logit, probit,
or poisson) to fit a model with the selected covariates. The results from the regression provide
estimated coefficients and standard errors, confidence intervals, and p-values.

This approach does not work. Why?

Lasso intro — Introduction to lasso 7

Consider fitting a classic regression model. The standard error for a coefficient tells us about the
distribution of the coefficient in repeated sampling. The 95% confidence interval includes the true
value of the coefficient in 95% of repeated samples. Although we do not actually have repeated
samples from the population, the standard errors allow us to account for sample-to-sample variability
when making inferences.

If we use lasso to select covariates and then use regress to fit a model with only the selected
covariates, the results will be problematic for use in inference for a few reasons.

First, when we use lasso, or any variable-selection method, we introduce a new source of variability.
If we actually drew repeated samples from a population and used lasso to select covariates on each
one, different covariates would be selected in each dataset. However, we have selected covariates using
only a single sample. The standard errors reported by regress do not account for the sample-to-sample
variability in the variable selection.

Second, lasso tends to omit covariates with small coefficients. This problem arises because lasso
minimizes prediction error subject to the constraint that the model is not too complex, and lasso
measures complexity by the sum of the absolute values of the coefficients. Covariates with small
coefficients tend to be entrapped by the constraint. Small coefficients of covariates that belong in
the model look just like small coefficients of variables that do not. Mistakenly omitted covariates,
even those with small coefficients, can bias other coefficients. That bias is not solely a function of
the size of the coefficient. See, for instance, Leeb and Pötscher (2005, 2006, 2008) and Belloni,
Chernozhukov, and Hansen (2014).

And then there are more mundane reasons the selected variables can differ from the true variables.
Imagine that you have fit a lasso model. You look at the results and observe that region-of-country
covariates are included. You are surprised because you can think of no reason why they should be
and wonder whether you are about to make an interesting discovery. You look at the lasso results in
hopes of finding an explanation. You discover that income was excluded despite your expectations
to the contrary. You find that age and education were included, but that does not surprise you. But
region, age, and education are predictors of income. That could be the entire reason why region
covariates were included. They were included only because income was excluded. Or it could be
something deeper.

In general, the variables selected by lasso do not even converge to the ones in the true model as the
number of observations goes to infinity. Lasso tends to omit covariates that have small coefficients
in favor of irrelevant ones (variables not in the true model) that are correlated with the error term.

For these reasons, we must use lasso-based methods that are designed specifically for inference
when we want to interpret coefficients.

Methods of lasso for inference

With lasso inferential methods, researchers wish to interpret the covariates selected by lasso in the
context of the DGP. They apply causal interpretations to the results. This approach accounts for the fact
that lasso does not select the true model with probability one, and it accounts for the errors that arise
in model selection. To achieve this DGP causal interpretation, you must perform the selection process
with resampling. Thus, more than split sampling is needed to obtain consistent standard errors. See
Belloni, Chernozhukov, and Hansen (2014) for an excellent introduction to using lasso to perform
inference and make causal interpretations.

When your interest is in the underlying DGP, there are various ways of using lasso to estimate
the effects of a few covariates that you have chosen a priori. These methods may be used when you
know there are more covariates in the model and that they are sparse (relative to N). These methods

8 Lasso intro — Introduction to lasso

apply, for instance, to performing inference about the effect of smoking on a health outcome when
you know that lots of other variables potentially affect the outcome but do not know which ones.

The double-selection, partialing-out, and cross-fit partialing-out lassos provided by Stata can handle
such problems.

Other methods for inference have been discussed in the literature. For instance, see van de Geer
et al. (2014), Javanmard and Montanari (2014), and Zhang and Zhang (2014). The methods developed
there are not implemented in Stata. While they have some appealing theoretical properties, they have
not yet been much used in applied work.

Stata commands for inference

For inference, multistage extensions of lasso provide standard errors for a subset of variables that
you specify. Imagine that you wish to estimate the coefficients for d1 and d2 in the model that
includes other covariates:

. regress y d1 d2 x1-x500

Covariates x1 through x500 are control variables, some of which you need to include to obtain valid
results for d1 and d2. Suppose your data contain 1,000 observations.

If all 500 covariates belong in the model, there is no way to proceed. Get more data. If only a
small subset of them is required and you simply do not know which they are, there is a lasso-based
solution. Type

. dsregress y d1 d2, controls(x1-x500)

Coefficients and standard errors for d1 and d2 will be reported. dsregress will use lasso to select
from the 500 covariates and do that in a way that is robust to the model-selection mistakes that lasso
makes because of sampling variability. There is no a priori limit on the number of d variables you
can specify. But more variables mean more computation time. Time is roughly proportional to the
number of d variables.

Stata provides three methods to fit these types of inferential models. They are

1. the ds double-selection commands: dsregress, dslogit, and dspoisson.

2. the po partialing-out commands: poregress, pologit, popoisson, and poivregress.

3. the xpo cross-fit partialing-out commands, also known as double machine learning:
xporegress, xpologit, xpopoisson, and xpoivregress.

All three methods require a sparsity assumption. As with lasso for prediction, these methods of
lasso for inference rely on the assumption that the number of nonzero coefficients in the true model
is small relative to the number of observations and that the coefficients are large enough relative to
error variance to be selected by the lasso.

ds and po are asymptotically equivalent. poivregress can handle d1 and d2 being endogenous
in linear models. It does this using instrumental variables. You specify a set of potential instruments,
and lasso will select from among them. You can have many potential control variables and many
potential instruments; the number of each can be greater than N .

xpo is the most computationally intensive of the three methods. It is also generally viewed as
superior to ds and po because it allows a weaker definition of sparsity. The sparsity bound for the
ds and po methods grows in proportion to

√
N , while the sparsity bound for the xpo method grows

in proportion to N .

Lasso intro — Introduction to lasso 9

For information on the assumptions and how the ds, po, and xpo commands work, see [LASSO] Lasso
inference intro and [LASSO] Inference requirements.

For examples of fitting lasso inferential models, see [LASSO] Inference examples.

Where to learn more
After reading this intro, you may want to learn more about lasso for prediction and model selection,

lasso for inference, and syntax for lasso commands, or you may just want to see some examples.
Here we provide a guide to the entries in this manual that you may want to read next.

If you are interested in lasso for prediction or model selection, you may want to go directly to the
syntax and examples demonstrating lasso, square-root lasso, and elastic net in

[LASSO] lasso Lasso for prediction and model selection
[LASSO] sqrtlasso Square-root lasso for prediction and model selection
[LASSO] elasticnet Elastic net for prediction and model selection
[LASSO] lasso examples Examples of lasso for prediction

If you are interested in lasso for inference, you can read more about the concepts, methods, and
corresponding Stata commands in

[LASSO] Lasso inference intro Introduction to inferential lasso models

If you want to see syntax for one of the lassos for inference commands, see

[LASSO] dsregress Double-selection lasso linear regression
[LASSO] dslogit Double-selection lasso logistic regression
[LASSO] dspoisson Double-selection lasso Poisson regression
[LASSO] poregress Partialing-out lasso linear regression
[LASSO] pologit Partialing-out lasso logistic regression
[LASSO] popoisson Partialing-out lasso Poisson regression
[LASSO] poivregress Partialing-out lasso instrumental-variables regression
[LASSO] xporegress Cross-fit partialing-out lasso linear regression
[LASSO] xpologit Cross-fit partialing-out lasso logistic regression
[LASSO] xpopoisson Cross-fit partialing-out lasso Poisson regression
[LASSO] xpoivregress Cross-fit partialing-out lasso instrumental-variables regression
[LASSO] lasso options Lasso options for inferential models

You might instead want to start with worked examples that demonstrate the lasso inference
commands.

[LASSO] Inference examples Examples and workflow for inference

If your inference involves estimating treatment effects, you can read about the lasso inference
command that estimates the ATE, ATET, or POMs at

[CAUSAL] telasso Treatment-effects estimation using lasso

Whether you are using lasso for prediction or for inference, you may want to learn more about
the process of fitting lasso models and how you can make modifications to this process.

[LASSO] lasso fitting The process (in a nutshell) of fitting lasso models

10 Lasso intro — Introduction to lasso

Acknowledgments
We thank Christian B. Hansen of the University of Chicago for his advice over the years and his

amazingly fast responses to our numerous questions.

We thank Otilia Boldea of Tilburg University for her advice and for sharing her course materials
on model-selection methods and big data.

We thank Damian Kozbur of the University of Zurich for his advice about how to select the lasso
penalty parameter.

We thank Denis Chetverikov of the University of California at Los Angeles for conversations about
the CV lasso.

We thank Victor Chernozhukov of the Massachusetts Institute of Technology and Alexandre Belloni
of Duke University for their responses to our questions.

We thank Achim Ahrens of ETH Zürich and Immigration Policy Lab, Christian B. Hansen of the
University of Chicago, and Mark E. Schaffer of Heriot-Watt University for their Stata commands
lasso2, cvlasso, rlasso, pdslasso, ivlasso, and lassologit, which are discussed in Ahrens,
Hansen, and Schaffer (2018, 2020). We also thank them for conversations about their approach to
these methods.

We thank Wilbur Townsend of Harvard Business School for his Stata command elasticregress.

We thank Adrian Mander of the SPC (Statistical Process Control) for his Stata command lars.

We thank Jordi Sunyer and Mar Alvarez-Pedrerol of the ISGlobal Center for Research in Envi-
ronmental Epidemiology and Raquel Garcia-Esteban of the RTI Health Solutions for sharing the data
they used in Sunyer et al. (2017).

References
Ahrens, A., C. B. Hansen, and M. E. Schaffer. 2018. pdslasso: Stata module for post-selection and post-regularization

OLS or IV estimation and inference. Boston College Department of Economics, Statistical Software Components
S458459. https://ideas.repec.org/c/boc/bocode/s458459.html.

. 2020. lassopack: Model selection and prediction with regularized regression in Stata. Stata Journal 20: 176–235.

Belloni, A., V. Chernozhukov, and C. B. Hansen. 2014. High-dimensional methods and inference on structural and
treatment effects. Journal of Economic Perspectives 28: 29–50. https://doi.org/10.1257/jep.28.2.29.

Berk, R., L. D. Brown, A. Buja, K. Zhang, and L. Zhao. 2013. Valid post-selection inference. Annals of Statistics
41: 802–837. https://doi.org/10.1214/12-AOS1077.

Bühlmann, P., and S. van de Geer. 2011. Statistics for High-Dimensional Data: Methods, Theory and Applications.
Berlin: Springer.

Cameron, A. C., and P. K. Trivedi. 2022. Microeconometrics Using Stata. 2nd ed. College Station, TX: Stata Press.

Dallakyan, A. 2022. graphiclasso: Graphical lasso for learning sparse inverse-covariance matrices. Stata Journal 22:
625–642.

Drukker, D. M., and D. Liu. 2019. An introduction to the lasso in Stata. The Stata Blog: Not Elsewhere Classified.
https://blog.stata.com/2019/09/09/an-introduction-to-the-lasso-in-stata/.

Hastie, T. J., R. J. Tibshirani, and M. Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and
Generalizations. Boca Raton, FL: CRC Press.

Javanmard, A., and A. Montanari. 2014. Confidence intervals and hypothesis testing for high-dimensional regression.
Journal of Machine Learning Research 15: 2869–2909.

Lee, J. D., D. L. Sun, Y. Sun, and J. E. Taylor. 2016. Exact post-selection inference, with application to the lasso.
Annals of Statistics 44: 907–927. https://doi.org/10.1214/15-AOS1371.

Leeb, H., and B. M. Pötscher. 2005. Model selection and inference: Facts and fiction. Econometric Theory 21: 21–59.
https://doi.org/10.1017/S0266466605050036.

https://ideas.repec.org/c/boc/bocode/s458459.html
https://doi.org/10.1177/1536867X20909697
https://doi.org/10.1257/jep.28.2.29
https://doi.org/10.1214/12-AOS1077
http://www.stata-press.com/books/microeconometrics-stata
https://doi.org/10.1177/1536867X221124538
https://blog.stata.com/2019/09/09/an-introduction-to-the-lasso-in-stata/
https://doi.org/10.1214/15-AOS1371
https://doi.org/10.1017/S0266466605050036

Lasso intro — Introduction to lasso 11

. 2006. Can one estimate the conditional distribution of post-model-selection estimators? Annals of Statistics 34:
2554–2591. https://doi.org/10.1214/009053606000000821.

. 2008. Sparse estimators and the oracle property, or the return of Hodges’ estimator. Journal of Econometrics
142: 201–211. https://doi.org/10.1016/j.jeconom.2007.05.017.

Schwarz, C. 2023. Estimating text regressions using txtreg train. Stata Journal 23: 799–812.

Sunyer, J., E. Suades-González, R. Garcı́a-Esteban, I. Rivas, J. Pujol, M. Alvarez-Pedrerol, J. Forns, X. Querol, and
X. Basagaña. 2017. Traffic-related air pollution and attention in primary school children: Short-term association.
Epidemiology 28: 181–189. https://doi.org/10.1097/EDE.0000000000000603.

Tibshirani, R. J. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society,
Series B 58: 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.

van de Geer, S., P. Bühlmann, Y. Ritov, and R. Dezeure. 2014. On asymptotically optimal confidence regions and
tests for high-dimensional models. Annals of Statistics 42: 1166–1202. https://doi.org/10.1214/14-AOS1221.

Zhang, C.-H., and S. S. Zhang. 2014. Confidence intervals for low dimensional parameters in high dimensional linear
models. Journal of the Royal Statistical Society, Series B 76: 217–242. https://doi.org/10.1111/rssb.12026.

Also see
[LASSO] Lasso inference intro

https://doi.org/10.1214/009053606000000821
https://doi.org/10.1016/j.jeconom.2007.05.017
https://doi.org/10.1177/1536867X231196349
https://doi.org/10.1097/EDE.0000000000000603
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1214/14-AOS1221
https://doi.org/10.1111/rssb.12026

Title

Lasso inference intro — Introduction to inferential lasso models

Description Remarks and examples References Also see

Description
Lasso selects covariates and estimates coefficients but does not provide the standard errors required

for performing statistical inference. Stata provides three additional lasso-based methods for estimating
the coefficients and standard errors for a subset of the covariates, and the results have the added
advantage of being estimates of values from the true model that generated the data being analyzed.

The methods are double selection, partialing out, and cross-fit partialing out, which is also known
as double machine learning. They can be applied to linear, logistic, and Poisson regression models.
Partialing out and cross-fit partialing out can also be used with endogenous covariates and instrumental
variables in linear models.

Remarks and examples

Remarks are presented under the following headings:
The problem
Possible solutions
Solutions that focus on the true model

The double-selection solution
The partialing-out solution
The cross-fit partialing-out (double machine-learning) solution

Where to learn more

The problem

You want to know the true effects of z1 and z2 on y, by which we mean the effect in the true
underlying model that generated the data being analyzed. We specify two variables, but you could
specify one or a handful.

You do not know whether z1 and z2 belong in the model, although you have your suspicions.
Your problem is to estimate the effects (coefficients) of z1 and z2 and obtain their standard errors.

At the same time, you do not know the other variables that appear in the model, but you do know
that they are among variables from x1 to 500. You also know that only a small number of them
appear. We will be more precise about the meaning of “small” later.

Possible solutions
If you had a sufficient number of observations in your data, you could fit a linear regression of y

on z1, z2, and x1 to x500:

. regress y z1 z2 x1-x500

The above is a solution because including extra explanatory variables does not cause bias, at least
as long as the number of covariates is not too large. Including extra variables merely causes a loss
of efficiency. Except there may be no merely about it. You may not have a sufficient number of
observations to fit this regression and answer questions about z1 and z2 with any degree of certainty.

12

Lasso inference intro — Introduction to inferential lasso models 13

In that case, you could use your scientific judgment to select the covariates that need to appear in
the model:

. regress y z1 z2 x3 x9 x203 x333 x478

The problem here is that you must be correct about the variables you included and excluded. And
the insight that led you to choose them cannot come from the data. And the choice you made is not
testable. And theory seldom provides sufficient guidance about variables or their functional form. In
the age of big data, modern research is increasingly looking for data-dependent guidance and rules.

Here is yet another solution. Select and fit the model using lasso, and force the inclusion of z1
and z2 with parentheses:

. lasso linear y (z1 z2) x1-x500

Now lasso will select a model and obtain its coefficients. Problem is, the lasso procedure does
not provide standard errors. You cannot perform statistical tests of significance of z1 and z2 or obtain
confidence intervals for them. And there is a reason for that. lasso does not account for mistakes
in selecting from the potential covariates x1 to x500. Any mistakes it makes in selecting covariates
that are also correlated with z1 or z2 would lead to bias in estimating the coefficients and standard
errors of z1 and z2.

Here is a solution. Refit the model that lasso selected using regress. We would not recommend
this. Everyone agrees that it would be better to split your data into two samples, use the first to
select the model, and use the second to refit it. You will now have the standard errors you need. But
even this will not provide good estimates and standard errors if your interest is in the true model
that generated the data. The problem is twofold. First, this process still does not account sufficiently
for the sampling variability of the selection process for variables from x1 to x500. Second, it does
not account for the possibility of small coefficients in the true model. This second problem is more
common and more detrimental than you might guess. See, for instance, Leeb and Pötscher (2005,
2006, 2008) and Belloni, Chernozhukov, and Hansen (2014a).

Solutions that focus on the true model

If your interest is inference about z1 and z2 in the true model that generated the data, the solution
is to type

. dsregress y z1 z2, controls(x1-x500)

or

. poregress y z1 z2, controls(x1-x500)

or

. xporegress y z1 z2, controls(x1-x500)

These commands produce the double selection, partialing-out, and cross-fit partialing-out solutions,
respectively, for the linear model, but commands also exist for logistic, Poisson, and instrumental-
variables regression. These solutions all use multiple lassos and moment conditions that are robust to
the model-selection mistakes that lasso makes; namely, that it does not select the covariates of the true
model with probability 1. Of the three, the cross-fit partialing-out solution is best, but it can take a
long time to run. The other two solutions are most certainly respectable. The cross-fit solution allows
the true model to have more coefficients, and it allows the number of potential covariates, x1-x500
in our examples, to be much larger. Technically, cross-fit has a less restrictive sparsity requirement.

14 Lasso inference intro — Introduction to inferential lasso models

All three of the methods have a sparsity requirement, and we have advice for you.

1. Let the commands fit the lassos using the default method, which is plugin.

2. If meeting the sparsity requirement concerns you, use cross-fit partialing out.

You may think of sparsity requirements as being unique to lasso, but they are not. Think about fitting
an ordinary logistic regression model or any other estimator with only asymptotic properties. How
many variables can be reliably included in the model if you have 100 observations? 500 observations?
1,000? 10,000? There is no answer to those questions except to say more with 1,000 than 500, more
with 10,000 than 1,000, and so on.

The story is the same with the three inference methods. We can tell you more observations are
better, and we can tell you more. Their requirements are stricter than those for logistic regression.
The sparsity requirement for double selection and partialing out is that

s√
N/ ln p

is small

where s is the number of covariates in the true model, N is the number of observations in the data,
and p is the number of potential covariates. The sparsity requirement for cross-fit partialing out is
the same, except that

√
N is replaced by N . It is that

s

N/ ln p
is small

N is much larger than
√
N . That is why we said that, if meeting the sparsity requirement concerns

you, use cross-fit partialing out. It allows more covariates for all values of N .

We recommended that the lassos be fit using plugins because plugins were developed with these
three methods in mind. Plugins tend to produce models with fewer “extra” covariates. Fitting the
lassos using cross-validation for selection, on the other hand, tends to include lots of extra covariates.
Using the Bayesian information criterion function for selection tends to include a number of covariates
that falls between the numbers selected by the other two methods.

All three methods report the estimated coefficients for z1 and z2, their standard errors, test
statistics, and confidence intervals. Understanding how they work will be easier if we reduce the
number of variables from two to one. Let’s consider obtaining estimates for α in the model

y = dα+ xβ+ ε

where d is the covariate of interest.

The double-selection solution

Double selection is the easiest of the three to explain. Its algorithm is the following:

1. Run a lasso of d on x.

2. Run a lasso of y on x.

3. Let x̃ be the union of the selected covariates from steps 1 and 2.

4. Regress y on d and x̃.

The estimate of α and its test statistics are then the coefficient on d and its test statistics.

Step 1 is the extra selection step from which double selection gets its name. It is this step that
causes the method to be robust to the mistakes in model selection that lasso makes.

Stata provides three double-selection commands—dsregress, dslogit, and dspoisson.

Lasso inference intro — Introduction to inferential lasso models 15

The partialing-out solution

The algorithm is the following:

1. Run a lasso of d on x. Let x̃d be the covariates selected.

2. Regress d on x̃d. Let d̃ be the residuals from this regression.

3. Run a lasso of y on x. Let x̃y be the covariates selected.

4. Regress y on x̃y . Let ỹ be the residuals from this regression.

5. Regress ỹ on d̃.

The estimate of α and its test statistics are then the coefficient on d̃ and its test statistics.

This algorithm is a high-dimensional version of the classic partialing-out estimator, which you can
learn about in Wooldridge (2020, chap. 3-2). In the classic estimator, the moment conditions used to
estimate the coefficient on d are orthogonal to the variables in x. In the high-dimensional variant,
the moment conditions in step 5 are orthogonal to the relevant variables in x; thus, small changes in
the variables included do not have a significant effect on the estimator for α.

Stata provides four partialing-out commands—poregress, pologit, popoisson, and
poivregress.

poivregress provides a variation on the algorithm shown above that handles endogenous variables
with instrumental variables in linear models.

The cross-fit partialing-out (double machine-learning) solution

Cross-fit partialing out is a split-sample version of partialing out. Cross-fit partialing out is also
known as double machine learning (DML).

1. Divide the data in roughly equal-sized subsamples 1 and 2.

2. In sample 1:

a. Run a lasso of d on x. Let x̃d1 be the covariates.

b. Regress d on x̃d1. Let β̂1 be the estimated coefficients.

c. Run a lasso of y on x. Let x̃y1 be the covariates selected.

d. Regress y on x̃y1. Let γ̂1 be the estimated coefficients.

3. In sample 2:

a. Fill in d̃ = d− x̃d1β̂1.

b. Fill in ỹ = y − x̃y1γ̂1.

4. Still in sample 2:

a. Run a lasso of d on x. Let x̃d2 be the covariates.

b. Regress d on x̃d2. Let β̂2 be the estimated coefficients.

c. Run a lasso of y on x. Let x̃y2 be the covariates selected.

d. Regress y on x̃y2. Let γ̂2 be the estimated coefficients.

16 Lasso inference intro — Introduction to inferential lasso models

5. In sample 1:

a. Fill in d̃ = d− x̃d2β̂2.

b. Fill in ỹ = y − x̃y2γ̂2.

6. In the full sample: Regress ỹ on d̃.

The estimate of α and its test statistics are then the coefficient on d̃ and its test statistics.

Cross-fit partialing out has a more relaxed sparsity requirement than partialing out and double
selection, as we mentioned earlier. This is because the sample is split and coefficients are obtained
from one sample and used in another, which is independent, and that adds robustness.

There are two variants of cross-fit partialing out (recall it is also known as DML): DML1 and
DML2. Shown above is the algorithm for DML2, which is Stata’s default method. DML1, available as
an option, predates DML2 and solves the moment conditions within each fold (group) that is cross-fit
and then averages. DML2, by comparison, solves the moment conditions jointly. See Methods and
formulas. DML2 produced better results in simulations in Chernozhukov et al. (2018).

In the algorithm shown, the sample is split in two. The software splits it into K parts, where
K = 10 by default. You could specify K = 2, but you would not want to do that. Larger K works
better and K = 10 is viewed as sufficient. This is known as the 10-fold method.

Stata provides four cross-fit partialing-out commands—xporegress, xpologit, xpopoisson,
and xpoivregress. xpoivregress provides a variation on the algorithms that handles endogenous
variables with instrumental variables in linear models.

Where to learn more

See

[LASSO] dsregress Double-selection lasso linear regression
[LASSO] dslogit Double-selection lasso logistic regression
[LASSO] dspoisson Double-selection lasso Poisson regression
[LASSO] poregress Partialing-out lasso linear regression
[LASSO] pologit Partialing-out lasso logistic regression
[LASSO] popoisson Partialing-out lasso Poisson regression
[LASSO] poivregress Partialing-out lasso instrumental-variables regression
[LASSO] xporegress Cross-fit partialing-out lasso linear regression
[LASSO] xpologit Cross-fit partialing-out lasso logistic regression
[LASSO] xpopoisson Cross-fit partialing-out lasso Poisson regression
[LASSO] xpoivregress Cross-fit partialing-out lasso instrumental-variables regression

And then there is the literature.

For a strikingly readable introduction, see Belloni, Chernozhukov, and Hansen (2014a). For a more
technical discussion, see Belloni and Chernozhukov (2011).

Double selection was developed by Belloni, Chernozhukov, and Hansen (2014b). Their article also
provides first-rate intuition on why the process works.

Partialing out was developed by Belloni et al. (2012). The 2012 date makes it appear that partialing
out predates double selection, but the ordering was due to different publication lags. Their article also
develops the plugin estimator for lasso and then develops the partialing-out instrumental-variables
estimator. Partialing out was extended from linear to nonlinear models by Belloni, Chernozhukov,

Lasso inference intro — Introduction to inferential lasso models 17

and Wei (2016). For a three-page introduction to the partialing-out instrumental-variables estimator,
see Chernozhukov, Hansen, and Spindler (2015).

Cross-fit partialing out was developed by Chernozhukov et al. (2018). The researchers of this
article had worked on these issues for years. They later came together to assemble this important
article, which is an odd but appealing mix of intuition and technical derivations, especially concerning
sample splitting.

Bickel, Ritov, and Tsybakov (2009) predates all the above and provided the theoretical foundations
for what would become the plugin estimator. It also provided rates of convergence for the lasso which
was used by subsequent authors. The article is both seminal and technical.

References
Belloni, A., D. Chen, V. Chernozhukov, and C. B. Hansen. 2012. Sparse models and methods for optimal instruments

with an application to eminent domain. Econometrica 80: 2369–2429. https://doi.org/10.3982/ECTA9626.

Belloni, A., and V. Chernozhukov. 2011. High dimensional sparse econometric models: An Introduction. In Inverse
Problems of High-Dimensional Estimation, ed. P. Alguier, E. Gautier, and G. Stoltz, 121–156. Berlin: Springer.

Belloni, A., V. Chernozhukov, and C. B. Hansen. 2014a. High-dimensional methods and inference on structural and
treatment effects. Journal of Economic Perspectives 28: 29–50. https://doi.org/10.1257/jep.28.2.29.

. 2014b. Inference on treatment effects after selection among high-dimensional controls. Review of Economic
Studies 81: 608–650. https://doi.org/10.1093/restud/rdt044.

Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many
controls. Journal of Business and Economic Statistics 34: 606–619. https://doi.org/10.1080/07350015.2016.1166116.

Bickel, P. J., Y. Ritov, and A. B. Tsybakov. 2009. Simultaneous analysis of Lasso and Dantzig selector. Annals of
Statistics 37: 1705–1732. https://doi.org/10.1214/08-AOS620.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. B. Hansen, W. K. Newey, and J. M. Robins. 2018.
Double/debiased machine learning for treatment and structural parameters. Econometrics Journal 21: C1–C68.
https://doi.org/10.1111/ectj.12097.

Chernozhukov, V., C. B. Hansen, and M. Spindler. 2015. Post-selection and post-regularization infer-
ence in linear models with many controls and instruments. American Economic Review 105: 486–490.
https://doi.org/10.1257/aer.p20151022.

Drukker, D. M., and D. Liu. 2019. Using the lasso for inference in high-dimensional models. The Stata Blog: Not
Elsewhere Classified. https://blog.stata.com/2019/09/09/using-the-lasso-for-inference-in-high-dimensional-models/.

Leeb, H., and B. M. Pötscher. 2005. Model selection and inference: Facts and fiction. Econometric Theory 21: 21–59.
https://doi.org/10.1017/S0266466605050036.

. 2006. Can one estimate the conditional distribution of post-model-selection estimators? Annals of Statistics 34:
2554–2591. https://doi.org/10.1214/009053606000000821.

. 2008. Sparse estimators and the oracle property, or the return of Hodges’ estimator. Journal of Econometrics
142: 201–211. https://doi.org/10.1016/j.jeconom.2007.05.017.

Wooldridge, J. M. 2020. Introductory Econometrics: A Modern Approach. 7th ed. Boston: Cengage.

Also see
[LASSO] Lasso intro — Introduction to lasso

https://doi.org/10.3982/ECTA9626
https://doi.org/10.1257/jep.28.2.29
https://doi.org/10.1093/restud/rdt044
https://doi.org/10.1080/07350015.2016.1166116
https://doi.org/10.1214/08-AOS620
https://doi.org/10.1111/ectj.12097
https://doi.org/10.1257/aer.p20151022
https://blog.stata.com/2019/09/09/using-the-lasso-for-inference-in-high-dimensional-models/
https://doi.org/10.1017/S0266466605050036
https://doi.org/10.1214/009053606000000821
https://doi.org/10.1016/j.jeconom.2007.05.017
http://www.stata.com/bookstore/introductory-econometrics/

Title

bicplot — Plot Bayesian information criterion function after lasso

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
bicplot graphs the Bayesian information criterion (BIC) function after a lasso fit.

bicplot can be used after lasso, elasticnet, sqrtlasso, telasso, or any of the lasso
inference commands.

Quick start
Graph the BIC function after lasso, sqrtlasso, or elasticnet

bicplot

Graph the BIC function after elasticnet for α = 0.5
bicplot, alpha(.5)

After any of the ds or po commands, graph the BIC function for the dependent variable y

bicplot, for(y)

After an xpo command without option resample, graph the BIC function for x in cross-fit fold 2
bicplot, for(x) xfold(2)

After an xpo command with resample, graph the BIC function for x in cross-fit fold 2 for the first
resample

bicplot, for(x) xfold(2) resample(1)

Same as above, but graph the BIC function as a function of the `1-norm of the standardized coefficient
vector

bicplot, for(x) xfold(2) resample(1) xunits(l1norm)

After telasso, graph the BIC function for the outcome variable y at treatment level 1
bicplot, for(y) tlevel(1)

Menu
Statistics > Postestimation

18

bicplot — Plot Bayesian information criterion function after lasso 19

Syntax

After lasso, sqrtlasso, and elasticnet

bicplot
[
, options

]
After ds and po commands

bicplot, for(varspec)
[

options
]

After xpo commands without resample

bicplot, for(varspec) xfold(#)
[

options
]

After xpo commands with resample

bicplot, for(varspec) xfold(#) resample(#)
[

options
]

After telasso for the outcome variable

bicplot, for(varspec) tlevel(#)
[

options
]

After telasso for the treatment variable

bicplot, for(varspec)
[

options
]

After telasso for the outcome variable with cross-fitting but without resample

bicplot, for(varspec) tlevel(#) xfold(#)
[

options
]

After telasso for the treatment variable with cross-fitting but without resample

bicplot, for(varspec) xfold(#)
[

options
]

After telasso for the outcome variable with cross-fitting and resample

bicplot, for(varspec) tlevel(#) xfold(#) resample(#)
[

options
]

After telasso for the treatment variable with cross-fitting and resample

bicplot, for(varspec) xfold(#) resample(#)
[

options
]

varspec is varname, except after poivregress and xpoivregress, when it is either varname or
pred(varname).

20 bicplot — Plot Bayesian information criterion function after lasso

options Description

Main

xunits(x unit spec) x-axis units (scale); default is xunits(rlnlambda), where
rlnlambda denotes λ on a reverse logarithmic scale

minmax add labels for the minimum and maximum x-axis units
∗for(varspec) lasso for varspec; telasso, ds, po, and xpo commands only
∗xfold(#) lasso for the #th cross-fit fold; xpo commands and telasso

with xfolds only
∗resample(#) lasso for the #th resample; xpo commands and telasso

with resample only
∗tlevel(#) lasso for the outcome model with the treatment level #;

telasso only
alpha(#) graph BIC function for α = # ; default is the selected value α∗;

allowed after elasticnet only
lineopts(cline options) affect rendition of the plotted lines

Reference lines

biclineopts(xline options) affect rendition of reference line identifying the minimum
of the BIC function or other stopping rule

nobicline suppress reference line identifying the minimum of the BIC
function or other stopping rule

lslineopts(xline options) affect rendition of reference line identifying the value selected
using lassoselect

nolsline suppress reference line identifying the value selected using
lassoselect

rlabelopts(r label opts) change look of labels for reference line

Data

data(filename
[
, replace

]
) save plot data to filename

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
∗for(varspec) is required for all ds, po, and xpo commands and for telasso.
xfold(#) is required for all xpo commands and for telasso when the option xfolds(#) was specified.
resample(#) is required for xpo and for telasso when the option resample(#) was specified.
tlevel(#) is required for the outcome model in telasso.

x unit spec Description

rlnlambda λ on a reverse logarithmic scale; the default
lnlambda λ on a logarithmic scale
l1norm `1-norm of standardized coefficient vector
l1normraw `1-norm of unstandardized coefficient vector

bicplot — Plot Bayesian information criterion function after lasso 21

xline options Description

style(addedlinestyle) overall style of added line[
no
]
extend [do not] extend line through plot region’s margins

lstyle(linestyle) overall style of line
lpattern(linepatternstyle) line pattern (solid, dashed, etc.)
lwidth(linewidthstyle) thickness of line
lcolor(colorstyle) color and opacity of line

r label opts Description

labgap(size) margin between tick and label
labstyle(textstyle) overall style of label
labsize(textsizestyle) size of label
labcolor(colorstyle) color and opacity of label

Options

� � �
Main �

xunits(x unit spec) specifies the x-axis units used for graphing the BIC function. The following
x unit specs are available:

rlnlambda specifies x-axis units λ on a reverse logarithmic scale. This is the default.

lnlambda specifies x-axis units λ on a logarithmic scale.

l1norm specifies x-axis units `1-norm of the standardized coefficient vector.

l1normraw specifies x-axis units `1-norm of the unstandardized coefficient vector.

minmax adds labels for the minimum and maximum x-axis units to the graph of the BIC function.

for(varspec) specifies a particular lasso after telasso or a ds, po, or xpo estimation command fit
using the option selection(bic). For all commands except poivregress and xpoivregress,
varspec is always varname; it is either depvar, the dependent variable, or one of varsofinterest for
which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred(varname). The lasso
for depvar is specified with its varname. For the endogenous variable varname, there are two
lassos, which can be identified by varname and pred(varname). The exogenous variables of
interest each have only one lasso, and it is specified by pred(varname).

This option is required after ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command. For each variable to be fit
with a lasso, K lassos are done, one for each cross-fit fold, where K is the number of folds. This
option specifies which fold, where # = 1, 2, . . . ,K. xfold(#) is required after an xpo command.

resample(#) specifies a particular lasso after an xpo estimation command fit using the option
resample(#). For each variable to be fit with a lasso, R × K lassos are done, where R is
the number of resamples and K is the number of cross-fitting folds. This option specifies which
resample, where # = 1, 2, . . . , R. resample(#), along with xfold(#), is required after an xpo
command with resampling.

22 bicplot — Plot Bayesian information criterion function after lasso

tlevel(#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

alpha(#) graphs the BIC function for α = #. The default is alpha(α∗), where α∗ is the selected
α. alpha(#) may only be specified after elasticnet.

lineopts(cline options) affects the rendition of the plotted line. See [G-3] cline options.

� � �
Reference lines �

biclineopts(xline options) affects the rendition of the reference line identifying the minimum BIC
value, the value selected when the stopping tolerance is reached, or the grid-minimum value.

xline options are the following: style(addedlinestyle), noextend, lstyle(linestyle), lpat-
tern(linepatternstyle), lwidth(linewidthstyle), and lcolor(colorstyle). They specify how
the reference line identifying the minimum BIC value is presented. See [G-4] addedlinestyle,
[G-4] linestyle, [G-4] linepatternstyle, [G-4] linewidthstyle, and [G-4] colorstyle.

nobicline suppresses the reference line identifying the minimum BIC value, the value selected when
either the stopping tolerance or the grid-minimum value is reached.

lslineopts(xline options) affects the rendition of the reference line identifying the value selected
using lassoselect.

xline options are the following: style(addedlinestyle), noextend, lstyle(linestyle), lpat-
tern(linepatternstyle), lwidth(linewidthstyle), and lcolor(colorstyle). They specify how the
reference line identifying the value selected using lassoselect is presented. See [G-4] added-
linestyle, [G-4] linestyle, [G-4] linepatternstyle, [G-4] linewidthstyle, and [G-4] colorstyle.

nolsline suppresses the reference line identifying the value selected using lassoselect.

rlabelopts(r label opts) changes the look of labels for the reference line. The label options
labgap(relativesize), labstyle(textstyle), labsize(textsizestyle), and labcolor(colorstyle)
specify details about how the labels are presented. See [G-4] size, [G-4] textstyle, [G-4] textsizestyle,
and [G-4] colorstyle.

� � �
Data �

data(filename
[
, replace

]
) saves the plot data to a Stata data file.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to
disk (see [G-3] saving option).

Remarks and examples

BIC plots graph the BIC function over the search grid for the lasso penalty parameter λ.

The search grid can be shown as the log of the lasso penalty parameter λ, xunits(lnlambda);
the reverse of that scale, xunits(rlnlambda); the `1-norm of the standardized coefficients, xu-
nits(l1norm); or the `1-norm of the unstandardized coefficients, xunits(l1normraw). The reverse
log of lambda is the default because it represents the BIC search path over λ, with the first λ tried
on the left and the last λ tried on the right.

bicplot — Plot Bayesian information criterion function after lasso 23

BIC plots can be drawn after any command that directly searches over a grid of λ’s. They can
be drawn after the commands lasso, elasticnet, sqrtlasso, telasso, or any of the 11 lasso
inference commands.

Examples that demonstrate how to use bicplot after the lasso command can be found in BIC
in [LASSO] lasso examples.

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[CAUSAL] telasso postestimation — Postestimation tools for telasso

Title

coefpath — Plot path of coefficients after lasso

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
coefpath graphs the coefficient paths after any lasso fit using selection(cv), selec-

tion(adaptive), selection(bic), or selection(none). A line is drawn for each coefficient
that traces its value over the searched values of the lasso penalty parameter λ or over the `1-norm
of the fitted coefficients that result from lasso selection using those values of λ.

coefpath can be used after lasso, elasticnet, sqrtlasso, telasso, or any of the lasso
inference commands.

Quick start
Graph the coefficient paths after lasso, sqrtlasso, or elasticnet

coefpath

Graph the unstandardized coefficient paths
coefpath, rawcoefs

Graph the coefficient paths after elasticnet for the α = 0.5 lasso
coefpath, alpha(.5)

Same as above, but graph the paths using a single linestyle, rather than line-specific linestyles
coefpath, alpha(.5) mono

After any of the ds or po commands, graph the paths for the dependent variable y

coefpath, for(y)

Same as above, but graph the paths as a function of lnλ
coefpath, for(y) xunits(lnlambda)

After an xpo command without resample, graph the paths for x in cross-fit fold 2
coefpath, for(x) xfold(2)

After an xpo command with resample, graph the paths for x in cross-fit fold 2 for the first resample
coefpath, for(x) xfold(2) resample(1)

After telasso, graph the paths for the outcome variable y at treatment level 1
coefpath, for(y) tlevel(1)

Menu
Statistics > Postestimation

24

coefpath — Plot path of coefficients after lasso 25

Syntax

After lasso, sqrtlasso, and elasticnet

coefpath
[
, options

]
After ds and po commands

coefpath, for(varspec)
[

options
]

After xpo commands without resample

coefpath, for(varspec) xfold(#)
[

options
]

After xpo commands with resample

coefpath, for(varspec) xfold(#) resample(#)
[

options
]

After telasso for the outcome variable

coefpath, for(varspec) tlevel(#)
[

options
]

After telasso for the treatment variable

coefpath, for(varspec)
[

options
]

After telasso for the outcome variable with cross-fitting but without resample

coefpath, for(varspec) tlevel(#) xfold(#)
[

options
]

After telasso for the treatment variable with cross-fitting but without resample

coefpath, for(varspec) xfold(#)
[

options
]

After telasso for the outcome variable with cross-fitting and resample

coefpath, for(varspec) tlevel(#) xfold(#) resample(#)
[

options
]

After telasso for the treatment variable with cross-fitting and resample

coefpath, for(varspec) xfold(#) resample(#)
[

options
]

varspec is varname, except after poivregress and xpoivregress, when it is either varname or
pred(varname).

26 coefpath — Plot path of coefficients after lasso

options Description

Main

xunits(x unit spec) x-axis units (scale); default is xunits(l1norm)

minmax adds minimum and maximum values to the x axis
∗for(varspec) lasso for varspec; telasso, ds, po, and xpo commands only
∗xfold(#) lasso for the #th cross-fit fold; xpo commands and telasso

with xfolds only
∗resample(#) lasso for the #th resample; xpo commands and telasso

with resample only
∗tlevel(#) lasso for the outcome model with the treatment level #;

telasso only
alpha(#) graph coefficient paths for α = # ; default is the selected

value α∗; only allowed after elasticnet
rawcoefs graph unstandardized coefficient paths

Reference line

rlopts(cline options) affect rendition of reference line
norefline suppress plotting reference line

Path

lineopts(cline options) affect rendition of all coefficient paths; not allowed when there
are 100 or more coefficients

line#opts(cline options) affect rendition of coefficient path # ; not allowed when there
are 100 or more coefficients

mono graph coefficient paths using a single line; default is mono
for 100 or more coefficients

monoopts(cline options) affect rendition of line used to graph coefficient paths when
mono is specified

Data

data(filename
[
, replace

]
) save plot data to filename

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
∗for(varspec) is required for all ds, po, and xpo commands and for telasso.
xfold(#) is required for all xpo commands and for telasso when the option xfolds(#) was specified.
resample(#) is required for xpo and for telasso when the option resample(#) was specified.
tlevel(#) is required for the outcome model in telasso.

x unit spec Description

l1norm `1-norm of standardized coefficient vector; the default
l1normraw `1-norm of unstandardized coefficient vector
lnlambda λ on a logarithmic scale
rlnlambda λ on a reverse logarithmic scale

coefpath — Plot path of coefficients after lasso 27

Options

� � �
Main �

xunits(x unit spec) specifies the x-axis units used for graphing the coefficient paths. The following
x unit specs are available:

l1norm specifies x-axis units `1-norm of the standardized coefficient vector. This is the default.

l1normraw specifies x-axis units `1-norm of the unstandardized coefficient vector.

lnlambda specifies x-axis units λ on a logarithmic scale.

rlnlambda specifies x-axis units λ on a reverse logarithmic scale.

minmax adds minimum and maximum values to the x axis.

for(varspec) specifies a particular lasso after telasso or after a ds, po, or xpo estimation
command fit using the option selection(cv), selection(adaptive), or selection(bic).
For all commands except poivregress and xpoivregress, varspec is always varname.

For the ds, po, and xpo commands except poivregress and xpoivregress, varspec is either
depvar, the dependent variable, or one of varsofinterest for which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred(varname). The lasso
for depvar is specified with its varname. Each of the endogenous variables have two lassos,
specified by varname and pred(varname). The exogenous variables of interest each have only
one lasso, and it is specified by pred(varname).

For telasso, varspec is either the outcome variable or the treatment variable.

This option is required after telasso and after the ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command or after telasso when the
option xfolds(#) was specified. For each variable to be fit with a lasso, K lassos are done,
one for each cross-fit fold, where K is the number of folds. This option specifies which fold,
where # = 1, 2, . . . ,K. xfold(#) is required after an xpo command and after telasso when
the option xfolds(#) was specified.

resample(#) specifies a particular lasso after an xpo estimation command or after telasso fit using
the option resample(#). For each variable to be fit with a lasso, R×K lassos are done, where
R is the number of resamples and K is the number of cross-fitting folds. This option specifies
which resample, where # = 1, 2, . . . , R. resample(#), along with xfold(#), is required after
an xpo command and after telasso with resampling.

tlevel(#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

alpha(#) graphs coefficient paths for α = #. The default is alpha(α∗), where α∗ is the selected
α. alpha(#) may only be specified after elasticnet.

rawcoefs specifies that unstandardized coefficient paths be graphed. By default, coefficients of
standardized variables (mean 0 and standard deviation 1) are graphed.

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line. See [G-3] cline options.

norefline suppresses plotting the reference line.

28 coefpath — Plot path of coefficients after lasso

� � �
Path �

lineopts(cline options) affects the rendition of all coefficient paths. See [G-3] cline options.
lineopts() is not allowed when there are 100 or more coefficients.

line#opts(cline options) affects the rendition of coefficient path #. See [G-3] cline options.
line#opts() is not allowed when there are 100 or more coefficients.

mono graphs the coefficient paths using a single line. mono is the default when there are 100 or more
coefficients in the lasso.

monoopts(cline options) affects the rendition of the line used to graph the coefficient paths when
mono is specified. See [G-3] cline options.

� � �
Data �

data(filename
[
, replace

]
) saves the plot data to a Stata data file.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to
disk (see [G-3] saving option).

Remarks and examples
Remarks are presented under the following headings:

Coefficient path plots
An example
Adding a legend
λ scale and reference line
After fitting with sqrtlasso
After fitting with elasticnet
After fitting with inference commands

Coefficient path plots

Coefficient path plots show the path of each coefficient over the search grid for the lasso penalty
parameter λ. The grid can be shown as either the log of lambda, xunits(lnlambda); the reverse
of that scale, xunits(rlnlambda); the `1-norm of the standardized coefficients, xunits(l1norm)
(the default); or the `1-norm of the unstandardized coefficients. The `1-norm of the standardized
coefficients is traditionally the default because it directly represents the lasso constraint in the
standardized coefficient space—the maximum allowed sum of the absolute values of the coefficients
subject to a value of lambda. λ and the `1-norm have an inverse monotonic relationship. λ is the
lasso penalty. The `1-norm is its impact on the length of the coefficient vector.

Coefficient path plots can be drawn after any command that directly searches over a grid of
λ’s—that is, after any command that uses option selection(cv), selection(adaptive), or
selection(none). They can be drawn after commands lasso, elasticnet, sqrtlasso, or any
of the 11 lasso inference commands.

coefpath — Plot path of coefficients after lasso 29

An example

We used the auto dataset to demonstrate the lasso command in [LASSO] lasso.

. sysuse auto
(1978 automobile data)

While this dataset is an unlikely candidate for fitting with lasso, it is perfectly good for demonstrating
both lasso fitting and coefpath.

In that entry, we discussed how to model mpg on the remaining covariates in the dataset by typing

. lasso linear mpg i.foreign i.rep78 headroom weight turn gear_ratio price
> trunk length displacement, selection(cv, alllambdas) stop(0) rseed(12345)

Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = 4.69114 no. of nonzero coef. = 0

(output omitted)
Grid value 100: lambda = .0004691 no. of nonzero coef. = 13

10-fold cross-validation with 100 lambdas ...
Fold 1 of 10: 10....20....30....40....50....60....70....80....90....100

(output omitted)
Fold 10 of 10: 10....20....30....40....50....60....70....80....90....100
... cross-validation complete

Lasso linear model No. of obs = 69
No. of covariates = 15

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 4.69114 0 0.0049 33.74852
40 lambda before .1246008 8 0.6225 12.80314

* 41 selected lambda .1135316 8 0.6226 12.79854
42 lambda after .1034458 8 0.6218 12.82783

100 last lambda .0004691 13 0.5734 14.46932

* lambda selected by cross-validation.

This command is fully explained in [LASSO] lasso. Of special interest here is the suboption
alllambdas and the option stop(0). Together, they ensure that the full 100 default values in the
cross-validation grid are searched. Otherwise, lasso will stop searching once it has found an optimum
or once one of its other stopping rules is met.

30 coefpath — Plot path of coefficients after lasso

Graphing the coefficient paths for this lasso fit is as easy as typing

. coefpath

-3

-2

-1

0

1

2

S
ta

nd
ar

di
ze

d
co

ef
fic

ie
nt

s

0 5 10 15
L1-norm of standardized coefficient vector

Coefficient paths

The x axis shows the sum of the absolute values of the penalized coefficients (the `1-norm) going
from 0 to 15. Each line traces the penalized coefficient for one of the standardized covariates in our
model. These graphs are popular but pose a bit of a conundrum. They can only be interpreted when
there are few covariates, yet lasso is often most applicable when there are many covariates.

Adding a legend

Often, there are too many variables to allow for interest in any single path. These data are small
enough that we can look at each covariate. Let’s turn the legend on and place it beside the graph,
using a single column for the keys,

. coefpath, lineopts(lwidth(thick)) legend(on)

-3

-2

-1

0

1

2

S
ta

nd
ar

di
ze

d
co

ef
fic

ie
nt

s

0 5 10 15
L1-norm of standardized coefficient vector

0.foreign
1.foreign
1.rep78
2.rep78
3.rep78
4.rep78
5.rep78
headroom
weight
turn
gear_ratio
price
trunk
length
displacement

Coefficient paths

coefpath — Plot path of coefficients after lasso 31

Looking at the graph, we now know which variable is traced by each line. We see that car weight
is traced by the light green line that starts off downward before its effect declines toward 0. What is
happening here is that weight enters early and absorbs any effect of other variables that are correlated
with it but have yet to enter the model. When 5.rep78 enters the model, the coefficient on weight
flattens. As gear ratio, price, and turn enter, the effect of weight is further attenuated toward 0.
This is simply what happens when correlated variables are added to a model. With lasso, they are
added slowly because the lasso penalty brings in the coefficients in a penalized form rather than all
at once.

Lasso is just letting variables into the model based on its penalty and the current value of lambda.
We can see what is happening, but that is about it.

λ scale and reference line
In this example from [LASSO] lasso, we might find it yet more interesting to put our plot on

the same scale as the cvplot from that entry and add a reference line for the λ selected by cross-
validation. We change the scale by adding xunits(rlnlambda) and place the reference line by
adding xline(.1135),

. coefpath, lineopts(lwidth(thick)) legend(on) xunits(rlnlambda) xline(.1135)

-3

-2

-1

0

1

2

S
ta

nd
ar

di
ze

d
co

ef
fic

ie
nt

s

.001.01.11
λ

0.foreign
1.foreign
1.rep78
2.rep78
3.rep78
4.rep78
5.rep78
headroom
weight
turn
gear_ratio
price
trunk
length
displacement

Coefficient paths

We know from the output of lasso that cross-validation selected eight coefficients. We can now
see where each of them is in its path when cross-validation selected a model.

After fitting with sqrtlasso

There is not much to say about using coefpath after fitting with sqrtlasso. You type the same
thing after sqrtlasso that you would type after lasso.

If you wish to see that, you can simply change lasso to sqrtlasso in the estimation command
above. Make no changes to any other commands.

What’s more, you can add the option sqrtlasso whenever it is allowed to any of the inference
commands below. Nothing changes in the way we specify our coefpath commands.

32 coefpath — Plot path of coefficients after lasso

After fitting with elasticnet

The only thing that changes with coefpath after an elasticnet command is that we can specify
the option alpha() to graph the paths for a value of α that is different than the alpha chosen by
elasticnet.

We can fit an elasticnet model using the auto dataset:

. elasticnet linear mpg i.foreign i.rep78 headroom weight turn gear_ratio
> price trunk length displacement,
> selection(cv, alllambdas) stop(0) rseed(12345)

(output omitted)
Elastic net linear model No. of obs = 69

No. of covariates = 15
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

1.000
1 first lambda 9.382281 0 -0.0064 34.13399

109 last lambda .0004691 13 0.5734 14.46932

0.750
110 first lambda 9.382281 0 -0.0064 34.13399
218 last lambda .0004691 14 0.5736 14.46276

0.500
219 first lambda 9.382281 0 -0.0033 34.02853
264 lambda before .1647149 11 0.6328 12.45289

* 265 selected lambda .1500821 11 0.6331 12.44435
266 lambda after .1367492 11 0.6331 12.44506
327 last lambda .0004691 14 0.5738 14.4564

* alpha and lambda selected by cross-validation.

coefpath — Plot path of coefficients after lasso 33

We see that cross-validation chose α to be 0.5. Had it chosen 1, the elasticnet would have
reduced to lasso. To see the coefficient path graph for α = 0.5, we simply type

. coefpath

-3

-2

-1

0

1

2

S
ta

nd
ar

di
ze

d
co

ef
fic

ie
nt

s

0 5 10 15
L1-norm of standardized coefficient vector

αCV = .5 is the cross-validation minimum α.

Coefficient paths

That looks quite a bit different from the first graph we drew in this entry, which is the graph for
lasso and would be the same as the graph we would get if we added the option alpha(1).

If we wanted the graph for α = 0.75, we would type
. coefpath, alpha(.75)

After fitting with inference commands

All postestimation tools, including coefpath, can be used after the ds, ps, and xpo inference
commands. Of all the postestimation commands, coefpath is the least likely to be useful in this
context. The inference commands use lassos to select control variables from a set of potential controls.
Aside from diagnosing whether something pathological occurred in the lasso, you are not supposed
to care which controls were selected, much less their coefficients, and even less the path of those
coefficients. Regardless, you can draw coefficient path plots for any lasso run by an inference command.

We will use a few of the examples from [LASSO] Inference examples to show you what to type
to create a coefficient path plot.

All these examples use breathe.dta, which attempts to measure the effect of nitrogen dioxide
on the reaction time of school children. All these examples will run, but we dispense with the output
here. If you are curious, run some.

To prepare the dataset, type
. use https://www.stata-press.com/data/r18/breathe

. do no2

All the ds (double-selection) and po (partialing-out) coefpaths are drawn in exactly the same
way. To fit one of the double-selection models from [LASSO] Inference examples, we type

. dsregress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)

Recall that we are using global macros $cc and $fc to hold our control variables. $cc holds the
continuous controls, and $fc holds the factor-variable controls. Typing $cc simply substitutes the list
of continuous controls into our command, and likewise for $fc. We write i.($fc) so that each of
the variables in $fc is expanded into dummy variables for each distinct level of the variable.

34 coefpath — Plot path of coefficients after lasso

To draw the coefficient path plot for the lasso of the dependent variable react, we type

. coefpath, for(react)

To draw the plot for the lasso of the variable of interest no2 class, we type

. coefpath, for(no2_class)

If we had fit the models via partialing out by typing poregress instead of dsregress, nothing
would change. Typing coefpath, for(react) would still produce the coefficient path plot for the
lasso of react, and typing coefpath, for(no2 class) would still produce the plot for no2 class.

What’s more, what we type to plot coefficient paths does not change if our dependent variable
were dichotomous and we had fit the model by using dslogit or pologit. Nor does it change if
the dependent variable is a count and we fit the model by using dspoisson or popoisson.

Things do change if we fit the model by using the xpo (cross-fit partialing-out) estimators. The
xpo estimators perform lots of lassos. Let’s refit our original model using xporegress.

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)
(output omitted)

To see the lassos that xporegress ran, we can use lassoinfo:

. lassoinfo, each

Estimate: active
Command: xporegress

No. of
Dependent Selection xfold Selection selected
variable Model method no. criterion lambda variables

no2_class linear cv 1 CV min. .1801304 14
no2_class linear cv 2 CV min. .2561599 10
no2_class linear cv 3 CV min. .2181624 13
no2_class linear cv 4 CV min. .1963854 13
no2_class linear cv 5 CV min. .2352711 11
no2_class linear cv 6 CV min. .2663564 12
no2_class linear cv 7 CV min. .1293717 16
no2_class linear cv 8 CV min. .1722497 15
no2_class linear cv 9 CV min. .264197 9
no2_class linear cv 10 CV min. .1184878 16

react linear cv 1 CV min. 2.130811 19
react linear cv 2 CV min. 2.443412 16
react linear cv 3 CV min. 2.062956 17
react linear cv 4 CV min. 4.220311 13
react linear cv 5 CV min. 7.434224 8
react linear cv 6 CV min. 3.356193 14
react linear cv 7 CV min. 7.954354 6
react linear cv 8 CV min. 6.422852 8
react linear cv 9 CV min. 2.982171 15
react linear cv 10 CV min. 2.738883 18

That’s 20 lassos! react has 10 and no2 class has 10. There is one lasso for each variable for
each cross-validation fold. The cross-validation folds are enumerated in the column titled xfold no..
To see the cross-validation plot for the third cross-validation fold for the variable react, we type

. coefpath, for(react) xfold(3)

Change react to no2 class to see the plot for no2 class.

Feel free to plot all 18 other pairings of each variable with the cross-validation folds.

coefpath — Plot path of coefficients after lasso 35

Again, it would not matter if we had fit xpologit or xpopoisson models. We type the same
thing to see our coefficient path plots.

The cross-fit models can create even more lassos. We are willing to resample the whole process
to reduce the sampling variability. Let’s resample the process 10 times:

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) ///
resample(10) rseed(12345)

If you type that command, be patient; it takes a few minutes to run.

Now, let’s look at our lassos:

. lassoinfo, each

Estimate: active
Command: xporegress

No. of
Dependent Selection Resample xfold Selection sel.
variable Model method number no. criterion lambda var.

no2_class linear cv 1 1 CV min. .1801304 14
no2_class linear cv 1 2 CV min. .2561599 10
(output omitted)
no2_class linear cv 1 10 CV min. .1184878 16
no2_class linear cv 2 1 CV min. .2118238 12
(output omitted)
no2_class linear cv 2 10 CV min. .1773874 13
(output omitted)
no2_class linear cv 3 10 CV min. .1676957 13

react linear cv 1 1 CV min. 2.130811 19
(output omitted)

react linear cv 1 10 CV min. 2.738883 18
react linear cv 2 1 CV min. 4.379673 14

(output omitted)
react linear cv 2 10 CV min. 3.747121 14
react linear cv 3 1 CV min. 5.821677 11

(output omitted)
react linear cv 3 10 CV min. 3.668243 13

We now have 30 of them! There is one for each variable within each cross-validation sample
within each resample sample. Here is how we would graph the coefficient path plot for the third
cross-validation sample in the second resample sample for the covariate of interest no2 class.

. coefpath, for(no2_class) resample(2) xfold(3)

If we had typed resample(10) instead of resample(3) on our xporegress command, we
would have 200 possible graphs. Have fun looking at those.

Yet again, it would not matter if we had fit xpologit or xpopoisson models. We still type the
same thing to see our coefficient path plots.

Also see
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[CAUSAL] telasso postestimation — Postestimation tools for telasso

Title

Collinear covariates — Treatment of collinear covariates

Description Remarks and examples Also see

Description
Lasso, square-root lasso, and elastic net treat collinear covariates differently from traditional

estimators. With these models, you specify variables that might be included in the model, and they
choose the variables to be included. When you specify those variables, it is important that you present
them with all possible alternatives. This means that, when including factor variables, you must include
the full collinear set of indicators.

If you use Stata’s factor-variable notation, it is handled automatically for you. If you create indicator
variables for yourself, you must create and include them all.

Remarks and examples
Remarks are presented under the following headings:

Summary
Explanation
Applies to inferential commands
Does not apply to alwaysvars

Summary

Consider factor variable group that takes on the values 1, 2, and 3. If you type

. lasso linear y i.group . . .

lasso will know that separate covariates for group 1, 2, and 3 are to be included among the variables
to be potentially included in the model.

If you create your own indicator variables, you need to create and specify indicators for all the
values of the factor variable:

. generate g1 = (group==1)

. generate g2 = (group==2)

. generate g3 = (group==3)

. lasso linear y g1 g2 g3 . . .

It is important that you do not omit one of them, say, g1, and instead type

. lasso linear y g2 g3 . . .

36

Collinear covariates — Treatment of collinear covariates 37

Explanation

With no loss of generality, we will focus on lasso for this explanation. Assume lasso has just
found the best model for λi with k covariates and is now searching for the best model for λi+1,
where λi+1 < λi.

The λi+1 model will not always be the same λi model with new covariates added, but this is often
the case. (Sometimes, covariates in the λi model are removed.) Assume this is a case of adding only
new covariates. Also assume that g1, g2, and g3 have not been chosen yet and that lasso chooses g1.

But what if we did not specify g1 among the potential covariates? What if rather than typing

. lasso linear y g1 g2 g3 . . .

we typed

. lasso linear y g2 g3 . . .

In that case, lasso would not choose g1 because it could not. It would choose some other covariate
or covariates, perhaps g2, perhaps g3, perhaps g2 and g3, or perhaps other covariates. And lasso is
on an inferior path because g1 was not among the potential covariates.

Although selecting both g2 and g3 in place of g1 gives an equivalent model for prediction, it may
have wasted an extra penalty on the coefficients for g2 and g3. A model with only g1 may have a
smaller penalty and allow other covariates to be included, which a model with g2 and g3 would not.
By eliminating g1, we have denied lasso the opportunity to find a more parsimonious model.

Applies to inferential commands

You must also specify full collinear sets of potential covariates with the inferential commands.
Specify full sets in the controls() option, such as

. dsregress y z1 z2, controls(g1 g2 g3 . . .)

Likewise for the high-dimensional instruments in poivregress and xpoivregress:

. poivregress y . . . (z1 z2 = g1 g2 g3 . . .), controls(. . .)

Just as with lasso, the issue is handled automatically if you use factor-variable notation:

. dsregress y z1 z2, controls(i.group . . .)

Does not apply to alwaysvars

With any lasso, you can specify covariates that will always appear in the model. You specify them
in parentheses. For example, for lasso, type

. lasso linear y (x1 x2) x3 x4 . . .

and for the inference commands, type

. dsregress y z1 z2, controls((x1 x2) x3 x4 . . .)

We call the covariates that always appear in the model alwaysvars. The alwaysvars do not need
to be full collinear sets. Indeed, collinear variables among the alwaysvars will be omitted.

38 Collinear covariates — Treatment of collinear covariates

Factor-variable notation handles the problem automatically in both cases:

. lasso linear (i.region . . .) i.group . . .

A base level will be set for i.region (or you can set it explicitly). For i.group, all levels will be
included. If you try to set a base level for i.group, it will be ignored.

Also see
[LASSO] lasso — Lasso for prediction and model selection

[LASSO] lasso examples — Examples of lasso for prediction

Title

cvplot — Plot cross-validation function after lasso

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
cvplot graphs the cross-validation (CV) function after a lasso fit using selection(cv), selec-

tion(adaptive), selection(bic), or selection(none).

cvplot can be used after lasso, elasticnet, sqrtlasso, telasso, or any of the lasso inference
commands.

Quick start
Graph the CV function after lasso, sqrtlasso, or elasticnet

cvplot

Same as above, and draw a reference line identifying the value selected by the one-standard-error rule
cvplot, seline

Graph the CV function after elasticnet for the α = 0.5 lasso
cvplot, alpha(.5)

After any of the ds or po commands, graph the CV function for the dependent variable y

cvplot, for(y)

Same as above, and show standard error bands for the CV function
cvplot, for(y) se

After an xpo command without resample, graph the CV function for x in cross-fit fold 2
cvplot, for(x) xfold(2)

After an xpo command with resample, graph the CV function for x in cross-fit fold 2 for the first
resample

cvplot, for(x) xfold(2) resample(1)

Same as above, but graph the CV function as a function of the `1-norm of the standardized coefficient
vector

cvplot, for(x) xfold(2) resample(1) xunits(l1norm)

After telasso, graph the CV function for the outcome variable x at treatment level 1
cvplot, for(y) tlevel(1)

Menu
Statistics > Postestimation

39

40 cvplot — Plot cross-validation function after lasso

Syntax

After lasso, sqrtlasso, and elasticnet

cvplot
[
, options

]
After ds and po commands

cvplot, for(varspec)
[

options
]

After xpo commands without resample

cvplot, for(varspec) xfold(#)
[

options
]

After xpo commands with resample

cvplot, for(varspec) xfold(#) resample(#)
[

options
]

After telasso for the outcome variable

cvplot, for(varspec) tlevel(#)
[

options
]

After telasso for the treatment variable

cvplot, for(varspec)
[

options
]

After telasso for the outcome variable with cross-fitting but without resample

cvplot, for(varspec) tlevel(#) xfold(#)
[

options
]

After telasso for the treatment variable with cross-fitting but without resample

cvplot, for(varspec) xfold(#)
[

options
]

After telasso for the outcome variable with cross-fitting and resample

cvplot, for(varspec) tlevel(#) xfold(#) resample(#)
[

options
]

After telasso for the treatment variable with cross-fitting and resample

cvplot, for(varspec) xfold(#) resample(#)
[

options
]

varspec is varname, except after poivregress and xpoivregress, when it is either varname or
pred(varname).

cvplot — Plot cross-validation function after lasso 41

options Description

Main

xunits(x unit spec) x-axis units (scale); default is xunits(rlnlambda), where
rlnlambda denotes λ on a reverse logarithmic scale

minmax add labels for the minimum and maximum x-axis units
∗for(varspec) lasso for varspec; telasso, ds, po, and xpo commands only
∗xfold(#) lasso for the #th cross-fit fold; xpo commands and telasso

with xfolds only
∗resample(#) lasso for the #th resample; xpo commands and telasso

with resample only
∗tlevel(#) lasso for the outcome model with the treatment level #;

telasso only
alpha(#) graph CV function for α = # ; default is the selected value α∗;

allowed after elasticnet only
lineopts(cline options) affect rendition of the plotted lines

S.E. plot

se show standard error bands for the CV function
seopts(rcap options) affect rendition of the standard error bands

Reference lines

cvlineopts(cline options) affect rendition of reference line identifying the minimum
of the CV function or other stopping rule

nocvline suppress reference line identifying the minimum of the CV function
or other stopping rule

lslineopts(cline options) affect rendition of reference line identifying the value selected
using lassoselect

nolsline suppress reference line identifying the value selected using
lassoselect

selineopts(cline options) affect rendition of reference line identifying the value selected
by the one-standard-error rule[

no
]
seline draw or suppress reference line identifying the value selected by

the one-standard-error rule; shown by default for
selection(cv, serule)

hrefline add horizontal reference lines that intersect the vertical reference
lines

rlabelopts(r label opts) change look of labels for reference line

Data

data(filename
[
, replace

]
) save plot data to filename

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
∗for(varspec) is required for all ds, po, and xpo commands and for telasso.
xfold(#) is required for all xpo commands and for telasso when the option xfolds(#) was specified.
resample(#) is required for xpo and for telasso when the option resample(#) was specified.
tlevel(#) is required for the outcome model in telasso.

42 cvplot — Plot cross-validation function after lasso

x unit spec Description

rlnlambda λ on a reverse logarithmic scale; the default
lnlambda λ on a logarithmic scale
l1norm `1-norm of standardized coefficient vector
l1normraw `1-norm of unstandardized coefficient vector

r label opts Description

labgap(size) margin between tick and label
labstyle(textstyle) overall style of label
labsize(textsizestyle) size of label
labcolor(colorstyle) color and opacity of label

Options

� � �
Main �

xunits(x unit spec) specifies the x-axis units used for graphing the CV function. The following
x unit specs are available:

rlnlambda specifies x-axis units λ on a reverse logarithmic scale. This is the default.

lnlambda specifies x-axis units λ on a logarithmic scale.

l1norm specifies x-axis units `1-norm of the standardized coefficient vector.

l1normraw specifies x-axis units `1-norm of the unstandardized coefficient vector.

minmax adds labels for the minimum and maximum x-axis units to the graph of the CV function.

for(varspec) specifies a particular lasso after telasso or after a ds, po, or xpo estimation
command fit using the option selection(cv), selection(adaptive), or selection(bic).
For all commands except poivregress and xpoivregress, varspec is always varname.

For the ds, po, and xpo commands except poivregress and xpoivregress, varspec is either
depvar, the dependent variable, or one of varsofinterest for which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred(varname). The lasso
for depvar is specified with its varname. Each of the endogenous variables have two lassos,
specified by varname and pred(varname). The exogenous variables of interest each have only
one lasso, and it is specified by pred(varname).

For telasso, varspec is either the outcome variable or the treatment variable.

This option is required after telasso and after the ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command or after telasso when the
option xfolds(#) was specified. For each variable to be fit with a lasso, K lassos are done,
one for each cross-fit fold, where K is the number of folds. This option specifies which fold,
where # = 1, 2, . . . ,K. xfold(#) is required after an xpo command and after telasso when
the option xfolds(#) was specified.

resample(#) specifies a particular lasso after an xpo estimation command or after telasso fit using
the option resample(#). For each variable to be fit with a lasso, R×K lassos are done, where
R is the number of resamples and K is the number of cross-fitting folds. This option specifies
which resample, where # = 1, 2, . . . , R. resample(#), along with xfold(#), is required after
an xpo command and after telasso with resampling.

cvplot — Plot cross-validation function after lasso 43

tlevel(#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

alpha(#) graphs the CV function for α = #. The default is alpha(α∗), where α∗ is the selected
α. alpha(#) may only be specified after elasticnet.

lineopts(cline options) affects the rendition of the plotted line. See [G-3] cline options.

� � �
S.E. plot �

se shows standard error bands for the CV function.

seopts(rcap options) affects the rendition of the standard error bands. See [G-3] rcap options.

� � �
Reference lines �

cvlineopts(cline options) affects the rendition of the reference line identifying the minimum CV
value, the value selected when the stopping tolerance is reached, or the grid-minimum value. See
[G-3] cline options.

nocvline suppresses the reference line identifying the minimum CV value, the value selected when
the stopping tolerance is reached, or the grid-minimum value.

lslineopts(cline options) affects the rendition of the reference line identifying the value selected
using lassoselect. See [G-3] cline options.

nolsline suppresses the reference line identifying the value selected using lassoselect.

selineopts(cline options) affects the rendition of the reference line identifying the value selected
by the one-standard-error rule. See [G-3] cline options.[

no
]
seline draws or suppresses a reference line identifying the value selected by the one-standard-

error rule. By default, the line is shown when selection(cv, serule) was the selection method
for the lasso. For other selection methods, the line is not shown by default.

hrefline adds horizontal reference lines that intersect the vertical reference lines.

rlabelopts(r label opts) changes the look of labels for the reference line. The label options
labgap(relativesize), labstyle(textstyle), labsize(textsizestyle), and labcolor(colorstyle)
specify details about how the labels are presented. See [G-4] size, [G-4] textstyle, [G-4] textsizestyle,
and [G-4] colorstyle.

� � �
Data �

data(filename
[
, replace

]
) saves the plot data to a Stata data file.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to
disk (see [G-3] saving option).

Remarks and examples
CV plots graph the CV function over the search grid for the lasso penalty parameter λ. For linear

models, the CV function is the mean squared error of the predictions in the CV samples. For logit
and Poisson models, the CV function is the mean deviance in the CV samples.

44 cvplot — Plot cross-validation function after lasso

The search grid can be shown as the log of the lasso penalty parameter λ, xunits(lnlambda);
the reverse of that scale, xunits(rlnlambda); the `1-norm of the standardized coefficients, xu-
nits(l1norm); or the `1-norm of the unstandardized coefficients, xunits(l1normraw). The reverse
log of lambda is the default because it represents the CV search path over λ, with the first λ tried on
the left and the last λ tried on the right.

CV plots can be drawn after any command that directly searches over a grid of λ’s—that is, after
any command that used the option selection(cv), selection(adaptive), or selection(none).
They can be drawn after commands lasso, elasticnet, sqrtlasso, telasso, or any of the 11
lasso inference commands.

Examples that demonstrate how to use cvplot after the lasso command can be found in The
CV function in [LASSO] lasso.

Examples after elasticnet can be found starting in example 2 of [LASSO] elasticnet.

Also see
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[CAUSAL] telasso postestimation — Postestimation tools for telasso

Title

dslogit — Double-selection lasso logistic regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

dslogit fits a lasso logistic regression model and reports odds ratios along with standard errors,
test statistics, and confidence intervals for specified covariates of interest. The double-selection method
is used to estimate effects for these variables and to select from potential control variables to be
included in the model.

Quick start
Report an odds ratio from a logistic regression of y on d1, and include x1 to x100 as potential

control variables to be selected by lassos
dslogit y d1, controls(x1-x100)

Same as above, and estimate odds ratios for the levels of categorical d2
dslogit y d1 i.d2, controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal λ∗ in each lasso
dslogit y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility
dslogit y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off
dslogit y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2

dslogit y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.
dslogit y d1 i.d2, controls(x1-x100) lasso(*, selection(cv, alllambdas))

Menu
Statistics > Lasso > Lasso inferential models > Binary outcomes > Double-selection logit model

45

46 dslogit — Double-selection lasso logistic regression

Syntax
dslogit depvar varsofinterest

[
if
] [

in
]
,

controls(
[
(alwaysvars)

]
othervars)

[
options

]
varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗controls(

[
(alwaysvars)

]
othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter λ∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

sqrtlasso use square-root lassos for varsofinterest
missingok after fitting lassos, ignore missing values in any othervars

not selected, and include these observations in the final
model

offset(varname) include varname in the lasso and model for depvar with
its coefficient constrained to be 1

SE/Robust

vce(vcetype) vcetype may be robust (the default), cluster clustvar,
or oim

Reporting

level(#) set confidence level; default is level(95)

or report odds ratios; the default
coef report estimated coefficients
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization[
no
]
log display or suppress an iteration log

verbose display a verbose iteration log
rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

dslogit — Double-selection lasso logistic regression 47

reestimate refit the model after using lassoselect to select a different
λ∗

noheader do not display the header on the coefficient table
coeflegend display legend instead of statistics
∗controls() is required.
varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for

alwaysvars and othervars. See [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
reestimate, noheader, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls(
[
(alwaysvars)

]
othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. dslogit fits lassos for
depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in
these lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include
or exclude. That is, each lasso will select a subset of othervars. The selected subset of othervars
may differ across lassos. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal
value of the lasso penalty parameter λ∗ for each lasso or square-root lasso estimation. Separate
lassos are estimated for depvar and each variable in varsofinterest. Specifying selection()
changes the selection method for all of these lassos. You can specify different selection methods
for different lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso()
is used to specify a different selection method for the lassos of some variables, they override the
global setting made using selection() for the specified variables.

selection(plugin) is the default. It selects λ∗ based on a “plugin” iterative formula dependent
on the data. See [LASSO] lasso options.

selection(cv) selects the λ∗ that gives the minimum of the CV function. See [LASSO] lasso
options.

selection(adaptive) selects λ∗ using the adaptive lasso selection method. It cannot be specified
when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the λ∗ that gives the minimum of the BIC function. See [LASSO] lasso
options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos for the varsofinterest.
This option does not apply to depvar. Square-root lassos are linear models, and the lasso for depvar
is always a logit lasso. The option lasso() can be used with sqrtlasso to specify that regular
lasso be done for some variables, overriding the global sqrtlasso setting for these variables. See
[LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only
the nonmissing observations of variables in the final model. In all cases, any observation with
missing values for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation
sample for the lassos. By default, the same sample is used for calculation of the coefficients of
the varsofinterest and their standard errors.

48 dslogit — Double-selection lasso logistic regression

When missingok is specified, the initial estimation sample is the same as the default, but the sample
used for the calculation of the coefficients of the varsofinterest can be larger. Now observations
with missing values for any othervars not selected will be added to the estimation sample (provided
there are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It
does, however, have the consequence that estimation samples can change when selected variables
differ in models fit using different selection methods. That is, when othervars contain missing
values, the estimation sample for a model fit using the default selection(plugin) will likely
differ from the estimation sample for a model fit using, for example, selection(cv).

offset(varname) specifies that varname be included in the lasso and model for depvar with its
coefficient constrained to be 1.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust), that allow for intragroup correlation (vce(cluster
clustvar)), and that are derived from asymptotic theory (vce(oim)). See [R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso,
this affects how the log-likelihood function is computed and how the sample is split in cross-
validation; see Methods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar) may
lead to different selected controls and therefore to different point estimates for your variable of
interest when compared to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, eα. Standard errors and
confidence intervals are similarly transformed. or is the default.

coef reports the estimated coefficients α rather than the odds ratios (eα). This option affects how
results are displayed, not how they are estimated. coef may be specified at estimation or when
replaying previously estimated results.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation. By default, one-line

messages indicating when each lasso estimation begins are shown. Specify verbose to see a more
detailed log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful
when doing selection(cv) or selection(adaptive). It allows you to monitor the progress
of the lasso estimations for these selection methods, which can be time consuming when there are
many othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results for selec-
tion(cv) and selection(adaptive). The default selection method selection(plugin) does
not use random numbers. rseed(#) is equivalent to typing set seed # prior to running dslogit.
See [R] set seed.

dslogit — Double-selection lasso logistic regression 49

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options
for all lassos. You specify a varlist followed by the options you want to apply to the lassos for these
variables. varlist consists of one or more variables from depvar or varsofinterest. all or * may be
used to specify depvar and all varsofinterest. This option is repeatable as long as different variables
are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#), toler-
ance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .)) is
specified, it overrides any global selection() option for the variables in varlist. It also overrides
the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables
from varsofinterest. Square-root lassos are linear models, and this option cannot be used with
depvar. This option is repeatable as long as different variables are given in each specification.
lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and
cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is specified, it overrides any
global selection() option for the variables in varlist. See [LASSO] lasso options.

The following options are available with dslogit but are not shown in the dialog box:

reestimate is an advanced option that refits the dslogit model based on changes made to the
underlying lassos using lassoselect. After running dslogit, you can select a different λ∗

for one or more of the lassos estimated by dslogit. After selecting λ∗, you type dslogit,
reestimate to refit the dslogit model based on the newly selected λ’s.

reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
dslogit performs double-selection lasso logistic regression. This command estimates odds ratios,

standard errors, and confidence intervals and performs tests for variables of interest while using lassos
to select from among potential control variables.

The logistic regression model is

Pr(y = 1|d,x) =
exp(dα′ + xβ′)

1 + exp(dα′ + xβ′)

where d are the variables for which we wish to make inferences and x are the potential control variables
from which the lassos select. dslogit estimates the α coefficients and reports the corresponding odds
ratios, eα. However, double selection does not provide estimates of the coefficients on the control
variables (β) or their standard errors. No estimation results can be reported for β.

For an introduction to the double-selection lasso method for inference, as well as the partialing-out
and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use dslogit and the other lasso inference commands are
presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an
introduction to the examples and to the vl command, which provides tools for working with the large
lists of variables that are often included when using lassos methods. See 2 Fitting and interpreting
inferential models for comparisons of the different methods of fitting inferential models that are

50 dslogit — Double-selection lasso logistic regression

available in Stata. Everything we say there about methods of selection is applicable to both linear and
nonlinear models. See 3 Fitting logit inferential models to binary outcomes. What is different? for
examples and discussion specific to logistic regression models. The primary difference from linear
models involves interpreting the results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring
inferential model lassos in [LASSO] Inference examples.

Stored results
dslogit stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(k varsofinterest) number of variables of interest
e(k controls) number of potential control variables
e(k controls sel) number of selected control variables
e(df) degrees of freedom for test of variables of interest
e(chi2) χ2

e(p) p-value for test of variables of interest
e(rank) rank of e(V)

Macros
e(cmd) dslogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(lasso depvars) names of dependent variables for all lassos
e(varsofinterest) variables of interest
e(controls) potential control variables
e(controls sel) selected control variables
e(model) logit
e(title) title in estimation output
e(offset) linear offset variable
e(clustvar) name of cluster variable
e(chi2type) Wald; type of χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(rngstate) random-number state used
e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

dslogit — Double-selection lasso logistic regression 51

Methods and formulas
dslogit implements double-selection lasso logit regression (DSLLR) as described in Belloni,

Chernozhukov, and Wei (2016, table 2 and sec. 2.1). The regression model is

E[y|d, x] = G(dα′ + β0 + xβ′)

where G(a) = exp(a)/{1 + exp(a)}, d contains the J covariates of interest, and x contains the p
controls. The number of covariates in d must be small and fixed. The number of controls in x can
be large and, in theory, can grow with the sample size; however, the number of nonzero elements in
β must not be too large, which is to say that the model must be sparse.

DSLLR algorithm
1. Perform a logit lasso of y on d and x, and denote the selected controls by x̃.

This logit lasso can choose the lasso penalty parameter (λ∗) using the plugin estimator, adaptive
lasso, or CV. The plugin value is the default.

2. Fit a logit regression of y on d and x̃, denoting the estimated coefficient vectors by α̃ and β̃,
respectively.

3. Let wi = G′(diα̃
′ + x̃iβ̃

′
) be the ith observation of the predicted value of the derivative of

G(·).

4. For j = 1, . . . , J , perform a linear lasso of dj on x using observation-level weights wi, and
denote the selected controls by x̌j .

Each of these lassos can choose the lasso penalty parameter (λ∗j) using one of the plugin
estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the
linear lasso is the default.

5. Let x̂ be the distinct variables from the union of the variables in x̌1, . . . , x̌J , and x̃.

6. Fit a logit regression of y on d and x̂, denoting the estimated coefficient vectors by α̂ and β̂,
respectively.

7. Store the point estimates α̂ in e(b) and their variance estimates (VCE) in e(V).

Option vce(robust), the robust estimator of the VCE for a logistic regression, is the default.
Specify option vce(oim) to get the OIM estimator of the VCE.

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 4 choose
their penalty parameter (λ∗).

Reference
Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many

controls. Journal of Business and Economic Statistics 34: 606–619. https://doi.org/10.1080/07350015.2016.1166116.

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] pologit — Partialing-out lasso logistic regression

[LASSO] xpologit — Cross-fit partialing-out lasso logistic regression

[R] logit — Logistic regression, reporting coefficients

[R] logistic — Logistic regression, reporting odds ratios

[U] 20 Estimation and postestimation commands

https://doi.org/10.1080/07350015.2016.1166116

Title

dspoisson — Double-selection lasso Poisson regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

dspoisson fits a lasso Poisson regression model and reports incidence-rate ratios along with
standard errors, test statistics, and confidence intervals for specified covariates of interest. The double-
selection method is used to estimate effects for these variables and to select from potential control
variables to be included in the model.

Quick start
Report an incidence-rate ratio from a Poisson regression of y on d1, and include x1 to x100 as

potential control variables to be selected by lassos
dspoisson y d1, controls(x1-x100)

Same as above, and estimate incidence-rate ratios for the levels of categorical d2
dspoisson y d1 i.d2, controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal λ∗ in each lasso
dspoisson y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility
dspoisson y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off
dspoisson y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2

dspoisson y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.
dspoisson y d1 i.d2, controls(x1-x100) ///

lasso(*, selection(cv, alllambdas))

Menu
Statistics > Lasso > Lasso inferential models > Count outcomes > Double-selection Poisson model

52

dspoisson — Double-selection lasso Poisson regression 53

Syntax

dspoisson depvar varsofinterest
[

if
] [

in
]
,

controls(
[
(alwaysvars)

]
othervars)

[
options

]
varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗controls(

[
(alwaysvars)

]
othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter λ∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

sqrtlasso use square-root lassos for varsofinterest
missingok after fitting lassos, ignore missing values in any othervars

not selected, and include these observations in the final
model

offset(varnameo) include varnameo in the lasso and model for depvar with
its coefficient constrained to be 1

exposure(varnamee) include ln(varnamee) in the lasso and model for depvar
with its coefficient constrained to be 1

SE/Robust

vce(vcetype) vcetype may be robust (the default), cluster clustvar,
or oim

Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios; the default
coef report estimated coefficients
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization[
no
]
log display or suppress an iteration log

verbose display a verbose iteration log
rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

54 dspoisson — Double-selection lasso Poisson regression

reestimate refit the model after using lassoselect to select a different
λ∗

noheader do not display the header on the coefficient table
coeflegend display legend instead of statistics
∗controls() is required.
varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for

alwaysvars and othervars. See [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
reestimate, noheader, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls(
[
(alwaysvars)

]
othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. dspoisson fits lassos for
depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in
these lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include
or exclude. That is, each lasso will select a subset of othervars. The selected subset of othervars
may differ across lassos. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal
value of the lasso penalty parameter λ∗ for each lasso or square-root lasso estimation. Separate
lassos are estimated for depvar and each variable in varsofinterest. Specifying selection()
changes the selection method for all of these lassos. You can specify different selection methods
for different lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso()
is used to specify a different selection method for the lassos of some variables, they override the
global setting made using selection() for the specified variables.

selection(plugin) is the default. It selects λ∗ based on a “plugin” iterative formula dependent
on the data. See [LASSO] lasso options.

selection(cv) selects the λ∗ that gives the minimum of the CV function. See [LASSO] lasso
options.

selection(adaptive) selects λ∗ using the adaptive lasso selection method. It cannot be specified
when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the λ∗ that gives the minimum of the BIC function. See [LASSO] lasso
options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos for the varsofinterest.
This option does not apply to depvar. Square-root lassos are linear models, and the lasso for
depvar is always a Poisson lasso. The option lasso() can be used with sqrtlasso to specify
that regular lasso be done for some variables, overriding the global sqrtlasso setting for these
variables. See [LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only
the nonmissing observations of variables in the final model. In all cases, any observation with
missing values for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation
sample for the lassos. By default, the same sample is used for calculation of the coefficients of
the varsofinterest and their standard errors.

dspoisson — Double-selection lasso Poisson regression 55

When missingok is specified, the initial estimation sample is the same as the default, but the sample
used for the calculation of the coefficients of the varsofinterest can be larger. Now observations
with missing values for any othervars not selected will be added to the estimation sample (provided
there are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It
does, however, have the consequence that estimation samples can change when selected variables
differ in models fit using different selection methods. That is, when othervars contain missing
values, the estimation sample for a model fit using the default selection(plugin) will likely
differ from the estimation sample for a model fit using, for example, selection(cv).

offset(varnameo) specifies that varnameo be included in the lasso and model for depvar with its
coefficient constrained to be 1.

exposure(varnamee) specifies that ln(varnamee) be included in the lasso and model for depvar with
its coefficient constrained to be 1.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust), that allow for intragroup correlation (vce(cluster
clustvar)), and that are derived from asymptotic theory (vce(oim)). See [R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso,
this affects how the log-likelihood function is computed and how the sample is split in cross-
validation; see Methods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar) may
lead to different selected controls and therefore to different point estimates for your variable of
interest when compared to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, eα. Standard errors
and confidence intervals are similarly transformed. irr is the default.

coef reports the estimated coefficients α rather than the incidence-rate ratios, eα. This option affects
how results are displayed, not how they are estimated. coef may be specified at estimation or
when replaying previously estimated results.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation. By default, one-line

messages indicating when each lasso estimation begins are shown. Specify verbose to see a more
detailed log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful
when doing selection(cv) or selection(adaptive). It allows you to monitor the progress
of the lasso estimations for these selection methods, which can be time consuming when there are
many othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results for se-
lection(cv) and selection(adaptive). The default selection method selection(plugin)
does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running
dspoisson. See [R] set seed.

56 dspoisson — Double-selection lasso Poisson regression

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options
for all lassos. You specify a varlist followed by the options you want to apply to the lassos for these
variables. varlist consists of one or more variables from depvar or varsofinterest. all or * may be
used to specify depvar and all varsofinterest. This option is repeatable as long as different variables
are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#), toler-
ance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .)) is
specified, it overrides any global selection() option for the variables in varlist. It also overrides
the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables
from varsofinterest. Square-root lassos are linear models, and this option cannot be used with
depvar. This option is repeatable as long as different variables are given in each specification.
lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and
cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is specified, it overrides any
global selection() option for the variables in varlist. See [LASSO] lasso options.

The following options are available with dspoisson but are not shown in the dialog box:

reestimate is an advanced option that refits the dspoisson model based on changes made to the
underlying lassos using lassoselect. After running dspoisson, you can select a different λ∗

for one or more of the lassos estimated by dspoisson. After selecting λ∗, you type dspoisson,
reestimate to refit the dspoisson model based on the newly selected λ∗’s.

reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
dspoisson performs double-selection lasso Poisson regression. This command estimates incidence-

rate ratios, standard errors, and confidence intervals and performs tests for variables of interest while
using lassos to select from among potential control variables.

The Poisson regression model is

E[y|d, x] = exp(dα′ + xβ′)

where d are the variables for which we wish to make inferences and x are the potential control variables
from which the lassos select. dspoisson estimates the α coefficients and reports the corresponding
incidence-rate ratios, eα. However, double selection does not provide estimates of the coefficients on
the control variables (β) or their standard errors. No estimation results can be reported for β.

For an introduction to the double-selection lasso method for inference, as well as the partialing-out
and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use dspoisson and the other lasso inference commands are
presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an
introduction to the examples and to the vl command, which provides tools for working with the large
lists of variables that are often included when using lasso methods. See 2 Fitting and interpreting
inferential models for comparisons of the different methods of fitting inferential models that are
available in Stata. Everything we say there about methods of selection is applicable to both linear

dspoisson — Double-selection lasso Poisson regression 57

and nonlinear models. See 4 Fitting inferential models to count outcomes. What is different? for
examples and discussion specific to Poisson regression models. The primary difference from linear
models involves interpreting the results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring
inferential model lassos in [LASSO] Inference examples.

Stored results
dspoisson stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(k varsofinterest) number of variables of interest
e(k controls) number of potential control variables
e(k controls sel) number of selected control variables
e(df) degrees of freedom for test of variables of interest
e(chi2) χ2

e(p) p-value for test of variables of interest
e(rank) rank of e(V)

Macros
e(cmd) dspoisson
e(cmdline) command as typed
e(depvar) name of dependent variable
e(lasso depvars) names of dependent variables for all lassos
e(varsofinterest) variables of interest
e(controls) potential control variables
e(controls sel) selected control variables
e(model) poisson
e(title) title in estimation output
e(offset) linear offset variable
e(clustvar) name of cluster variable
e(chi2type) Wald; type of χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(rngstate) random-number state used
e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

58 dspoisson — Double-selection lasso Poisson regression

Methods and formulas
dspoisson implements double-selection lasso Poisson regression (DSLPR) as described in Belloni,

Chernozhukov, and Wei (2016, table 2 and sec. 2.1). The regression model is

E[y|d, x] = G(dα′ + β0 + xβ′)

where G(a) = exp(a), d contains the J covariates of interest, and x contains the p controls. The
number of covariates in d must be small and fixed. The number of controls in x can be large and,
in theory, can grow with the sample size; however, the number of nonzero elements in β must not
be too large, which is to say that the model must be sparse.

DSLPR algorithm
1. Perform a Poisson lasso of y on d and x, and denote the selected controls by x̃.

This Poisson lasso can choose the lasso penalty parameter (λ∗) using the plugin estimator,
adaptive lasso, or CV. The plugin value is the default.

2. Fit a Poisson regression of y on d and x̃, denoting the estimated coefficient vectors by α̃ and
β̃, respectively.

3. Let wi = G′(diα̃
′ + x̃iβ̃

′
) be the ith observation of the predicted value of the derivative of

G(·).

4. For j = 1, . . . , J , perform a linear lasso of dj on x using observation-level weights wi, and
denote the selected controls by x̌j .

Each of these lassos can choose the lasso penalty parameter (λ∗j) using one of the plugin
estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the
linear lasso is the default.

5. Let x̂ be the distinct variables from the union of the variables in x̌1, . . . , x̌J , and x̃.

6. Fit a Poisson regression of y on d and x̂, denoting the estimated coefficient vectors by α̂ and
β̂, respectively.

7. Store the point estimates α̂ in e(b) and their variance estimates (VCE) in e(V).

Option vce(robust), the robust estimator of the VCE for a Poisson regression, is the default.
Specify option vce(oim) to get the OIM estimator of the VCE.

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 4 choose
their penalty parameter (λ∗).

Reference
Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many

controls. Journal of Business and Economic Statistics 34: 606–619. https://doi.org/10.1080/07350015.2016.1166116.

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] popoisson — Partialing-out lasso Poisson regression

[LASSO] xpopoisson — Cross-fit partialing-out lasso Poisson regression

[R] poisson — Poisson regression

[U] 20 Estimation and postestimation commands

https://doi.org/10.1080/07350015.2016.1166116

Title

dsregress — Double-selection lasso linear regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

dsregress fits a lasso linear regression model and reports coefficients along with standard errors,
test statistics, and confidence intervals for specified covariates of interest. The double-selection method
is used to estimate effects for these variables and to select from potential control variables to be
included in the model.

Quick start
Estimate a coefficient for d1 in a linear regression of y on d1, and include x1 to x100 as potential

control variables to be selected by lassos
dsregress y d1, controls(x1-x100)

Same as above, and estimate coefficients for the levels of categorical d2
dsregress y d1 i.d2, controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal λ∗ in each lasso
dsregress y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility
dsregress y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off
dsregress y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2

dsregress y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.
dsregress y d1 i.d2, controls(x1-x100) ///

lasso(*, selection(cv, alllambdas))

Menu
Statistics > Lasso > Lasso inferential models > Continuous outcomes > Double-selection model

59

60 dsregress — Double-selection lasso linear regression

Syntax

dsregress depvar varsofinterest
[

if
] [

in
]
,

controls(
[
(alwaysvars)

]
othervars)

[
options

]
varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗controls(

[
(alwaysvars)

]
othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter λ∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

sqrtlasso use square-root lassos
missingok after fitting lassos, ignore missing values in any othervars

not selected, and include these observations in the final
model

SE/Robust

vce(vcetype) vcetype may be robust (the default), cluster clustvar,
ols, hc2, or hc3

Reporting

level(#) set confidence level; default is level(95)

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization[
no
]
log display or suppress an iteration log

verbose display a verbose iteration log
rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

reestimate refit the model after using lassoselect to select a different
λ∗

noheader do not display the header on the coefficient table
coeflegend display legend instead of statistics

dsregress — Double-selection lasso linear regression 61

∗controls() is required.
varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for

alwaysvars and othervars. See [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
reestimate, noheader, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls(
[
(alwaysvars)

]
othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. dsregress fits lassos for
depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in
these lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include
or exclude. That is, each lasso will select a subset of othervars. The selected subset of othervars
may differ across lassos. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal
value of the lasso penalty parameter λ∗ for each lasso or square-root lasso estimation. Separate
lassos are estimated for depvar and each variable in varsofinterest. Specifying selection()
changes the selection method for all of these lassos. You can specify different selection methods
for different lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso()
is used to specify a different selection method for the lassos of some variables, they override the
global setting made using selection() for the specified variables.

selection(plugin) is the default. It selects λ∗ based on a “plugin” iterative formula dependent
on the data. See [LASSO] lasso options.

selection(cv) selects the λ∗ that gives the minimum of the CV function. See [LASSO] lasso
options.

selection(adaptive) selects λ∗ using the adaptive lasso selection method. It cannot be specified
when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the λ∗ that gives the minimum of the BIC function. See [LASSO] lasso
options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos. The option lasso()
can be used with sqrtlasso to specify that regular lasso be done for some variables, overriding
the global sqrtlasso setting for these variables. See [LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only
the nonmissing observations of variables in the final model. In all cases, any observation with
missing values for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation
sample for the lassos. By default, the same sample is used for calculation of the coefficients of
the varsofinterest and their standard errors.

When missingok is specified, the initial estimation sample is the same as the default, but the sample
used for the calculation of the coefficients of the varsofinterest can be larger. Now observations
with missing values for any othervars not selected will be added to the estimation sample (provided
there are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It
does, however, have the consequence that estimation samples can change when selected variables
differ in models fit using different selection methods. That is, when othervars contain missing

62 dsregress — Double-selection lasso linear regression

values, the estimation sample for a model fit using the default selection(plugin) will likely
differ from the estimation sample for a model fit using, for example, selection(cv).

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported. The default is vce(robust), which is
robust to some kinds of misspecification. Also available are vce(cluster clustvar), which allows
for intragroup correlation; vce(ols), which specifies the standard variance estimator for ordinary
least-squares regression; and vce(hc2) and vce(hc3), which specify alternative bias corrections
for the robust variance calculation. See [R] vce option and Options in [R] regress.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso,
this affects how the log-likelihood function is computed and how the sample is split in cross-
validation; see Methods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar) may
lead to different selected controls and therefore to different point estimates for your variable of
interest when compared to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation. By default, one-line

messages indicating when each lasso estimation begins are shown. Specify verbose to see a more
detailed log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful
when doing selection(cv) or selection(adaptive). It allows you to monitor the progress
of the lasso estimations for these selection methods, which can be time consuming when there are
many othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results for se-
lection(cv) and selection(adaptive). The default selection method selection(plugin)
does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running
dsregress. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options
for all lassos. You specify a varlist followed by the options you want to apply to the lassos for these
variables. varlist consists of one or more variables from depvar or varsofinterest. all or * may be
used to specify depvar and all varsofinterest. This option is repeatable as long as different variables
are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#), toler-
ance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .)) is
specified, it overrides any global selection() option for the variables in varlist. It also overrides
the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables
from depvar or varsofinterest. This option is repeatable as long as different variables are given
in each specification. lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#),

dsregress — Double-selection lasso linear regression 63

dtolerance(#), and cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is speci-
fied, it overrides any global selection() option for the variables in varlist. See [LASSO] lasso
options.

The following options are available with dsregress but are not shown in the dialog box:

reestimate is an advanced option that refits the dsregress model based on changes made to the
underlying lassos using lassoselect. After running dsregress, you can select a different λ∗

for one or more of the lassos estimated by dsregress. After selecting λ∗, you type dsregress,
reestimate to refit the dsregress model based on the newly selected λ’s.

reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
dsregress performs double-selection lasso linear regression. This command estimates coefficients,

standard errors, and confidence intervals and performs tests for variables of interest while using lassos
to select from among potential control variables.

The linear regression model is

E[y|d, x] = dα′ + xβ′

where d are the variables for which we wish to make inferences and x are the potential control
variables from which the lassos select. dsregress reports estimated coefficients for α. However,
double-selection does not provide estimates of the coefficients on the control variables (β) or their
standard errors. No estimation results can be reported for β.

For an introduction to the double-selection lasso method for inference, as well as the partialing-out
and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use dsregress and the other lasso inference commands are
presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an
introduction to the examples and to the vl command, which provides tools for working with the large
lists of variables that are often included when using lasso methods. See 2 Fitting and interpreting
inferential models for examples of fitting inferential lasso linear models and comparisons of the
different methods available in Stata.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring
inferential model lassos in [LASSO] Inference examples.

64 dsregress — Double-selection lasso linear regression

Stored results
dsregress stores the following in e():
Scalars

e(N) number of observations
e(N clust) number of clusters
e(k varsofinterest) number of variables of interest
e(k controls) number of potential control variables
e(k controls sel) number of selected control variables
e(df) degrees of freedom for test of variables of interest
e(chi2) χ2

e(p) p-value for test of variables of interest
e(rank) rank of e(V)

Macros
e(cmd) dsregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(lasso depvars) names of dependent variables for all lassos
e(varsofinterest) variables of interest
e(controls) potential control variables
e(controls sel) selected control variables
e(model) linear
e(title) title in estimation output
e(clustvar) name of cluster variable
e(chi2type) Wald; type of χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(rngstate) random-number state used
e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
dsregress implements double-selection lasso as described in Belloni, Chernozhukov, and

Hansen (2014). The regression model is

E[y|d, x] = dα′ + β0 + xβ′

where d contains the J covariates of interest and x contains the p controls. The number of covariates
in d must be small and fixed. The number of controls in x can be large and, in theory, can grow
with the sample size; however, the number of nonzero elements in β must not be too large, which is
to say that the model must be sparse.

dsregress — Double-selection lasso linear regression 65

Double-selection lasso algorithm
1. Perform a linear lasso of y on x, and denote the selected variables by x̃y .

This lasso can choose the lasso penalty parameter (λ∗) using the plugin estimator, adaptive
lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

2. For j = 1, . . . , J , perform a linear lasso of dj on x, and denote the selected controls by x̃j .

Each of these lassos can choose the lasso penalty parameter (λ∗j) using the plugin estimator,
adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

3. Let x̂ be the distinct variables in the union of the variables in x̃1, . . . , x̃J , and x̃y .

4. Fit a linear regression of y on d and x̂, denoting the estimated coefficient vectors by α̂ and
β̂, respectively.

5. Store the point estimates α̂ in e(b) and their variance estimates (VCE) in e(V).

Option vce(robust), the robust estimator of the VCE for a linear regression, is the default.
See Methods and formulas in [R] regress for details about option vce(robust) and the other
VCE estimators available via options vce(ols), vce(hc2), and vce(hc3).

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 2 choose
their penalty parameter (λ∗).

Reference
Belloni, A., V. Chernozhukov, and C. B. Hansen. 2014. Inference on treatment effects after selection among

high-dimensional controls. Review of Economic Studies 81: 608–650. https://doi.org/10.1093/restud/rdt044.

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] poregress — Partialing-out lasso linear regression

[LASSO] xporegress — Cross-fit partialing-out lasso linear regression

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands

https://doi.org/10.1093/restud/rdt044

Title

elasticnet — Elastic net for prediction and model selection

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

elasticnet selects covariates and fits linear, logistic, probit, Poisson, and Cox proportional
hazards models using elastic net. Results from elasticnet can be used for prediction and model
selection.

elasticnet saves but does not display estimated coefficients. The postestimation commands listed
in [LASSO] lasso postestimation can be used to generate predictions, report coefficients, and display
measures of fit.

For an introduction to lasso, see [LASSO] Lasso intro.

Quick start
Fit a linear model for y1, and select covariates from x1 to x100 using cross-validation (CV)

elasticnet linear y1 x1-x100

Same as above, but specify the grid α = 0.1, 0.2, . . . , 1 using a numlist
elasticnet linear y1 x1-x100, alpha(0.1(0.1)1)

Same as above, but force x1 and x2 to be in the model while elasticnet selects x3 to x100

elasticnet linear y1 (x1 x2) x3-x100, alpha(0.1(0.1)1)

Fit a logistic model for binary outcome y2 with grid α = 0.7, 0.8, 0.9, 1
elasticnet logit y2 x1-x100, alpha(0.7 0.8 0.9 1)

Same as above, and set a random-number seed for reproducibility
elasticnet logit y2 x1-x100, alpha(0.7 0.8 0.9 1) rseed(1234)

Fit a Poisson model for count outcome y3 with exposure time

elasticnet poisson y3 x1-x100, alpha(0.1(0.1)1) exposure(time)

Calculate the CV function beyond the CV minimum to get the full coefficient paths, knots, etc.
elasticnet linear y1 x1-x100, alpha(0.1(0.1)1) selection(cv, alllambdas)

Turn off the early stopping rule, and iterate over λ’s until a minimum is found or until the end of
the λ grid is reached

elasticnet linear y1 x1-x100, alpha(0.1(0.1)1) stop(0)

Fit a Cox proportional hazards model for t with failure indicator fail, and select covariates from
x1 to x100 using CV

stset t, failure(fail)
elasticnet cox x1-x100

Same as above, but select covariates by minimizing the BIC

elasticnet cox x1-x100, selection(bic)

66

elasticnet — Elastic net for prediction and model selection 67

Menu
Statistics > Lasso > Elastic net

Syntax

For linear, logit, probit, and Poisson models

elasticnet model depvar
[
(alwaysvars)

]
othervars

[
if
] [

in
] [

weight
] [

, options
]

For Cox models

elasticnet cox
[
(alwaysvars)

]
othervars

[
if
] [

in
] [

, options
]

model is one of linear, logit, probit, or poisson.

alwaysvars are variables that are always included in the model.

othervars are variables that elasticnet will choose to include in or exclude from the model.

options Description

Model
∗noconstant suppress constant term
selection(cv

[
, cv opts

]
) select mixing parameter α∗ and lasso penalty

parameter λ∗ using CV

selection(bic
[
, bic opts

]
) select mixing parameter α∗ and lasso penalty

parameter λ∗ using BIC

selection(none) do not select α∗ or λ∗

offset(varnameo) include varnameo in model with coefficient constrained to 1
exposure(varnamee) include ln(varnamee) in model with coefficient constrained

to 1 (poisson model only)
∗cluster(clustvar) specify cluster variable clustvar

Optimization[
no
]
log display or suppress an iteration log

rseed(#) set random-number seed
alphas(numlist |matname) specify the α grid with numlist or a matrix
grid(#g

[
, ratio(#) min(#)

]
) specify the set of possible λ’s using a logarithmic grid with

#g grid points
crossgrid(augmented) augment the λ grids for each α as necessary to produce a

single λ grid; the default
crossgrid(union) use the union of the λ grids for each α to produce a single

λ grid
crossgrid(different) use different λ grids for each α
stop(#) tolerance for stopping the iteration over the λ grid early
cvtolerance(#) tolerance for identification of the CV function minimum
bictolerance(#) tolerance for identification of the BIC function minimum
tolerance(#) convergence tolerance for coefficients based on their values
dtolerance(#) convergence tolerance for coefficients based on deviance

68 elasticnet — Elastic net for prediction and model selection

penaltywt(matname) programmer’s option for specifying a vector of weights for
the coefficients in the penalty term

cv opts Description

folds(#) use # folds for CV
alllambdas fit models for all λ’s in the grid or until the stop(#) tolerance is reached;

by default, the CV function is calculated sequentially by λ, and estimation
stops when a minimum is identified

serule use the one-standard-error rule to select λ∗

stopok when, for a value of α, the CV function does not have an identified minimum
and the stop(#) stopping criterion for λ was reached at λstop, allow
λstop to be included in an (α, λ) pair that can potentially be selected
as (α∗, λ∗); the default

strict requires the CV function to have an identified minimum for every value of α;
this is a stricter alternative to the default stopok

gridminok when, for a value of α, the CV function does not have an identified minimum
and the stop(#) stopping criterion for λ was not reached, allow the
minimum of the λ grid, λgmin, to be included in an (α, λ) pair that can
potentially be selected as (α∗, λ∗); this is a looser alternative to the default
stopok and is rarely used

bic opts Description

alllambdas fit models for all λ’s in the grid or until the stop(#) tolerance is reached;
by default, the BIC function is calculated sequentially by λ, and estimation
stops when a minimum is identified

stopok when, for a value of α, the BIC function does not have an identified minimum
and the stop(#) stopping criterion for λ was reached at λstop, allow
λstop to be included in an (α, λ) pair that can potentially be selected
as (α∗, λ∗); the default

strict requires the BIC function to have an identified minimum for every value of α;
this is a stricter alternative to the default stopok

gridminok when, for a value of α, the BIC function does not have an identified minimum
and the stop(#) stopping criterion for λ was not reached, allow the
minimum of the λ grid, λgmin, to be included in an (α, λ) pair that can
potentially be selected as (α∗, λ∗); this is a looser alternative to the default
stopok and is rarely used

postselection use postselection coefficients to compute BIC

∗noconstant and cluster() are not allowed with elasticnet cox.
You must stset your data before using elasticnet cox; see [ST] stset.
alwaysvars and othervars may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
Default weights are not allowed. iweights are allowed with all sel method options. fweights are allowed when

selection(plugin), selection(bic), or selection(none) is specified. See [U] 11.1.6 weight. For elas-
ticnet cox, weights must be specified when you stset your data.

penaltywt(matname) does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

elasticnet — Elastic net for prediction and model selection 69

Options
See [LASSO] lasso fitting for an overview of the lasso estimation procedure and a detailed description
of how to set options to control it.

� � �
Model �

noconstant omits the constant term. Note, however, when there are factor variables among the
othervars, elasticnet can potentially create the equivalent of the constant term by including
all levels of a factor variable. This option is likely best used only when all the othervars are
continuous variables and there is a conceptual reason why there should be no constant term. This
option is not allowed with cox.

selection(cv), selection(bic), and selection(none) specify the selection method used to
select λ∗.

selection(cv
[
, cv opts

]
) is the default. It selects the (α∗, λ∗) that give the minimum of the

CV function.

folds(#) specifies that CV with # folds be done. The default is folds(10).

alllambdas specifies that, for each α, models be fit for all λ’s in the grid or until the stop(#)
tolerance is reached. By default, models are calculated sequentially from largest to smallest
λ, and the CV function is calculated after each model is fit. If a minimum of the CV function
is found, the computation ends at that point without evaluating additional smaller λ’s.

alllambdas computes models for these additional smaller λ’s. Because computation time
is greater for smaller λ, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the CV function is wanted
for assurance that a true minimum has been found. Regardless of whether alllambdas is
specified, the selected (α∗, λ∗) will be the same.

serule selects λ∗ based on the “one-standard-error rule” recommended by Hastie, Tibshirani,
and Wainwright (2015, 13–14) instead of the λ that minimizes the CV function. The one-
standard-error rule selects, for each α, the largest λ for which the CV function is within a
standard error of the minimum of the CV function. Then, from among these (α, λ) pairs,
the one with the smallest value of the CV function is selected.

stopok, strict, and gridminok specify what to do when, for a value of α, the CV function
does not have an identified minimum at any value of λ in the grid. A minimum is identified
at λcvmin when the CV function at both larger and smaller adjacent λ’s is greater than it is
at λcvmin. When the CV function for a value of α has an identified minimum, these options
all do the same thing: (α, λcvmin) becomes one of the (α, λ) pairs that potentially can be
selected as the smallest value of the CV function. In some cases, however, the CV function
declines monotonically as λ gets smaller and never rises to identify a minimum. When the
CV function does not have an identified minimum, stopok and gridminok make alternative
picks for λ in the (α, λ) pairs that will be assessed for the smallest value of the CV function.
The option strict makes no alternative pick for λ. You may specify only one of stopok,
strict, or gridminok; stopok is the default if you do not specify one. With each of
these options, estimation results are always left in place, and alternative (α, λ) pairs can be
selected and evaluated.

stopok specifies that, for a value of α, when the CV function does not have an identified
minimum and the stop(#) stopping tolerance for λ was reached at λstop, the pair
(α, λstop) is picked as one of the pairs that potentially can be selected as the smallest
value of the CV function. λstop is the smallest λ for which coefficients are estimated,
and it is assumed that λstop has a CV function value close to the true minimum for that

70 elasticnet — Elastic net for prediction and model selection

value of α. When no minimum is identified for a value of α and the stop(#) criterion
is not met, an error is issued.

strict requires the CV function to have an identified minimum for each value of α, and if
not, an error is issued.

gridminok is a rarely used option that specifies that, for a value of α, when the CV function
has no identified minimum and the stop(#) stopping criterion was not met, λgmin, the
minimum of the λ grid, is picked as part of a pair (α, λgmin) that potentially can be
selected as the smallest value of the CV function.

The gridminok criterion is looser than the default stopok, which is looser than strict.
With strict, the selected (α∗, λ∗) pair is the minimum of the CV function chosen from
the (α, λcvmin) pairs, where all λ’s under consideration are identified minimums. With
stopok, the set of (α, λ) pairs under consideration for the minimum of the CV function
include identified minimums, λcvmin, or values, λstop, that met the stopping criterion. With
gridminok, the set of (α, λ) pairs under consideration for the minimum of the CV function
potentially include λcvmin, λstop, or λgmin.

selection(bic
[
, bic opts

]
) selects (α∗, λ∗) by using the Bayesian information criterion (BIC)

function. It selects the (α∗, λ∗) with the minimum BIC function value.

bic opts are alllambdas, stopok, strict, gridminok, and postselection.

alllambdas specifies that, for each α, models be fit for all λ’s in the grid or until the stop(#)
tolerance is reached. By default, models are calculated sequentially from largest to smallest
λ, and the BIC function is calculated after each model is fit. If a minimum of the BIC function
is found, the computation ends at that point without evaluating additional smaller λ’s.

alllambdas computes models for these additional smaller λ’s. Because computation time
is greater for smaller λ, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the BIC function is wanted
for assurance that a true minimum has been found. Regardless of whether alllambdas is
specified, the selected (α∗, λ∗) will be the same.

stopok, strict, and gridminok specify what to do when, for a value of α, the BIC function
does not have an identified minimum at any value of λ in the grid. A minimum is identified
at λbicmin when the BIC function at both larger and smaller adjacent λ’s is greater than it
is at λbicmin. When the BIC function for a value of α has an identified minimum, these
options all do the same thing: (α, λbicmin) becomes one of the (α, λ) pairs that potentially
can be selected as the smallest value of the BIC function. In some cases, however, the BIC
function declines monotonically as λ gets smaller and never rises to identify a minimum.
When the BIC function does not have an identified minimum, stopok and gridminok make
alternative picks for λ in the (α, λ) pairs that will be assessed for the smallest value of the
BIC function. The option strict makes no alternative pick for λ. You may specify only
one of stopok, strict, or gridminok; stopok is the default if you do not specify one.
With each of these options, estimation results are always left in place, and alternative (α, λ)
pairs can be selected and evaluated.

stopok specifies that, for a value of α, when the BIC function does not have an identified
minimum and the stop(#) stopping tolerance for λ was reached at λstop, the pair
(α, λstop) is picked as one of the pairs that potentially can be selected as the smallest
value of the BIC function. λstop is the smallest λ for which coefficients are estimated,
and it is assumed that λstop has a BIC function value close to the true minimum for that
value of α. When no minimum is identified for a value of α and the stop(#) criterion
is not met, an error is issued.

elasticnet — Elastic net for prediction and model selection 71

strict requires the BIC function to have an identified minimum for each value of α, and
if not, an error is issued.

gridminok is a rarely used option that specifies that, for a value of α, when the BIC function
has no identified minimum and the stop(#) stopping criterion was not met, λgmin, the
minimum of the λ grid, is picked as part of a pair (α, λgmin) that potentially can be
selected as the smallest value of the BIC function.

The gridminok criterion is looser than the default stopok, which is looser than strict.
With strict, the selected (α∗, λ∗) pair is the minimum of the BIC function chosen from
the (α, λbicmin) pairs, where all λ’s under consideration are identified minimums. With
stopok, the set of (α, λ) pairs under consideration for the minimum of the BIC function
include identified minimums, λbicmin, or values, λstop, that met the stopping criterion. With
gridminok, the set of (α, λ) pairs under consideration for the minimum of the BIC function
potentially include λbicmin, λstop, or λgmin.

postselection specifies to use the postselection coefficients to compute the BIC function.
By default, the penalized coefficients are used.

selection(none) does not select an (α∗, λ∗) pair. In this case, the elastic net is estimated for a
grid of values for λ for each α, but no attempt is made to determine which (α, λ) pair is best.
The postestimation command lassoknots can be run to view a table of λ’s that define the
knots (that is, the distinct sets of nonzero coefficients) for each α. The lassoselect command
can then be used to select an (α∗, λ∗) pair, and lassogof can be run to evaluate the prediction
performance of the selected pair.

When selection(none) is specified, neither the CV function nor the BIC function is computed.
If you want to view the knot table with values of the CV function shown and then select (α∗, λ∗),
you must specify selection(cv). Similarly, if you want to view the knot table with values
of the BIC function shown, you must specify selection(bic). There are no suboptions for
selection(none).

offset(varnameo) specifies that varnameo be included in the model with its coefficient constrained
to be 1.

exposure(varnamee) can be specified only for the poisson model. It specifies that ln(varnamee)
be included in the model with its coefficient constrained to be 1.

cluster(clustvar) specifies the cluster variable clustvar. Specifying a cluster variable will affect how
the log-likelihood function is computed and the sample split in cross-validation. The log-likelihood
function is computed as the sum of the log likelihood at the cluster levels. If option selection(cv)
is specified, the cross-validation sample is split by the clusters defined by clustvar. That is, the
subsample in each fold is drawn on the cluster level. Therefore, all observations in a cluster are
kept together in the same subsample. This option is not allowed with elasticnet cox.

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation.

rseed(#) sets the random-number seed. This option can be used to reproduce results for selec-
tion(cv). (selection(bic) and selection(none) do not use random numbers.) rseed(#)
is equivalent to typing set seed # prior to running elasticnet. See [R] set seed.

alphas(numlist |matname) specifies either a numlist or a matrix containing the grid of values for
α. The default is alphas(0.5 0.75 1). Specifying a small, nonzero value of α for one of the
values of alphas() will result in lengthy computation time because the optimization algorithm
for a penalty that is mostly ridge regression with a little lasso mixed in is inherently inefficient.
Pure ridge regression (α = 0), however, is computationally efficient.

72 elasticnet — Elastic net for prediction and model selection

grid(#g
[
, ratio(#) min(#)

]
) specifies the set of possible λ’s using a logarithmic grid with #g

grid points.

#g is the number of grid points for λ. The default is #g = 100. The grid is logarithmic with
the ith grid point (i = 1, . . . , n = #g) given by lnλi = [(i − 1)/(n − 1)] ln r + lnλgmax,
where λgmax = λ1 is the maximum, λgmin = λn = min(#) is the minimum, and r =
λgmin/λgmax = ratio(#) is the ratio of the minimum to the maximum.

ratio(#) specifies λgmin/λgmax. The maximum of the grid, λgmax, is set to the smallest λ
for which all the coefficients in the lasso are estimated to be zero (except the coefficients of
the alwaysvars). λgmin is then set based on ratio(#). When p < N , where p is the total
number of othervars and alwaysvars (not including the constant term) and N is the number of
observations, the default value of ratio(#) is 1e−4. When p ≥ N , the default is 1e−2.

min(#) sets λgmin. By default, λgmin is based on ratio(#) and λgmax, which is computed from
the data.

crossgrid(augmented), crossgrid(union), and crossgrid(different) specify the type of
two-dimensional grid used for (α, λ). crossgrid(augmented) and crossgrid(union) produce
a grid that is the product of two one-dimensional grids. That is, the λ grid is the same for every
value of α. crossgrid(different) uses different λ grids for different values of α

crossgrid(augmented), the default grid, is formed by an augmentation algorithm. First, a
suitable λ grid for each α is computed. Then, nonoverlapping segments of these grids are
formed and combined into a single λ grid.

crossgrid(union) specifies that the union of λ grids across each value of α be used. That is, a
λ grid for each α is computed, and then they are combined by simply putting all the λ values
into one grid that is used for each α. This produces a fine grid that can cause the computation
to take a long time without significant gain in most cases.

crossgrid(different) specifies that different λ grids be used for each value of α. This option
is rarely used. Using different λ grids for different values of α complicates the interpretation
of the CV selection method. When the λ grid is not the same for every value of α, comparisons
are based on parameter intervals that are not on the same scale.

stop(#) specifies a tolerance that is the stopping criterion for the λ iterations. The default is 1e−5.
Estimation starts with the maximum grid value, λgmax, and iterates toward the minimum grid value,
λgmin. When the relative difference in the deviance produced by two adjacent λ grid values is less
than stop(#), the iteration stops and no smaller λ’s are evaluated. The value of λ that meets this
tolerance is denoted by λstop. Typically, this stopping criterion is met before the iteration reaches
λgmin.

Setting stop(#) to a larger value means that iterations are stopped earlier at a larger λstop. To
produce coefficient estimates for all values of the λ grid, you can specify stop(0). Note, however,
that computations for small λ’s can be extremely time consuming. In terms of time, when you
use selection(cv) or selection(bic), the optimal value of stop(#) is the largest value that
allows estimates for just enough λ’s to be computed to identify the minimum of the CV or BIC
function. When setting stop(#) to larger values, be aware of the consequences of the default λ∗

selection procedure given by the default stopok. You may want to override the stopok behavior
by using strict.

cvtolerance(#) is a rarely used option that changes the tolerance for identifying the minimum CV
function. For linear models, a minimum is identified when the CV function rises above a nominal
minimum for at least three smaller λ’s with a relative difference in the CV function greater than
#. For nonlinear models, at least five smaller λ’s are required. The default is 1e−3. Setting # to
a bigger value makes a stricter criterion for identifying a minimum and brings more assurance

elasticnet — Elastic net for prediction and model selection 73

that a declared minimum is a true minimum, but it also means that models may need to be fit for
additional smaller λ, which can be time consuming. See Methods and formulas for [LASSO] lasso
for more information about this tolerance and the other tolerances.

bictolerance(#) is a rarely used option that changes the tolerance for identifying the minimum
BIC function. A minimum is identified when the BIC function rises above a nominal minimum for
at least two smaller λ’s with a relative difference in the BIC function greater than #. The default is
1e−2. Setting # to a bigger value makes a stricter criterion for identifying a minimum and brings
more assurance that a declared minimum is a true minimum, but it also means that models may
need to be fit for additional smaller λ, which can be time consuming. See Methods and formulas
in [LASSO] lasso for more information about this tolerance and the other tolerances.

tolerance(#) is a rarely used option that specifies the convergence tolerance for the coefficients.
Convergence is achieved when the relative change in each coefficient is less than this tolerance.
The default is tolerance(1e-7).

dtolerance(#) is a rarely used option that changes the convergence criterion for the coefficients.
When dtolerance(#) is specified, the convergence criterion is based on the change in deviance
instead of the change in the values of coefficient estimates. Convergence is declared when the
relative change in the deviance is less than #. More-accurate coefficient estimates are typically
achieved by not specifying this option and instead using the default tolerance(1e-7) criterion
or specifying a smaller value for tolerance(#).

The following option is available with elasticnet but is not shown in the dialog box:

penaltywt(matname) is a programmer’s option for specifying a vector of weights for the coefficients
in the penalty term. The contribution of each coefficient to the lasso penalty term is multiplied
by its corresponding weight. Weights must be nonnegative. By default, each coefficient’s penalty
weight is 1.

Remarks and examples
Elastic net, originally proposed by Zou and Hastie (2005), extends lasso to have a penalty term

that is a mixture of the absolute-value penalty used by lasso and the squared penalty used by ridge
regression. Coefficient estimates from elastic net are more robust to the presence of highly correlated
covariates than are lasso solutions.

For the linear model, the penalized objective function for elastic net is

Q =
1

2N

N∑
i=1

(yi − β0 − xiβ
′)2 + λ

p∑
j=1

(
1− α

2
β2
j + α |βj |

)
where β is the p-dimensional vector of coefficients on covariates x. The estimated β are those that
minimize Q for given values of α and λ.

As with lasso, p can be greater than the sample size N . When α = 1, elastic net reduces to lasso.
When α = 0, elastic net reduces to ridge regression.

When α > 0, elastic net, like lasso, produces sparse solutions in which many of the coefficient
estimates are exactly zero. When α = 0, that is, ridge regression, all coefficients are nonzero, although
typically many are small.

Ridge regression has long been used as a method to keep highly collinear variables in a regression
model used for prediction. The ordinary least-squares (OLS) estimator becomes increasingly unstable
as the correlation among the covariates grows. OLS produces wild coefficient estimates on highly
correlated covariates that cancel each other out in terms of fit. The ridge regression penalty removes
this instability and produces point estimates that can be used for prediction in this case.

74 elasticnet — Elastic net for prediction and model selection

None of the ridge regression estimates are exactly zero because the squared penalty induces a
smooth tradeoff around 0 instead of the kinked-corner tradeoff induced by lasso. By mixing the two
penalties, elastic net retains the sparse-solution property of lasso, but it is less variable than the lasso
in the presence of highly collinear variables. The coefficient paths of elastic-net solutions are also
smoother over λ than are lasso solutions because of the added ridge-regression component.

To fit a model with elasticnet, you specify a set of candidate α’s and a grid of λ values. CV
is performed on the combined set of (α, λ) values, and the (α∗, λ∗) pair that minimizes the value
of the CV function is selected.

This procedure follows the convention of Hastie, Tibshirani, and Wainwright (2015), which is to
specify a few values for α and a finer grid for λ. The idea is that only a few points in the space
between ridge regression and lasso are worth reviewing, but a finer grid over λ is needed to trace
out the paths of which coefficients are not zero.

The default candidate values of α are 0.5, 0.75, and 1. Typically, you would use the default first
and then set α using the alpha(numlist) option to get lower and upper bounds on α∗. Models for
small, nonzero values of α take more time to estimate than α = 0 and larger values of α. This is
because the algorithm for fitting a model that is mostly ridge regression with a little lasso mixed in
is inherently inefficient. Pure ridge or mostly lasso models are faster.

The λ grid is set automatically, and the default settings are typically sufficient to determine λ∗.
The default grid can be changed using the grid() option. See [LASSO] lasso fitting for a detailed
description of the CV selection process and how to set options to control it.

Example 1: Elastic net and data that are not highly correlated

We will fit an elastic-net model using the example dataset from [LASSO] lasso examples. It has
stored variable lists created by vl. See [D] vl for a complete description of the vl system and how
to use it to manage large variable lists.

After we load the dataset, we type vl rebuild to make the saved variable lists active again.
. use https://www.stata-press.com/data/r18/fakesurvey_vl
(Fictitious survey data with vl)

. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 98 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 29 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 12 all missing or constant variables

User
$demographics 4 variables
$factors 110 variables
$idemographics factor-variable list
$ifactors factor-variable list

We have four user-defined variable lists, demographics, factors, idemographics, and ifac-
tors. The variable lists idemographics and ifactors contain factor-variable versions of the
categorical variables in demographics and factors. That is, a variable q3 in demographics is
i.q3 in idemographics. See [LASSO] lasso examples to see how we created these variable lists.

elasticnet — Elastic net for prediction and model selection 75

We are going to use idemographics and ifactors along with the system-defined variable list
vlcontinuous as arguments to elasticnet. Together they contain the potential variables we want
to specify. Variable lists are actually global macros, and when we use them as arguments in commands,
we put a $ in front of them.

We also set the random-number seed using the rseed() option so we can reproduce our results.

. elasticnet linear q104 $idemographics $ifactors $vlcontinuous, rseed(1234)

alpha 1 of 3: alpha = 1

10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 1.818102 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.34476

(output omitted)
Grid value 37: lambda = .0737359 no. of nonzero coef. = 80
Folds: 1...5....10 CVF = 11.92887
... cross-validation complete ... minimum found

alpha 2 of 3: alpha = 0.75

10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 1.818102 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.34476

(output omitted)
Grid value 34: lambda = .0974746 no. of nonzero coef. = 126
Folds: 1...5....10 CVF = 11.95437
... cross-validation complete ... minimum found

alpha 3 of 3: alpha = 0.5

10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 1.818102 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.33643

(output omitted)
Grid value 31: lambda = .1288556 no. of nonzero coef. = 139
Folds: 1...5....10 CVF = 12.0549
... cross-validation complete ... minimum found

Elastic net linear model No. of obs = 914
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

1.000
1 first lambda 1.818102 0 -0.0016 18.34476

32 lambda before .1174085 58 0.3543 11.82553
* 33 selected lambda .1069782 64 0.3547 11.81814

34 lambda after .0974746 66 0.3545 11.8222
37 last lambda .0737359 80 0.3487 11.92887

0.750
38 first lambda 1.818102 0 -0.0016 18.34476
71 last lambda .0974746 126 0.3473 11.95437

0.500
72 first lambda 1.818102 0 -0.0012 18.33643

102 last lambda .1288556 139 0.3418 12.0549

* alpha and lambda selected by cross-validation.

CV selected α∗ = 1, that is, the results from an ordinary lasso.

76 elasticnet — Elastic net for prediction and model selection

All models we fit using elastic net on these data selected α∗ = 1. The data are not correlated
enough to need elastic net.

Example 2: Elastic net and data that are highly correlated

The dataset in example 1, fakesurvey vl, contained data we created in a simulation. We did
our simulation again setting the correlation parameters to much higher values, up to ρ = 0.95, and we
created two groups of highly correlated variables, with correlations between variables from different
groups much lower. We saved these data in a new dataset named fakesurvey2 vl. Elastic net
was proposed not just for highly correlated variables but especially for groups of highly correlated
variables.

We load the new dataset and run vl rebuild.

. use https://www.stata-press.com/data/r18/fakesurvey2_vl, clear
(Fictitious survey data with vl)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

In anticipation of elastic net showing interesting results this time, we randomly split our data
into two samples of equal sizes. One we will fit models on, and the other we will use to test their
predictions. We use splitsample to generate a variable indicating the samples.

. set seed 1234

. splitsample, generate(sample) nsplit(2)

. label define svalues 1 "Training" 2 "Testing"

. label values sample svalues

We fit an elastic-net model using the default α’s.

. elasticnet linear q104 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)

alpha 1 of 3: alpha = 1

(output omitted)
10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 6.323778 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324

(output omitted)
Grid value 42: lambda = .161071 no. of nonzero coef. = 29
Folds: 1...5....10 CVF = 15.12964
... cross-validation complete ... minimum found

alpha 2 of 3: alpha = 0.75

(output omitted)
10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 6.323778 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324

(output omitted)
Grid value 40: lambda = .1940106 no. of nonzero coef. = 52
Folds: 1...5....10 CVF = 15.07523
... cross-validation complete ... minimum found

alpha 3 of 3: alpha = 0.5

(output omitted)

elasticnet — Elastic net for prediction and model selection 77

10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 6.323778 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.78722

(output omitted)
Grid value 46: lambda = .11102 no. of nonzero coef. = 115
Folds: 1...5....10 CVF = 14.90808
... cross-validation complete ... minimum found

Elastic net linear model No. of obs = 449
No. of covariates = 275

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

1.000
1 first lambda 6.323778 0 -0.0036 26.82324

42 last lambda .161071 29 0.4339 15.12964

0.750
43 first lambda 6.323778 0 -0.0036 26.82324
82 last lambda .1940106 52 0.4360 15.07523

0.500
83 first lambda 6.323778 0 -0.0022 26.78722

124 lambda before .161071 87 0.4473 14.77189
* 125 selected lambda .1467619 92 0.4476 14.76569

126 lambda after .133724 96 0.4468 14.78648
128 last lambda .11102 115 0.4422 14.90808

* alpha and lambda selected by cross-validation.

. estimates store elasticnet

Wonderful! It selected α∗ = 0.5. We should not stop here, however. There may be smaller values
of α that give lower minimums of the CV function. If the number of observations and number of
potential variables are not too large, you could specify the option alpha(0(0.1)1) the first time
you run elasticnet. However, if we did this, the command would take much longer to run than
the default. It will be especially slow for α = 0.1 as we mentioned earlier.

. elasticnet linear q104 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234) alpha(0.1 0.2 0.3)

alpha 1 of 3: alpha = .3

(output omitted)
10-fold cross-validation with 113 lambdas ...
Grid value 1: lambda = 31.61889 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324

(output omitted)
Grid value 59: lambda = .160193 no. of nonzero coef. = 122
Folds: 1...5....10 CVF = 14.84229
... cross-validation complete ... minimum found

alpha 2 of 3: alpha = .2

(output omitted)
10-fold cross-validation with 113 lambdas ...
Grid value 1: lambda = 31.61889 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324

(output omitted)

78 elasticnet — Elastic net for prediction and model selection

Grid value 56: lambda = .2117657 no. of nonzero coef. = 137
Folds: 1...5....10 CVF = 14.81594
... cross-validation complete ... minimum found

alpha 3 of 3: alpha = .1

(output omitted)
10-fold cross-validation with 113 lambdas ...
Grid value 1: lambda = 31.61889 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.81813

(output omitted)
Grid value 51: lambda = .3371909 no. of nonzero coef. = 162
Folds: 1...5....10 CVF = 14.81783
... cross-validation complete ... minimum found

Elastic net linear model No. of obs = 449
No. of covariates = 275

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

0.300
1 first lambda 31.61889 0 -0.0036 26.82324

59 last lambda .160193 122 0.4447 14.84229

0.200
60 first lambda 31.61889 0 -0.0036 26.82324

110 lambda before .3371909 108 0.4512 14.66875
* 111 selected lambda .3072358 118 0.4514 14.66358

112 lambda after .2799418 125 0.4509 14.67566
115 last lambda .2117657 137 0.4457 14.81594

0.100
116 first lambda 31.61889 0 -0.0034 26.81813
166 last lambda .3371909 162 0.4456 14.81783

* alpha and lambda selected by cross-validation.

. estimates store elasticnet

The selected α∗ is 0.2. This value is better, according to CV, than α = 0.1 or α = 0.3.

elasticnet — Elastic net for prediction and model selection 79

We can plot the CV function for the selected α∗ = 0.2.

. cvplot

15

20

25

30

C
ro

ss
-v

al
id

at
io

n
fu

nc
tio

n
λCV

110
λ

αCV = .2 is the cross-validation minimum α.
λCV = .31 is the cross-validation minimum λ; # coefficients = 118.

Cross-validation plot

The CV function looks quite flat around the selected λ∗. We could assess alternative λ (and
alternative α) using lassoknots. We run lassoknots with options requesting the number of
nonzero coefficients be shown (nonzero), along with the CV function (cvmpe) and estimates of the
out-of-sample R2 (osr2).

. lassoknots, display(nonzero cvmpe osr2)

No. of CV mean Out-of-
nonzero pred. sample

alpha ID lambda coef. error R-squared

0.300
15 9.603319 4 26.42296 0.0114

(output omitted)
54 .2550726 92 14.67746 0.4509
55 .2324126 98 14.66803 0.4512
56 .2117657 105 14.67652 0.4509

(output omitted)
59 .160193 122 14.84229 0.4447

0.200
69 14.40498 4 26.54791 0.0067

(output omitted)
110 .3371909 108 14.66875 0.4512

* 111 .3072358 118 14.66358 0.4514
112 .2799418 125 14.67566 0.4509

(output omitted)
115 .2117657 137 14.81594 0.4457

0.100
117 28.80996 4 26.67947 0.0018

(output omitted)

80 elasticnet — Elastic net for prediction and model selection

161 .5369033 143 14.76586 0.4476
162 .4892063 148 14.75827 0.4478
162 .4892063 148 14.75827 0.4478
163 .4457466 152 14.76197 0.4477

(output omitted)
166 .3371909 162 14.81783 0.4456

* alpha and lambda selected by cross-validation.

When we examine the output from lassoknots, we see that the CV function appears rather flat along
λ from the minimum and also across α.

Example 3: Ridge regression

Let’s continue with the previous example and fit a ridge regression. We do this by specifying
alpha(0).

. elasticnet linear q104 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234) alpha(0)

(output omitted)
Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = 3.16e+08 no. of nonzero coef. = 275
Grid value 2: lambda = 2880.996 no. of nonzero coef. = 275

(output omitted)
Grid value 99: lambda = .3470169 no. of nonzero coef. = 275
Grid value 100: lambda = .3161889 no. of nonzero coef. = 275

10-fold cross-validation with 100 lambdas ...
Fold 1 of 10: 10....20....30....40....50....60....70....80....90....100

(output omitted)
Fold 10 of 10: 10....20....30....40....50....60....70....80....90....100
... cross-validation complete

Elastic net linear model No. of obs = 449
No. of covariates = 275

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

0.000
1 first lambda 3161.889 275 -0.0036 26.82323

88 lambda before .9655953 275 0.4387 15.00168
* 89 selected lambda .8798144 275 0.4388 14.99956

90 lambda after .8016542 275 0.4386 15.00425
100 last lambda .3161889 275 0.4198 15.50644

* alpha and lambda selected by cross-validation.

. estimates store ridge

elasticnet — Elastic net for prediction and model selection 81

In this implementation, ridge regression selects λ∗ using CV. We can plot the CV function.

. cvplot

15

20

25

30

C
ro

ss
-v

al
id

at
io

n
fu

nc
tio

n
λCV

1101001000
λ

αCV = 0 is the cross-validation minimum α.
λCV = .88 is the cross-validation minimum λ; # coefficients = 275.

Cross-validation plot

Example 4: Comparing elastic net, ridge regression, and lasso

We fit elastic net and ridge on half of the sample in the previous examples so we could evaluate
the prediction on the other half of the sample.

Let’s continue with the data from example 2 and example 3 and fit a lasso.

. lasso linear q104 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
note: 1.q14 omitted because of collinearity with another variable.
note: 1.q136 omitted because of collinearity with another variable.
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = 3.161889 no. of nonzero coef. = 0

(output omitted)

Grid value 33: lambda = .161071 no. of nonzero coef. = 29
Folds: 1...5....10 CVF = 15.12964
... cross-validation complete ... minimum found

Lasso linear model No. of obs = 449
No. of covariates = 275

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 3.161889 0 0.0020 26.67513
28 lambda before .2564706 18 0.4348 15.10566

* 29 selected lambda .2336864 21 0.4358 15.07917
30 lambda after .2129264 21 0.4355 15.08812
33 last lambda .161071 29 0.4339 15.12964

* lambda selected by cross-validation.

. estimates store lasso

82 elasticnet — Elastic net for prediction and model selection

We stored the results of the earlier elastic net and ridge in memory using estimates store. We
did the same for the lasso results. Now we can compare out-of-sample prediction using lassogof.

. lassogof elasticnet ridge lasso, over(sample)

Penalized coefficients

Name sample MSE R-squared Obs

elasticnet
Training 11.70471 0.5520 480
Testing 14.60949 0.4967 501

ridge
Training 11.82482 0.5576 449
Testing 14.88123 0.4809 476

lasso
Training 13.41709 0.4823 506
Testing 14.91674 0.4867 513

Elastic net did better out of sample based on the mean squared error and R2 than ridge and lasso.

Note that the numbers of observations for both the training and testing samples were slightly
different for each of the models. splitsample split the sample exactly in half with 529 observations
in each half sample. The sample sizes across the models differ because the different models contain
different sets of selected variables; hence, the pattern of missing values is different. If you want to
make the half samples exactly equal after missing values are dropped, an optional varlist containing
the dependent variable and all the potential variables can be used with splitsample to omit any
missing values in these variables. See [D] splitsample.

Before we conclude that elastic net won out over ridge and lasso, we must point out that we
were not fair to lasso. Theory states that for the lasso linear model, postselection coefficients provide
slightly better predictions. See predict in [LASSO] lasso postestimation.

We run lassogof again for the lasso results, this time specifying that postselection coefficients
be used.

. lassogof lasso, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs

lasso
Training 13.14487 0.4928 506
Testing 14.62903 0.4966 513

We declare a tie with elastic net!

Postselection coefficients should not be used with elasticnet and, in particular, with ridge
regression. Ridge works by shrinking the coefficient estimates, and these are the estimates that should
be used for prediction. Because postselection coefficients are OLS regression coefficients for the
selected coefficients and because ridge always selects all variables, postselection coefficients after
ridge are OLS regression coefficients for all potential variables, which clearly we do not want to use
for prediction.

elasticnet — Elastic net for prediction and model selection 83

Stored results
elasticnet stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(k allvars) number of potential variables
e(k nonzero sel) number of nonzero coefficients for selected model
e(k nonzero cv) number of nonzero coefficients at CV mean function minimum
e(k nonzero serule) number of nonzero coefficients for one-standard-error rule
e(k nonzero min) minimum number of nonzero coefficients among estimated λ’s
e(k nonzero max) maximum number of nonzero coefficients among estimated λ’s
e(k nonzero bic) number of nonzero coefficients at BIC function minimum
e(alpha sel) value of selected α∗

e(alpha cv) value of α at CV mean function minimum
e(lambda sel) value of selected λ∗

e(lambda gmin) value of λ at grid minimum
e(lambda gmax) value of λ at grid maximum
e(lambda last) value of last λ computed
e(lambda cv) value of λ at CV mean function minimum
e(lambda serule) value of λ for one-standard-error rule
e(lambda bic) value of λ at BIC function minimum
e(ID sel) ID of selected λ∗

e(ID cv) ID of λ at CV mean function minimum
e(ID serule) ID of λ for one-standard-error rule
e(ID bic) ID of λ at BIC function minimum
e(cvm min) minimum CV mean function value
e(cvm serule) CV mean function value at one-standard-error rule
e(devratio min) minimum deviance ratio
e(devratio max) maximum deviance ratio
e(L1 min) minimum value of `1-norm of penalized unstandardized coefficients
e(L1 max) maximum value of `1-norm of penalized unstandardized coefficients
e(L2 min) minimum value of `2-norm of penalized unstandardized coefficients
e(L2 max) maximum value of `2-norm of penalized unstandardized coefficients
e(ll sel) log-likelihood value of selected model
e(n lambda) number of λ’s
e(n fold) number of CV folds
e(stop) stopping rule tolerance

Macros
e(cmd) elasticnet
e(cmdline) command as typed
e(depvar) name of dependent variable
e(allvars) names of all potential variables
e(allvars sel) names of all selected variables
e(alwaysvars) names of always-included variables
e(othervars sel) names of other selected variables
e(post sel vars) all variables needed for postelastic net
e(clustvar) name of cluster variable
e(lasso selection) selection method
e(sel criterion) criterion used to select λ∗

e(crossgrid) type of two-dimensional grid
e(model) linear, logit, probit, poisson, or cox
e(title) title in estimation output
e(rngstate) random-number state used
e(properties) b
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) penalized unstandardized coefficient vector
e(b standardized) penalized standardized coefficient vector
e(b postselection) postselection coefficient vector

84 elasticnet — Elastic net for prediction and model selection

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
The methods and formulas for elastic net are given in Methods and formulas in [LASSO] lasso.

Here we provide the methods and formulas for ridge regression, which is a special case of elastic net.

Unlike lasso and elastic net, ridge regression has a differentiable objective function, and there is
a closed-form solution to the problem of minimizing the objective function. The solutions for ridge
regression with nonlinear models are obtained by iteratively reweighted least squares.

The estimates of a generalized linear model (GLM) ridge regression model are obtained by minimizing

QL =

N∑
i=1

w̃if(yi, β0 + xiβ
′) +

λ

2

p∑
j=1

κjβ
2
j

where N is the number of observations; w̃i is the normalized observation-level weight; f(·) is the
likelihood contribution for the regress, logit, probit, or poisson model; β0 is the intercept;
xi is the 1 × p vector of covariates; β is the 1 × p vector of coefficients; λ is the ridge penalty
parameter, which must be greater than or equal to 0; and κj are coefficient-level weights (which by
default are all 1).

The normalized weights w̃i sum to 1. That is,

w̃i =
wi∑N
i=1 wi

where wi is the original observation-level weight. If weights are not specified with elasticnet,
wi = 1 and w̃i = 1/N .

The penalized objective function of the ridge regression for the cox model is

QL = −
Nf∑
j=1

∑
i∈Dj

w̃i

xiβ′ − log

∑
`∈Rj

w̃` exp(x`β
′)

+

λ

2

p∑
j=1

κjβ
2
j

where j indexes the ordered failure times t(j), j = 1, . . . , Nf ; Dj is the set of observations that
fail at t(j); and Rj is the set of observations k that are at risk at time t(j) (that is, all k such that
t0k < t(j) ≤ tk, and t0k is the entry time for the kth observation).

When the model is linear,

f(yi, β0 + xiβ
′) =

1

2
(yi − β0 − xiβ

′)2

elasticnet — Elastic net for prediction and model selection 85

When the model is logit,

f(yi, β0 + xiβ
′) = −yi(β0 + xiβ

′) + ln{1 + exp(β0 + xiβ
′)}

When the model is probit,

f(yi, β0 + xiβ
′) = −yi ln

{
Φ(β0 + xiβ

′)
}
− (1− yi) ln

{
1− Φ(β0 + xiβ

′)
}

When the model is poisson,

f(yi, β0 + xiβ
′) = −yi(β0 + xiβ

′) + exp(β0 + xiβ
′)

For the linear model, the point estimates are given by

(β̂0, β̂)′ =

(
N∑
i=1

w̃ix̃
′
ix̃i + λĨ

)−1 N∑
i=1

w̃iyix̃
′
i

where x̃i = (1,xi) and Ĩ is a diagonal matrix with the coefficient-level weights 0, κ1, . . . , κp on the
diagonal.

For the nonlinear models, the optimization problem is solved using iteratively reweighted least
squares. See Segerstedt (1992) and Nyquist (1991) for details of the iteratively reweighted least-squares
algorithm for the GLM ridge-regression estimator.

References
Hastie, T. J., R. J. Tibshirani, and M. Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and

Generalizations. Boca Raton, FL: CRC Press.

Nyquist, H. 1991. Restricted estimation of generalized linear models. Journal of the Royal Statistical Society, Series C
40: 133–141. https://doi.org/10.2307/2347912.

Segerstedt, B. 1992. On ordinary ridge regression in generalized linear models. Communications in Statistics—Theory
and Methods 21: 2227–2246. https://doi.org/10.1080/03610929208830909.

Zou, H., and T. J. Hastie. 2005. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society, Series B 67: 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x.

Also see
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] lasso — Lasso for prediction and model selection

[LASSO] Lasso intro — Introduction to lasso

[LASSO] sqrtlasso — Square-root lasso for prediction and model selection

[R] logit — Logistic regression, reporting coefficients

[R] poisson — Poisson regression

[R] probit — Probit regression

[R] regress — Linear regression

[ST] stset — Declare data to be survival-time data

[U] 20 Estimation and postestimation commands

https://doi.org/10.2307/2347912
https://doi.org/10.1080/03610929208830909
https://doi.org/10.1111/j.1467-9868.2005.00503.x

Title

estimates store — Saving and restoring estimates in memory and on disk

Description Remarks and examples Also see

Description
estimates store name stores the current (active) estimation results under the name name.

estimates restore name loads the results stored under name into the current (active) estimation
results.

estimates save filename saves the current (active) estimation results in filename.

estimates use filename loads the results saved in filename into the current (active) estimation
results.

The estimates commands after the lasso commands work the same as they do after other
estimation commands. There is only one difference. estimates save filename saves two files, not
just one. filename.ster and filename.stxer are saved. See [R] estimates for details.

Remarks and examples
Remarks are presented under the following headings:

Overview
Postestimation commands that work only with current results
Postestimation commands that work with current results
lassoselect creates new estimation results

Overview

If you are not familiar with estimates store and restore, see [R] estimates store. You will
likely want to use estimates store to compare results from multiple lassos.

If you are not familiar with estimates save and use, see [R] estimates save. Lassos fit with
many potential variables can take considerable time to run. xpo commands, especially when the
resample option is specified, can also have lengthy computation times. You will likely want to save
your estimation results to a file.

When you use estimates save, you will see

. estimates save mygreatlasso
file mygreatlasso.ster saved
extended file mygreatlasso.stxer saved

Two files are saved. Keep these files together in the same folder (directory). estimates use needs
both of them to load the results back into the current estimation results.

86

estimates store — Saving and restoring estimates in memory and on disk 87

Postestimation commands that work only with current results

The following postestimation commands work only with current (active) estimation results:
bicplot, coefpath, cvplot, lassoknots, and lassoselect.

The following postestimation commands work with current or stored estimation results: lassocoef,
lassogof, and lassoinfo.

For the commands that work only with current results, this means that if you
. estimates store mylasso1

and then run another estimation command, you must
. estimates restore lasso1

before you can use bicplot, coefpath, cvplot, lassoknots, or lassoselect again.

Postestimation commands that work with current results
lassocoef and lassogof are intended for use with multiple estimation results. You will often

be typing commands such as
. lassgof mylasso1 mylasso2 mylasso3, over(sample)

where mylasso1, mylasso2, and mylasso3 are names of stored estimation results. See [LASSO] las-
sogof for examples.

lassocoef has a more complex syntax because it will work with lasso, sqrtlasso, and
elasticnet, and also with the ds, po, and xpo commands or a mixture of them. You can type
something like

. lassocoef mylasso1 (mydsregress, for(y)) (mydsregress, for(x))

where mylasso1 and mydsregress are names of stored estimation results, with mylasso1 a lasso
result and mydsregress a dsregress result. See [LASSO] lassocoef for examples. lassoinfo is
designed to tell you the available names (typically variable names) that can be specified with for().

lassoselect creates new estimation results
When you run one of the lasso commands, such as

. lasso . . .

and then use lassoselect to change the selected λ∗ like so
. lassoselect lambda = 0.245

lassoselect creates a new estimation result and makes it current. It is almost the same as running
another estimation command and wiping out the old estimation results. We say “almost” because it
is easy to change λ∗ back to what it was originally.

A better workflow when using lassoselect is the following:
. lasso . . .
. estimates store mylasso1

. lassoselect lambda = 0.245

. estimates store mylasso1sel

. lassogof mylasso1 mylasso1sel, over(sample)

See [LASSO] lassoselect.

88 estimates store — Saving and restoring estimates in memory and on disk

Also see
[R] estimates save — Save and use estimation results

[R] estimates store — Store and restore estimation results

Title

Inference examples — Examples and workflow for inference

Description Remarks and examples References Also see

Description
Lasso for inference comprises 11 related estimation commands and several postestimation commands

for performing inference about a true model. Fitting and interpreting inferential lasso models is
demonstrated via examples.

Remarks and examples
Remarks are presented under the following major headings:

1 Overview
2 Fitting and interpreting inferential models
3 Fitting logit inferential models to binary outcomes. What is different?
4 Fitting inferential models to count outcomes. What is different?
5 Exploring inferential model lassos
6 Fitting an inferential model with endogenous covariates

1 Overview

1.1 How to read the example entries

All the examples demonstrate something about the inferential lasso models, so we obviously think
you should read this entire section. That said, there are a lot of pages, so here are some other options.

Everyone should read 1.3 Review of concepts, 2.1 Overview of inferential estimation methods,
and 2.2 Fitting via cross-fit partialing out (xpo) using plugin. What you read there is essential to
using and understanding all the inferential models. We are pretty sure you will also want to read 2.3
Fitting via cross-fit partialing out (xpo) using cross-validation, 2.4 Fitting via double selection (ds)
using cross-validation, and 2.5 Fitting via the other 22 methods.

We use the variable-management tool vl to manage the variable lists used in all the examples,
and most of the examples use a common dataset. We introduce both in 1.4 The primary dataset. We
say enough in sections 2.1 and 2.2 that you will not be lost if you do not read section 1.4. But you
will better understand the dataset—and how we are manipulating it—if you read section 1.4.

If you are only interested in logit models for binary outcomes, then 3 Fitting logit inferential
models to binary outcomes. What is different? is essential reading, but only after reading sections
1.3, 2.1, and 2.2. Similarly, if your sole interest is Poisson models for count outcomes, then read 4
Fitting inferential models to count outcomes. What is different?, but only after reading sections 1.3,
2.1, and 2.2.

The titles on all other sections are relatively self explanatory. So, if you are not reading all the
sections, choose from them based on your interest.

89

90 Inference examples — Examples and workflow for inference

1.2 Detailed outline of the topics

1 Overview
1.1 How to read the example entries
1.2 Detailed outline of the topics
1.3 Review of concepts
1.4 The primary dataset

2 Fitting and interpreting inferential models
2.1 Overview of inferential estimation methods
2.2 Fitting via cross-fit partialing out (xpo) using plugin
2.3 Fitting via cross-fit partialing out (xpo) using cross-validation
2.4 Fitting via double selection (ds) using cross-validation
2.5 Fitting via the other 22 methods
2.6 Fitting models with several variables of interest
2.7 Fitting models with factor variables of interest
2.8 Fitting models with interactions of interest
2.9 Fitting models with a nonlinear relationship of interest
2.10 Controls are controls

3 Fitting logit inferential models to binary outcomes. What is different?
3.1 Interpreting standard odds ratios
3.2 Interpreting models with factor variables, nonlinear relationships, and interactions

4 Fitting inferential models to count outcomes. What is different?
4.1 Interpreting standard incidence-rate ratios
4.2 Interpreting models with factor variables

5 Exploring inferential model lassos
6 Fitting an inferential model with endogenous covariates

1.3 Review of concepts

We have said a lot about the inferential estimation commands elsewhere in this manual. For a quick
overview that describes what you need to know, and just what you need to know, see [LASSO] Lasso
intro. For a deeper understanding of lasso for inference, read [LASSO] Lasso inference intro. We
highly recommend reading both of those sections.

The inferential lasso estimators require you to break up your model into two parts: the part about
which you need to perform inference and the part about which you do not care. Let’s call the first
part the “inference part” and the second part the “noninference part”.

Often, the inference part is a single variable, perhaps even a single indicator variable, such as
“walks at least three miles a week”. The inference part could be more complicated than a single
variable. It might involve several variables, polynomials, or interactions. But, it will generally be
relatively small.

The noninference part can be much larger. What you include there will sometimes reflect an
ignorance of how that part relates to your outcome. Often, our theory or intuition involves only a few
variables, our variables of interest. We know lots of other things affect our outcome; we just have
little or no guidance about which things are important or how they relate to our outcome. We will
call the variables in this noninference part controls. What makes lasso for inference special is that
you need not understand how those controls affect the outcome.

There are other requirements. We said that the inference part will typically be small. The number
of controls that lasso needs to include must also be small with respect to the sample size. See Solutions
that focus on the true model in [LASSO] Lasso inference intro.

Inference examples — Examples and workflow for inference 91

1.4 The primary dataset

To demonstrate the inference commands, we will mostly use one dataset—a real-world dataset that
includes children’s performance on a test of reaction time, levels of nitrogen dioxide (NO2) pollution,
the children’s physical and socioeconomic characteristics, and some other environmental factors. The
data were collected and analyzed by Sunyer et al. (2017).

Our interest is in how levels of nitrogen dioxide in the classroom affect the children’s performance
on the test, while adjusting for other factors. We will focus on two outcomes from the Attention
Network Test (ANT)—reaction time and omissions. For linear models, we will use hit reaction time—a
measure of speed in responding to stimuli. For Poisson models, we will use omissions—the number
of times the child failed to respond to a stimulus. For logit models, we will use whether there were
any omissions.

We are using an extract of the data and focusing on how to use the software, so let’s not get ideas
about publishing any of this.

Let’s take a quick look at the dataset.

. use https://www.stata-press.com/data/r18/breathe
(Nitrogen dioxide and attention)

. describe

Contains data from https://www.stata-press.com/data/r18/breathe.dta
Observations: 1,089 Nitrogen dioxide and attention

Variables: 22 21 Jun 2022 12:43
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

react double %10.0g * Reaction time (ms)
correct int %10.0g * Number of correct responses
omissions byte %10.0g * Failure to respond to stimulus
no2_class float %9.0g Classroom NO2 levels (ug/m3)
no2_home float %9.0g Home NO2 levels (ug/m3)
age float %9.0g Age (years)
age0 double %4.1f Age started school
sex byte %9.0g sex Sex
grade byte %9.0g grade Grade in school
overweight byte %32.0g overwt * Overweight by WHO/CDC definition
lbweight byte %18.0g lowbw * Low birthweight
breastfeed byte %19.0f bfeed Duration of breastfeeding
msmoke byte %10.0f smoke * Mother smoked during pregnancy
meducation byte %17.0g edu Mother’s education level
feducation byte %17.0g edu Father’s education level
siblings_old byte %1.0f Number of older siblings in house
siblings_young byte %1.0f Number of younger siblings in

house
sev_home float %9.0g Home socio-economic vulnerability

index
green_home double %10.0g Home greenness (NDVI), 300m

buffer
noise_school float %9.0g School noise levels (dB)
sev_school float %9.0g School socio-economic

vulnerability index
precip double %10.0g Daily total precipitation

* indicated variables have notes

Sorted by:

92 Inference examples — Examples and workflow for inference

This is not a large dataset, just 22 variables. Regardless, we are going to use the vl tools to create
the variable lists we need for our analysis. This may seem like a detour, but vl is useful even for
small datasets, and it is nearly indispensable if your dataset has hundreds or even tens of thousands
of variables.

Our goal is to create two lists of control covariates, for example, independent variables. One list
will contain continuous control covariates and the other will contain categorical control covariates.
Why not just one list? Because we want the categorical variables to enter our model as indicator
variables for each level (distinct value) of the categorical variable. To expand a categorical variable
into indicator variables for its levels, we must prefix it with an i., for example, i.grade.

Starting with vl is easy: we just type vl set,

. vl set

Macro’s contents

Macro # Vars Description

System
$vlcategorical 10 categorical variables
$vlcontinuous 10 continuous variables
$vluncertain 2 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

Notes

1. Review contents of vlcategorical and vlcontinuous to ensure they are
correct. Type vl list vlcategorical and type vl list vlcontinuous.

2. If there are any variables in vluncertain, you can reallocate them
to vlcategorical, vlcontinuous, or vlother. Type
vl list vluncertain.

3. Use vl move to move variables among classifications. For example,
type vl move (x50 x80) vlcontinuous to move variables x50 and x80 to
the continuous classification.

4. vlnames are global macros. Type the vlname without the leading
dollar sign ($) when using vl commands. Example: vlcategorical not
$vlcategorical. Type the dollar sign with other Stata commands to
get a varlist.

vl has divided our 22 variables into 4 groups and placed those groups into global macros. Do not
worry about the technical term global macro. Just know that once the macro $vlcategorical has
been created, any time you type $vlcategorical, you will get the full list of categorical variables.

. display "$vlcategorical"
sex grade overweight lbweight breastfeed msmoke meducation feducation
> siblings_old siblings_young

That is convenient! vl has placed all of our categorical variables into one bin called $vlcate-
gorical. Now let’s follow the instructions in the notes after vl to be sure we like what vl did on
our behalf.

Inference examples — Examples and workflow for inference 93

. vl list vlcategorical

Variable Macro Values Levels

sex $vlcategorical 0 and 1 2
grade $vlcategorical integers >=0 3

overweight $vlcategorical 0 and 1 2
lbweight $vlcategorical 0 and 1 2

breastfeed $vlcategorical integers >=0 3
msmoke $vlcategorical 0 and 1 2

meducation $vlcategorical integers >=0 4
feducation $vlcategorical integers >=0 4

siblings_old $vlcategorical integers >=0 5
siblings_young $vlcategorical integers >=0 5

Among other things, we see that sex has just two values, 0 and 1; and meducation (mother’s
education level) has four values that are integers greater than or equal to 0.

Usually with categorical variables, we intend to create indicator variables for each unique value
(level) the variable takes on. So we are looking for variables that do not fit that purpose. siblings old
and siblings young have five values, but even their names make one think they might be counts.
Let’s look further at siblings old:

. tabulate siblings_old

Number of
older

siblings in
house Freq. Percent Cum.

0 564 52.17 52.17
1 424 39.22 91.40
2 84 7.77 99.17
3 8 0.74 99.91
4 1 0.09 100.00

Total 1,081 100.00

It does look like a count of siblings. We might want indicators for each count (level), or we might
want it to enter our model linearly as a continuous variable. That singleton count of 4 older siblings
will have to be dropped whenever we perform cross-validation or cross-fitting because it cannot be
in both the estimation and the validation samples. We could recode the values to represent 0, 1, 2,
and 3-or-more siblings and keep it a factor variable. After all, lasso is a technique built for handling
lots of variables. It is easier for our examples to simply redesignate the two counts of siblings as
continuous:

. vl move (siblings_old siblings_young) vlcontinuous
note: 2 variables specified and 2 variables moved.

Macro # Added/Removed

$vlcategorical -2
$vlcontinuous 2
$vluncertain 0
$vlother 0

94 Inference examples — Examples and workflow for inference

Let’s now take a look at all variables designated continuous. We will use summarize to get a bit
more detail:

. summarize $vlcontinuous

Variable Obs Mean Std. dev. Min Max

react 1,084 742.4808 145.4446 434.0714 1303.26
no2_class 1,089 30.16779 9.895886 7.794096 52.56397
no2_home 1,089 54.71832 18.04786 2.076335 118.6568

age 1,089 9.08788 .886907 7.45243 11.63313
age0 1,082 3.218022 1.293168 0 9

sev_home 1,089 .4196807 .1999143 .0645161 .9677419
green_home 1,089 .1980721 .077777 .0184283 .5258679

noise_school 1,089 37.96354 4.491651 28.8 51.1
sev_school 1,089 .4096389 .2064394 .1290323 .8387097

precip 1,089 .5593205 1.2364 0 5.8

siblings_old 1,081 .573543 .6752252 0 4
siblings_y~g 1,083 .565097 .6906831 0 6

We notice three things. First, age0 has a min of 0 and a max of 9—both integers. Did vl set
make a mistake? Let’s look carefully:

. tabulate age0

Age started
school Freq. Percent Cum.

0.0 4 0.37 0.37
0.3 1 0.09 0.46
0.5 1 0.09 0.55
0.8 1 0.09 0.65
0.9 1 0.09 0.74
1.0 33 3.05 3.79
1.4 1 0.09 3.88
1.5 8 0.74 4.62
1.7 1 0.09 4.71
2.0 116 10.72 15.43
2.5 4 0.37 15.80
2.8 3 0.28 16.08
2.9 1 0.09 16.17
3.0 739 68.30 84.47
4.0 35 3.23 87.71
5.0 39 3.60 91.31
6.0 54 4.99 96.30
7.0 25 2.31 98.61
8.0 8 0.74 99.35
9.0 7 0.65 100.00

Total 1,082 100.00

No mistake. There are fractional values. Also, looking back at the results of our describe, we
see that age 0 is the age at which the students started school. We do want to treat that as continuous.

Second, our dependent variable, react, is in the list. It is continuous, and so it belongs there.
However, we will need to take care that we do not include it among our control covariates.

Third, our covariate of interest, no2 class, is also in the list. As with react, we will need to
exclude it from the control covariates.

Inference examples — Examples and workflow for inference 95

What of those two variables that were in $vluncertain?

. vl list vluncertain

Variable Macro Values Levels

correct $vluncertain integers >=0 41
omissions $vluncertain integers >=0 27

vl set knows they are integer, but one has 41 distinct values and the other has 27. vl was
unwilling to classify them as either continuous or categorical. See [D] vl for how to change vl’s
rules. We said earlier that omissions is another outcome variable from the ANT. correct is also
an outcome variable from the ANT. Both are potential dependent variables, meaning that neither are
valid controls. We will leave them where they are.

We were fortunate that correct and omissions were already left out of $vlcategorical and
$vlcontinuous. Otherwise, it would be our job to ensure they are not included among the controls.
vl is convenient for classifying variables, but it does not truly understand anything about the meaning
of the variables. It is our job to know which variables are actually other outcomes or transformations
of the outcomes.

Let’s now create our own two global macros. One will have continuous covariates, and we will
call that macro cc. The other will have categorical covariates, which we will treat as factor covariates,
and we will call that macro fc.

. vl create cc = vlcontinuous - (react no2_class)
note: $cc initialized with 10 variables.

. vl create fc = vlcategorical
note: $fc initialized with 8 variables.

fc is just a copy of vlcategorical. We could just use vlcategorical, but it is best to create
our own macro in case we want to change it later. When we created cc, we removed our dependent
variable, react, and covariate of interest, no2 class. That gives us a list of continuous controls.

Now we have control covariate lists we can use in our inference commands.

No one at StataCorp would ever type everything we just typed interactively. We would open an
editor or the Do-file Editor and work there. I suggest you do the same thing. Click on the Do-file
Editor button, . Then type in the Editor

describe
vl set
vl list vlcategorical
tabulate siblings_old
vl move (siblings_old siblings_young) vlcontinuous
summarize $vlcontinuous
tabulate age0
vl list vluncertain
vl create cc = vlcontinuous - (react no2_class)
vl create fc = vlcategorical

Save the file as no2.do. Then you can type do no2 to re-create your control covariate lists.

If you want to exclude the exploratory commands, just type

vl set
vl move (siblings_old siblings_young) vlcontinuous
vl create cc = vlcontinuous - (react no2_class)
vl create fc = vlcategorical

96 Inference examples — Examples and workflow for inference

2 Fitting and interpreting inferential models

2.1 Overview of inferential estimation methods

Considering only the linear models for continuous outcomes and ignoring endogeneity, there
are 25 methods to fit any given model. There are three commands—dsregress, poregress, and
xporegress. The po and xpo commands allow the option semi, which adjusts how they partial
out, making five methods. Within each of these methods, there is an option allowing three ways of
selecting the lasso penalty λ—selection(plugin), selection(cv), and selection(adaptive).
And, for 10 of these 15 methods, there is an option (sqrtlasso) to specify that the square-root lasso
rather than the standard lasso be used to select covariates. Square-root lasso cannot be combined with
selection(adaptive).

What you type differs only a little when requesting any of these 25 methods. More importantly, you
interpret the coefficient estimates, standard errors, and confidence intervals exactly the same across
all 25 methods. Which is to say, you interpret them exactly as you would interpret the estimates from
linear regression.

Let’s see how to request each of these 25 methods.

Assume that our dependent variable is y. We will include two covariates of interest—d1 and d2.
We will specify 100 potential continuous control covariates—x1-x100. And, we have 30 potential
factor control variables—f1-f30. The factor variables could be ordered, unordered, or just indicators.
We specify them as i.(f1-f30) so that each level of each covariate is included as its own term. So,
if f3 has four levels, then it introduces four indicator variables (covariates) into the potential controls.
See [U] 11.4.3 Factor variables. We could also introduce interactions among the factor variables,
among the continuous variables, or both. Do that if you wish.

All these commands will run if you use lassoex.dta.

To make the commands easier to read, we do not specify option rseed() to make reproducible
the commands that randomly split the samples repeatedly. If you want the results to be the same each
time you run the commands, add rseed(12345) (or whatever number you like).

. use https://www.stata-press.com/data/r18/lassoex

We can first fit the model using the cross-fit partialing-out method, the partialing-out method, and
the double-selection method. In all cases, we are using the default plugin method for choosing the
included controls via its choice of the lasso penalty parameter λ.

. xporegress y d1 d2, controls(x1-x100 i.(f1-f30))

. poregress y d1 d2, controls(x1-x100 i.(f1-f30))

. dsregress y d1 d2, controls(x1-x100 i.(f1-f30))

We can fit the same models, but this time using the cross-validation method to choose the lasso
penalty parameter λ and thereby to choose the included control covariates.

. xporegress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(cv)

. poregress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(cv)

. dsregress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(cv)

Again, we can fit the same models, but this time using the adaptive method to choose the included
control covariates.

. xporegress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(adaptive)

. poregress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(adaptive)

. dsregress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(adaptive)

Inference examples — Examples and workflow for inference 97

We can rerun each of the first six methods using the square-root lasso rather than the standard
lasso, by adding the option sqrtlasso. Here is one example that uses the cross-fit partialing-out
method with plugin selection:

. xporegress y d1 d2, controls(x1-x100 i.(f1-f30)) sqrtlasso

And, we can rerun any of the 10 methods that use commands poregress or xporegress,
including those with sqrtlasso, using the semi option to specify an alternate form of partialing
out. Here is one example:

. xporegress y d1 d2, controls(x1-x100 i.(f1-f30)) semi

We apologize for the bewildering array of choices. Lasso and machine learning is an active area
of research, and you may want the flexibility to choose among these options. That said, if your
interest is in your research and not in researching lasso, we feel reasonably comfortable making some
suggestions based on the state of the lasso literature at the time this manual was written.

1. Use xporegress with no options to fit your model using the cross-fit partialing-out method with
λ, and thereby the control covariates, selected using the plugin method.

The plugin method was designed for variable selection in this inferential framework and has the
strongest theoretical justification.

2. If you want to explore the process whereby the control covariates were selected, add option
selection(cv) to your xporegress specification.

You can then explore the path by which each lasso selected control covariates.

You are still on firm theoretical footing. Cross-validation meets the requirements of a sufficient
variable-selection method.

Cross-validation has a long history in machine learning. Moreover, what cross-validation is doing
and how it chooses the covariates is easy to explain.

3. If you do not want to explore lots of lassos and you want to fit models much more quickly, use
commands dsregress or poregress rather than using xporegress.

xporegress fits 10 lassos for the dependent variable and 10 more lassos for each covariate
of interest! That is the default; you can request more. Or you can request fewer, but that
is not recommended. So, xporegress is orders of magnitude slower than poregress and
dsregress. And it has orders of magnitude more lassos to explore. Overwhelming.

Why then is xporegress our first recommendation? It is safer if you think that the process that
generated your data has lots of covariates relative to your sample size. Similarly, it is also safer
if you want to explore lots of potential controls. The number of potential controls is not as
problematic as the number of true covariates because it is the natural log of the potential control
that counts. For example, needing 10 additional true covariates is the same as requesting just
over 22,000 potential controls. The jargon term for this is sparsity. xporegress has a weaker
sparsity requirement than do poregress and dsregress. See Solutions that focus on the true
model in [LASSO] Lasso inference intro.

Despite this benefit, if your model is weakly identified by the data, dsregress can be more stable
than either poregress or xporegress. dsregress uses a union of all the selected controls
from all the lassos for all of its computations after selection. Both poregress and xporegress
use the results of each lasso separately to perform parts of their computations (specifically, to
compute their moments), and then put all that together when solving the moment conditions.
This makes poregress and xporegress sensitive to which controls are selected for each lasso.
So if you change your specification slightly, dsregress may be more stable. To be clear, we
said more stable, not better.

98 Inference examples — Examples and workflow for inference

4. We have suggested xporegress without a selection option and xporegress, poregress, and
dsregress with option selection(cv). Feel free to try any of the remaining 21 methods.
They all meet the requirements of sufficient variable-selection methods, so all can be theoretically
justified.

Everything we said above applies to models for binary outcomes fit using xpologit, pologit,
and dslogit; and it applies to models for count outcomes fit using xpopoisson, popoisson, and
dspoisson.

These suggestions are based on the assumption that you are not concerned that you have violated
or are near the method’s sparsity bound. See Solutions that focus on the true model in [LASSO] Lasso
inference intro for a discussion of sparsity bounds. Data that fit your model poorly can trigger a
sparsity bound sooner than data that fit well. If you are concerned, see some alternate but similar
suggestions in [LASSO] Inference requirements.

2.2 Fitting via cross-fit partialing out (xpo) using plugin

In the previous section, we recommended using the cross-fit partialing-out estimator xporegress as
your first option. We will use that method to fit a model of how levels of nitrogen dioxide (no2 class)
in a classroom affect the reaction time (react) of students. We use the dataset described in section 1.4.

. use https://www.stata-press.com/data/r18/breathe, clear
(Nitrogen dioxide and attention)

We created a do-file in section 1.4 that collects our variables into groups that are convenient for
specifying inferential lasso models. If you have it saved, great. We will run the one from the Stata
Press website:

. do https://www.stata-press.com/data/r18/no2
(output omitted)

Recall that the purpose of the inferential lasso estimators is to estimate the relationship between
one, or a few, covariates of interest and a dependent variable, while adjusting for a possibly large set of
control variables. And by “large”, we mean perhaps many more controls than you have observations.

We now have our list of continuous control variables in global macro $cc and our list of factor-
variable control variables in global macro $fc. What does that mean? Anywhere we type $cc, Stata
substitutes the list of continuous controls, and anywhere we type $fc, Stata substitutes the list of
factor controls. Let’s display them:

. display "$cc"
no2_home age age0 sev_home green_home noise_school sev_school precip siblings_o
> ld siblings_young

. display "$fc"
sex grade overweight lbweight breastfeed msmoke meducation feducation

That is going to save us a lot of typing.

Inference examples — Examples and workflow for inference 99

Now we are ready to fit our model.

. xporegress react no2_class, controls($cc i.($fc)) rseed(12345)

Cross-fit fold 1 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin

Cross-fit fold 2 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin

Cross-fit fold 3 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin

Cross-fit fold 4 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin

Cross-fit fold 5 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin

Cross-fit fold 6 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin

Cross-fit fold 7 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin

Cross-fit fold 8 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin

Cross-fit fold 9 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin

Cross-fit fold 10 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32

Number of selected controls = 10
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 22.87
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.316063 .4843097 4.78 0.000 1.366834 3.265293

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The construct i.($fc) in controls() is factor-variable notation that expands each variable in
$fc into indicator variables for each distinct value of the variable. We specified rseed(12345) to
set the seed of the random-number generator so that our results are reproducible. We did this because
the cross-fit estimator uses cross-fitting and so divides the sample into random groups. If we do not
set the seed, we will get slightly different results each time we run the command. There is nothing
special about 12345; choose any number you like. You will get different, but hopefully similar, results
for any seed. The same seed will always produce the same results.

100 Inference examples — Examples and workflow for inference

Now to the output. That is a long log. xporegress is just reporting on its progress as it performs 10
cross-fits and then performs 2 lassos within each group. We see in the header that 1,036 observations
were used, that we specified 32 controls, that 10 controls were selected from the 32, and that we did
not resample. From the Wald statistic and its p-value, we see that our covariate of interest is highly
significant.

We interpret the coefficient estimates just as we would for a standard linear regression. Because
this is linear regression, that effect can be interpreted as the population average effect, the effect for
any individual, or the effect for any group. What we lose with the inferential lasso estimators is the
ability to interpret any other coefficients.

Our point estimate for the effect of nitrogen dioxide on reaction time is 2.3, meaning that we
expect reaction time to go up by 2.3 milliseconds for each microgram per cubic meter increase in
nitrogen dioxide. This value is statistically different from 0 well beyond the 5% level, in fact, beyond
the 0.1% level. Our 95% confidence interval is 1.4 to 3.3.

We also note that xporegress estimates robust standard errors, so all the associated statistics are
also robust. With xporegress, we are robust to nonnormality of the error and to heteroskedasticity.

We can see how stable the lasso selection of controls is by typing lassoinfo.

. lassoinfo

Estimate: active
Command: xporegress

No. of selected variables
Selection

Variable Model method min median max

no2_class linear plugin 5 5 5
react linear plugin 3 5 5

We see that, over the 10 cross-fits, the plugin method selected 5 controls for the lasso on the
covariate of interest—no2 class. It selected 5 controls every time. For the dependent variable,
react, the plugin method selected between 3 and 5 controls. Even though these are real data, they
look to be easy for the lasso and plugin to handle. There is nothing to interpret in this table, though
if some of the lassos are consistently selecting 0 controls, you might want to explore further. See
Solutions that focus on the true model in [LASSO] Lasso inference intro and see [LASSO] Inference
requirements.

2.3 Fitting via cross-fit partialing out (xpo) using cross-validation

Continuing with the example above, we can use cross-validation to select our controls rather than
plugin. Cross-validation is a well-established method in the machine-learning literature. Even so, it
is known to select more variables than are absolutely necessary. We add selection(cv) to our
previous xporegress command:

Inference examples — Examples and workflow for inference 101

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)

(output omitted)
Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32

Number of selected controls = 26
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 23.34
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.348458 .4861133 4.83 0.000 1.395693 3.301222

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

If you run this command, you will see that cross-validation takes much longer than plugin. For
each cross-fit, cross-validation performs its own 10-way partition of the data and runs lassos on each
of those 10 partitions for the variables react and no2 class. After all this computation, the results
look remarkably similar. Our coefficient estimate is still 2.3 and is still highly significant. Our 95%
confidence interval is 1.4 to 3.3. This point estimate and the one obtained by plugin are close and
well within each respective confidence interval.

This high degree of similarity is not always the case. Sometimes different methods produce different
results.

Given that the results are so similar, you might guess that plugin and cross-validation selected
similar controls. A quick glance at the header will dispel that thought. Cross-validation selected 26
controls, far more than the 10 controls selected by plugin. Remember that picking the “right” model is
not what these methods are about. As long as the selected controls adequately control for everything
necessary to fit the variables of interest, they are doing their job.

For these data and this model, the results simply are not very sensitive to the number of controls
selected. This is true over a broad range—at the least from the 10 controls selected by plugin to the
26 controls selected by cross-validation.

Let’s take a quick look at the lassos:

. lassoinfo

Estimate: active
Command: xporegress

No. of selected variables
Selection

Variable Model method min median max

no2_class linear cv 9 13 16
react linear cv 6 15 19

Even within cross-fits, cross-validation shows a lot more variation than plugin. The number of
selected controls from the lassos on no2 class ranges from 9 to 16. The lassos for react show
even more variation, ranging from 6 to 19 selected controls. Where did the 26 controls in the output
of xporegress come from? It is a count of the union of all controls from any lasso.

102 Inference examples — Examples and workflow for inference

Let’s peer a bit deeper into the lassos by using lassoinfo:

. lassoinfo, each

Estimate: active
Command: xporegress

No. of
Dependent Selection xfold Selection selected
variable Model method no. criterion lambda variables

no2_class linear cv 1 CV min. .1801304 14
no2_class linear cv 2 CV min. .2561599 10
no2_class linear cv 3 CV min. .2181624 13
no2_class linear cv 4 CV min. .1963854 13
no2_class linear cv 5 CV min. .2352711 11
no2_class linear cv 6 CV min. .2663564 12
no2_class linear cv 7 CV min. .1293717 16
no2_class linear cv 8 CV min. .1722497 15
no2_class linear cv 9 CV min. .264197 9
no2_class linear cv 10 CV min. .1184878 16

react linear cv 1 CV min. 2.130811 19
react linear cv 2 CV min. 2.443412 16
react linear cv 3 CV min. 2.062956 17
react linear cv 4 CV min. 4.220311 13
react linear cv 5 CV min. 7.434224 8
react linear cv 6 CV min. 3.356193 14
react linear cv 7 CV min. 7.954354 6
react linear cv 8 CV min. 6.422852 8
react linear cv 9 CV min. 2.982171 15
react linear cv 10 CV min. 2.738883 18

We see that the lasso penalty parameter λ and the associated number of selected variables varies
widely. This is particularly true of the lassos for react. It simply does not matter; the estimates for
no2 class, our covariate of interest, are not affected.

2.4 Fitting via double selection (ds) using cross-validation

Continuing with the example above, we will fit the model using double selection and cross-validation.
We recommend this for three reasons.

First, the double-selection method works quite a bit differently from the partialing out done by
cross-fit. Instead of working with the lasso results one at a time and then using method of moments
to estimate the parameters, double selection takes the union of selected covariates from all lassos and
then just does a linear regression of react on no2 class and that union of selected covariates. The
two methods are asymptotically equivalent if both sparsity bounds are met, but in finite samples, they
can respond differently to any violation of the conditions required by the inferential lasso estimators.
See Solutions that focus on the true model in [LASSO] Lasso inference intro for a discussion of
sparsity bounds.

Second, double selection requires only two lassos for our model, making it much easier to explore
the lassos.

Inference examples — Examples and workflow for inference 103

Third, double selection is much easier to explain. We just did it above in half a sentence.

. dsregress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)

Estimating lasso for react using cv
Estimating lasso for no2_class using cv

Double-selection linear model Number of obs = 1,036
Number of controls = 32
Number of selected controls = 22
Wald chi2(1) = 24.17
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.404191 .4890458 4.92 0.000 1.445679 3.362704

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The coefficient estimate for no2 class is now to 2.4, still almost the same as fitting by xporegress
with plugin selection. The associated confidence interval is 1.4 to 3.4. Our test against 0 was strong
and is still strong. This really is a benign dataset for these linear models.

As with cross-validation, with cross-fit the number of selected controls is large—22.

What we are seeing are incredibly stable estimates.

104 Inference examples — Examples and workflow for inference

2.5 Fitting via the other 22 methods

We will not show the results of the other 22 methods for fitting this model. Here is what you
would type for each method:

. xporegress react no2_class, controls($cc i.($fc)) selection(adaptive) rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(adaptive) rseed(12345)

. dsregress react no2_class, controls($cc i.($fc)) rseed(12345)

. dsregress react no2_class, controls($cc i.($fc)) selection(adaptive) rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) sqrtlasso rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso ///
rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) sqrtlasso rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso ///
rseed(12345)

. dsregress react no2_class, controls($cc i.($fc)) sqrtlasso rseed(12345)

. dsregress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso ///
rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) semi rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) semi rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) selection(adaptive) semi ///
rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) semi rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(cv) semi rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(adaptive) semi ///
rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) sqrtlasso semi rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso semi ///
rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) sqrtlasso semi rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso semi ///
rseed(12345)

By now, the commands are nearly self explanatory.

Command xporegress fits via the cross-fit partialing-out method. Command poregress fits via
the partialing-out method. Command dsregress fits via the double-selection method.

Adding option selection(cv) specifies that cross-validation select the covariates. Adding option
selection(adaptive) specifies that adaptive lasso select the covariates. No selection()
option implies that the plugin method (the default) select the covariates.

Adding option sqrtlasso specifies the square-root lasso rather than standard lasso.

Adding option semi specifies an alternate way of combining the moments for the po and xpo
methods.

If you are interested, run some or all of these commands.

If you do, you will find that for these data and this model, the method we choose makes little
difference. The results for these 22 methods look a lot like the results for the first 3 methods.
The maximum coefficient for no2 class is 2.4, and the minimum coefficient is 2.3. The maximum
standard error is 0.51, and the minimum is 0.48. All methods reject that the coefficient for no2 class
is 0 well beyond the 1% level of significance.

Inference examples — Examples and workflow for inference 105

The close similarity of the results from all 25 methods may seem surprising. Are they all selecting
the same controls? The answer is no. Recall from 2.2 Fitting via cross-fit partialing out (xpo) using
plugin that the selected number of controls is 10, whereas from 2.4 Fitting via double selection (ds)
using cross-validation, the selected number of controls is 22—over twice as many.

Let’s look at just two of the methods to see which controls they are selecting. We can easily do
this only lasso by lasso (not command by command), so we will use two double-selection methods.
Double selection creates only two lassos for our model. Comparing the cross-fit methods would
require looking at 20 lassos per method. Let’s use lassocoef to compare double selection using
plugin and double selection using cross-validation.

First, we rerun those two models and store their estimates.

. dsregress react no2_class, controls($cc i.($fc)) rseed(12345)
(output omitted)

. estimates store ds_plugin

. dsregress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)
(output omitted)

. estimates store ds_cv

106 Inference examples — Examples and workflow for inference

Then, we compare the selected controls from each lasso.

. lassocoef (ds_plugin, for(react))
> (ds_cv , for(react))
> (ds_plugin, for(no2_class))
> (ds_cv , for(no2_class))

ds_plugin ds_cv ds_plugin ds_cv
react react no2_class no2_class

age x x x
0.sex x x

grade
2nd x x
4th x x
3rd x

feducation
University x x x

Primary x
<Primary x

age0 x
sev_home x x

siblings_young x x
0.lbweight x

meducation
1 x
2 x

no2_home x x
green_home x x

noise_school x x
sev_school x x

precip x x

breastfeed
No breastfeeding x

>6 months x

msmoke
No smoking x

_cons x x x x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

The first two columns of x’s show which controls were selected from the lassos for the dependent
variable, react—the first column for the plugin method and the second for cross-validation. The
third and fourth columns of x’s show which controls were selected by the lassos for the covariate of
interest, no2 class.

Cross-validation selected more controls than did plugin in the lassos for both the dependent variable,
react, and the covariate of interest, no2 class. That is not surprising because plugin is designed
to be cautious about adding noise through variable selection while cross-validation cares only about
minimizing the cross-validation mean squared error.

Inference examples — Examples and workflow for inference 107

Perhaps more interesting is that for both react and no2 class, cross-validation selected a superset
of the variables selected by plugin. While not guaranteed, that result is a reflection of how the lasso
works. Plugin and cross-validation select their covariates by setting an “optimal” value of λ, the lasso
penalty. Plugin selects a larger λ and thereby a stronger penalty that selects fewer variables. As the
penalty gets weaker, lasso can drop selected variables when adding others, but lasso is more likely
to simply add variables. So, in this case, cross-validation’s weaker penalty leads to a superset of the
variables selected by plugin. That is a bit of an oversimplification because plugin selects variables
that have been weighted by the inverse standard deviation of their scores while cross-validation does
not weight the variables. This means that the lambda for plugin and the lambda for cross-validation
are on different scales.

Recall, though, that the only role of the selected controls is to adequately capture the unmodeled
correlations among the dependent variable, the variables of interest, and the model’s error.

2.6 Fitting models with several variables of interest

All 11 inferential models in Stata allow you to have more than one variable of interest. Let’s
extend our base example from section 2.2 to include both no2 class and student’s age as variables
of interest.

The only trick is that we must remove our new variables of interest from our list of continuous
controls. vl makes that easy:

. vl create cc6 = cc - (age)
note: $cc6 initialized with 9 variables.

We have now created the global macro cc6, which has the same variables as cc except that age
has been removed.

We fit the model using cross-fit partialing-out with the default plugin selection by typing
. xporegress react no2_class age, controls($cc6 i.($fc)) rseed(12345)

(output omitted)
Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 31

Number of selected controls = 9
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 25.24
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.353826 .4892462 4.81 0.000 1.394921 3.312731
age -25.01451 11.38901 -2.20 0.028 -47.33656 -2.69245

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The coefficient for no2 class has barely changed at all from its estimate in section 2.2.

Again, we interpret the coefficients on the variables of interest just as we would if they were part
of a standard linear regression. So a 1-unit change in no2 class elicits a 2.4-unit change in react.
A 1-unit change in age elicits a −25-unit change in react. Because the relationship is linear, these
changes can be interpreted as the expected change for any individual or as the expected change for
any population or subpopulation of interest.

108 Inference examples — Examples and workflow for inference

2.7 Fitting models with factor variables of interest

Having a factor variable of interest is really no different than having several variables of interest.
Factor variables just provide a convenient way to add several indicator variables to our model.

Those who study response times for children know that they decrease (improve) as the child is
exposed over time to educational stimuli. We might then be interested in how the response times vary
across the child’s grade level. Ignoring our original interest in the effect of nitrogen dioxide for the
moment, let’s pretend our only variable of interest is grade in school.

The distribution of grades in our sample looks like this:

. tabulate grade

Grade in
school Freq. Percent Cum.

2nd 412 37.83 37.83
3rd 397 36.46 74.29
4th 280 25.71 100.00

Total 1,089 100.00

If we wish to use the levels of grade as our variables of interest, we need to remove it from our
list of factor-variable controls:

. vl create fc7 = fc - (grade)
note: $fc7 initialized with 7 variables.

We are not currently interested in the effect of nitrogen dioxide, so we need to add it back to the
list of continuous controls:

. vl create cc7 = cc + (no2_class)
note: $cc7 initialized with 11 variables.

We can now fit our model with the levels of grade as our variables of interest. We add the option
baselevels so that we can see which level of grade has been made the base level.

. xporegress react i.grade, controls($cc7 i.($fc7)) baselevels rseed(12345)

(output omitted)

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 30

Number of selected controls = 5
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 16.82
Prob > chi2 = 0.0002

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

grade
2nd 0 (base)
3rd -62.07497 15.26513 -4.07 0.000 -91.99408 -32.15587
4th -92.52593 25.02151 -3.70 0.000 -141.5672 -43.48467

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Inference examples — Examples and workflow for inference 109

A common theme in these sections is that we interpret the results for the variables of interest just
as we would if they were part of a linear regression. This is no different for factor variables. As
we would with a simple linear regression, we interpret each of the coefficients as the increases in
performance relative to the base level for second graders. We can see that mean reaction time is 62
milliseconds faster for third graders than it is for second graders. Fourth graders are, on average, 93
milliseconds faster than second graders.

That common theme extends to the tools that are available after fitting a model with any of the
lasso inference commands. For example, we can use contrast to do comparisons of the grade levels
that are not against a reference category, as they were in the regression. We could use a reverse
adjacent (ar.) contrast to compare each grade to the prior grade:

. contrast ar.grade

Contrasts of marginal linear predictions

Margins: asbalanced

df chi2 P>chi2

grade
(3rd vs 2nd) 1 16.54 0.0000
(4th vs 3rd) 1 4.23 0.0397

Joint 2 16.82 0.0002

Contrast Std. err. [95% conf. interval]

grade
(3rd vs 2nd) -62.07497 15.26513 -91.99408 -32.15587
(4th vs 3rd) -30.45096 14.80702 -59.47218 -1.429727

The regression showed a 62-millisecond decrease in response time when comparing third graders to
second graders, and that is reproduced by contrast. The difference with reverse-adjacent comparisons
is that the comparison group for fourth graders is now third graders, and we estimate that difference
to be a 30-millisecond decrease. It would take a bit more work to determine if the apparently slower
improvement from third to fourth grade is indeed significantly different from the improvement from
second to third grade. If you are interested, and without explanation, you could type

. contrast ar.grade, post

. lincom _b[ar2vs1.grade] - _b[ar3vs2.grade]

You will find that, by a slim margin, we fail to distinguish between the effect of going from second
to third grade and the effect of going from third to fourth grade.

If we had a more complicated set of interest, we would find contrast indispensable. If you have
factor variables of interest, we suggest you become familiar with contrast.

What we cannot do with results from the inferential lasso models is use margins to estimate
population and subpopulation means. margins requires a full coefficient vector and variance matrix
for those coefficients. The lasso inference commands can only tell us about a subset of that coefficient
vector and associated variance matrix.

If you are epidemiologically inclined, you might wonder if the effect of grade is not just a proxy
for increasing age. Now that we have multiple variables of interest and factor variables of interest,
we can check that too:

110 Inference examples — Examples and workflow for inference

. vl create cc7b = cc7 - (age)
note: $cc7b initialized with 10 variables.

. xporegress react age i.grade, controls($cc7b i.($fc7)) baselevels rseed(12345)

(output omitted)
Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 29

Number of selected controls = 3
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(3) = 203.93
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

age -18.50751 11.16037 -1.66 0.097 -40.38143 3.366418

grade
2nd 0 (base)
3rd -67.35294 15.4679 -4.35 0.000 -97.66947 -37.03641
4th -100.7346 25.0814 -4.02 0.000 -149.8932 -51.57594

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The estimates for grade level have changed only a bit. Response times may improve with age,
but we cannot detect that at the 5% level. Regardless, the effect of educational stimulation appears
to be independent. Most importantly, we see that all of our contrast tools can be used with these
estimators.

2.8 Fitting models with interactions of interest

Not surprisingly, tools for evaluating interactions for other estimation commands are also available
to evaluate interactions among our variables of interest, whether those interactions are strictly among
factor variables or are with factor variables and continuous variables. Let’s arbitrarily check for an
interaction between the child’s sex and his or her age. Again, we need to manage our list of controls by
removing sex and age from the list of factor-variable controls. And we again need to put no2 class,
which is no longer a variable of interest, back into the continuous controls.

. vl create fc8 = fc - (sex grade)
note: $fc8 initialized with 6 variables.

. vl create cc8 = cc + (no2_class)
note: $cc8 initialized with 11 variables.

Inference examples — Examples and workflow for inference 111

We can then fit a cross-fit model of reaction time where our variable of interest is sex##grade—the
interaction of sex and grade while also including individual indicators for the levels of sex and
grade.

. xporegress react sex##grade, controls($cc8 i.($fc8)) baselevels rseed(12345)

(output omitted)
Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 28

Number of selected controls = 6
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(5) = 64.57
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

sex
Male 0 (base)

Female 45.10077 13.73912 3.28 0.001 18.17259 72.02896

grade
2nd 0 (base)
3rd -65.62381 17.72386 -3.70 0.000 -100.362 -30.88568
4th -102.2437 26.5379 -3.85 0.000 -154.257 -50.23033

sex#grade
Female#3rd 3.173242 19.09434 0.17 0.868 -34.25098 40.59747
Female#4th 18.42495 19.98327 0.92 0.357 -20.74154 57.59144

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The two coefficients of the interaction sex#grade and their associated statistics do not give us
much hope that an interaction is statistically detectable. Let’s check anyway:

. contrast sex#grade

Contrasts of marginal linear predictions

Margins: asbalanced

df chi2 P>chi2

sex#grade 2 0.96 0.6188

Definitely not statistically significant, at any level.

What about the individual effects of sex and grade?

. contrast sex

Contrasts of marginal linear predictions

Margins: asbalanced

df chi2 P>chi2

sex 1 42.33 0.0000

112 Inference examples — Examples and workflow for inference

. contrast grade

Contrasts of marginal linear predictions

Margins: asbalanced

df chi2 P>chi2

grade 2 17.83 0.0001

Both individual effects are significant at any level you would care to consider.

Some studies have found differences in some types of reaction times between the sexes, but we
might want to consider another factor—the interaction between sex and no2 class.

We can put grade back into the controls because it has no interaction with sex.

. vl create fc8b = fc - (sex)
note: $fc8b initialized with 7 variables.

We are ready to fit a model that includes sex, no2 class, and their interaction. That can be
written in shorthand, by typing c.no2 class##i.sex. We fit the model:

. xporegress react c.no2_class##i.sex, controls($cc i.($fc8b)) rseed(12345)

(output omitted)

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 30

Number of selected controls = 9
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(3) = 63.42
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 1.708798 .5961435 2.87 0.004 .5403779 2.877217

sex
Female 17.47061 24.31548 0.72 0.472 -30.18686 65.12807

sex#
c.no2_class

Female 1.099669 .7737183 1.42 0.155 -.4167913 2.616129

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Everything we need to know is in this output.

The effect of no2 class is still positive, as it was for all of our earlier fits. The effect is now a
bit smaller at a 1.7-millisecond increase in response for every microgram increase in NO2 per cubic
meter.

There is no longer a significant difference in response times for females compared with males.
The point estimate is 17, but its z statistic is a scant 0.72.

The interaction between sex and no2 class is also not significant, though you might wish you
had more data.

Inference examples — Examples and workflow for inference 113

You might be curious if the effect of nitrogen dioxide across both males and females from this
model is similar to our earlier models without an interaction. If we assume 50% males and 50%
females, we just need to add half of the interaction term to the estimate for males.

. lincom no2_class + .5*c.no2_class#1.sex

(1) no2_class + .5*1.sex#c.no2_class = 0

react Coefficient Std. err. z P>|z| [95% conf. interval]

(1) 2.258632 .4800889 4.70 0.000 1.317675 3.199589

The estimate is extremely close to the point estimate and standard errors that we obtained in 2.2
Fitting via cross-fit partialing out (xpo) using plugin—both round to 2.3 with standard errors that
round to 0.48.

While we have pretended to be performing analysis, the important thing to know is that the standard
inference tools can be applied to the variables of interest.

2.9 Fitting models with a nonlinear relationship of interest

Let’s continue with our reaction-time example and put a nonlinearity in no2 class into the covari-
ates of interest. What we really mean by “nonlinear” in this context is nonlinear-but-linearizeable—
polynomials, logs, ratios, and the like.

We just want to demonstrate how to think about nonlinearities with these models, so let’s not
dwell on where the nonlinear relationship comes from. In your work, you may have some theory
or precedence for your choice of nonlinearities. For now, we know that fractional polynomials (fp)
produce whole classes of reasonable curves, so we will arbitrarily pick one of those forms that allows
for two inflection points—including one over the square root and the cube of the variable.

. generate no2fp1 = no2_class^(-2)

. generate no2fp2 = no2_class^3

With those as our two covariates of interest, we fit a cross-fit model. Our controls are from the
model we fit in 2.2 Fitting via cross-fit partialing out (xpo) using plugin.

. xporegress react no2fp1 no2fp2, controls($cc i.($fc)) rseed(12345)

(output omitted)

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32

Number of selected controls = 11
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 24.55
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2fp1 -2915.067 2227.731 -1.31 0.191 -7281.339 1451.205
no2fp2 .0005923 .0001394 4.25 0.000 .0003191 .0008655

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

114 Inference examples — Examples and workflow for inference

We see that it is unclear if we really need two terms to model this relationship. Only one of the
terms is significant. But our nonlinearity is just a construct for demonstration and we want to see
how this works, so we are undeterred.

We could do a bit of algebra and decide what those terms imply about the relationship between
nitrogen dioxide and reaction time. Or we could just graph the relationship. Predictions in inferential
models are typically not much use, but they are perfect for our purpose.

We say predictions are not much use because the selected controls should not be used in a prediction.
They are used by xporegress solely to obtain consistent estimates of the model of interest, but
they are not themselves interpretable. So they should not be used to form predictions. We should not
even use the intercept. For xporegress and all the other inferential models, only our covariates of
interest affect the prediction. That is fine with us; that is all we want to see. We would like to get
confidence intervals too, so let’s use predictnl to get our predictions:

. predictnl reacthat = predict(), ci(lb ub)
note: confidence intervals calculated using Z critical values.

We can then graph the prediction and its confidence interval:

. twoway rarea lb ub no2_class, sort || line reacthat no2_class,
> sort legend(off) title("Reaction time (ms)")

-100

-50

0

50

100

150

10 20 30 40 50
Classroom NO2 levels (ug/m3)

Reaction time (ms)

There might be some upward curvature as nitrogen dioxide reaches its highest observed levels, but
the confidence interval is too wide to be sure. The downward bend at the lowest levels of nitrogen
dioxide is also suspect because the confidence interval is also wide in that region of the graph. We
have scant evidence that this curve is any better than a linear relationship.

If you are unfamiliar with twoway syntax, we asked for two overlaid plots: a range area for
the confidence interval from the variables lb and ub plotted against no2 class, rarea lb ub
no2 class, and a line of predicted reaction time from the variable reacthat against no2 class.

Unfortunately, we cannot use any information-criterion tools to compare our nonlinear fit with our
earlier linear fit. The inferential models cannot estimate the log likelihood or any form of residual
required to form any information-criterion measures.

Inference examples — Examples and workflow for inference 115

2.10 Controls are controls

The literature on the inferential models fit by double-selection, partialing-out, and cross-fit partialing-
out estimators refers to the “variables of interest”, but a more accurate term might be “submodel of
interest”. We say that because a maintained assumption is that the control variables are just controls
and they do not interact with the variable or variables of interest. That is to say, they can shift the
expected value of the outcome, but they cannot change the effect of the variables of interest.

If you think control variable x3 actually interacts with one of your variables of interest, say,
d1, then you will need to include that interaction in your submodel of interest. So if x3 and d1
are continuous, you need to add c.x3#c.d1 to your submodel of interest; if x3 is an indicator or
multi-value factor variable, you need to add i.x3#c.d1; if both are factor variables, you need to
add i.x3#i.d1. In these cases, x3 is not a control variable—it is part of your submodel of interest.

3 Fitting logit inferential models to binary outcomes. What is different?

Even if your current interest is logit models, we suggest you also read 2 Fitting and interpreting
inferential models. That section has many more examples and goes into more detail. If you are starting
here, we also suggest you read 1.4 The primary dataset to become familiar with the dataset and how
we are manipulating it. Section 1.4 is not essential reading, but if things become confusing, do read
it. Here we focus primarily on what is different about logit models.

Without exception, every command and example from section 2 can be run using a logit lasso
inference command. Just change regress to logit in the estimation commands, and change the
dependent variable from react to the dependent variable we create below.

We will replicate a few of the analyses from section 2 using logit models and explain how the
results are interpreted with binary outcomes. Feel free to run others. Their results are interpreted in
the same way as those shown here.

Let’s continue with the dataset we have been using to measure the effect of nitrogen dioxide in
the classroom on the reaction time of school children.

. use https://www.stata-press.com/data/r18/breathe, clear
(Nitrogen dioxide and attention)

We need to create the global macros that will hold our lists of continuous and factor-variable
control variables:

. do https://www.stata-press.com/data/r18/no2
(output omitted)

To see how these lists were created, see 1.4 The primary dataset.

This dataset does not have a binary (dichotomous) dependent variable, but it is easy enough to
create one. The variable omissions contains a count of the number of times a child failed to respond
to a stimuli. We can pretend that we only saw whether or not there were any omissions. Let’s create
a variable that is 1 when there were any omissions and is 0 otherwise:

. generate miss1 = omissions >= 1 if !missing(omissions)
(5 missing values generated)

116 Inference examples — Examples and workflow for inference

Then take a quick look at our new variable:

. tabulate miss1

miss1 Freq. Percent Cum.

0 508 46.86 46.86
1 576 53.14 100.00

Total 1,084 100.00

We have 508 children who never missed a stimulus from the test and 576 who missed at least one
stimulus.

3.1 Interpreting standard odds ratios

If you are new to inferential lasso models and have not at least read 2.2 Fitting via cross-fit
partialing out (xpo) using plugin, do that now. We will only explain how to interpret the odds ratios
below. Section 2.2 explains more.

We can now fit a model of how classroom nitrogen dioxide levels (no2 class) affect whether
children miss any stimuli on a reaction-time test (miss1). Our continuous controls are in the global
macro $cc and our factor-variable controls are in the global macro $fc, as they were in our very
first example in section 2.2. We use xpologit to fit the model:

. xpologit miss1 no2_class, controls($cc i.($fc)) rseed(12345)

(output omitted)

Cross-fit partialing-out Number of obs = 1,036
logit model Number of controls = 32

Number of selected controls = 5
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 11.18
Prob > chi2 = 0.0008

Robust
miss1 Odds ratio std. err. z P>|z| [95% conf. interval]

no2_class 1.027338 .0082854 3.34 0.001 1.011227 1.043706

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The odds ratio for no2 class is 1.03. We interpret that ratio just as we would if this were a
logistic regression. For every unit increase in the level of nitrogen dioxide, the odds of a student
missing at least one stimulus increase by a factor of 1.03, with a confidence interval of 1.01 to 1.04.
As always with these models, we cannot estimate a constant, so we do not know the baseline odds.

At face value, that is a small odds ratio, but the range of no2 class is 7.8 to 52.6:

. summarize no2_class

Variable Obs Mean Std. dev. Min Max

no2_class 1,089 30.16779 9.895886 7.794096 52.56397

The difference is over 44 micrograms per cubic meter. What odds ratio do we obtain if we increase
nitrogen dioxide levels by 44?

Inference examples — Examples and workflow for inference 117

. lincom _b[no2_class]*44, or

(1) 44*no2_class = 0

miss1 Odds ratio Std. err. z P>|z| [95% conf. interval]

(1) 3.276333 1.162629 3.34 0.001 1.634306 6.568144

The odds go up by 3.3 with a confidence interval from 1.6 to 6.6.

Be careful if you do this by hand. The or option did quite a bit of work. There are several ways
to write what lincom did behind the scenes. One way is

OR44 = 1.02733844

This follows directly from what we said about the original odds ratio being the factor by which odds
increase.

Equivalently, and what really happens behind the scenes, is

OR44 = eβ∗44

where β is the coefficient on no2 class, which is the log of the odds ratio shown on the xpologit
results. These expressions produce identical results.

We said earlier that xpologit cannot estimate a baseline odds. It cannot estimate any odds, only
odds ratios. Even so, we might consider the degree of these effects by looking at children experiencing
truly low nitrogen dioxide levels, say, below 10:

. table miss1 if no2_class < 10

Frequency

miss1
0 24
1 10
Total 34

That gives an odds of 10/24 = 0.42, or roughly one child missing a stimulus for every two who
respond to every stimulus. If we assume that is the starting odds for a child and then increase the
nitrogen dioxide levels by 44, the odds move all the way to 3.2×0.42 = 1.3. At that level of nitrogen
dioxide, almost three children miss at least one stimulus for every two who respond to every stimulus.

3.2 Interpreting models with factor variables, nonlinear relationships, and interactions

Let’s run through most of the examples that we first demonstrated with linear regression. We are
going to set the models up quickly. Read sections 2.6 through 2.9 for more about the models. We
will use the same tools; we will just ask them to report odds ratios.

In 2.6 Fitting models with several variables of interest, we added age to our covariates of interest.
That means we must pull age from our list of continuous controls.

. vl create cc31 = cc - (age)
note: $cc31 initialized with 9 variables.

118 Inference examples — Examples and workflow for inference

We will use different global macro names throughout this section to avoid collisions with the
original examples. These globals hold the same variable lists—they just have a different name.

We fit the model:

. xpologit miss1 no2_class age, controls($cc31 i.($fc)) rseed(12345)

(output omitted)
Cross-fit partialing-out Number of obs = 1,036
logit model Number of controls = 31

Number of selected controls = 7
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 13.58
Prob > chi2 = 0.0011

Robust
miss1 Odds ratio std. err. z P>|z| [95% conf. interval]

no2_class 1.048213 .0760006 0.65 0.516 .9093542 1.208275
age .7922585 .0647357 -2.85 0.004 .6750174 .9298628

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

There is not much to say about the results. Interpret the odds ratios as you would any logistic
model with two covariates. The odds ratio for age is 0.79 and is significant at the 5% level with a
95% confidence interval from 0.68 to 0.93. So, older children are less likely to miss a stimulus. We
also note that no2 class is now insignificant. We are asking a lot of a binary outcome signal.

In 2.7 Fitting models with factor variables of interest, we decided that we were interested in the
effect of the grade the child was in at school and no longer interested in nitrogen dioxide.

We will set our controls to reflect this:

. vl create fc32 = fc - (grade)
note: $fc32 initialized with 7 variables.

. vl create cc32 = cc + (no2_class)
note: $cc32 initialized with 11 variables.

Inference examples — Examples and workflow for inference 119

And we fit the xpologit model:

. xpologit miss1 i.grade, controls($cc32 i.($fc32)) baselevels rseed(12345)

(output omitted)
Cross-fit partialing-out Number of obs = 1,036
logit model Number of controls = 30

Number of selected controls = 3
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 5.51
Prob > chi2 = 0.0637

Robust
miss1 Odds ratio std. err. z P>|z| [95% conf. interval]

grade
2nd 1 (base)
3rd .6371055 .1232829 -2.33 0.020 .4360134 .9309425
4th .6156729 .1974266 -1.51 0.130 .3283953 1.154259

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The odds ratio of going from second grade, the base level, to third grade is 0.64 and is significant.
The odds ratio of going from second grade to fourth grade is 0.62 and is not statistically significant
at the 5% level.

These results are weaker than those for the linear model for reaction time. Even so, we forge on
and use contrast to look at the grade-to-grade odds ratios. contrast knows how to exponentiate
results to get odds ratios, but it is not quite as smart as lincom. We will need to tell contrast to
use exponential form (eform()) and to label the results as “Odds ratio”:

. contrast ar.grade, eform(Odds ratio)

Contrasts of marginal linear predictions

Margins: asbalanced

df chi2 P>chi2

grade
(3rd vs 2nd) 1 5.43 0.0198
(4th vs 3rd) 1 0.02 0.8777

Joint 2 5.51 0.0637

Odds ratio Std. err. [95% conf. interval]

grade
(3rd vs 2nd) .6371055 .1232829 .4360134 .9309425
(4th vs 3rd) .9663594 .2149063 .6249454 1.494291

The first comparison is still between second and third grade. We already discussed that comparison
when considering the output from xpologit. contrast reports the same odds ratio and the same
p-value. The second comparison is now between third and fourth grade. The point estimate is an
odds ratio of 0.97, almost 1, and it is not a significant ratio at the 5% level.

120 Inference examples — Examples and workflow for inference

We will skip section 2.8 Fitting models with interactions of interest because it does not offer any
new tools for analyzing odds ratios. You can run that model as an inferential lasso logit model on
miss1. Just remember to add option eform(Odds ratio) to any of the contrast commands.

In 2.9 Fitting models with a nonlinear relationship of interest, we analyzed a nonlinear relationship
between reaction time and nitrogen dioxide levels. Recall from section 2.9 that we arbitrarily chose
a nonlinear representation for no2 class that allows for two inflection points—one over the square
root of no2 class and one over the cube of the no2 class. If you have already worked through
section 2.9 with your current dataset, you already have the two variables for the nonlinearity in your
dataset. If not, we will need to create them.

. generate no2fp1 = no2_class^(-2)

. generate no2fp2 = no2_class^3

With these variables in place, we can fit our nonlinear relationship between miss1 and no2 class.

. xpologit miss1 no2fp1 no2fp2, controls($cc i.($fc)) rseed(12345)
(output omitted)

convergence not achieved
gmm step failed to converge

r(498);

That did not end well. Generalized method of moments (GMM) is how pologit and xpologit
combine the scores from the partialing-out process to obtain the parameter estimates for the coefficients
of interest. With these data and model, GMM simply could not converge. This happens. In the other
examples in this section, we have mentioned that the estimates are not as significant as they were for
the linear models on reaction time from section 2. Our binary outcome variable, miss1, has much
less information than the continuous reaction time variable.

Do we think all is lost? This is the first example of instability, so let’s try a little harder. We will
warn you that you can try pologit, but it fails with the same error.

Let’s take the advice from [LASSO] Inference requirements and try cross-validation as our selection
technique. We return to the cross-fit estimator:

. xpologit miss1 no2fp1 no2fp2, controls($cc i.($fc)) selection(cv) rseed(12345)
(output omitted)

convergence not achieved
gmm step failed to converge

r(498);

This is tough. We cannot even try the alternate suggestion from [LASSO] Inference requirements
because we already said that pologit with plugin selection failed. We will tell you now that pologit
with cross-validation selection also fails.

Inference examples — Examples and workflow for inference 121

We did say earlier that double selection is more stable. Let’s try dslogit, first with cross-validation,
and store the results:

. dslogit miss1 no2fp1 no2fp2, controls($cc i.($fc)) selection(cv) coef
> rseed(12345)

Estimating lasso for miss1 using cv
Estimating lasso for no2fp1 using cv
Estimating lasso for no2fp2 using cv

Double-selection logit model Number of obs = 1,036
Number of controls = 32
Number of selected controls = 23
Wald chi2(2) = 16.19
Prob > chi2 = 0.0003

Robust
miss1 Coefficient std. err. z P>|z| [95% conf. interval]

no2fp1 -79.45294 41.32577 -1.92 0.055 -160.45 1.544089
no2fp2 7.18e-06 2.52e-06 2.85 0.004 2.24e-06 .0000121

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store ds_cv

We have estimates. There is nothing to suggest instability in these results. The coefficient on
no2fp2 is tiny, but that is the cube of no2 class. It needs to be a small coefficient.

What does the plugin selection method have to say?

. dslogit miss1 no2fp1 no2fp2, controls($cc i.($fc)) coef rseed(12345)

Estimating lasso for miss1 using plugin
Estimating lasso for no2fp1 using plugin
Estimating lasso for no2fp2 using plugin

Double-selection logit model Number of obs = 1,036
Number of controls = 32
Number of selected controls = 5
Wald chi2(2) = 14.63
Prob > chi2 = 0.0007

Robust
miss1 Coefficient std. err. z P>|z| [95% conf. interval]

no2fp1 -80.76289 39.2933 -2.06 0.040 -157.7763 -3.749442
no2fp2 6.01e-06 2.35e-06 2.56 0.010 1.41e-06 .0000106

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store ds_plugin

Those coefficients look similar to the ones from cross-validation selection. What is more, plugin
selected only 5 controls whereas cross-validation selected 23. The double-selection results are similar
over a wide range of selected controls. We stored the results from the estimators, so let’s peek at the
controls from the two methods by using [LASSO] lassoinfo:

122 Inference examples — Examples and workflow for inference

. lassoinfo ds_cv ds_plugin

Estimate: ds_cv
Command: dslogit

No. of
Selection Selection selected

Variable Model method criterion lambda variables

miss1 logit cv CV min. .0229644 6
no2fp1 linear cv CV min. .0000249 17
no2fp2 linear cv CV min. 636.8366 13

Estimate: ds_plugin
Command: dslogit

No. of
Selection selected

Variable Model method lambda variables

miss1 logit plugin .07161 0
no2fp1 linear plugin .1199154 4
no2fp2 linear plugin .1199154 4

Cross-validation is selecting many more controls for each variable’s lasso: for miss1, 6 versus 0;
for no2fp1, 17 versus 4; and for no2fp2, 13 versus 4.

Inference examples — Examples and workflow for inference 123

Let’s look more closely with lassocoef:

. lassocoef (ds_plugin, for(miss1))
> (ds_cv , for(miss1))
> (ds_plugin, for(no2fp1))
> (ds_cv , for(no2fp1))
> (ds_plugin, for(no2fp2))
> (ds_cv , for(no2fp2))

ds_plugin ds_cv ds_plugin ds_cv ds_plugin ds_cv
miss1 miss1 no2fp1 no2fp1 no2fp2 no2fp2

age x x

grade
2nd x
4th x
3rd x

0.overweight x x

feducation
University x x

<Primary x x
Primary x

no2fp1 x
no2fp2 x

no2_home x x x
green_home x x x x

noise_school x x x x
precip x x x x

age0 x
sev_home x x

sev_school x x x
siblings_old x

0.sex x

breastfeed
<6 months x
>6 months x x

meducation
1 x
2 x

msmoke
No smoking x

Smoking x

_cons x x x x x x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

A careful perusal of the x’s shows that cross-validation selected each control that plugin selected
for all lassos. It also selected many more controls. We have seen this behavior before. At least we
are not worried that the selection method produces different results.

124 Inference examples — Examples and workflow for inference

We graphed the nonlinear effect of nitrogen dioxide on reaction time by using a linear model
in section 2.9. The path of coefficients from a logit model do not have any interpretation. Wait!
The results that we saw at the beginning of this section were interpretable. All we had to do was
exponentiate the total difference from some baseline and we obtained an odds ratio. We can do that
here too.

The predict command will give us the linear predictions for just the two fractional polynomial
terms. We want a confidence interval (CI), so let’s use predictnl:

. predictnl xbhat = predict(), ci(xblb xbub)
note: confidence intervals calculated using Z critical values.

We have no intercept, so we need to pick a level of xbhat whose exponential will be our baseline
odds. Do we think the minimum value of nitrogen dioxide is reasonable? Or do we think that is an
outlier?

. summarize no2_class, detail

Classroom NO2 levels (ug/m3)

Percentiles Smallest
1% 9.474087 7.794096
5% 16.86244 7.794096

10% 18.5384 7.794096 Obs 1,089
25% 22.81843 7.794096 Sum of wgt. 1,089

50% 29.91033 Mean 30.16779
Largest Std. dev. 9.895886

75% 36.59826 52.56397
90% 42.04398 52.56397 Variance 97.92857
95% 45.97548 52.56397 Skewness .2082405
99% 52.52346 52.56397 Kurtosis 2.63782

We have five identical values of 7.8 for at least the smallest five, and they are not far from the
first percentile. If we can find the linear prediction for the minimum value of no2 class, that would
be a serviceable baseline.

. summarize xbhat if no2_class <= r(min)

Variable Obs Mean Std. dev. Min Max

xbhat 8 -1.326629 0 -1.326629 -1.326629

The r(min) in that expression was just a saved result from the previous summarize command.
It contained the minimum of no2 class. Our linear prediction that corresponds to the minimum of
no2 class is −1.3. That is our linear baseline. We could subtract −1.3 from our linear prediction
and its bounds, but the value is stored in higher precision in r(mean). Let’s subtract our baseline
and exponentiate the results to obtain odds ratios:

. generate orhat = exp(xbhat - r(mean))

. generate orlb = exp(xblb - r(mean))

. generate orub = exp(xbub - r(mean))

Let’s label the variable holding our point estimate of the odds ratios.

. label variable orhat "Odds ratio vs. lowest levels of NO2"

It is always good to label your variables. And we would like a little labeling on our graph. If you
have lost track of what we are computing, that label should be a hint.

Inference examples — Examples and workflow for inference 125

That was a bit of work. And, admittedly, it was only loosely tied to the algebra at the top of this
section. Was it worth it? What do we have?

. twoway rarea orlb orub no2_class, sort || line orhat no2_class,
> yline(1) legend(off) sort

0

5

10

15

20

10 20 30 40 50
Classroom NO2 levels (ug/m3)

Well, it is pretty, in a statistical way. The lowest value of the red line is exactly 1.0. It is the
baseline odds that we assigned to the lowest levels of no2 class. We did that when we subtracted
the prediction for the lowest levels of no2 class from all of our predictions. That made the lowest
prediction exactly 0 and its exponential 1.0—meaning no effect. That was done by construction.

Let’s look at the other end of the graph, the rightmost portion where no2 class levels are just
above 50. The red line now looks to be between 8 and 9—we will just say 8. The odds of a child
missing a stimuli when nitrogen dioxide levels are above 50 are 8 times higher than the odds when
nitrogen dioxide levels are at the minimum in the dataset. For nitrogen dioxide levels of 30, the red
odds-ratio line looks to be about 4, meaning that children facing levels of 30 have 4 times higher
odds of missing a stimuli than do children facing the lowest levels of nitrogen dioxide. And so on.
The line traces out the odds ratio for each level of nitrogen dioxide against the odds for the lowest
level of nitrogen dioxide.

The blue area is the 95% confidence boundary for the odds ratio. The boundary is pretty narrow
for the majority of the curve, but it expands as nitrogen dioxide levels exceed 35 or 40. At the highest
levels, the band ranges from about 4 all the way to about 17.

We drew a black reference line at 1.0 because an odds ratio of 1.0 means no effect. At the lowest
levels of nitrogen dioxide, the lower bound of the CI is below 1.0. So at those levels, we cannot tell
whether nitrogen dioxide has an effect.

The point estimates and their CIs are in the variables orhat, orlb, and orub. You can summarize
them or look at them for specific levels of no2 class.

Making the lowest level of no2 class the reference odds was arbitrary. Rather than subtract the
mean of the linear prediction for that level of no2 class, we could have used the value at the mean
of no2 class, or the median, or any value we choose. We need not have considered no2 class
at all in setting the baseline. Any of these changes would just shift the curves up or down. Their
relative positions do not change. If you have a specific comparison in mind, change the baseline.

126 Inference examples — Examples and workflow for inference

All that said, the CIs are wide and we might be curious whether a straight line fits just as well. As
we mentioned in section 2.9, the standard AIC and BIC methods for choosing among specifications
are not possible after inferential lasso estimation. We are pretty much stuck with eyeing it. If you
want to do that, do not try with this graph. The exponential has put its own curve onto the odds
ratios. Look instead at a graph of the original predictions:

twoway rarea xblb xbub no2_class, sort || line xbhat no2_class, sort

We leave you to draw that yourself.

4 Fitting inferential models to count outcomes. What is different?

Even if your current interest is Poisson models, we suggest you also read 2 Fitting and interpreting
inferential models. That section has many more examples and goes into more detail. If you are starting
here, we also suggest you read 1.4 The primary dataset to become familiar with the dataset and how
we are manipulating it. Section 1.4 is not essential reading, but it does explain more about how we
manage the variable lists in this entry. Here we focus primarily on what is different about Poisson
models.

Every command and example from section 2 can be run using a Poisson lasso inference command.
Just change regress to poisson in the estimation commands, and change the dependent variable
from react to omissions.

We will replicate a few of the analyses from section 2 using Poisson models and explain how the
results are interpreted with count outcomes. Feel free to run others. Their results are interpreted in
the same way as those shown here.

Let’s continue with the dataset we have been using to measure the effect of nitrogen dioxide in
the classroom on the reaction time of school children.

. use https://www.stata-press.com/data/r18/breathe, clear
(Nitrogen dioxide and attention)

We need to create the global macros that will hold our lists of continuous and factor-variable
control variables:

. do https://www.stata-press.com/data/r18/no2
(output omitted)

To see how these lists were created, see 1.4 The primary dataset.

4.1 Interpreting standard incidence-rate ratios

If you are new to inferential lasso models and have not read 2.2 Fitting via cross-fit partialing out
(xpo) using plugin, do that now. We will only explain how to interpret the incident-rate ratios below.
Section 2.2 explains more.

Our count outcome is omissions, the number of times a student failed to respond to a stimulus
while taking a test to measure reaction times. We are interested in how classroom nitrogen dioxide
levels (no2 class) affect the number of omissions.

Inference examples — Examples and workflow for inference 127

Our continuous controls are in the global macro $cc, and our factor-variable controls are in the
global macro $fc, as they were in our very first example in section 2.2. We use xpopoisson to fit
the model,

. xpopoisson omissions no2_class, controls($cc i.($fc)) rseed(12345)

(output omitted)
Cross-fit partialing-out Number of obs = 1,036
Poisson model Number of controls = 32

Number of selected controls = 16
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 5.42
Prob > chi2 = 0.0199

Robust
omissions IRR std. err. z P>|z| [95% conf. interval]

no2_class 1.022025 .0095654 2.33 0.020 1.003448 1.040946

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

We see that xpopoisson reports an IRR (incidence-rate ratio) by default, rather than a coefficient.
That is more useful for interpretation. The term “rate”, however, is less intuitive for the count of
omissions. Often, counts are taken over a time and thus are considered rates. Our count is for a
fixed-length test, so it is better to think of this as a ratio of means. Our point estimate of 1.02 means
that we expect the number of omissions to go up by a factor of 1.02 for every unit increase in the
level of nitrogen dioxide in the classroom. Our 95% confidence interval is 1.003 to 1.041, and the
ratio is significantly different from 1 at the 5% level.

That rate might seem small, but the level of no2 class ranges from 7.8 to 52.6:

. summarize no2_class

Variable Obs Mean Std. dev. Min Max

no2_class 1,089 30.16779 9.895886 7.794096 52.56397

The difference is over 44 micrograms per cubic meter. A reasonable question would be how much
a student is affected in going from a classroom with, say, 8 micrograms to a classroom with 52
micrograms. lincom can answer that question if we tell it that we want IRRs reported:

. lincom _b[no2_class]*44, irr

(1) 44*no2_class = 0

omissions IRR Std. err. z P>|z| [95% conf. interval]

(1) 2.608014 1.073998 2.33 0.020 1.163535 5.845752

The ratio is 2.6 and is significant, having exactly the same z-statistic as the original estimate. That
is by construction because for the purpose of the test, we merely multiplied the underlying coefficient
by a constant. A child is expected to make 2.6 times as many errors when exposed to 52 micrograms
of nitrogen dioxide as compared with the number of errors when exposed to only 8 micrograms.

128 Inference examples — Examples and workflow for inference

That result does not rely on the starting number of 8. It depends only on the difference. We could
ask about the effect of adding 10 micrograms of nitrogen dioxide to whatever is the ambient level:

. lincom _b[no2_class]*10, irr

(1) 10*no2_class = 0

omissions IRR Std. err. z P>|z| [95% conf. interval]

(1) 1.243414 .1163742 2.33 0.020 1.035023 1.493764

So adding 10 micrograms increases the expected number of omissions by 1.24. If the number of
omissions was 4 before the increase, we expect just under 5 after. If it was 10, we expect 12.4 after.

Be careful if you want to take two steps of the 10-microgram increase. These are ratios, so a
20-microgram increase leads to a 1.242 = 1.54 ratio.

We cannot estimate counts after any of the Poisson inferential lasso estimators. The theory for
these estimators does not provide for estimating an intercept.

4.2 Interpreting models with factor variables

As we did with logit models for binary outcomes, let’s run through a few of the examples that we
first demonstrated with linear regression. We are going to set the models up quickly. Read sections
2.6 and 2.7 for more about the models. We will use the same tools; we will just ask them to provide
IRRs.

Continuing with the same dataset, in 2.6 Fitting models with several variables of interest we added
age to our covariates of interest. That means we must pull age from our list of continuous controls:

. vl create cc41 = cc - (age)
note: $cc41 initialized with 9 variables.

As we did with logit models, we will use different global macro names throughout this section to
avoid collisions with the original examples. Again, these globals hold the same variable lists—they
just have a different name.

We fit the model.

. xpopoisson omissions no2_class age, controls($cc41 i.($fc)) rseed(12345)

(output omitted)

Cross-fit partialing-out Number of obs = 1,036
Poisson model Number of controls = 31

Number of selected controls = 15
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 29.20
Prob > chi2 = 0.0000

Robust
omissions IRR std. err. z P>|z| [95% conf. interval]

no2_class 1.023175 .005028 4.66 0.000 1.013368 1.033078
age .8075872 .0406566 -4.24 0.000 .7317068 .8913366

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Inference examples — Examples and workflow for inference 129

We now have an IRR for age as well as for no2 class. They are both interpreted as we did
no2 class above, which is to say, as you would any IRR.

In 2.7 Fitting models with factor variables of interest, we decided that we were interested in the
effect of the child’s grade in school and were no longer interested in nitrogen dioxide. Really, we
just want to demonstrate a factor-variable covariate of interest.

We will set our controls to reflect this:

. vl create fc32 = fc - (grade)
note: $fc32 initialized with 7 variables.

. vl create cc32 = cc + (no2_class)
note: $cc32 initialized with 11 variables.

And we fit the xpopoisson model:

. xpopoisson omissions i.grade, controls($cc32 i.($fc32)) baselevels
> rseed(12345)

(output omitted)
Cross-fit partialing-out Number of obs = 1,036
Poisson model Number of controls = 30

Number of selected controls = 11
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 4.74
Prob > chi2 = 0.0933

Robust
omissions IRR std. err. z P>|z| [95% conf. interval]

grade
2nd 1 (base)
3rd .6008938 .1451159 -2.11 0.035 .3743109 .9646349
4th .443883 .1832475 -1.97 0.049 .197637 .9969392

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The expected number of omissions of third graders is 60% of that of second graders with a 95% CI
of 0.37 to 0.96. Fourth graders have even fewer omissions. The point estimate is 44% of the number
for second graders.

130 Inference examples — Examples and workflow for inference

contrast works with IRRs just as it did with ORs in section 3.2. Again, we just need to add the
option eform(IRR).

. contrast ar.grade, eform(IRR)

Contrasts of marginal linear predictions

Margins: asbalanced

df chi2 P>chi2

grade
(3rd vs 2nd) 1 4.45 0.0349
(4th vs 3rd) 1 1.21 0.2708

Joint 2 4.74 0.0933

IRR Std. err. [95% conf. interval]

grade
(3rd vs 2nd) .6008938 .1451159 .3743109 .9646349
(4th vs 3rd) .7387046 .2031553 .4309005 1.266382

We specified reverse-adjacent (ar) contrasts, so comparisons will now be grade to grade rather than
against a base grade. The first comparison is still between second and third grades and, of course,
gives the same results as xpopoisson itself.

The second comparison is between third and fourth grades. We fail to find a significant difference,
though the point estimate is that fourth graders make only 74% of the omissions made by third
graders.

As with the logit models, we will skip section 2.8 Fitting models with interactions of interest because
it does not offer any new tools for analyzing odds ratios. You can run that model as an inferential
lasso probit model on omissions. If you run any contrasts, be sure to add option eform(IRR).

5 Exploring inferential model lassos

Aside from the two commands we have used in the examples in this entry, [LASSO] lassoinfo
and [LASSO] lassocoef, you are unlikely to need many of the postestimation commands commonly
used after lasso. Regardless, most of them are available. You can create knot tables of coefficient
selection, plot cross-validation functions, plot coefficient paths, display lasso coefficients, and even
change the penalty parameter λ that is used to select controls.

See [LASSO] lasso inference postestimation for an overview and a list of postestimation commands
that are available after the inferential lasso estimators. The entries for each command have examples
that demonstrate their use after inferential lasso estimators.

6 Fitting an inferential model with endogenous covariates

We will replicate a well-known model that was used to illustrate a two-stage least squares estimator
for handling an endogenous covariate; see Wooldridge (2010, ex. 5.3). Because the inferential lasso
estimators provide variable selection that is robust to selection mistakes, we will introduce a flexible
series expansion of the variables.

Wooldridge models the log of married women’s wages (lwage) as a function of their experience
(exper), the square of their experience, and their years of education (educ). Collectively, these are
called exogenous covariates.

Inference examples — Examples and workflow for inference 131

As is customary, education is treated as an endogenous variable. The reasoning is that we cannot
measure innate ability, and ability is likely to influence both education level and income. Some
disciplines refer to this as unobserved confounding rather than endogeneity. Either way, you cannot
just run a regression of wages on education and experience and learn anything about the true effect
of education on wages.

You need more information from variables that you presume are not affected by the woman’s
unmeasured ability—let’s call them instruments. And, they also cannot belong in the model for wages.
Wooldridge used their mothers’ education (motheduc), their fathers’ education (fatheduc), and their
husbands’ education (huseduc) as instruments for the woman’s education. The instruments are also
required to be exogenous, but we will just call them instruments.

The data are from Mroz (1987).

xpoivregress and poivregress use lassos to select the exogenous covariates from a list of
potential exogenous covariates. They use lassos to select the instruments from a set of potential
instruments. This means we do not have to worry about introducing noise or weak instruments by
possibly including irrelevant exogenous covariates or instruments. Lasso will ensure that sufficient
amounts of irrelevant covariates are ignored. We are free to include the kitchen sink.

Let’s add some variables that Wooldridge kept out. He was required to be thoughtful of introducing
irrelevant covariates. We are not. To the list of potential exogenous covariates, we add the number of
children younger than 6 (kidslt6), the number of children aged 6 or older (kidsge6), the women’s
ages (age), their husbands’ ages (husage), and an indicator for living in an urban area (citt). We
have nothing to add to the instruments. Good instruments are hard to find.

To make sure the sink is full, let’s take all the exogenous variables and, instead of entering them
only linearly, enter them as linear terms, as quadratic terms, and as all possible interactions. Let’s do
the same for our list of three instruments. This is often called a series expansion, or a Taylor-series
expansion. It allows for nonlinearity in the way our exogenous covariates affect the outcome and in
the way our instruments control endogeneity. We just did second-order expansion; you can go further.

We will continue using the variable-management tool vl to manage our lists of variables. First,
we use the Mroz dataset and then create our base list of exogenous covariates and our base list of
instruments.

. use https://www.stata-press.com/data/r18/mroz, clear

. vl create exogbase = (exper age husage kidslt6 kidsge6 city)
note: $exogbase initialized with 6 variables.

. vl create instbase = (motheduc fatheduc huseduc)
note: $instbase initialized with 3 variables.

The list of exogenous covariates is now in the global macro $exogbase, and the list of instruments
is now in $instbase.

132 Inference examples — Examples and workflow for inference

With these base lists in hand, we can perform our expansions to create flexible nonlinear forms:

. vl substitute exog = c.exogbase c.exogbase#c.exogbase

. vl substitute inst = c.instbase c.instbase#c.instbase

The # is the factor-variable operator for interaction. It can interact categorical variables, continuous
variables, or both. We could have used it directly on our estimation command line, but those lines
are already long enough. We also would have to handle macro expansion by typing $exogbase and
such. vl already knows about exogbase and instbase and knows to handle them as lists. The c.
prefix tells the # operator to treat the lists as continuous variables. # assumes categorical variables
unless told otherwise.

Putting it all together, c.exogbase means to enter all the potential exogenous covariates as
themselves (linearly). c.exogbase#c.exogbase means to enter all possible interactions of the
variables. Because an interaction of a variable with itself is a quadratic, the quadratic (squared) terms
get created as part of the expansion.

Let’s look at the smaller of these two lists so that we can see what we have created:

. macro list inst
inst: motheduc fatheduc huseduc c.motheduc#c.motheduc

c.motheduc#c.fatheduc c.motheduc#c.huseduc
c.fatheduc#c.fatheduc c.fatheduc#c.huseduc c.huseduc#c.huseduc

That is not too bad. We count nine terms—three linear terms and six interactions (including quadratic
terms).

Macro exog has 27 terms.

Imagine what a third-order expansion would look like. You can run into the thousands of terms
quickly.

Inference examples — Examples and workflow for inference 133

Now we can use xpoivregress to estimate the coefficient on the endogenous variable educ. We
start with the plugin method to select the covariates. We do not have to specify plugin because it is
the default. Specifying the rest of the model is easy because of the macro we created:

. xpoivregress lwage (educ = $inst), controls($exog) rseed(12345)

Cross-fit fold 1 of 10 ...
Estimating lasso for lwage using plugin
Estimating lasso for educ using plugin

Cross-fit fold 2 of 10 ...
Estimating lasso for lwage using plugin
Estimating lasso for educ using plugin

(output omitted)
Cross-fit partialing-out Number of obs = 428
IV linear model Number of controls = 27

Number of instruments = 9
Number of selected controls = 4
Number of selected instruments = 3
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 10.84
Prob > chi2 = 0.0010

Robust
lwage Coefficient std. err. z P>|z| [95% conf. interval]

educ .0727853 .0221045 3.29 0.001 .0294612 .1161094

Endogenous: educ
Note: Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

In the header, we see that 4 of 27 controls were selected, and 3 of 9 possible instruments were
selected. This is a sparse representation of the model.

We estimate that every year of education increases the log of wages by 0.073. Because wages are
logged, we interpret that as a rate of change, so each year of education increases wages by 7.3%.
That is close to Wooldridge’s estimate of 8%, and his estimate is well within our 95% CI of 2.8% to
11.6%.

134 Inference examples — Examples and workflow for inference

Let’s see how the results compare if we select using cross-validation:

. xpoivregress lwage (educ = $inst), controls($exog) selection(cv) rseed(12345)

Cross-fit fold 1 of 10 ...
Estimating lasso for lwage using cv
Estimating lasso for educ using cv

Cross-fit fold 2 of 10 ...
Estimating lasso for lwage using cv

(output omitted)
Cross-fit partialing-out Number of obs = 428
IV linear model Number of controls = 27

Number of instruments = 9
Number of selected controls = 20
Number of selected instruments = 7
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 7.68
Prob > chi2 = 0.0056

Robust
lwage Coefficient std. err. z P>|z| [95% conf. interval]

educ .0645424 .0232832 2.77 0.006 .0189082 .1101765

Endogenous: educ
Note: Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Cross-validation selected 20 controls compared with the 4 selected by plugin. It selected 7
instruments compared with the 3 selected by plugin. Our point estimate of the change in wages
for each additional year of education is 6.5% with a CI of 1.9% to 11.0%. The coefficient estimate
from both cross-validation and plugin are significant at the 5% level. Despite having slightly different
coefficient estimates, plugin and cross-validation lead to the same inferences.

References
Mroz, T. A. 1987. The sensitivity of an empirical model of married women’s hours of work to economic and statistical

assumptions. Econometrica 55: 765–799. https://doi.org/10.2307/1911029.

Sunyer, J., E. Suades-González, R. Garcı́a-Esteban, I. Rivas, J. Pujol, M. Alvarez-Pedrerol, J. Forns, X. Querol, and
X. Basagaña. 2017. Traffic-related air pollution and attention in primary school children: Short-term association.
Epidemiology 28: 181–189. https://doi.org/10.1097/EDE.0000000000000603.

Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.

Also see
[LASSO] Lasso intro — Introduction to lasso

[LASSO] Lasso inference intro — Introduction to inferential lasso models

https://doi.org/10.2307/1911029
https://doi.org/10.1097/EDE.0000000000000603
http://www.stata.com/bookstore/cspd.html

Title

Inference requirements — Requirements for inference

Description Remarks and examples Also see

Description
The ds, po, and xpo commands, like other estimation procedures, require certain conditions be

met so that their inferential results are valid. In addition, the plugin and CV selection methods have
distinct properties and may perform differently under some conditions.

Remarks and examples
We assume you have read [LASSO] Lasso inference intro.

We fit a model with, for example, dsregress with the default plugin selection method, and then
we refit the model using CV. We get slightly different results. Which is correct?

Plugin and CV are more than just different numerical techniques for model estimation. They make
different assumptions, have different requirements, and have different properties. Asking which is
correct has only one answer. Each is correct when their assumptions and requirements are met.

In terms of practical advice, we have two alternative recommendations.

The first one involves lots of computer time.

1. Fit the model with xpo and the default plugin.

2. Fit the model with xpo and CV.

3. Compare results. If they are similar, use the results from step 1.

This alternative will save computer time.

1. Fit the model with ds with the default plugin.

2. Fit it again with ds but with CV.

3. Fit it again with po with the default plugin.

4. Fit it again with po but with CV.

5. Compare results. If they are similar, you are likely on solid ground. If so, perform step 6.

6. Fit the model again with xpo with the default plugin and use those results.

You can combine these two recommendations. Start with the alternative, and if it fails at step 5,
follow the first set of recommendations.

Also see
[LASSO] Lasso inference intro — Introduction to inferential lasso models

[LASSO] lasso — Lasso for prediction and model selection

135

Title

lasso — Lasso for prediction and model selection

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

lasso selects covariates and fits linear, logistic, probit, Poisson, and Cox proportional hazards
models. Results from lasso can be used for prediction and model selection.

lasso saves but does not display estimated coefficients. The postestimation commands listed in
[LASSO] lasso postestimation can be used to generate predictions, report coefficients, and display
measures of fit.

For an introduction to lasso, see [LASSO] Lasso intro.

For a description of the lasso-fitting procedure, see [LASSO] lasso fitting.

Quick start
Fit a linear model for y1, and select covariates from x1 to x100 using cross-validation (CV)

lasso linear y1 x1-x100

Same as above, but force x1 and x2 to be in the model while lasso selects from x3 to x100

lasso linear y1 (x1 x2) x3-x100

Same as above, but fit an adaptive lasso with three steps
lasso linear y1 (x1 x2) x3-x100, selection(adaptive, steps(3))

Fit a logistic model for binary outcome y2, and set a random-number seed for reproducibility
lasso logit y2 x1-x100, rseed(1234)

Fit a Poisson model for count outcome y3 with exposure time

lasso poisson y3 x1-x100, exposure(time) rseed(1234)

Calculate the CV function beyond the CV minimum to get the full coefficient paths, knots, etc.
lasso linear y2 x1-x100, selection(cv, alllambdas)

Turn off the early stopping rule, and iterate over λ’s until a minimum is found or until the end of
the λ grid is reached

lasso linear y1 x1-x100, stop(0)

Same as above, but extend the λ grid to smaller values
lasso linear y1 x1-x100, stop(0) grid(100, ratio(1e-5))

Fit a Cox proportional hazards model for t with failure indicator fail, and select covariates from
x1 to x100 using CV

stset t, failure(fail)
lasso cox x1-x100

Same as above, but select covariates by minimizing the Bayesian information criterion (BIC) function
lasso cox x1-x100, selection(bic)

136

lasso — Lasso for prediction and model selection 137

Menu
Statistics > Lasso > Lasso

Syntax

For linear, logit, probit, and Poisson models

lasso model depvar
[
(alwaysvars)

]
othervars

[
if
] [

in
] [

weight
] [

, options
]

For Cox models

lasso cox
[
(alwaysvars)

]
othervars

[
if
] [

in
] [

, options
]

model is one of linear, logit, probit, or poisson.

alwaysvars are variables that are always included in the model.

othervars are variables that lasso will choose to include in or exclude from the model.

options Description

Model
∗noconstant suppress constant term
selection(sel method) selection method to select a value of the lasso

penalty parameter λ∗ from the set of possible λ’s
offset(varnameo) include varnameo in model with coefficient constrained to 1
exposure(varnamee) include ln(varnamee) in model with coefficient constrained

to 1 (poisson model only)
∗cluster(clustvar) specify cluster variable clustvar

Optimization[
no
]
log display or suppress an iteration log

rseed(#) set random-number seed
grid(#g

[
, ratio(#) min(#)

]
) specify the set of possible λ’s using a logarithmic grid with

#g grid points
stop(#) tolerance for stopping the iteration over the λ grid early
cvtolerance(#) tolerance for identification of the CV function minimum
bictolerance(#) tolerance for identification of the BIC function minimum
tolerance(#) convergence tolerance for coefficients based on their values
dtolerance(#) convergence tolerance for coefficients based on deviance

penaltywt(matname) programmer’s option for specifying a vector of weights for
the coefficients in the penalty term

138 lasso — Lasso for prediction and model selection

sel method Description

cv
[
, cv opts

]
select λ∗ using CV; the default

adaptive
[
, adapt opts cv opts

]
select λ∗ using an adaptive lasso

∗plugin
[
, plugin opts

]
select λ∗ using a plugin iterative formula

bic
[
, bic opts

]
select λ∗ using BIC function

none do not select λ∗

cv opts Description

folds(#) use # folds for CV
alllambdas fit models for all λ’s in the grid or until the stop(#) tolerance is reached;

by default, the CV function is calculated sequentially by λ, and estimation
stops when a minimum is identified

serule use the one-standard-error rule to select λ∗

stopok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for λ was reached at λstop, set the selected λ∗ to be
λstop; the default

strict do not select λ∗ when the CV function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for λ was not reached, set the selected λ∗ to be the
minimum of the λ grid, λgmin; this is a looser alternative to the default
stopok and is rarely used

adapt opts Description

steps(#) use # adaptive steps (counting the initial lasso as step 1)
unpenalized use the unpenalized estimator to construct initial weights
ridge use the ridge estimator to construct initial weights
power(#) raise weights to the # th power

plugin opts Description

heteroskedastic assume model errors are heteroskedastic; the default
homoskedastic assume model errors are homoskedastic

lasso — Lasso for prediction and model selection 139

bic opts Description

alllambdas fit models for all λ’s in the grid or until the stop(#) tolerance is reached;
by default, the BIC function is calculated sequentially by λ, and estimation
stops when a minimum is identified

stopok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for λ was reached at λstop, set the selected λ∗ to be
λstop; the default

strict do not select λ∗ when the BIC function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for λ was not reached, set the selected λ∗ to be the
minimum of the λ grid, λgmin; this is a looser alternative to the default
stopok and is rarely used

postselection use postselection coefficients to compute BIC

∗noconstant, cluster(), and selection(plugin) are not allowed with lasso cox.
You must stset your data before using lasso cox; see [ST] stset.
alwaysvars and othervars may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
Default weights are not allowed. iweights are allowed with all sel method options. fweights are allowed when

selection(plugin), selection(bic), or selection(none) is specified. See [U] 11.1.6 weight. For lasso
cox, weights must be specified when you stset your data.

penaltywt(matname) does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
Lasso estimation consists of three steps that the software performs automatically. Understanding the
steps is important for understanding how to specify options. A grid for λ is used for selection methods
cv, adaptive, bic, and none. selection(adaptive) resets the grid in the second and subsequent
lassos. selection(plugin) bypasses steps 1 and 2. It does not require a λ grid.

Step 1: Set λ grid
A grid for λ is set. Either the default grid can be used or grid options can be specified to modify
the default. The maximum λ in the grid is λgmax. It is automatically set to the smallest λ yielding
a model with all coefficients zero. The minimum λ in the grid is λgmin. Typically, estimation
ends before λgmin is reached when a minimum of the CV or BIC function is found. If λgmin

is reached without finding a minimum, you may want to make λgmin smaller. You can do this
by setting λgmin or, alternatively, by setting the ratio λgmin/λgmax to a smaller value. See the
grid() option below.

Step 2: Fit the model for next λ in grid
For each λ in the grid, the set of nonzero coefficients is estimated. Estimation starts with λgmax

and iterates toward λgmin. The iteration stops when a minimum of the CV or BIC function is found,
the stop(#) stopping tolerance is met, or λgmin is reached. When the deviance changes by less
than a relative difference of stop(#), the iteration over λ ends. To turn off this stopping rule,
specify stop(0). See the optimization options below.

Step 3: Select λ∗

A λ denoted by λ∗ is selected. selection(sel method) specifies the method used to select λ∗.
The allowed sel methods are cv (the default), adaptive, plugin, bic, and none:

140 lasso — Lasso for prediction and model selection

cv, the default, uses CV to select λ∗. After a model is fit for each λ, the CV function is computed.
If a minimum of the CV function is identified, iteration over the λ grid ends. To compute the
CV function for additional λ’s past the minimum, specify the suboption alllambdas. When you
specify this option, step 2 is first done for all λ’s until the stopping tolerance is met or the end of
the grid is reached. Then, the CV function is computed for all λ’s and searched for a minimum.
See the suboptions for selection(cv) below.

adaptive also uses CV to select λ∗, but multiple lassos are performed. In the first lasso, a λ∗ is
selected, and penalty weights are constructed from the coefficient estimates. Then, these weights
are used in a second lasso where another λ∗ is selected. By default, two lassos are performed, but
more can be specified. See the suboptions for selection(adaptive) below.

plugin computes λ∗ based on an iterative formula. Coefficient estimates are obtained only for
this single value of λ.

bic selects λ∗ by using the BIC function. It selects λ∗ with the minimum BIC function value.

none does not select a λ∗. Neither the CV function nor the BIC function is computed. Models
are fit for all λ’s until the stopping tolerance is met or the end of the grid is reached. lasso
postestimation commands can be used to assess different λ’s and select λ∗.

A longer description of the lasso-fitting procedure is given in [LASSO] lasso fitting.

� � �
Model �

noconstant omits the constant term. Note, however, when there are factor variables among the
othervars, lasso can potentially create the equivalent of the constant term by including all levels
of a factor variable. This option is likely best used only when all the othervars are continuous
variables and there is a conceptual reason why there should be no constant term. This option is
not allowed with lasso cox.

selection(cv), selection(adaptive), selection(plugin), selection(bic), and selec-
tion(none) specify the selection method used to select λ∗. These options also allow suboptions
for controlling the specified selection method. selection(plugin) is not allowed with lasso
cox.

selection(cv
[
, cv opts

]
) is the default. It selects λ∗ to be the λ that gives the minimum of

the CV function. It is widely used when the goal is prediction. lasso postestimation commands
can be used after selection(cv) to assess alternative λ∗ values.

cv opts are folds(#), alllambdas, serule, stopok, strict, and gridminok.

folds(#) specifies that CV with # folds be done. The default is folds(10).

alllambdas specifies that models be fit for all λ’s in the grid or until the stop(#) tolerance
is reached. By default, models are calculated sequentially from largest to smallest λ, and
the CV function is calculated after each model is fit. If a minimum of the CV function is
found, the computation ends at that point without evaluating additional smaller λ’s.

alllambdas computes models for these additional smaller λ’s. Because computation time
is greater for smaller λ, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the CV function is wanted
for assurance that a true minimum has been found. Regardless of whether alllambdas is
specified, the selected λ∗ will be the same.

lasso — Lasso for prediction and model selection 141

serule selects λ∗ based on the “one-standard-error rule” recommended by Hastie, Tibshirani,
and Wainwright (2015, 13–14) instead of the λ that minimizes the CV function. The one-
standard-error rule selects the largest λ for which the CV function is within a standard error
of the minimum of the CV function.

stopok, strict, and gridminok specify what to do when the CV function does not have
an identified minimum. A minimum is identified at λ∗ when the CV function at both larger
and smaller adjacent λ’s is greater than it is at λ∗. When the CV function has an identified
minimum, these options all do the same thing: the selected λ∗ is the λ that gives the
minimum. In some cases, however, the CV function declines monotonically as λ gets smaller
and never rises to identify a minimum. When the CV function does not have an identified
minimum, stopok and gridminok make alternative selections for λ∗, and strict makes
no selection. You may specify only one of stopok, strict, or gridminok; stopok is the
default if you do not specify one. With each of these options, estimation results are always
left in place, and alternative λ∗ can be selected and evaluated.

stopok specifies that when the CV function does not have an identified minimum and the
stop(#) stopping tolerance for λ was reached, the selected λ∗ is λstop, the λ that met
the stopping criterion. λstop is the smallest λ for which coefficients are estimated, and
it is assumed that λstop has a CV function value close to the true minimum. When no
minimum is identified and the stop(#) criterion is not met, an error is issued.

strict requires the CV function to have an identified minimum, and if not, an error is
issued.

gridminok is a rarely used option that specifies that when the CV function has no identified
minimum and the stop(#) stopping criterion was not met, λgmin, the minimum of the
λ grid, is the selected λ∗.

The gridminok selection criterion is looser than the default stopok, which is looser than
strict. With strict, only an identified minimum is selected. With stopok, either the
identified minimum or λstop is selected. With gridminok, either the identified minimum
or λstop or λgmin is selected, in this order.

selection(adaptive
[
, adapt opts cv opts

]
) selects λ∗ using the adaptive lasso selection

method. It consists of multiple lassos with each lasso step using CV. Variables with zero
coefficients are discarded after each successive lasso, and variables with nonzero coefficients
are given penalty weights designed to drive small coefficient estimates to zero in the next
step. Hence, the final model typically has fewer nonzero coefficients than a single lasso. The
adaptive method has historically been used when the goal of lasso is model selection. As with
selection(cv), lasso postestimation commands can be used after selection(adaptive)
to assess alternative λ∗.

adapt opts are steps(#), unpenalized, ridge, and power(#).

steps(#) specifies that adaptive lasso with # lassos be done. By default, # = 2. That is, two
lassos are run. After the first lasso estimation, terms with nonzero coefficients βi are given
penalty weights equal to 1/|βi|, terms with zero coefficients are omitted, and a second lasso
is estimated. Terms with small coefficients are given large weights, making it more likely
that small coefficients become zero in the second lasso. Setting # > 2 can produce more
parsimonious models. See Methods and formulas.

unpenalized specifies that the adaptive lasso use the unpenalized estimator to construct the
initial weights in the first lasso. This option is useful when CV cannot find a minimum.
unpenalized cannot be specified with ridge.

142 lasso — Lasso for prediction and model selection

ridge specifies that the adaptive lasso use the ridge estimator to construct the initial weights
in the first lasso. ridge cannot be specified with unpenalized.

power(#) specifies that the adaptive lasso raise the weights to the # th power. The default is
power(1). The specified power must be in the interval [0.25, 2].

cv options are all the suboptions that can be specified for selection(cv), namely, folds(#),
alllambdas, serule, stopok, strict, and gridminok. The options alllambdas, strict,
and gridminok apply only to the first lasso estimated. For second and subsequent lassos,
gridminok is the default. When ridge is specified, gridminok is automatically used for the
first lasso.

selection(plugin
[
, plugin opts

]
) selects λ∗ based on a “plugin” iterative formula dependent

on the data. The plugin method was designed for lasso inference methods and is useful when
using lasso to manually implement inference methods, such as double-selection lasso. The
plugin estimator calculates a value for λ∗ that dominates the noise in the estimating equations,
which makes it less likely to include variables that are not in the true model. See Methods and
formulas. This option is not allowed with lasso cox.

selection(plugin) does not estimate coefficients for any other values of λ, so it does not
require a λ grid, and none of the grid options apply. It is much faster than the other selection
methods because estimation is done only for a single value of λ. It is an iterative procedure,
however, and if the plugin is computing estimates for a small λ (which means many nonzero
coefficients), the estimation can still be time consuming. Because estimation is done only for
one λ, you cannot assess alternative λ∗ as the other selection methods allow.

plugin opts are heteroskedastic and homoskedastic.

heteroskedastic (linear models only) assumes model errors are heteroskedastic. It is the
default. Specifying selection(plugin) for linear models is equivalent to specifying
selection(plugin, heteroskedastic).

homoskedastic (linear models only) assumes model errors are homoskedastic. See Methods
and formulas.

selection(bic
[
, bic opts

]
) selects λ∗ by using the BIC function. It selects the λ∗ with the

minimum BIC function value.

bic opts are alllambdas, stopok, strict, gridminok, and postselection.

alllambdas specifies that models be fit for all λ’s in the grid or until the stop(#) tolerance
is reached. By default, models are calculated sequentially from largest to smallest λ, and
the BIC function is calculated after each model is fit. If a minimum of the BIC function is
found, the computation ends at that point without evaluating additional smaller λ’s.

alllambdas computes models for these additional smaller λ’s. Because computation time
is greater for smaller λ, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the BIC function is wanted
for assurance that a true minimum has been found. Regardless of whether alllambdas is
specified, the selected λ∗ will be the same.

stopok, strict, and gridminok specify what to do when the BIC function does not have
an identified minimum. A minimum is identified at λ∗ when the BIC function at both
larger and smaller adjacent λ’s is greater than it is at λ∗. When the BIC function has an
identified minimum, these options all do the same thing: the selected λ∗ is the λ that gives
the minimum. In some cases, however, the BIC function declines monotonically as λ gets
smaller and never rises to identify a minimum. When the BIC function does not have an
identified minimum, stopok and gridminok make alternative selections for λ∗, and strict

lasso — Lasso for prediction and model selection 143

makes no selection. You may specify only one of stopok, strict, or gridminok; stopok
is the default if you do not specify one. With each of these options, estimation results are
always left in place, and alternative λ∗ can be selected and evaluated.

stopok specifies that when the BIC function does not have an identified minimum and the
stop(#) stopping tolerance for λ was reached, the selected λ∗ is λstop, the λ that met
the stopping criterion. λstop is the smallest λ for which coefficients are estimated, and
it is assumed that λstop has a BIC function value close to the true minimum. When no
minimum is identified and the stop(#) criterion is not met, an error is issued.

strict requires the BIC function to have an identified minimum, and if not, an error is
issued.

gridminok is a rarely used option that specifies that when the BIC function has no identified
minimum and the stop(#) stopping criterion was not met, then λgmin, the minimum of
the λ grid, is the selected λ∗.

The gridminok selection criterion is looser than the default stopok, which is looser than
strict. With strict, only an identified minimum is selected. With stopok, either the
identified minimum or λstop is selected. With gridminok, either the identified minimum
or λstop or λgmin is selected, in this order.

postselection specifies to use the postselection coefficients to compute the BIC function.
By default, the penalized coefficients are used.

selection(none) does not select a λ∗. Lasso is estimated for the grid of values for λ, but
no attempt is made to determine which λ should be selected. The postestimation command
lassoknots can be run to view a table of λ’s that define the knots (the sequential sets of
nonzero coefficients) for the estimation. The lassoselect command can be used to select a
value for λ∗, and lassogof can be run to evaluate the prediction performance of λ∗.

When selection(none) is specified, neither the CV function nor the BIC function is computed.
If you want to view the knot table with values of the CV function shown and then select λ∗,
you must specify selection(cv). Similarly, if you want to view the knot table with values
of the BIC function shown, you must specify selection(bic). There are no suboptions for
selection(none).

offset(varnameo) specifies that varnameo be included in the model with its coefficient constrained
to be 1.

exposure(varnamee) can be specified only for the poisson model. It specifies that ln(varnamee)
be included in the model with its coefficient constrained to be 1.

cluster(clustvar) specifies the cluster variable clustvar. Specifying a cluster variable will affect how
the log-likelihood function is computed and the sample split in cross-validation. The log-likelihood
function is computed as the sum of the log likelihood at the cluster levels. If option selection(cv)
is specified, the cross-validation sample is split by the clusters defined by clustvar. That is, the
subsample in each fold is drawn on the cluster level. Therefore, all observations in a cluster are
kept together in the same subsample. This option is not allowed with lasso cox.

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation.

rseed(#) sets the random-number seed. This option can be used to reproduce results for se-
lection(cv) and selection(adaptive). The other selection methods, selection(plugin),
selection(bic), and selection(none), do not use random numbers. rseed(#) is equivalent
to typing set seed # prior to running lasso. See [R] set seed.

144 lasso — Lasso for prediction and model selection

grid(#g
[
, ratio(#) min(#)

]
) specifies the set of possible λ’s using a logarithmic grid with #g

grid points.

#g is the number of grid points for λ. The default is #g = 100. The grid is logarithmic with
the ith grid point (i = 1, . . . , n = #g) given by lnλi = [(i − 1)/(n − 1)] ln r + lnλgmax,
where λgmax = λ1 is the maximum, λgmin = λn = min(#) is the minimum, and r =
λgmin/λgmax = ratio(#) is the ratio of the minimum to the maximum.

ratio(#) specifies λgmin/λgmax. The maximum of the grid, λgmax, is set to the smallest λ
for which all the coefficients in the lasso are estimated to be zero (except the coefficients of
the alwaysvars). λgmin is then set based on ratio(#). When p < N , where p is the total
number of othervars and alwaysvars (not including the constant term) and N is the number of
observations, the default value of ratio(#) is 1e−4. When p ≥ N , the default is 1e−2.

min(#) sets λgmin. By default, λgmin is based on ratio(#) and λgmax, which is computed from
the data.

stop(#) specifies a tolerance that is the stopping criterion for the λ iterations. The default is 1e−5.
This suboption does not apply when the selection method is selection(plugin). Estimation
starts with the maximum grid value, λgmax, and iterates toward the minimum grid value, λgmin.
When the relative difference in the deviance produced by two adjacent λ grid values is less than
stop(#), the iteration stops and no smaller λ’s are evaluated. The value of λ that meets this
tolerance is denoted by λstop. Typically, this stopping criterion is met before the iteration reaches
λgmin.

Setting stop(#) to a larger value means that iterations are stopped earlier at a larger λstop. To
produce coefficient estimates for all values of the λ grid, stop(0) can be specified. Note, however,
that computations for small λ’s can be extremely time consuming. In terms of time, when using
selection(cv), selection(adaptive), or selection(bic), the optimal value of stop(#) is
the largest value that allows estimates for just enough λ’s to be computed to identify the minimum
of the CV or BIC function. When setting stop(#) to larger values, be aware of the consequences
of the default λ∗ selection procedure given by the default stopok. You may want to override the
stopok behavior by using strict.

cvtolerance(#) is a rarely used option that changes the tolerance for identifying the minimum CV
function. For linear models, a minimum is identified when the CV function rises above a nominal
minimum for at least three smaller λ’s with a relative difference in the CV function greater than
#. For nonlinear models, at least five smaller λ’s are required. The default is 1e−3. Setting # to
a bigger value makes a stricter criterion for identifying a minimum and brings more assurance
that a declared minimum is a true minimum, but it also means that models may need to be fit for
additional smaller λ, which can be time consuming. See Methods and formulas for [LASSO] lasso
for more information about this tolerance and the other tolerances.

bictolerance(#) is a rarely used option that changes the tolerance for identifying the minimum
BIC function. A minimum is identified when the BIC function rises above a nominal minimum for
at least two smaller λ’s with a relative difference in the BIC function greater than #. The default is
1e−2. Setting # to a bigger value makes a stricter criterion for identifying a minimum and brings
more assurance that a declared minimum is a true minimum, but it also means that models may
need to be fit for additional smaller λ, which can be time consuming. See Methods and formulas
in [LASSO] lasso for more information about this tolerance and the other tolerances.

tolerance(#) is a rarely used option that specifies the convergence tolerance for the coefficients.
Convergence is achieved when the relative change in each coefficient is less than this tolerance.
The default is tolerance(1e-7).

lasso — Lasso for prediction and model selection 145

dtolerance(#) is a rarely used option that changes the convergence criterion for the coefficients.
When dtolerance(#) is specified, the convergence criterion is based on the change in deviance
instead of the change in the values of coefficient estimates. Convergence is declared when the
relative change in the deviance is less than #. More-accurate coefficient estimates are typically
achieved by not specifying this option and instead using the default tolerance(1e-7) criterion
or specifying a smaller value for tolerance(#).

The following option is available with lasso but is not shown in the dialog box:

penaltywt(matname) is a programmer’s option for specifying a vector of weights for the coefficients
in the penalty term. The contribution of each coefficient to the lasso penalty term is multiplied
by its corresponding weight. Weights must be nonnegative. By default, each coefficient’s penalty
weight is 1.

Remarks and examples
We assume you have read the lasso introduction [LASSO] Lasso intro.

Remarks are presented under the following headings:

Lasso fitting and selection methods
selection(cv): Cross-validation
The CV function
Penalized and postselection coefficients
predict
Selecting lambda by hand using lassoselect
More lasso examples

Lasso fitting and selection methods

Lasso finds a vector of coefficient estimates, β, such that

1

2N
(y −Xβ′)′(y −Xβ′) + λ

p∑
j=1

|βj |

is minimized for a given value of λ. The first thing to note is that for every λ there is a β. The
second thing is that some of the coefficients, βj , will be zero. The third thing is that the larger the
value of λ, the fewer number of nonzero coefficients there will be.

The goal is to select a λ such that the set of variables corresponding to the nonzero coefficients
for that λ has some sort of desirable property. We term the selected λ∗. But remember whenever we
talk about the selected λ∗, we are really thinking about the properties of the corresponding set of
variables with nonzero coefficients.

Different criteria can be used to select λ∗. The lasso command has options for four different selec-
tion methods: selection(cv), selection(adaptive), selection(plugin), selection(bic),
and selection(none).

selection(cv) comes in two variants: the default, which selects λ∗ as the value of λ that
minimizes the CV function; and selection(cv, serule), which selects a λ∗ that is one standard
error from the minimum in the direction of larger λ’s (so fewer selected variables than using the
minimum in most cases).

selection(adaptive) fits multiple lassos, typically just two, with each lasso using CV. The
selected λ∗ is the λ selected by the last lasso. See Adaptive lasso in [LASSO] lasso examples.

146 lasso — Lasso for prediction and model selection

selection(plugin) selects λ∗ based on an iterative formula. It comes in two variants, the
default selection(plugin, heteroskedastic) and selection(plugin, homoskedastic). It
is intended to be used as a tool for implementing inferential models. It is not intended to be used for
prediction. See [LASSO] Lasso inference intro.

selection(bic) selects the λ∗ that minimizes the BIC function. Zhang, Li, and Tsai (2010) show
that the λ selected by minimizing the BIC will select a set of covariates close to the true set under
the conditions described in their article. See BIC in [LASSO] lasso examples.

selection(none) does not select λ∗. Afterward, you can select λ using the command lassos-
elect. See Selecting lambda by hand using lassoselect below.

We will first explain CV.

selection(cv): Cross-validation

We will illustrate CV using Stata’s auto dataset. This is an unrealistic dataset to use with lasso
because the number of variables and the number of observations are small. Lasso was invented with
the idea of using hundreds or thousands of variables. See [LASSO] lasso examples for examples with
a large dataset. The small size of the auto dataset, however, is convenient because it does not produce
lots of output, and it illustrates some important concepts perfectly.

We load the data.

. sysuse auto
(1978 automobile data)

We want to model the variable mpg, which is a car’s miles per gallon. Choices for type of lasso
model are linear, logit, probit, poisson, and cox. Obviously, linear is the only appropriate
type of model for mpg. We follow mpg in the command specification with all the other numeric variables
in the dataset. foreign and rep78 are categorical variables, so we specify them using factor-variable
operator i. to create indicators for their categories. We do not specify the selection() option
because selection(cv) is the default.

lasso — Lasso for prediction and model selection 147

Before we run lasso, we set the random-number seed. CV uses random numbers, so if we want
to be able to reproduce our results, we must first set the seed.

. set seed 1234

. lasso linear mpg i.foreign i.rep78 headroom weight turn gear_ratio
> price trunk length displacement

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = 4.69114 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 33.97832
Grid value 2: lambda = 4.274392 no. of nonzero coef. = 2
Folds: 1...5....10 CVF = 31.62288

(output omitted)
Grid value 44: lambda = .0858825 no. of nonzero coef. = 10
Folds: 1...5....10 CVF = 13.39785
Grid value 45: lambda = .0782529 no. of nonzero coef. = 11
Folds: 1...5....10 CVF = 13.45168
... cross-validation complete ... minimum found

Lasso linear model No. of obs = 69
No. of covariates = 15

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 4.69114 0 -0.0018 33.97832
41 lambda before .1135316 8 0.6062 13.3577

* 42 selected lambda .1034458 8 0.6066 13.3422
43 lambda after .0942559 9 0.6060 13.36279
45 last lambda .0782529 11 0.6034 13.45168

* lambda selected by cross-validation.

. estimates store autolasso

After lasso finished, we typed estimates store autolasso to keep the results in memory.
This lasso was quick to compute, but lassos with lots of observations and lots of variables can take
some time to compute, so it is a good idea to store them.

lasso almost always produces a long iteration log. In this example, it iterated from grid value 1
with λ = 4.691140 to grid value 45 with λ = 0.078253. By default, selection(cv) sets up a grid
of 100 λ’s, which are spaced uniformly on a logarithmic scale. It ended at grid value 45 and did not
do any calculations for the 55 smallest λ gird points.

If we look at the output table, we see that the λ at grid value 1 has 0 nonzero coefficients
corresponding to it. This is how the first λ is calculated. It is the smallest λ that gives 0 nonzero
coefficients. The λ at grid value 100 is set by the grid() suboption ratio(#), which specifies the
ratio of the last (minimum) λ to the first (maximum) λ. The default for ratio(#) in this case is
1e−4.

148 lasso — Lasso for prediction and model selection

For each value of λ, coefficients are estimated. The entire list of λ’s can be viewed at any time using
the postestimation command lassoknots with the option alllambdas. It shows what happened at
every iteration.

. lassoknots, alllambdas

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

1 4.69114 0 33.97832 U
2 4.274392 2 31.62288 A weight length
3 3.894667 2 28.65489 U
4 3.548676 2 26.0545 U
5 3.233421 2 23.8774 U
6 2.946173 2 22.07264 U
7 2.684443 2 20.57514 U
8 2.445964 2 19.30795 U
9 2.228672 2 18.23521 U

10 2.030683 2 17.43067 U
11 1.850282 2 16.78884 U
12 1.685908 2 16.32339 U
13 1.536137 2 15.97483 U
14 1.399671 2 15.70143 U
15 1.275328 3 15.48129 A 5.rep78
16 1.162031 3 15.34837 U
17 1.0588 3 15.30879 U
18 .9647388 3 15.30897 U
19 .8790341 4 15.3171 A turn
20 .8009431 5 15.32254 A gear_ratio
21 .7297895 6 15.31234 A price
22 .664957 6 15.28881 U
23 .6058841 6 15.26272 U
24 .552059 6 15.20981 U
25 .5030156 6 15.1442 U
26 .4583291 6 15.04271 U
27 .4176124 6 14.92838 U
28 .3805129 6 14.877 U
29 .3467091 6 14.83908 U
30 .3159085 7 14.77343 A 0.foreign
31 .287844 8 14.67034 A 3.rep78
32 .2622728 8 14.53728 U
33 .2389732 8 14.35716 U
34 .2177434 8 14.15635 U
35 .1983997 8 13.95308 U
36 .1807744 8 13.77844 U
37 .1647149 8 13.62955 U
38 .1500821 8 13.519 U
39 .1367492 8 13.43867 U
40 .1246008 8 13.39141 U
41 .1135316 8 13.3577 U

* 42 .1034458 8 13.3422 U
43 .0942559 9 13.36279 A 1.rep78
44 .0858825 10 13.39785 A headroom
45 .0782529 11 13.45168 A displacement

* lambda selected by cross-validation.

As λ gets smaller, there are more nonzero coefficients. As the nonzero coefficients change, variables
are added to the model. Sometimes, variables are removed from the model. That is, a coefficient
once nonzero becomes zero at a smaller λ. In this example, once added to the model, no variable

lasso — Lasso for prediction and model selection 149

was ever removed. When there are more potential variables, you will typically see some variables
removed as other variables are added.

Usually, the number of nonzero coefficients increases monotonically as λ gets smaller, but not
always. Occasionally, the net number of variables in the model goes down, rather than up, in an
iteration to a smaller λ.

The λ’s at which variables are added or removed are called knots. By default, lassoknots shows
only the knots—and the λ that minimizes the CV function if it is not a knot. This λ is denoted by
λ∗ and is indicated in the table with an *.

. lassoknots

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

2 4.274392 2 31.62288 A weight length
15 1.275328 3 15.48129 A 5.rep78
19 .8790341 4 15.3171 A turn
20 .8009431 5 15.32254 A gear_ratio
21 .7297895 6 15.31234 A price
30 .3159085 7 14.77343 A 0.foreign
31 .287844 8 14.67034 A 3.rep78

* 42 .1034458 8 13.3422 U
43 .0942559 9 13.36279 A 1.rep78
44 .0858825 10 13.39785 A headroom
45 .0782529 11 13.45168 A displacement

* lambda selected by cross-validation.

The CV function

After coefficients are estimated for each λ, the value of the CV function is calculated. CV is done
by dividing the data randomly into folds, by default, 10 of them. (This is the step where random
numbers are used.)

One fold is chosen, and then a linear regression is fit on the other nine folds using the variables
in the model for that λ. Then, with these new coefficient estimates, a prediction is computed for the
data of the chosen fold. The mean squared error (MSE) of the prediction is computed. This process is
repeated for the other nine folds. The 10 MSEs are then averaged to give the value of the CV function.
On the output, the CV function is labeled CV mean prediction error.

By default, selection(cv) looks for a minimum of the CV function and then stops once it
has found one. We see that models for three λ’s past the minimum were fit. For linear models,
selection(cv) needs to see three smaller λ’s with larger values of the CV function to declare that
it has found a minimum. It sets the selected λ∗ to the λ that gave the minimum and stops.

150 lasso — Lasso for prediction and model selection

We can plot the CV function using cvplot.

. cvplot

15

20

25

30

35

C
ro

ss
-v

al
id

at
io

n
fu

nc
tio

n
λCV

.1110
λ

λCV = .1 is the cross-validation minimum λ; # coefficients = 8.

Cross-validation plot

If we want to see more values of the CV function, we can run lasso again using selection(cv,
alllambdas).

. set seed 1234

. lasso linear mpg i.foreign i.rep78 headroom weight turn gear_ratio
> price trunk length displacement, selection(cv, alllambdas)

Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = 4.69114 no. of nonzero coef. = 0
Grid value 2: lambda = 4.274392 no. of nonzero coef. = 2

(output omitted)

Grid value 76: lambda = .004375 no. of nonzero coef. = 13
Grid value 77: lambda = .0039863 no. of nonzero coef. = 13
... change in deviance stopping tolerance reached

10-fold cross-validation with 77 lambdas ...
Fold 1 of 10: 10....20....30....40....50....60....70...
Fold 2 of 10: 10....20....30....40....50....60....70...

(output omitted)

Fold 9 of 10: 10....20....30....40....50....60....70...
Fold 10 of 10: 10....20....30....40....50....60....70...
... cross-validation complete

Lasso linear model No. of obs = 69
No. of covariates = 15

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 4.69114 0 -0.0018 33.97832
41 lambda before .1135316 8 0.6062 13.3577

* 42 selected lambda .1034458 8 0.6066 13.3422
43 lambda after .0942559 9 0.6060 13.36279
77 last lambda .0039863 13 0.5765 14.36306

* lambda selected by cross-validation.

lasso — Lasso for prediction and model selection 151

The iteration log is in a different order than it was earlier. Here we see messages about all the grid
values first and then the folds of the CV. Earlier, we saw grid values and then folds, and then grid
values and then folds, etc. With alllambdas, coefficient vectors for all the λ’s are estimated first,
and then CV is done. When we are not going to stop when a minimum is found, this is a slightly
faster way of doing the computation.

The selected λ∗ and the values of the CV function and R2 are exactly the same—if we set the
random-number seed to the same value we used before. Had we forgotten to set the random-number
seed or set it to a different value, the values of the CV function and R2 would be slightly different,
and frequently, even the selected λ∗ is different.

Let’s plot the CV function again with these additional λ’s.

. cvplot

15

20

25

30

35

C
ro

ss
-v

al
id

at
io

n
fu

nc
tio

n

λCV

.01.1110
λ

λCV = .1 is the cross-validation minimum λ; # coefficients = 8.

Cross-validation plot

The suboption alllambdas lied to us. It did not give us all λ’s. There are 100 λ’s in the grid.
It showed us 77 of them this time, not all 100.

There is another rule that determines when the iteration over λ’s ends. It is the stopping tolerance
set by the option stop(#). When the deviance calculated from the estimated coefficients changes
little from one λ to the next, the iteration stops. The idea behind this stopping rule is that it means the
CV function would flatten out at this point, and there is no reason to continue estimating coefficients
for smaller λ’s. If you really want to see the smallest λ, specify stop(0) like so:

. lasso linear . . ., selection(cv, alllambdas) stop(0)

Note that stop(#) is not specified as a suboption of the selection(cv) option. The stop(#)
stopping rule has nothing to do with CV. It is based solely on the change in deviance produced by
the coefficient estimates.

Why do we have all these rules for ending the iteration over λ as soon as possible? The reason is
because the smaller the λ, the longer the computation time. If you have lots of observations and lots
of variables, you still see the iteration log going slower and slower with each successive λ. There is
no point in burning lots of computer time—except if you want to draw a prettier picture of the CV
function.

Advanced note: If you want more evidence that the identified minimum is the true minimum, you
are better off setting the option cvtolerance(#) to a larger value than specifying alllambdas.
You will get assurance in much shorter time.

152 lasso — Lasso for prediction and model selection

Another advanced note: Setting stop(0) without specifying alllambdas is sometimes useful.
See [LASSO] lasso fitting for details.

Penalized and postselection coefficients

We have discussed how lasso fitting and CV works without even mentioning the purpose of lasso.
But you read [LASSO] Lasso intro, right? The purposes of lasso are covered there. We are assuming
here that our purpose for this lasso is to build a predictive model for mpg.

To get predictions after lasso, we use predict, just as we use predict after regress. But
we have two choices after lasso. After lasso, we can use penalized coefficients to compute our
predictions, or we can use postselection coefficients.

Actually, there are three types of coefficients after lasso. What we refer to as standardized,
penalized, and postselection.

Before we minimize the objective function

1

2N
(y −Xβ′)′(y −Xβ′) + λ

p∑
j=1

|βj |

we standardize the columns of X (that is, the potential variables in the model) so that they each have
mean 0 and standard deviation 1. Otherwise, the term

p∑
j=1

|βj |

would be dependent on the scales of the variables.

standardized refers to the coefficients of the standardized variables exactly as estimated by the
minimization of the objective function.

When we are doing lasso for prediction, we are not supposed to care about the values of the
coefficients or look at them. (Read [LASSO] Lasso intro!) However, even we could not follow our
own advice, so we developed a command, lassocoef, especially for listing the coefficients.

lasso — Lasso for prediction and model selection 153

Let’s list the coefficients of the standardized variables.

. lassocoef, display(coef, standardized)

active

0.foreign 1.49568

rep78
3 -.3292316
5 1.293645

weight -.2804677
turn -.7378134

gear_ratio 1.378287
price -.2809065

length -2.942432
_cons 0

Legend:
b - base level
e - empty cell
o - omitted

The coefficients of the standardized variables seem to be the same order of magnitude as we expect.

penalized refers to the coefficients from the minimization of the objective function with the
standardization unwound. standardized, strictly speaking, gives the penalized coefficients of the
standardized variables. penalized gives the penalized coefficients of the unstandardized variables.
Let’s list them.

. lassocoef, display(coef, penalized)

active

0.foreign 3.250554

rep78
3 -.6641369
5 3.533896

weight -.0003563
turn -.167352

gear_ratio 3.000733
price -.0000972

length -.1303001
_cons 42.62583

Legend:
b - base level
e - empty cell
o - omitted

154 lasso — Lasso for prediction and model selection

The third type, postselection, is computed by taking the selected variables, estimating a linear
regression with them, and using those coefficients.

. lassocoef, display(coef, postselection)

active

0.foreign 4.769344

rep78
3 -1.010493
5 4.037817

weight -.000157
turn -.2159788

gear_ratio 3.973684
price -.0000582

length -.1355416
_cons 40.79938

Legend:
b - base level
e - empty cell
o - omitted

We can duplicate these results with regress.

. regress mpg 0bn.foreign 3bn.rep78 5bn.rep78 weight turn gear_ratio
> price length

Source SS df MS Number of obs = 69
F(8, 60) = 22.14

Model 1748.04019 8 218.505024 Prob > F = 0.0000
Residual 592.162704 60 9.86937839 R-squared = 0.7470

Adj R-squared = 0.7132
Total 2340.2029 68 34.4147485 Root MSE = 3.1416

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

foreign
Domestic 4.769344 1.596469 2.99 0.004 1.575931 7.962757

rep78
3 -1.010493 .8775783 -1.15 0.254 -2.765911 .7449251
5 4.037817 1.262631 3.20 0.002 1.512178 6.563455

weight -.000157 .0021651 -0.07 0.942 -.0044878 .0041739
turn -.2159788 .1886946 -1.14 0.257 -.5934242 .1614665

gear_ratio 3.973684 1.603916 2.48 0.016 .7653732 7.181994
price -.0000582 .0001996 -0.29 0.772 -.0004574 .0003411

length -.1355416 .0595304 -2.28 0.026 -.2546201 -.0164632
_cons 40.79938 9.206714 4.43 0.000 22.38321 59.21555

What are you doing looking at the p-values! If we are not supposed to look at the coefficients,
surely this applies many times over to p-values. We looked, too. And we see that the lasso selected a
bunch with big p-values. Lasso does not care about p-values. Its sole goal is to build a model that is
good for prediction, and it thought these variables would help do that. Maybe it is just fitting random
noise, and CV as a selection method is known to do that. Adding extra variables that are fitting only
random noise is called “overselecting”.

lasso — Lasso for prediction and model selection 155

We want to point out that although rep78 has five categories, lasso selected only two of them,
rep78 = 3 and rep78 = 5, to be in the final model. See Factor variables in lasso in [LASSO] lasso
examples and [LASSO] Collinear covariates.

predict

The options penalized and postselection carry over to predict. We can

predict yhat, penalized

Or we can

predict yhat, postselection

If we simply type

predict yhat

we get penalized.

For linear models, postselection coefficients give predictions that are theoretically slightly better
than those given by penalized coefficients. In practice, however, the difference in the prediction is
small.

For logit, probit, Poisson, and Cox models, there is no theory for the postselection predictions.
Only the penalized predictions have a theoretical basis. So the default, penalized, is recommended
for these models.

See [LASSO] lasso postestimation.

Selecting lambda by hand using lassoselect

We can change the selected λ∗ if we want. It is easy to do. Recall that we stored our original
lasso results in memory using

. estimates store name

We can then compare these results with those from other lassos. We show examples of this in
[LASSO] lasso examples. Note, however, that estimates store only saves them in memory. To save
the results to disk, use

. estimates save filename

See [LASSO] estimates store.

We restore our previous results.

. estimates restore autolasso
(results autolasso are active now)

156 lasso — Lasso for prediction and model selection

Let’s run lassoknots again with options to show R2. There are two types of R2 available. See
[LASSO] lassoknots for a discussion. The one labeled out-of-sample is the better one to look at.

. lassoknots, display(cvmpe r2 osr2)

CV mean Out-of-
pred. sample In-sample

ID lambda error R-squared R-squared

2 4.274392 31.62288 0.0676 0.1116
15 1.275328 15.48129 0.5435 0.6194
19 .8790341 15.3171 0.5484 0.6567
20 .8009431 15.32254 0.5482 0.6627
21 .7297895 15.31234 0.5485 0.6684
30 .3159085 14.77343 0.5644 0.7030
31 .287844 14.67034 0.5675 0.7100

* 42 .1034458 13.3422 0.6066 0.7422
43 .0942559 13.36279 0.6060 0.7431
44 .0858825 13.39785 0.6050 0.7439
45 .0782529 13.45168 0.6034 0.7449

* lambda selected by cross-validation.

That λ with ID = 15 looks almost as good as the one CV picked. Let’s select it.

. lassoselect id = 15
ID = 15 lambda = 1.275328 selected

The new selected λ∗ is shown on cvplot.

. cvplot

15

20

25

30

35

C
ro

ss
-v

al
id

at
io

n
fu

nc
tio

n

λCVλLS

.1110
λ

λCV = .1 is the cross-validation minimum λ; # coefficients = 8.
λLS = 1.3 is the lassoselect specified λ; # coefficients = 3.

Cross-validation plot

lasso — Lasso for prediction and model selection 157

We can look at the coefficients and compare them with the earlier results.

. lassocoef autolasso ., display(coef, postselection)

autolasso active

0.foreign 4.769344

rep78
3 -1.010493
5 4.037817 2.782347

weight -.000157 -.0024045
turn -.2159788

gear_ratio 3.973684
price -.0000582

length -.1355416 -.1120782
_cons 40.79938 49.23984

Legend:
b - base level
e - empty cell
o - omitted

The earlier lasso was stored as autolasso. When we use lassoselect, it is just like running
a new lasso. New estimation results are created. The period (.) used as an argument to lassocoef
means the current estimation results. If we want to compare these results with others in the future,
we can use estimates store and store them under a new name. Then we can use this name with
lassocoef.

Our new selected λ∗ certainly gives a more parsimonious model. Too bad we do not have any
theoretical basis for choosing it.

More lasso examples

We have yet to give examples for many important features. They include using split samples to
evaluate predictions, fitting logit, probit, Poisson, and Cox models, and selecting λ∗ using adaptive
lasso.

In [LASSO] lasso examples, we illustrate these capabilities using a dataset with lots of variables.
We also show how to use the vl commands, a system for managing large variable lists.

Stored results
lasso stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(k allvars) number of potential variables
e(k nonzero sel) number of nonzero coefficients for selected model
e(k nonzero cv) number of nonzero coefficients at CV mean function minimum
e(k nonzero serule) number of nonzero coefficients for one-standard-error rule
e(k nonzero min) minimum number of nonzero coefficients among estimated λ’s
e(k nonzero max) maximum number of nonzero coefficients among estimated λ’s
e(k nonzero bic) number of nonzero coefficients at BIC function minimum
e(lambda sel) value of selected λ∗

e(lambda gmin) value of λ at grid minimum

158 lasso — Lasso for prediction and model selection

e(lambda gmax) value of λ at grid maximum
e(lambda last) value of last λ computed
e(lambda cv) value of λ at CV mean function minimum
e(lambda serule) value of λ for one-standard-error rule
e(lambda bic) value of λ at BIC function minimum
e(ID sel) ID of selected λ∗

e(ID cv) ID of λ at CV mean function minimum
e(ID serule) ID of λ for one-standard-error rule
e(ID bic) ID of λ at BIC function minimum
e(cvm min) minimum CV mean function value
e(cvm serule) CV mean function value at one-standard-error rule
e(devratio min) minimum deviance ratio
e(devratio max) maximum deviance ratio
e(L1 min) minimum value of `1-norm of penalized unstandardized coefficients
e(L1 max) maximum value of `1-norm of penalized unstandardized coefficients
e(L2 min) minimum value of `2-norm of penalized unstandardized coefficients
e(L2 max) maximum value of `2-norm of penalized unstandardized coefficients
e(ll sel) log-likelihood value of selected model
e(n lambda) number of λ’s
e(n fold) number of CV folds
e(stop) stopping rule tolerance

Macros
e(cmd) lasso
e(cmdline) command as typed
e(depvar) name of dependent variable
e(allvars) names of all potential variables
e(allvars sel) names of all selected variables
e(alwaysvars) names of always-included variables
e(othervars sel) names of other selected variables
e(post sel vars) all variables needed for postlasso
e(clustvar) name of cluster variable
e(lasso selection) selection method
e(sel criterion) criterion used to select λ∗

e(plugin type) type of plugin λ
e(model) linear, logit, probit, poisson, or cox
e(title) title in estimation output
e(rngstate) random-number state used
e(properties) b
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) penalized unstandardized coefficient vector
e(b standardized) penalized standardized coefficient vector
e(b postselection) postselection coefficient vector

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

lasso — Lasso for prediction and model selection 159

Methods and formulas
This section provides the methods and formulas for lasso and elasticnet.

Methods and formulas are presented under the following headings:

Lasso and elastic-net objective functions
Coordinate descent
Grid of values for λ
How to choose the penalty parameter

How CV is performed
Adaptive lasso
Plugin estimators
BIC

Lasso and elastic-net objective functions

lasso and elasticnet estimate the parameters by finding the minimum of a penalized objective
function.

The penalized objective function of the lasso for the linear, logit, probit, or poisson model
is

QL =

N∑
i=1

w̃if(yi, β0 + xiβ
′) + λ

p∑
j=1

κj |βj | (1)

where N is the number of observations, w̃i is the normalized observation-level weight, f(·) is the
likelihood contribution for the regress, logit, probit, or poisson model, β0 is the intercept, xi
is the 1×p vector of covariates, β is the 1×p vector of coefficients, λ is the lasso penalty parameter,
which must be greater than or equal to 0, and κj are coefficient-level weights (which by default are
all 1).

The normalized weights w̃i sum to 1. That is,

w̃i =
wi∑N
i=1 wi

where wi is the original observation-level weight. If weights are not specified with lasso, wi = 1
and w̃i = 1/N .

When the model is linear,

f(β0 + xiβ) =
1

2
(yi − β0 − xiβ

′)2

When the model is logit,

f(β0 + xiβ) = −yi(β0 + xiβ
′) + ln

{
1 + exp(β0 + xiβ

′)
}

When the model is probit,

f(β0 + xiβ) = −yi ln
{

Φ(β0 + xiβ
′)
}
− (1− yi) ln

{
1− Φ(β0 + xiβ

′)
}

When the model is poisson,

f(β0 + xiβ) = −yi(β0 + xiβ
′) + exp(β0 + xiβ

′)

160 lasso — Lasso for prediction and model selection

The penalized objective function of the lasso for the cox model is

QL = −
Nf∑
j=1

∑
i∈Dj

w̃i

xiβ′ − ln

∑
`∈Rj

w̃` exp(x`β
′)

+ λ

p∑
j=1

κj |βj |

where j indexes the ordered failure times t(j), j = 1, . . . , Nf ; Dj is the set of observations that
fail at t(j); and Rj is the set of observations k that are at risk at time t(j) (that is, all k such that
t0k < t(j) ≤ tk, and t0k is the entry time for the kth observation). The first term in QL is the
weighted negative partial log-likelihood function of the Cox proportional hazards model. There is no
constant term β0 because the constant term is absorbed in the baseline hazard function.

Ties are handled using the Breslow approximation (Breslow 1974). The other methods of handling
ties that are options for stcox—the Efron method, the exact marginal-likelihood method, and the
exact partial-likelihood method—are not available with lasso cox.

The penalized objective function of elastic net for the linear, logit, probit, and poisson
models is

Qen =

N∑
i=1

w̃if(yi, β0 + xiβ
′) + λ

p∑
j=1

κj

{
1− α

2
β2
j + α |βj |

}
(2)

where α is the elastic-net penalty parameter and α can take on values only in [0, 1].

The penalized objective function of elastic net for the cox model is

Qen = −
Nf∑
j=1

∑
i∈Dj

w̃i

xiβ′ − ln

∑
`∈Rj

w̃` exp(x`β
′)

+ λ

p∑
j=1

κj

{
1− α

2
β2
j + α |βj |

}

Some values for α and λ cause elastic net to reduce to the objective function of another estimator
of interest. There are three special cases to note:

1. Lasso is a special case of elastic net. When α = 1, the objective function in (2) reduces to the
lasso objective function in (1).

2. Ridge regression is a special case of the elastic net. When α = 0 and λ > 0, (2) reduces to
the objective function for the ridge-regression estimator.

3. When λ = 0 in (2), there is no penalty term, and Qen reduces to the objective function for the
unpenalized maximum-likelihood estimator.

When 0 < α < 1 and λ > 0, (2) is the objective function for an elastic-net estimator that does
not reduce to a special case.

We discuss methods that apply to the lasso estimator and to the elastic-net estimator in this section
because the same algorithm is used to estimate the coefficients. We discuss the optimization procedure
in terms of the elastic-net objective function Qen because it reduces to the lasso estimator when
α = 1.

We discuss the methods for ridge regression in Methods and formulas in [LASSO] elasticnet because
a different algorithm is used to estimate the coefficients.

By default, the coefficient-level weights are 1 in (1) and (2). They may be specified using the
option penaltywt(). If the cluster() option is specified, the log likelihood is computed as the
sum of log likelihood at the cluster levels. This option is not allowed for the cox model.

lasso — Lasso for prediction and model selection 161

The penalized objective function of the lasso with cluster is

QL =

Nclust∑
i=1

{
Ti∑
t=1

˜̂witf(yit, β0 + xitβ
′)

}
+ λ

p∑
j=1

κj |βj |

where Nclust is the total number of clusters and Ti is the number of observations in cluster i. For
the tth observation in cluster i, ˜̂wit is its normalized observational level weight, yit is the dependent
variable, and xit are the covariates.

The normalized weights ˜̂wit are defined as

˜̂wit =
ŵit∑Nclust

i=1

∑Ti

t=1 ŵit

where ŵit are the cluster-level normalized weights. For fweights, ŵit = wit/
∑Ti

t=1 wit. For
iweights, ŵit = wit/Ti.

The penalized objective function of elastic net with cluster is

Qen =

Nclust∑
i=1

{
Ti∑
t=1

˜̂witf(yit, β0 + xitβ
′)

}
+ λ

p∑
j=1

κj

{
1− α

2
β2
j + α |βj |

}

Coordinate descent
lasso and elasticnet use the coordinate descent algorithm to minimize Qen for given values

of λ and α.

The coordinate descent algorithm for lasso problems was first applied to lasso as a “shooting
algorithm” in Fu (1998). Daubechies, Defrise, and Mol (2004) also discussed using coordinate descent
for lasso. The combination of Friedman et al. (2007), Friedman, Hastie, and Tibshirani (2010), and
Hastie, Tibshirani, and Wainwright (2015) provide a complete introduction to using the coordinate
descent algorithm for lasso and elastic net, and these references detail the formulas implemented in
lasso and elasticnet.

The numerical problem is made much easier and more stable by standardizing all the covariates to
have mean 0 and standard deviation 1. The standardization also removes β0 from the problem when
the model is regress.

Minimization problems are solved by finding the parameter values that set the first derivative
equations to 0. The first derivative equations are known as score equations in statistics. When the
score equations for all the elements in β are well defined, we frequently use a version of Newton’s
method that produces a series of updated guesses for β that get increasingly close to solving the score
equations. When the updated guess is close enough to solving the score equations, the algorithm
converges and we have our estimates.

Unfortunately, Qen is not always differentiable. When λ > 0 and the kth element in β is 0, Qen

is not differentiable. Convex analysis provides a way of getting a generalized score equation for the
kth element of β that handles the case in which βk is 0. It is not feasible to write down equations
for all p generalized score equations at the same time. It is too complicated.

162 lasso — Lasso for prediction and model selection

In general terms, coordinate descent is a solve-and-replace algorithm that repeatedly solves each
generalized score equation for a new coefficient value until a minimum of Qen is found. For
those familiar with the Gauss–Seidel algorithm, coordinate descent is basically Gauss–Seidel on the
generalized score equations. Quandt (1984) discusses the Gauss–Seidel algorithm.

To be more specific, we provide an outline of the implemented coordinate descent algorithm.

Step 1: Specify initial values.

a. Set each coefficient to an initial value β̂k = vk. We refer to β̂ as the current coefficient vector.

b. Initialize each coefficient in the previous coefficient vector β̃ to be a missing value.

c. Initialize the difference, ∆, between the current and the previous coefficient vectors to be a
missing value.

Step 2: As long as ∆ is larger than tolerance(#), do the following.

a. Set each coefficient in the current coefficient vector to the value that sets its generalized score
equation to 0. In other words, set

β̂k = gk(y,x, β̂1, . . . β̂k−1, β̂k+1, . . . β̂p)

where gk(y,x, β̂1, . . . β̂k−1, β̂k+1, . . . β̂p) is the expression for β̂k that sets the generalized
score equation with respect to β̂k to 0.

b. Let ∆ be the largest of the relative differences between β̂ and β̃.

c. Set β̃ = β̂.

The algorithm converges when step 2 finishes and β̂ contains the values that minimize Qen for
given values of λ and α.

When the model is regress, Hastie, Tibshirani, and Wainwright (2015, eq. 4.4) provide a formula
for gk(y,x, β̂1, . . . β̂k−1, β̂k+1, . . . β̂p). This coordinate descent algorithm is discussed in Hastie,
Tibshirani, and Wainwright (2015, chap. 4 and 5).

When the model is logit, probit, poisson, or cox the objective function can be minimized
by extensions to the method of iteratively reweighted least squares discussed by Nelder and Wed-
derburn (1972). See Hastie, Tibshirani, and Wainwright (2015, chap. 3) and Friedman, Hastie, and
Tibshirani (2010) for details.

Grid of values for λ

For any given value of 0 < α ≤ 1, letting λ decrease from ∞ to 0 creates a vector of coefficient
paths. When λ is large enough, all the coefficients are 0. Holding α fixed and decreasing λ from a
large value to 0 induces coefficient paths in which each coefficient emerges from 0. In a particular
lasso example, we see the following:

lasso — Lasso for prediction and model selection 163

-.5

0

.5

1

S
ta

nd
ar

di
ze

d
co

ef
fic

ie
nt

s

.01.11
λ

Coefficient paths

In this example, there are fewer covariates than observations, so at λ = 0, each coefficient path
has the value of its unpenalized estimate.

The convention that has emerged following Hastie, Tibshirani, and Wainwright (2015) is to consider
a few candidate values for α and a grid of 100 or so candidate values for λ. The default number of
grid points is 100, and it can be changed by specifying option grid(#). The candidate values for α
are specified by option alpha() in elasticnet.

The largest value in the grid is the smallest value for which all the coefficients are zero, and
we denote it by λgmax. The smallest value in the grid is λgmin, where λgmin = rλgmax and r
is set by the option grid(, ratio(#)). The grid is logarithmic with the ith grid point given by
lnλi = [(i− 1)/(n− 1)] ln r + lnλgmax, where n is the number of grid points.

How to choose the penalty parameter

To use a lasso, we need to decide which value of λ is best. We denote the selected λ as λ∗.

Some methods for choosing λ∗ are designed or advertised as facilitating the ability of the lasso
as a covariate selection technique. Some authors seem to advocate using the covariates selected by
lasso as if this estimate always picked out the true covariates. Unfortunately, the lasso estimate of
which covariates to include is too noisy to be treated as without error in subsequent steps, unless
all the not-zero coefficients are sufficiently large. This “beta-min” condition is widely viewed as too
strong for applied work. See Leeb and Pötscher (2008), Belloni and Chernozhukov (2011), Belloni,
Chernozhukov, and Hansen (2014a), and Chernozhukov et al. (2018) for discussions that have led to
the rejection of beta-min assumptions. See Remarks and examples in [LASSO] Lasso inference intro
for an introduction to commands that produce reliable inference without a beta-min condition.

The four methods for selecting λ∗ for lasso are CV, adaptive lasso, plugin estimators, and BIC.

CV finds the λ∗ that will produce coefficient estimates that predict best out of sample. When λ∗ is
selected by CV and the nonzero coefficients are used for covariate selection, the process tends to select
some covariates that do not belong in the model—in addition to ones that belong. See Bühlmann and
van de Geer (2011, sec. 2.5.1) for a discussion and further references. This is due to its larger bound
on the number of covariates it will find. See Chetverikov, Liao, and Chernozhukov (2019) and their
sparsity-bound results.

Adaptive lasso was derived by Zou (2006) and refined by Bühlmann and van de Geer (2011)
to provide more reliable covariate selection. As mentioned above, it will not provide mistake-free

164 lasso — Lasso for prediction and model selection

covariate selection without the widely rejected “beta-min” condition. See section 7.8.6 of Bühlmann
and van de Geer (2011) for a discussion of the versions of the beta-min and section 7.10 for a frank
conclusion on the difficulty of the problem. While it is not mistake free, covariate selection based on
the adaptive lasso will produce a more parsimonious model than covariate selection based on a λ∗

selected by CV.

The plugin estimators were designed to pick λ∗ to produce accurate results for the subsequently
estimated lasso coefficients. See Bickel, Ritov, and Tsybakov (2009), Belloni and Chernozhukov (2011),
Belloni, Chernozhukov, and Hansen (2014a, 2014b). These estimators for λ∗ are primarily used as
part of estimation methods that are robust to the covariate selection mistakes a lasso makes with any
choice of λ∗. Plugin estimators for λ∗ select a more parsimonious model than does CV. Simulations
indicate that plugin-based lassos select fewer covariates than adaptive lasso when there are small
coefficients in the true model, but there are no formal results.

BIC selects the λ∗ that will produce coefficient estimates that minimize the BIC. Our simulations
show that BIC avoids the overselection problem seen in CV and is often faster. BIC tends to select
models similar to those of the plugin method but can be applied to a more general class of models.

CV is implemented for lasso, elasticnet, and sqrtlasso. Adaptive lasso is implemented for
lasso. Plugin estimators are implemented for lasso and for sqrtlasso. BIC is implemented for
lasso, elasticnet, and sqrtlasso.

How CV is performed

CV finds the model that minimizes an out-of-sample prediction error, also known as the CV function.
We denote the CV function for the model with parameters θ by CV(θ). Formally, CV finds

θ̂ = arg minθ∈Θ{CV(θ)}

For lasso or sqrtlasso, Θ is the set of λ grid values. For elasticnet, Θ is the set of all
pairs (λ, α), where λ is in the λ grid and α is one of the specified candidate values.

The value of CV(θ) for each θ ∈ Θ is stored in the estimation results after CV is performed. This
allows postestimation commands like cvplot to plot or display values of the CV function for ranges
of θ values.

Here is how CV(θ) is computed.

1. Randomly partition the data into K folds.

2. Do the following for each fold k ∈ {1, . . . ,K}.
a. Estimate the parameters of the model for specified θ using the observations not in fold k.

b. Use the estimates computed in step 2a to fill in the out-of-sample deviance for the observations
in fold k.

3. For each model θ, compute the mean of the out-of-sample deviance.

4. The value of θ ∈ Θ with the smallest mean out-of-sample deviance minimizes the CV function.

For the cox model, we use the approach in van Houwelingen et al. (2006) to compute the deviance
in step 2b. Especially,

D̂ev
k

λ = Dev{θ̂−k(λ)} − Dev−k{θ̂−k(λ)}

lasso — Lasso for prediction and model selection 165

where θ̂−k(λ) are the estimates obtained in step 2a, Dev{θ̂−k(λ)} is the deviance using the full
sample and θ̂−k(λ), and Dev−k{θ̂−k(λ)} is the deviance using the observations not in the kth fold
and θ̂−k(λ).

For the details of deviance, see Methods and formulas in [LASSO] lassogof.

Adaptive lasso

Adaptive lasso is a sequence of CV lassos, each at least as parsimonious as the previous one.
Mechanically, adaptive lasso is implemented in the following way.

Step A:

Get the initial coefficient estimates and denote them β̂. By default, these estimates come
from a cross-validated lasso. Optionally, they come from an unpenalized model or from a
ridge estimator with λ selected by CV. Zou (2006, 1423) recommends ridge when collinearity
is a problem.

Step B:

a. Exclude covariates for which β̂j = 0.

b. Construct coefficient level weights for included covariates, κj = 1/|β̂j |δ , where δ is the
power to which the weight is raised. By default, δ = 1. To specify another value for δ, use
option selection(adaptive, power(#)).

Each adaptive step selects either the covariates selected by the previous step or a proper subset of
them.

The option selection(adaptive, step(#)) counts all lassos performed. So the default # = 2
means one adaptive step is done.

Plugin estimators

Heuristically, we get good lasso coefficient estimates when λ∗ is large enough to dominate the
noise that is inherent in estimating the coefficients when the penalty-loadings κj are at their optimal
levels. Plugin estimators use the structure of the model and advanced theoretical results to find the
smallest λ that dominates the noise, given estimates of the penalty loadings.

For simplicity and compatibility with the rest of the documentation, we did not divide λ by N in
(1). Multiply our formulas for λ by N to compare them with those in the cited literature.

As discussed by Bickel, Ritov, and Tsybakov (2009), Belloni and Chernozhukov (2011), Belloni
et al. (2012), and Belloni, Chernozhukov, and Wei (2016), the estimation noise is a function of the
largest of the absolute values of the score equations of the unpenalized estimator. In particular, when
the penalty loadings κj are at optimal values, λ∗ is chosen so that

P

(
λ∗ ≥ cmax1≤j≤p

∣∣∣∣∣ 1

Nκj

N∑
i=1

hj(yi,xiβ
′
0)

∣∣∣∣∣
)
→N 1

where c is a constant, and

1

N

N∑
i=1

hj(yi,xiβ
′
0)

166 lasso — Lasso for prediction and model selection

is the jth score from the unpenalized estimator at the true coefficients β0. The optimal values of the
penalty loadings normalize the scores of the unpenalized estimator to have unit variance.

Belloni and Chernozhukov (2011), Belloni et al. (2012), and Belloni, Chernozhukov, and Wei (2016)
derive values for λ∗ and estimators for κj for a variety of models. This firm theoretical structure
keeps the lasso with a plugin estimator from including too many irrelevant covariates and provides
it with a fast rate of convergence.

In all the implemented methods described below, we use the following notation:

c = 1.1 per the recommendation of Belloni and Chernozhukov (2011);

N is the sample size;

γ = 0.1/ ln[max{p,N}] is the probability of not removing a variable when it has a coefficient
of zero;

p is the number of candidate covariates in the model.

Two plugin estimators are implemented for lasso linear:

• selection(plugin, homoskedastic)

The errors must be homoskedastic, but no specific distribution is assumed.

The formula for λ∗ is

λhomoskedastic =
cσ̂√
N

Φ−1

(
1− γ

2p

)

σ̂ is an estimator of the variance of the error term. This estimator is implemented in
algorithm 1. In the linear homoskedastic case, there is no need to estimate the penalty
loadings κj ; they are implied by σ̂.

• selection(plugin, heteroskedastic)

The errors may be heteroskedastic and no specific distribution is assumed.

The formula for λ is

λheteroskedastic =
c√
N

Φ−1

(
1− γ

2p

)

In the linear-heteroskedastic case, penalty loadings are estimated by

κj =

√√√√ 1

N

N∑
i=1

(xij ε̂i)2

Algorithm 2 is used to estimate the εi.

lasso — Lasso for prediction and model selection 167

One plugin estimator is implemented for lasso logit:

λlogit =
c

2
√
N

Φ−1

[
1− 1.1

2 max{N, p lnN}

]
This value is from the notes to table 2 in Belloni, Chernozhukov, and Wei (2016), divided by
N as noted above. Belloni, Chernozhukov, and Wei (2016) use the structure of the binary
model to bound the κj , so they are not estimated. This bound is why c is divided by 2.

One plugin estimator is implemented for lasso poisson and lasso probit:

λ =
c√
N

Φ−1

(
1− γ

2p

)
κj are estimated in algorithm 3.

All three algorithms used the normalized covariates that each xj has mean 0 and variance 1.

Algorithm 1: Estimate σ̂

This iterative algorithm estimates σ; it is adopted from Belloni and Chernozhukov (2011, 20–21).
The algorithm depends on a starting value for σ̂ denoted by σ̂0, a convergence tolerance v = 1e–8,
and a maximum number of iterations M = 15.

We set σ̂0 to be the square root of the mean of the squared residuals from a regression of y on
the five covariates in x that have the five highest univariate correlations with y.

Set the iteration counter k = 1 and the absolute value of the difference between the current and
the previous estimate of σ to be a missing value.

1. Let λ̂k = (cσ̂k−1/
√
N) Φ−1(1− γ/2p).

2. Compute the lasso estimates β̂k using λ̂k.

3. Let σ̂k =
√

(1/N)
∑N
i=1(yi − xiβ̂k)2.

4. If |σ̂k− σ̂k−1| < v or k > M , set σ̂ = σ̂k and stop; otherwise, set k = k+ 1 and go to step 1.

Algorithm 2: Estimate linear-heteroskedastic penalty loadings

This iterative algorithm estimates the penalty loadings κj for the linear-heteroskedastic model;
it is adopted from Belloni, Chernozhukov, and Hansen (2014b, 640). The algorithm depends on a
convergence tolerance v = 1e–8 and a maximum number of iterations M = 15.

1. Get initial values:

a. Let ε̂0 be the residuals from the regression of y on the five covariates in x that have the
highest univariate correlations with y.

b. Let κ̂0,j =
√

1/N
∑N
i=1(xi,j ε̂k)2 be the initial penalty loading for each covariate j.

c. Let λ̂ = c/
√
N Φ−1(1− γ/2p).

d. Set the iteration counter to k = 1.

2. Compute the lasso estimates β̂k using λ̂ and the penalty loadings κ̂k−1,j . Let ŝ be the number
of nonzero coefficients in this lasso.

168 lasso — Lasso for prediction and model selection

3. Let ε̂k be the residuals from the postlasso regression of y on the ŝ covariates that have nonzero
lasso coefficients.

4. For each of the j covariates in the original model, compute the penalty loading

κ̂k,j =

√√√√ 1

N − ŝ

N∑
i=1

(xij ε̂k)2

5. If max1≤j≤p|κ̂k,j − κ̂k−1,j | < v or k > M , set κ̂j = κ̂k,j for each j and stop; otherwise, set
k = k + 1 and go to step 2.

Algorithm 3: Estimate penalty loadings for Poisson and probit
This is the algorithm used for Poisson and probit models.

In the Poisson case, references to the unpenalized quasi–maximum likelihood (QML) estimator
are to the unpenalized Poisson QML estimator. In the probit case, references to the unpenalized QML
estimator are to the unpenalized probit QML estimator.

In the Poisson case, hj(yi, x̃iβ̃) is the contribution of observation i to the unpenalized Poisson-score
equation using covariates x̃i and coefficients β̃. In the probit case, hj(yi, x̃iβ̃) is the contribution of
observation i to the unpenalized probit-score equation using covariates x̃i and coefficients β̃.

On exit, λ contains the penalty value, and the penalty loadings are in (κ̃1, . . . , κ̃p).

1. Set λ = c/
√
N Φ−1 [1− γ/(2p)].

2. Find the five covariates with highest correlations with y. Denote the vector of them by x̃0, and
let x̃0i be the ith observation on this vector of variables.

3. Estimate the coefficients β̃0 on x̃0 by unpenalized QML.

4. For each j ∈ {1, . . . , p}, set

κ̃0,j =

√√√√ 1

N

N∑
i=1

hj(yi, x̃0iβ̃0)2

5. Set k = 1 and do the following loop. (It will be executed at most 15 times.)

a. Using λ and loadings {κ̃k−1,1, . . . , κ̃k−1,p}, solve the lasso to get estimates ˜̃βk.

b. Let x̃k be the covariates with nonzero coefficients in ˜̃βk.

c. Estimate the coefficients β̃k on x̃k by unpenalized QML.

d. For each j ∈ {1, . . . , p}, set

κ̃k,j =

√√√√ 1

N

N∑
i=1

hj(yi, x̃kiβ̃k)2

e. Set k = k + 1.

f. If k > 15 or the variables in x̃k are the same as those in x̃k−1, set each κ̃j = κ̃k,j and
exit; otherwise, go to step 5a.

lasso — Lasso for prediction and model selection 169

BIC

lasso and elasticnet compute the BIC function for each vector of coefficients corresponding
to each λ. The BIC function is defined as

BIC = −2 lnL(y, β0 + xβ′) + k lnN

where lnL(y, β0 + xβ′) is the log-likelihood function, k is the number of nonzero coefficients, and
N is the number of observations.

When the model is linear,

lnL(y, β0 + xβ′) = −1

2

[
ln 2π + ln

{
N∑
i=1

w∗i (yi − β0 − xiβ
′)2

}
+ 1

]

When the model is logit,

lnL(y, β0 + xβ′) =

N∑
i=1

w∗i
[
yi
(
β0 + xiβ

′)− ln
{

1 + exp(β0 + xiβ
′)
}]

When the model is probit,

lnL(y, β0 + xβ′) =

N∑
i=1

w∗i
[
yi ln

{
Φ(β0 + xiβ

′)
}

+ (1− yi) ln
{

1− Φ(β0 + xiβ
′)
}]

When the model is poisson,

lnL(y, β0 + xβ′) =

N∑
i=1

w∗i
{
− exp(β0 + xiβ

′) + (β0 + xiβ
′)yi − ln(yi!)

}
When the model is cox,

lnL(y,xβ′) = −
Nf∑
j=1

∑
i∈Dj

w∗i

xiβ′ − ln

∑
`∈Rj

w∗` exp(x`β
′)

The weights w∗i are normalized to sum to N . That is,

w∗i =
Nwi∑N
i=1 wi

where wi is the original observation-level weight.

When the selection(bic, postselection) option is specified, the postselection coefficients
are used to compute the BIC. By default, penalized coefficients are used.

170 lasso — Lasso for prediction and model selection

References
Belloni, A., D. Chen, V. Chernozhukov, and C. B. Hansen. 2012. Sparse models and methods for optimal instruments

with an application to eminent domain. Econometrica 80: 2369–2429. https://doi.org/10.3982/ECTA9626.

Belloni, A., and V. Chernozhukov. 2011. High dimensional sparse econometric models: An Introduction. In Inverse
Problems of High-Dimensional Estimation, ed. P. Alguier, E. Gautier, and G. Stoltz, 121–156. Berlin: Springer.

Belloni, A., V. Chernozhukov, and C. B. Hansen. 2014a. High-dimensional methods and inference on structural and
treatment effects. Journal of Economic Perspectives 28: 29–50. https://doi.org/10.1257/jep.28.2.29.

. 2014b. Inference on treatment effects after selection among high-dimensional controls. Review of Economic
Studies 81: 608–650. https://doi.org/10.1093/restud/rdt044.

Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many
controls. Journal of Business and Economic Statistics 34: 606–619. https://doi.org/10.1080/07350015.2016.1166116.

Bickel, P. J., Y. Ritov, and A. B. Tsybakov. 2009. Simultaneous analysis of Lasso and Dantzig selector. Annals of
Statistics 37: 1705–1732. https://doi.org/10.1214/08-AOS620.

Breslow, N. E. 1974. Covariance analysis of censored survival data. Biometrics 30: 89–99.
https://doi.org/10.2307/2529620.

Bühlmann, P., and S. van de Geer. 2011. Statistics for High-Dimensional Data: Methods, Theory and Applications.
Berlin: Springer.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. B. Hansen, W. K. Newey, and J. M. Robins. 2018.
Double/debiased machine learning for treatment and structural parameters. Econometrics Journal 21: C1–C68.
https://doi.org/10.1111/ectj.12097.

Chetverikov, D., Z. Liao, and V. Chernozhukov. 2019. On cross-validated lasso. Unpublished manuscript.
https://arxiv.org/pdf/1605.02214.pdf.

Daubechies, I., M. Defrise, and C. D. Mol. 2004. An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint. Communications on Pure and Applied Mathematics 57: 1413–1457.
https://doi.org/10.1002/cpa.20042.

Friedman, J. H., T. J. Hastie, H. Höfling, and R. J. Tibshirani. 2007. Pathwise coordinate optimization. Annals of
Applied Statistics 1: 302–332. https://doi.org/10.1214/07-AOAS131.

Friedman, J. H., T. J. Hastie, and R. J. Tibshirani. 2010. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software 33: 1–22. https://doi.org/10.18637/jss.v033.i01.

Fu, W. J. 1998. Penalized regressions: The bridge versus the lasso. Journal of Computational and Graphical Statistics
7: 397–416. https://doi.org/10.1080/10618600.1998.10474784.

Hastie, T. J., R. J. Tibshirani, and M. Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and
Generalizations. Boca Raton, FL: CRC Press.

Leeb, H., and B. M. Pötscher. 2008. Sparse estimators and the oracle property, or the return of Hodges’ estimator.
Journal of Econometrics 142: 201–211. https://doi.org/10.1016/j.jeconom.2007.05.017.

Nelder, J. A., and R. W. M. Wedderburn. 1972. Generalized linear models. Journal of the Royal Statistical Society,
Series A 135: 370–384. https://doi.org/10.2307/2344614.

Quandt, R. E. 1984. Computational problems and methods. In Vol. 2 of Handbook of Econometrics, ed. Z. Griliches
and M. D. Intriligator, 699–764. Amsterdam: Elsevier. https://doi.org/10.1016/S1573-4412(83)01016-8.

van Houwelingen, H. C., T. Bruinsma, A. A. M. Hart, L. J. van’t Veer, and L. F. A. Wessels. 2006. Cross-validated Cox re-
gression on microarray gene expression data. Statistics in Medicine 25: 3201–3216. https://doi.org/10.1002/sim.2353.

Zhang, Y., R. Li, and C.-L. Tsai. 2010. Regularization parameter selections via generalized information criterion.
Journal of the American Statistical Association 105: 312–323. https://doi.org/10.1198/jasa.2009.tm08013.

Zou, H. 2006. The adaptive lasso and its oracle properties. Journal of the American Statistical Association 101:
1418–1429. https://doi.org/10.1198/016214506000000735.

https://doi.org/10.3982/ECTA9626
https://doi.org/10.1257/jep.28.2.29
https://doi.org/10.1093/restud/rdt044
https://doi.org/10.1080/07350015.2016.1166116
https://doi.org/10.1214/08-AOS620
https://doi.org/10.2307/2529620
https://doi.org/10.2307/2529620
https://doi.org/10.1111/ectj.12097
https://arxiv.org/pdf/1605.02214.pdf
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1214/07-AOAS131
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1080/10618600.1998.10474784
https://doi.org/10.1016/j.jeconom.2007.05.017
https://doi.org/10.2307/2344614
https://doi.org/10.1016/S1573-4412(83)01016-8
https://doi.org/10.1002/sim.2353
https://doi.org/10.1198/jasa.2009.tm08013
https://doi.org/10.1198/016214506000000735

lasso — Lasso for prediction and model selection 171

Also see
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] elasticnet — Elastic net for prediction and model selection

[LASSO] lasso examples — Examples of lasso for prediction

[LASSO] Lasso intro — Introduction to lasso

[LASSO] sqrtlasso — Square-root lasso for prediction and model selection

[R] logit — Logistic regression, reporting coefficients

[R] poisson — Poisson regression

[R] probit — Probit regression

[R] regress — Linear regression

[ST] stset — Declare data to be survival-time data

[U] 20 Estimation and postestimation commands

Title

lasso postestimation — Postestimation tools for lasso for prediction

Postestimation commands predict stcurve Remarks and examples
Methods and formulas References Also see

Postestimation commands
The following postestimation commands are of special interest after lasso, sqrtlasso, and

elasticnet:

Command Description

bicplot plot Bayesian information criterion function
coefpath plot path of coefficients
cvplot plot cross-validation function
lassocoef display selected coefficients
lassogof goodness of fit after lasso for prediction
lassoinfo information about lasso estimation results
lassoknots knot table of coefficient selection and measures of fit
lassoselect select alternative λ∗ (and α∗ for elasticnet)
∗stcurve plot the survivor, failure, hazard, or cumulative hazard function

∗stcurve is appropriate only after lasso cox or elasticnet cox.

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample
estimates cataloging estimation results
etable table of estimation results
predict linear predictions

172

lasso postestimation — Postestimation tools for lasso for prediction 173

predict

Description for predict
predict creates a new variable containing predictions such as linear predictions; probabilities

when the model is logit or probit; number of events when the model is Poisson; or hazard ratios and
baseline survivor, cumulative hazard, and hazard functions when the model is Cox.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic options
]

statistic Description

Main

xb linear predictions; the default for the linear model
pr probability of a positive outcome; the default for the logit and probit models
n number of events; the default for the poisson model
ir incidence rate; optional for the poisson model
hr predicted hazard ratio, also known as the relative hazard; the default for

the cox model
basesurv baseline survivor function
basechazard baseline cumulative hazard function
basehc baseline hazard contributions

pr is allowed only when the model is logit or probit.
n and ir are allowed only when the model is poisson.
hr, basesurv, basechazard, and basehc are allowed only when the model is cox.

options Description

Main

penalized use penalized coefficients; the default
postselection use postselection (unpenalized) coefficients
nooffset ignore the offset or exposure variable (if any)

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample. Starred statistics are calculated only for the estimation sample, even when e(sample)
is not specified. nooffset is allowed only with unstarred statistics.

174 lasso postestimation — Postestimation tools for lasso for prediction

Options for predict

� � �
Main �

xb, the default for the linear model, calculates linear predictions.

pr, the default for and only allowed with the logit and probit models, calculates the probability
of a positive event.

n, the default for and only allowed with the poisson model, calculates the number of events,
which is exp(xjβ) if neither offset() nor exposure() was specified when the model was fit;
exp(xjβ + offsetj) if offset() was specified; or exp(xjβ) × exposurej if exposure() was
specified.

ir applies to the poisson model only. It calculates the incidence rate exp(xβ′), which is the
predicted number of events when exposure is 1. Specifying ir is equivalent to specifying n when
neither offset() nor exposure() was specified when the model was fit.

hr, the default for the cox model, calculates the relative hazard (hazard ratio), that is, the exponentiated
linear prediction exp(xβ′).

basesurv applies to the cox model only. It calculates the baseline survivor function. In the null
model, this is equivalent to the Kaplan–Meier product-limit estimate.

basechazard applies to the cox model only. It calculates the cumulative baseline hazard.

basehc applies to the cox model only. It calculates the baseline hazard contributions. These are
used to construct the product-limit type estimator for the baseline survivor function generated by
basesurv.

penalized specifies that penalized coefficients be used to calculate predictions. This is the default.
Penalized coefficients are those estimated by lasso in the calculation of the lasso penalty. See
Methods and formulas in [LASSO] lasso.

postselection specifies that postselection coefficients be used to calculate predictions. Postselection
coefficients are calculated by taking the variables selected by lasso and refitting the model with the
appropriate ordinary estimator: linear regression for linear models, logistic regression for logit
models, probit regression for probit models, Poisson regression for poisson models, and Cox
regression for cox models.

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It
modifies the calculations made by predict so that they ignore the offset or exposure variable;
the linear prediction is treated as xβ′ rather than xβ′ + offset or xβ′ + ln(exposure). For the
poisson model, specifying predict . . ., nooffset is equivalent to specifying predict . . .,
ir. This option is not allowed when basesurv, basechazard, or basehc is specified.

lasso postestimation — Postestimation tools for lasso for prediction 175

stcurve

Description for stcurve

stcurve plots the survivor, failure, hazard, or cumulative hazard function after lasso cox or
elasticnet cox.

Menu for stcurve

Statistics > Survival analysis > Regression models > Plot survivor or related function

Syntax for stcurve

stcurve
[
, penalized postselection stcurve options

]
Options for stcurve

penalized, the default, specifies that penalized coefficients be used to calculate predictions. Penalized
coefficients are those estimated by lasso in the calculation of the lasso penalty. See Methods and
formulas in [LASSO] lasso.

postselection specifies that postselection coefficients be used to calculate predictions. Postselection
coefficients are calculated by taking the variables selected by lasso and refitting the model with
stcox.

stcurve options are options available for stcurve; see Options in [ST] stcurve.

Remarks and examples
By default, predict after lasso uses the penalized coefficient estimates to predict the outcome.

Specifying the postselection option causes predict to use the postselection coefficients to calculate
predictions. Postselection coefficients are calculated by taking the variables selected by lasso and
refitting the model with the unpenalized estimator.

stcurve after lasso cox or elasticnet cox also uses the penalized coefficients by default.
Specifying the postselection option causes stcurve to use the postselection coefficients.

Belloni and Chernozhukov (2013) and Belloni et al. (2012) provide results under which predictions
using postselection coefficients perform at least as well as predictions using penalized coefficients.
Their results are only for linear models. Their conditions essentially limit the cases to ones in which
the covariates selected by the lasso are close to the set of covariates that best approximates the
outcome. Said plainly, this means that under the conditions for which lasso provides valid predictions,
the postselection coefficients should do slightly better than the penalized coefficients in most cases;
in other cases, they should be about the same.

Rather than relying on theorems, standard practice in prediction applications uses split-sample
techniques to find which of several models produces the best predictions. One standard practice in
prediction applications is to randomly split the sample into training and testing samples. When you use
the training data, the coefficients for several competing predictors are computed. When you use the
testing data, an out-of-sample prediction error is computed for each of the predictors whose coefficients
were estimated on the training data. The predictor with the smallest out-of-sample prediction error is
preferred. This practice is illustrated in [LASSO] lassogof.

176 lasso postestimation — Postestimation tools for lasso for prediction

Methods and formulas
Below, we discuss the methods and formulas for the predictions of baseline survivor function,

baseline cumulative hazard function, and baseline hazard contributions after lasso cox or elasticnet
cox.

Define zi = xiβ̂
′
+ offseti, where β̂ is either the penalized or the postselection coefficients. The

estimated baseline hazard contribution is obtained at each failure time as hj = 1− α̂j , where α̂j is
the solution to ∑

k∈Dj

exp(zk)

1− α̂ exp(zk)
j

=
∑
`∈Rj

exp(z`)

(Kalbfleisch and Prentice 2002, eq. 4.34, 115), where j indexes the ordered failure times tj (j =
1, . . . , D); Dj is the set of dj observations that fail at tj ; dj is the number of failures at tj ; and Rj
is the set of observations k that are at risk at time tj (that is, all k such that t0k < tj ≤ tk, and t0k
is the entry time for the kth observation).

The estimated baseline survivor function is

Ŝ0(t) =
∏
j:tj≤t

α̂j

The estimated baseline cumulative hazard function, if requested, is related to the baseline survivor
function calculation; yet the values of α̂j are set at their starting values and are not iterated.
Equivalently,

Ĥ0(t) =
∑
j:tj≤t

dj∑
`∈Rj

exp(z`)

For an application of this formula in the context of lasso cox, see Ternès, Rotolo, and Michiels (2017).

References
Belloni, A., D. Chen, V. Chernozhukov, and C. B. Hansen. 2012. Sparse models and methods for optimal instruments

with an application to eminent domain. Econometrica 80: 2369–2429. https://doi.org/10.3982/ECTA9626.

Belloni, A., and V. Chernozhukov. 2013. Least squares after model selection in high-dimensional sparse models.
Bernoulli 19: 521–547. https://doi.org/10.3150/11-BEJ410.

Kalbfleisch, J. D., and R. L. Prentice. 2002. The Statistical Analysis of Failure Time Data. 2nd ed. New York: Wiley.

Ternès, N., F. Rotolo, and S. Michiels. 2017. Robust estimation of the expected survival probabilities from high-
dimensional Cox models with biomarker-by-treatment interactions in randomized clinical trials. BMC Medical
Research Methodology 17(83). https://doi.org/10.1186/s12874-017-0354-0.

Also see
[LASSO] lasso examples — Examples of lasso for prediction

[LASSO] elasticnet — Elastic net for prediction and model selection

[LASSO] lasso — Lasso for prediction and model selection

[LASSO] sqrtlasso — Square-root lasso for prediction and model selection

[U] 20 Estimation and postestimation commands

https://doi.org/10.3982/ECTA9626
https://doi.org/10.3150/11-BEJ410
https://doi.org/10.1186/s12874-017-0354-0

Title

lassocoef — Display coefficients after lasso estimation results

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description

lassocoef displays a table showing the selected variables after one or more lasso estimation
results. It can also display the values of the coefficient estimates. When used with stored results from
two or more lassos, it can be used to view the overlap between sets of selected variables.

After ds, po, and xpo commands, and after telasso, lassocoef can be used to view coefficients
for a single lasso or for multiple lassos displayed side by side.

Quick start
Display the selected variables after lasso, sqrtlasso, or elasticnet

lassocoef

Display the values of the postselection coefficients after lasso, sqrtlasso, or elasticnet
lassocoef, display(coef, postselection)

Display the penalized coefficients of the standardized variables after lasso, sqrtlasso, or elas-
ticnet sorted by their absolute values in descending order

lassocoef, display(coef, standardized) sort(coef, standardized)

Compare which variables were selected from three different runs of lasso, where the estimation
results are stored under the names mylasso1, mylasso2, and mylasso3

lassocoef mylasso1 mylasso2 mylasso3

Same as above, but display the penalized coefficients of the unstandardized variables sorted by the
values of the penalized coefficients of the standardized variables

lassocoef mylasso1 mylasso2 mylasso3, display(coef, penalized) ///
sort(coef, standardized)

After fitting a lasso logit model, display the exponentiated postselection coefficients, which are
odds ratios, and specify their display format

lassocoef, display(coef, postselection eform format(%6.2f))

After any of the ds or po commands, display the selected variables in the lasso for the dependent
variable y

lassocoef (., for(y))

Same as above, but display the penalized coefficients of the standardized variables in the lasso for y
sorted by their absolute values

lassocoef (., for(y)), display(coef, standardized) ///
sort(coef, standardized)

177

178 lassocoef — Display coefficients after lasso estimation results

Same as above, but compare the lasso for y from the results stored in mydsregress with the lasso
for y from the results stored in myporegress

lassocoef (mydsregress, for(y)) (myporegress, for(y)), ///
display(coef, standardized) sort(coef, standardized)

After xpologit without resample, compare the variables selected by the lassos for x in each of
the 10 cross-fit folds

lassocoef (myxpo, for(x) xfold(1)) ///
(myxpo, for(x) xfold(2)) ///
...
(myxpo, for(x) xfold(10))

After xpologit with resample, compare the variables selected by the lassos for x in each of the
10 cross-fit folds in the first resample

lassocoef (myxpo, for(x) xfold(1) resample(1)) ///
(myxpo, for(x) xfold(2) resample(1)) ///
...
(myxpo, for(x) xfold(10) resample(1))

After telasso, display the selected variables in the lasso for the outcome variable y at treatment
levels 1 and 0

lassocoef (., for(y) tlevel(1)) (., for(y) tlevel(0))

Menu
Statistics > Postestimation

lassocoef — Display coefficients after lasso estimation results 179

Syntax

For current estimation results

After lasso, sqrtlasso, or elasticnet

lassocoef
[
, options

]
After ds or po

lassocoef (., for(varspec))
[
, options

]
After xpo without resample

lassocoef (., for(varspec) xfold(#))
[
, options

]
After xpo with resample

lassocoef (., for(varspec) xfold(#) resample(#))
[
, options

]
After telasso for the outcome variable

lassocoef (., for(varspec) tlevel(#))
[
, options

]
After telasso for the treatment variable

lassocoef (., for(varspec))
[
, options

]
After telasso for the outcome variable with cross-fitting but without resample

lassocoef (., for(varspec) tlevel(#) xfold(#))
[
, options

]
After telasso for the treatment variable with cross-fitting but without resample

lassocoef (., for(varspec) xfold(#))
[
, options

]
After telasso for the outcome variable with cross-fitting and resample

lassocoef (., for(varspec) tlevel(#) xfold(#) resample(#))
[
, options

]
After telasso for the treatment variable with cross-fitting and resample

lassocoef (., for(varspec) xfold(#) resample(#))
[
, options

]
For multiple stored estimation results

lassocoef
[

estspec1
[

estspec2 . . .
]] [

, options
]

180 lassocoef — Display coefficients after lasso estimation results

estspec for lasso, sqrtlasso, and elasticnet is

name

estspec for ds and po models is

(name, for(varspec))

estspec for xpo without resample is

(name, for(varspec) xfold(#))

estspec for xpo with resample is

(name, for(varspec) xfold(#) resample(#))

estspec for the treatment model in telasso is

(name, for(varspec))

estspec for the outcome model at the treatment level # in telasso is

(name, for(varspec) tlevel(#))

estspec for the treatment model in telasso with cross-fitting but without resample is

(name, for(varspec) xfold(#))

estspec for the outcome model at the treatment level # in telasso with cross-fitting but without
resample is

(name, for(varspec) tlevel(#) xfold(#))

estspec for the treatment model in telasso with resample is

(name, for(varspec) xfold(#) resample(#))

estspec for the outcome model at the treatment level # in telasso with resample is

(name, for(varspec) tlevel(#) xfold(#) resample(#))

name is the name of a stored estimation result. Either nothing or a period (.) can be used to
specify the current estimation result. all or * can be used to specify all stored estimation
results when all stored results are lasso, sqrtlasso, or elasticnet.

varspec is varname, except after poivregress and xpoivregress, when it is either varname or
pred(varname).

lassocoef — Display coefficients after lasso estimation results 181

options Description

Options

display(x) indicate selected variables with an x; the default
display(u) same as display(x), except variables unavailable to be

selected indicated with a u

display(coef
[
, coef di opts

]
) display coefficient values

sort(none) order of variables as originally specified; the default
sort(names) order by the names of the variables
sort(coef

[
, coef sort opts

]
) order by the absolute values of the coefficients in descending

order

nofvlabel display factor-variable level values rather than value labels
nolegend report or suppress table legend
nolstretch do not stretch the width of the table to accommodate long

variable names

collect is allowed; see [U] 11.1.10 Prefix commands.
nofvlabel, nolegend, and nolstretch do not appear in the dialog box.

coef di opts Description

standardized display penalized coefficients of standardized variables; the default
penalized display penalized coefficients of unstandardized variables
postselection display postselection coefficients of unstandardized variables
eform display exp(b) rather than the coefficient b
format(% fmt) use numerical format % fmt for the coefficient values

coef sort opts Description

standardized sort by penalized coefficients of standardized variables
penalized sort by penalized coefficients of unstandardized variables
postselection sort by postselection coefficients of unstandardized variables

Options

� � �
Options �

display(displayspec) specifies what to display in the table. The default is display(x).

Blank cells in the table indicate that the corresponding variable was not selected by the lasso or
was not specified in the model.

For some variables without fitted values, a code that indicates the reason for omission is reported
in the table.

Empty levels of factors and interactions are coded with the letter e.

Base levels of factors and interactions are coded with the letter b. Base levels can be set on
alwaysvars (variables always included in the lasso) but not on othervars (the set of variables from
which lasso selects).

182 lassocoef — Display coefficients after lasso estimation results

Variables omitted because of collinearity are coded with the letter o. Lasso does not label as omitted
any othervars because of collinearity. Collinear variables are simply not selected. Variables in
alwaysvars can be omitted because of collinearity. See Remarks and examples in [LASSO] Collinear
covariates.

display(x) displays an x in the table when the variable has been selected by the lasso; that is,
it has a nonzero coefficient.

display(u) is the same as display(x), except that when a variable was not specified in the
model, u (for unavailable) is displayed instead of a blank cell.

display(coef
[
, standardized penalized postselection eform format(% fmt)

]
)

specifies that coefficient values be displayed in the table.

standardized specifies that the penalized coefficients of the standardized variables be dis-
played. This is the default when display(coef) is specified without options. Penalized
coefficients of the standardized variables are the coefficient values used in the estimation of
the lasso penalty. See Methods and formulas in [LASSO] lasso.

penalized specifies that the penalized coefficients of the unstandardized variables be displayed.
Penalized coefficients of the unstandardized variables are the penalized coefficients of the
standardized variables with the standardization removed.

postselection specifies that the postselection coefficients of the unstandardized variables be
displayed. Postselection coefficients of the unstandardized variables are obtained by fitting an
ordinary model (regress for lasso linear, logit for lasso logit, probit for lasso
probit, and poisson for lasso poisson) using the selected variables. See Methods and
formulas in [LASSO] lasso.

eform displays coefficients in exponentiated form. For each coefficient, exp(b) rather than b
is displayed. This option can be used to display odds ratios or incidence-rate ratios after the
appropriate estimation command.

format(% fmt) specifies the display format for the coefficients in the table. The default is
format(%9.0g).

sort(sortspec) specifies that the rows of the table be ordered by specification given by sortspec.

sort(none) specifies that the rows of the table be ordered by the order the variables were specified
in the model specification. This is the default.

sort(names) orders rows alphabetically by the variable names of the covariates. In the case
of factor variables, main effects and nonfactor variables are displayed first in alphabetical
order. Then, all two-way interactions are displayed in alphabetical order, then, all three-way
interactions, and so on.

sort(coef
[
, standardized penalized postselection

]
) orders rows in descending order

by the absolute values of the coefficients. When results from two or more estimation results
are displayed, results are sorted first by the ordering for the first estimation result with rows
representing coefficients not in the first estimation result last. Within the rows representing
coefficients not in the first estimation result, the rows are sorted by the ordering for the second
estimation result with rows representing coefficients not in the first or second estimation results
last. And so on.

standardized orders rows in descending order by the absolute values of the penalized
coefficients of the standardized variables. This is the default when sort(coef) is specified
without options.

lassocoef — Display coefficients after lasso estimation results 183

penalized orders rows in descending order by the absolute values of the penalized coefficients
of the unstandardized variables.

postselection orders rows in descending order by the absolute values of the postselection
coefficients of the unstandardized variables.

nofvlabel displays factor-variable level numerical values rather than attached value labels. This
option overrides the fvlabel setting. See [R] set showbaselevels.

nolegend specifies that the legend at the bottom of the table not be displayed. By default, it is
shown.

nolstretch specifies that the width of the table not be automatically widened to accommodate long
variable names. When nolstretch is specified, names are abbreviated to make the table width
no more than 79 characters. The default, lstretch, is to automatically widen the table up to the
width of the Results window. To change the default, use set lstretch off.

Required options for estspec after telasso, ds, po, and xpo:

for(varspec) specifies a particular lasso after telasso or after a ds, po, or xpo estimation command
fit using the option selection(cv), selection(adaptive), or selection(bic). For all
commands except poivregress and xpoivregress, varspec is always varname.

For the ds, po, and xpo commands except poivregress and xpoivregress, varspec is either
depvar, the dependent variable, or one of varsofinterest for which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred(varname). The
lasso for depvar is specified with its varname. Each of the endogenous variables have two
lassos, specified by varname and pred(varname). The exogenous variables of interest each
have only one lasso, and it is specified by pred(varname).

For telasso, varspec is either the outcome variable or the treatment variable.

This option is required after telasso and after the ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command or after telasso when
the option xfolds(#) was specified. For each variable to be fit with a lasso, K lassos are
done, one for each cross-fit fold, where K is the number of folds. This option specifies which
fold, where # = 1, 2, . . . ,K. xfold(#) is required after an xpo command and after telasso
when the option xfolds(#) was specified.

resample(#) specifies a particular lasso after an xpo estimation command or after telasso fit
using the option resample(#). For each variable to be fit with a lasso, R × K lassos are
done, where R is the number of resamples and K is the number of cross-fitting folds. This
option specifies which resample, where # = 1, 2, . . . , R. resample(#), along with xfold(#),
is required after an xpo command and after telasso with resampling.

tlevel(#) specifies the lasso for the outcome variable at the specified treatment level after
telasso. This option is required to refer to the outcome model after telasso.

Remarks and examples
lassocoef lists the variables selected by a lasso and optionally lists the values of their coefficients.

It is useful for comparing the results of multiple lassos. It shows how much overlap there is among
the sets of selected variables from the lassos.

By default, lassocoef indicates only whether a variable was selected, marking a selected variable
with an x. The option display(coef, coef type) can be used to display the values of the coefficients.

184 lassocoef — Display coefficients after lasso estimation results

Lassos store three different types of coefficients (coef types). We refer to them as standardized,
penalized, and postselection.

Before a lasso is fit, the potential variables in the model are standardized so that they each have
mean 0 and standard deviation 1. standardized refers to the coefficients of the standardized variables
exactly as estimated by the minimization of the objective function.

penalized refers to the coefficients from the minimization of the objective function with the
standardization unwound. standardized, strictly speaking, gives the penalized coefficients of the
standardized variables. penalized gives the penalized coefficients of the unstandardized variables.

postselection coefficients are computed by taking the selected variables and, for a linear lasso,
estimating an ordinary least-squares linear regression with them, and using those coefficients. For
a logit lasso, a logistic regression gives the postselection coefficients; for a probit lasso, a probit
regression gives them; and for a Poisson lasso, a Poisson regression gives them.

lassocoef also has a sort(coef, coef type) option, which controls the order in which the
variables are listed. The most useful ordering is sort(coef, standardized). It sorts the listing
by the absolute values of the standardized coefficients with the largest displayed first. Variables with
larger absolute values of their standardized coefficients take up a larger share of the lasso penalty,
and so in this sense, they are “more important” for prediction than variables with smaller values.

Example 1: lasso

We will show some uses of lassocoef after lasso.

Here is an example using lasso from [LASSO] lasso examples. We load the data and make the
vl variable lists active.

. use https://www.stata-press.com/data/r18/fakesurvey_vl
(Fictitious survey data with vl)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

We fit the lasso.
. lasso linear q104 $idemographics $ifactors $vlcontinuous, rseed(1234)

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .9090511 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.33331

(output omitted)
Grid value 28: lambda = .0737359 no. of nonzero coef. = 80
Folds: 1...5....10 CVF = 11.92887
... cross-validation complete ... minimum found

Lasso linear model No. of obs = 914
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .9090511 0 -0.0010 18.33331
23 lambda before .1174085 58 0.3543 11.82553

* 24 selected lambda .1069782 64 0.3547 11.81814
25 lambda after .0974746 66 0.3545 11.8222
28 last lambda .0737359 80 0.3487 11.92887

* lambda selected by cross-validation.

lassocoef — Display coefficients after lasso estimation results 185

By default, after only one lasso, lassocoef lists the variables selected by the lasso.

. lassocoef

active

0.gender x
0.q3 x
0.q4 x
0.q5 x
2.q6 x
0.q7 x

(output omitted)
q111 x
q139 x

_cons x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

lassocoef is intended to be used to compare multiple lassos. So let’s store the results of this
lasso before we fit another. See [LASSO] estimates store for more on storing and saving lasso results.

. estimates store lassocv

We fit an adaptive lasso.

. lasso linear q104 $idemographics $ifactors $vlcontinuous,
> selection(adaptive) rseed(1234)

(output omitted)
Lasso linear model No. of obs = 914

No. of covariates = 277
Selection: Adaptive No. of lasso steps = 2

Final adaptive step results

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

29 first lambda 52.54847 0 -0.0011 18.3349
82 lambda before .3794425 40 0.4077 10.84767

* 83 selected lambda .3457338 41 0.4077 10.84764
84 lambda after .3150198 42 0.4074 10.85301

128 last lambda .0052548 62 0.3954 11.07398

* lambda selected by cross-validation in final adaptive step.

. estimates store lassoadaptive

Adaptive lasso selected 41 variables. Lasso selected 64. We can compare both the differences in
selection and differences in the values of the coefficients. We use lassocoef with display(coef,
standardized) to list the values of the standardized coefficients. We specify sort(coef, stan-
dardized) to sort them so that the largest ones in absolute value from the first lasso are shown
first. The option nofvlabel means that numerical values for the factor-variable levels are displayed
rather than value labels.

186 lassocoef — Display coefficients after lasso estimation results

. lassocoef lassocv lassoadaptive, display(coef, standardized)
> sort(coef, standardized) nofvlabel nolegend

lassocv lassoadaptive

0.q19 -.8228234 -.9542076
0.q88 .7464342 .8650972

3.q156 -.6770033 -.770628
0.q48 -.6055556 -.7086328
0.q73 -.5962807 -.7036719
0.q85 -.5855315 -.684066

q31 .5843145 .7228376
0.q101 .5565875 .6682665

(output omitted)

0.q75 -.0056084
q63 -.0055279

0.q55 -.0054106
0.q51 .0043129
0.q77 .0019468

0.q115 .0005097
_cons 3.55e-15 0

Most of the differences occur in the coefficients with the smallest absolute values.

Let’s fit another lasso. Note that we omitted the variable list idemographics from the potential
variables this time.

. lasso linear q104 $ifactors $vlcontinuous, selection(cv) rseed(1234)

(output omitted)
Lasso linear model No. of obs = 916

No. of covariates = 269
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .9127278 0 -0.0020 18.33925
24 lambda before .1074109 57 0.3406 12.06842

* 25 selected lambda .0978688 62 0.3407 12.06704
26 lambda after .0891744 70 0.3400 12.07962
28 last lambda .0740342 78 0.3361 12.15082

* lambda selected by cross-validation.

. estimates store lassocv2

lassocoef — Display coefficients after lasso estimation results 187

The option display(u) puts a u next to the variables that were unavailable to be selected.

. lassocoef lassocv lassocv2, display(u)

lassocv lassocv2

0.gender x u
0.q3 x u
0.q4 x u
0.q5 x u

q6
2 x x
3 x

(output omitted)
q100
No x
q21 x
q52 x

_cons x x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated
u - not selected for estimation

If display(u) was not specified, there would be empty space in place of the u’s. So this option
is useful for distinguishing whether a variable was not selected or simply not included in the model
specification.

Example 2: poivregress

We want to show you some differences that arise when you fit models containing endogenous
variables using poivregress and xpoivregress.

We will not describe the data or the model here. See [LASSO] Inference examples.

We load the data,

. use https://www.stata-press.com/data/r18/mroz2, clear

set vl variable lists,

. vl create vars = (kidslt6 kidsge6 age husage city exper)
note: $vars initialized with 6 variables.

. vl substitute vars2 = c.vars c.vars#c.vars

. vl create iv = (huseduc motheduc fatheduc)
note: $iv initialized with 3 variables.

. vl substitute iv2 = c.iv c.iv#c.iv

188 lassocoef — Display coefficients after lasso estimation results

and fit our model using poivregress.

. poivregress lwage (educ = $iv2), controls($vars2) selection(cv) rseed(12345)

Estimating lasso for lwage using cv
Estimating lasso for educ using cv
Estimating lasso for pred(educ) using cv

Partialing-out IV linear model Number of obs = 428
Number of controls = 27
Number of instruments = 9
Number of selected controls = 16
Number of selected instruments = 4
Wald chi2(1) = 11.10
Prob > chi2 = 0.0009

Robust
lwage Coefficient std. err. z P>|z| [95% conf. interval]

educ .0765154 .0229707 3.33 0.001 .0314936 .1215371

Endogenous: educ
Note: Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store poivregresscv

We use lassoinfo to see the lassos fit by poivregress.

. lassoinfo poivregresscv

Estimate: poivregresscv
Command: poivregress

No. of
Selection Selection selected

Variable Model method criterion lambda variables

lwage linear cv CV min. .0353704 3
educ linear cv CV min. .0530428 10

pred(educ) linear cv CV min. .013186 12

lassocoef — Display coefficients after lasso estimation results 189

We have two lassos for educ, the endogenous variable in the model. One is named educ and the
other pred(educ). To compare the coefficient estimates for these two lassos, we type

. lassocoef (poivregresscv, for(educ)) (poivregresscv, for(pred(educ))),
> display(coef, standardized) sort(coef, standardized) nolegend

poivregresscv poivregresscv
educ pred(educ)

c.huseduc#c.huseduc 1.047956

c.motheduc#c.fatheduc .5574474

c.kidsge6#c.kidsge6 -.2293016 -.274782

c.kidslt6#c.kidslt6 .1175937

c.kidsge6#c.exper .1087689 .2928483

c.motheduc#c.motheduc .0813009

c.huseduc#c.fatheduc .0411326

c.city#c.exper .0207999 .1020498

c.husage#c.exper .0077213

c.kidsge6#c.city -.0017114

kidslt6 .5342914

c.kidslt6#c.kidsge6 -.2364133

kidsge6 -.2129479
husage -.2091804

c.husage#c.city .1396385

c.exper#c.exper -.133589

c.kidslt6#c.exper -.1322304

c.city#c.city .1320515

c.kidslt6#c.city .0237243

_cons 0 0

Example 3: xporegress

The xpo commands fit many lassos. For each lasso fit by a po command, the corresponding xpo
command fits xfolds(#)× resample(#) lassos. Cross-fitting randomly creates different divisions
of the data for each resample. We expect that lasso will select different variables for different cross-fit
folds and resamples. See [LASSO] Inference examples for a description of the data and model.

We load the data, set vl variable lists, fit our model using xporegress with the options xfolds(3)
and resample(2), and then store the results with estimates store.

. use https://www.stata-press.com/data/r18/breathe, clear
(Nitrogen dioxide and attention)

190 lassocoef — Display coefficients after lasso estimation results

. vl set

(output omitted)
. vl move (siblings_old siblings_young) vlcontinuous
note: 2 variables specified and 2 variables moved.

(output omitted)
. vl create mycontinuous = vlcontinuous - (react no2_class)
note: $mycontinuous initialized with 10 variables.

. vl substitute mycontrols = i.vlcategorical mycontinuous

. xporegress react no2_class, controls($mycontrols) xfolds(3) resample(2)
> selection(cv) rseed(12345)

Resample 1 of 2 ...
Cross-fit fold 1 of 3 ...
Estimating lassos: 1.

Resample 1 of 2 ...
Cross-fit fold 2 of 3 ...
Estimating lassos: 1.

Resample 1 of 2 ...
Cross-fit fold 3 of 3 ...
Estimating lassos: 1.

Resample 2 of 2 ...
Cross-fit fold 1 of 3 ...
Estimating lassos: 1.

Resample 2 of 2 ...
Cross-fit fold 2 of 3 ...
Estimating lassos: 1.

Resample 2 of 2 ...
Cross-fit fold 3 of 3 ...
Estimating lassos: 1.

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32

Number of selected controls = 27
Number of folds in cross-fit = 3
Number of resamples = 2
Wald chi2(1) = 20.99
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.332193 .5090902 4.58 0.000 1.334394 3.329991

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store xpocv

For each cross-fit fold and each resample, xporegress fits lassos. It fit six lassos for the dependent
variable, react, and six for the variable of interest, no2 class. To see how the variables selected
differ for different folds and for different resamples, we type

. lassocoef (xpocv, for(react) resample(1) xfold(1))
> (xpocv, for(react) resample(1) xfold(2))
> (xpocv, for(react) resample(1) xfold(3))
> (xpocv, for(react) resample(2) xfold(1))
> (xpocv, for(react) resample(2) xfold(2))
> (xpocv, for(react) resample(2) xfold(3))
> , sort(coef, standardized)

lassocoef — Display coefficients after lasso estimation results 191

xpocv xpocv xpocv xpocv xpocv xpocv
react_1_1 react_2_1 react_3_1 react_1_2 react_2_2 react_3_2

grade
2nd x x x x x x

sex
Male x x x x x x

grade
4th x x x x x x

age x x x x x x

feducation
University x x x x x x

age0 x x x x x

meducation
Primary x x x x x x

breastfeed
2 x x x

0.msmoke x x x

feducation
Primary x x x x

<Primary x x

sev_school x x

meducation
<Primary x x x x

siblings_y~g x x x x

meducation
University x x x

siblings_old x x
sev_home x x x

lbweight
Normal bi.. x x x x
noise_school x x x

breastfeed
3 x x

0.overweight x
precip x

green_home x
_cons x x x x x x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

192 lassocoef — Display coefficients after lasso estimation results

Even though we had lassocoef display x’s, we specified the sort(coef, standardized) option
so that the table is ordered by the most important variables from the lasso in the first column.

Stored results
lassocoef stores the following in r():

Macros
r(names) names of results used

Matrices
r(coef) matrix M : n×m

M [i, j] = ith coefficient estimate for model j; i=1,...,n; j=1,...,m

Also see
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] lassoinfo — Display information about lasso estimation results

[CAUSAL] telasso postestimation — Postestimation tools for telasso

Title

lasso examples — Examples of lasso for prediction

Description Remarks and examples References Also see

Description
This entry contains more examples of lasso for prediction. It assumes you have already read

[LASSO] Lasso intro and [LASSO] lasso.

Remarks and examples
Remarks are presented under the following headings:

Overview
Using vl to manage variables
Using splitsample
Lasso linear models
Adaptive lasso
Cross-validation folds
BIC
More potential variables than observations
Factor variables in lasso
Lasso logit and probit models
Lasso Poisson models
Lasso Cox models

Overview

In the examples of this entry, we use a dataset of a realistic size for lasso. It has 1,058 observations
and 172 variables. Still, it is a little on the small side for lasso. Certainly, you can use lasso on
datasets of this size, but lasso can also be used with datasets that have thousands or tens of thousands
of variables.

The number of variables can even be greater than the number of observations. What is essential
for lasso is that the set of potential variables contains a subset of variables that are in the true model
(or something close to it) or are correlated with the variables in the true model.

As to how many variables there can be in the true model, we can say that the number cannot be
greater than something proportional to

√
N/ ln q, where N is the number of observations, p is the

number of potential variables, and q = max{N, p}. We cannot, however, say what the constant of
proportionality is. That this upper bound decreases with q can be viewed as the cost of performing
covariate selection.

Using vl to manage variables

We will show how to use commands in the vl system to manage large numbers of variables. vl
stands for “variable lists”. The idea behind it is that we might want to run a lasso with hundreds or
thousands or tens of thousands of variables specified as potential variables. We do not want to have
to type all these variable names.

193

194 lasso examples — Examples of lasso for prediction

Many times, we will have a mix of different types of variables. Some we want to treat as continuous.
Some we want to treat as categorical and use factor-variable operators with them to create indicator
variables for their categories. See [U] 11.4.3 Factor variables.

The first goal of the vl system is to help us separate variables we want to treat as categorical
from those we want to treat as continuous. The second goal of the system is to help us create named
variable lists we can use as arguments to lasso or any other Stata command simply by referring to
their names.

The purpose here is to illustrate the power of vl, not to explain in detail how it works or show
all of its features. For that, see [D] vl.

We load the dataset we will use in these examples.

. use https://www.stata-press.com/data/r18/fakesurvey
(Fictitious survey data)

It is simulated data designed to mimic survey data. It has 1,058 observations and 172 variables.

. describe

Contains data from https://www.stata-press.com/data/r18/fakesurvey.dta
Observations: 1,058 Fictitious survey data

Variables: 172 14 Jun 2022 15:31

Variable Storage Display Value
name type format label Variable label

id str8 %9s Respondent ID
gender byte %8.0g gender Gender
age byte %8.0g Age (y)
q1 byte %10.0g Question 1
q2 byte %8.0g Question 2
q3 byte %8.0g yesno Question 3

(output omitted)
q160 byte %8.0g yesno Question 160
q161 byte %8.0g yesno Question 161
check8 byte %8.0g Check 8

Sorted by: id

The variables are a mix. Some we know are integer-valued scales that we want to treat as continuous
variables in our models. There are a lot of 0/1 variables, and there are some with only a few categories
that we will want to turn into indicator variables. There are some with more categories that we do
not yet know whether to treat as categorical or continuous.

The first vl subcommand we run is vl set. Nonnegative integer-valued variables are candidates
for use as factor variables. Because factor variables cannot be negative, any variable with negative
values is classified as continuous. Any variable with noninteger values is also classified as continuous.

vl set has two options, categorical(#) and uncertain(#), that allow us to separate out the
nonnegative integer-valued variables into three named variable lists: vlcategorical, vluncertain,
and vlcontinuous.

lasso examples — Examples of lasso for prediction 195

When the number of levels (distinct values), L, is

2 ≤ L ≤ categorical(#)

the variable goes in vlcategorical. When

categorical(#) < L ≤ uncertain(#)

the variable goes in vluncertain. When

L > uncertain(#)

the variable goes in vlcontinuous.

The defaults are categorical(10) and uncertain(100). For our data, we do not like the
defaults, so we change them. We specify categorical(4) and uncertain(19). We also specify
the option dummy to create a variable list, vldummy, consisting solely of 0/1 variables. Let’s run vl
set with these options.

. vl set, categorical(4) uncertain(19) dummy

Macro’s contents

Macro # Vars Description

System
$vldummy 99 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 20 continuous variables
$vluncertain 27 perhaps continuous, perhaps categorical variables
$vlother 9 all missing or constant variables

Notes

1. Review contents of vlcategorical and vlcontinuous to ensure they are
correct. Type vl list vlcategorical and type vl list vlcontinuous.

2. If there are any variables in vluncertain, you can reallocate them
to vlcategorical, vlcontinuous, or vlother. Type
vl list vluncertain.

3. Use vl move to move variables among classifications. For example,
type vl move (x50 x80) vlcontinuous to move variables x50 and x80 to
the continuous classification.

4. vlnames are global macros. Type the vlname without the leading
dollar sign ($) when using vl commands. Example: vlcategorical not
$vlcategorical. Type the dollar sign with other Stata commands to
get a varlist.

196 lasso examples — Examples of lasso for prediction

The vluncertain variable list contains all the variables we are not sure whether we want to treat
as categorical or continuous. We use vl list to list the variables in vluncertain.

. vl list vluncertain

Variable Macro Values Levels

q12 $vluncertain integers >=0 5
q18 $vluncertain integers >=0 7
q23 $vluncertain integers >=0 10
q27 $vluncertain integers >=0 8
q28 $vluncertain integers >=0 15
q35 $vluncertain integers >=0 7
q39 $vluncertain integers >=0 5
q54 $vluncertain integers >=0 10
q63 $vluncertain integers >=0 7
q66 $vluncertain integers >=0 5
q80 $vluncertain integers >=0 5
q81 $vluncertain integers >=0 5
q92 $vluncertain integers >=0 5
q93 $vluncertain integers >=0 7
q99 $vluncertain integers >=0 5

q103 $vluncertain integers >=0 7
q107 $vluncertain integers >=0 18
q111 $vluncertain integers >=0 7
q112 $vluncertain integers >=0 7
q119 $vluncertain integers >=0 8
q120 $vluncertain integers >=0 7
q124 $vluncertain integers >=0 14
q127 $vluncertain integers >=0 5
q132 $vluncertain integers >=0 7
q135 $vluncertain integers >=0 10
q141 $vluncertain integers >=0 12
q157 $vluncertain integers >=0 7

We are going to have to go through these variables one by one and reclassify them. We know we
have several seven-level Likert scales in these data. We tabulate one of them.

. tabulate q18

Question 18 Freq. Percent Cum.

Very strongly disagree 139 13.15 13.15
Strongly disagree 150 14.19 27.34

Disagree 146 13.81 41.15
Neither agree nor disagree 146 13.81 54.97

Agree 174 16.46 71.43
Strongly agree 146 13.81 85.24

Very strongly agree 156 14.76 100.00

Total 1,057 100.00

lasso examples — Examples of lasso for prediction 197

We look at all the variables with seven levels, and they are all Likert scales. We want to treat
them as continuous in our models, so we move them out of vluncertain and into vlcontinuous.

. vl move (q18 q35 q63 q93 q103 q111 q112 q120 q132 q157) vlcontinuous
note: 10 variables specified and 10 variables moved.

Macro # Added/Removed

$vldummy 0
$vlcategorical 0
$vlcontinuous 10
$vluncertain -10
$vlother 0

When variables are moved into a new vl system-defined variable list, they are automatically moved
out of their current system-defined variable list.

In our examples, we have three variables we want to predict: q104, a continuous variable; q106, a
0/1 variable; and q107, a count variable. Because we are going to use the variables in vlcategorical
and vlcontinuous as potential variables to select in our lassos, we do not want these dependent
variables in these variable lists. We move them into vlother, which is intended as a place to put
variables we do not want in our models.

. vl move (q104 q106 q107) vlother
note: 3 variables specified and 3 variables moved.

Macro # Added/Removed

$vldummy -1
$vlcategorical 0
$vlcontinuous -1
$vluncertain -1
$vlother 3

Notice the parentheses around the variable names when we used vl move. The rule for vl is to use
parentheses around variable names and to not use parentheses for variable-list names.

The system-defined variable lists are good for a general division of variables. But we need further
subdivision for our models. We have four demographic variables, which are all categorical, but we
want them included in all lasso models. So we create a user-defined variable list containing these
variables.

. vl create demographics = (gender q3 q4 q5)
note: $demographics initialized with 4 variables.

We want to convert the variables in vldummy and vlcategorical into indicator variables. We
create a new variable list, factors, containing the union of these lists. Because we want to handle
the variables in demographics separately, we remove them from factors.

. vl create factors = vldummy + vlcategorical
note: $factors initialized with 114 variables.

. vl modify factors = factors - demographics
note: 4 variables removed from $factors.

The vl substitute command allows us to apply factor-variable operators to a variable list. We
turn the variables in demographics and factors into factor variables.

. vl substitute idemographics = i.demographics

. vl substitute ifactors = i.factors

198 lasso examples — Examples of lasso for prediction

We are done using vl and we save our dataset. One nice feature of vl is that the variable lists
are saved with the data.

. label data "Fictitious survey data with vl"

. save fakesurvey_vl
file fakesurvey_vl.dta saved

We are now ready to run some lassos.

Using splitsample

Well, almost ready. We want to evaluate our lasso predictions on a sample that we did not use to
fit the lasso. So we decide to randomly split our data into two samples of equal sizes. We will fit
models on one, and we will use the other to test their predictions.

Let’s load the version of our dataset that contains our variable lists. We first increase maxvar
because we are going to create thousands of interactions in a later example.

. clear all

. set maxvar 10000

. use https://www.stata-press.com/data/r18/fakesurvey_vl
(Fictitious survey data with vl)

Variable lists are not automatically restored. We have to run vl rebuild to make them active.

. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 98 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 29 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 12 all missing or constant variables

User
$demographics 4 variables
$factors 110 variables
$idemographics factor-variable list
$ifactors factor-variable list

We now use splitsample to generate a variable indicating the two subsamples.

. set seed 1234

. splitsample, generate(sample) nsplit(2)

. label define svalues 1 "Training" 2 "Testing"

. label values sample svalues

lasso examples — Examples of lasso for prediction 199

Lasso linear models

When fitting our lasso model, we can now specify variables succinctly using our vl variable lists.
Variable lists are really global macros—we bet you already guessed this. Listing them under the
header “Macro” in vl output was a real tip-off, right? Because they are global macros, when we use
them as arguments in commands, we put a $ in front of them.

We put parentheses around idemographics. This notation means that we want to force these
variables into the model regardless of whether lasso wants to select them. See Syntax in [LASSO] lasso.

We also set the random-number seed using the rseed() option so that we can reproduce our
results.

We fit lasso on the first subsample.

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, rseed(1234)

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
Folds: 1...5....10 CVF = 16.93341

(output omitted)
Grid value 23: lambda = .1159557 no. of nonzero coef. = 74
Folds: 1...5....10 CVF = 12.17933
... cross-validation complete ... minimum found

Lasso linear model No. of obs = 458
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .8978025 4 0.0147 16.93341
18 lambda before .1846342 42 0.2953 12.10991

* 19 selected lambda .1682318 49 0.2968 12.08516
20 lambda after .1532866 55 0.2964 12.09189
23 last lambda .1159557 74 0.2913 12.17933

* lambda selected by cross-validation.

. estimates store linearcv

After the command finished, we used estimates store to store the results in memory so that we
can later compare these results with those from other lassos. Note, however, that estimates store
only saves them in memory. To save the results to disk, use

. estimates save filename

See [LASSO] estimates store.

The minimum of the cross-validation (CV) function was found to be at λ = 0.1682318. It selects
λ∗ as this λ, which corresponds to 49 variables in the model, out of 277 potential variables.

200 lasso examples — Examples of lasso for prediction

After fitting a lasso using CV to select λ, it is a good idea to plot the CV function and look at the
shape of the curve around the minimum.

. cvplot

12

13

14

15

16

17

C
ro

ss
-v

al
id

at
io

n
fu

nc
tio

n

λCV

.11
λ

λCV = .17 is the cross-validation minimum λ; # coefficients = 49.

Cross-validation plot

By default, the lasso command stops when it has identified a minimum. Computation time increases
as λ’s get smaller, so computing the CV function for smaller λ’s is computationally expensive. We
could specify the option selection(cv, alllambdas) to compute models for more small λ’s. See
[LASSO] lasso and [LASSO] lasso fitting for details and a description of less computationally intensive
options to get more assurance that lasso has identified a minimum.

We can also get a plot of the size of the coefficients as they become nonzero and change as λ
gets smaller. Typically, they get larger as λ gets smaller. But they can sometimes return to 0 after
being nonzero.

. coefpath

-1

-.5

0

.5

1

S
ta

nd
ar

di
ze

d
co

ef
fic

ie
nt

s

0 5 10 15
L1-norm of standardized coefficient vector

Coefficient paths

We see four lines that do not start at 0. These are lines corresponding to the four variables in
idemographics that we forced into the model.

lasso examples — Examples of lasso for prediction 201

Adaptive lasso

We are now going to run an adaptive lasso, which we do by specifying the option selec-
tion(adaptive).

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, rseed(4321) selection(adaptive)

Lasso step 1 of 2:

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
Folds: 1...5....10 CVF = 17.012

(output omitted)
Grid value 24: lambda = .1056545 no. of nonzero coef. = 78
Folds: 1...5....10 CVF = 12.40012
... cross-validation complete ... minimum found

Lasso step 2 of 2:

Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = 48.55244 no. of nonzero coef. = 4

(output omitted)
Grid value 100: lambda = .0048552 no. of nonzero coef. = 59

10-fold cross-validation with 100 lambdas ...
Fold 1 of 10: 10....20....30....40....50....60....70....80....90....100

(output omitted)
Fold 10 of 10: 10....20....30....40....50....60....70....80....90....100
... cross-validation complete

Lasso linear model No. of obs = 458
No. of covariates = 277

Selection: Adaptive No. of lasso steps = 2

Final adaptive step results

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

25 first lambda 48.55244 4 0.0101 17.01083
77 lambda before .3847698 46 0.3985 10.33691

* 78 selected lambda .3505879 46 0.3987 10.33306
79 lambda after .3194427 47 0.3985 10.33653

124 last lambda .0048552 59 0.3677 10.86697

* lambda selected by cross-validation in final adaptive step.

. estimates store linearadaptive

Adaptive lasso performs multiple lassos. In the first lasso, a λ∗ is selected, and penalty weights
are constructed from the coefficient estimates. Then these weights are used in a second lasso, where
another λ∗ is selected. We did not specify how many lassos should be performed, so we got the
default of two. We could specify more, but typically the selected λ∗ does not change after the second
lasso, or it changes little. See the selection(adaptive) option in [LASSO] lasso.

202 lasso examples — Examples of lasso for prediction

We can see details of the two lassos by using lassoknots and specifying the option steps to
see all steps of the adaptive lasso.

. lassoknots, steps

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

Step ID lambda coef. error or left (U)nchanged

1
1 .8978025 4 17.012 A 1.q3 1.q4

1.q5 1.gender
2 .8180442 7 16.91096 A 0.q19 0.q85

3.q156
3 .7453714 8 16.66328 A 0.q101
4 .6791547 9 16.33224 A 0.q88

(output omitted)
23 .1159557 74 12.35715 A 3.q6 0.q40

0.q82 0.q98
0.q128 2.q134
0.q148 q157

24 .1056545 78 12.40012 A 2.q6 0.q9
1.q34 4.q155

2
25 48.55244 4 17.01083 A 1.q3 1.q4

1.q5 1.gender
26 44.23918 6 16.94087 A 0.q19 0.q85

(output omitted)
76 .4222844 45 10.33954 A 0.q44
77 .3847698 46 10.33691 A q111

* 78 .3505879 46 10.33306 U
79 .3194427 47 10.33653 A 0.q97
80 .2910643 48 10.3438 A 0.q138

(output omitted)
112 .0148272 59 10.7663 A q70
124 .0048552 59 10.86697 U

* lambda selected by cross-validation in final adaptive step.

Notice how the scale of λ changes in the second lasso. That is because of the penalty weights
generated by the first lasso.

The ordinary lasso selected 49 variables, and the adaptive lasso selected 46. It is natural to ask
how much these two groups of variables overlap. When the goal is prediction, however, we are not
supposed to care about this. Ordinary lasso might select one variable, and adaptive lasso might instead
select another that is highly correlated to it. So it is wrong to place importance on any particular
variable selected or not selected. It is the group of variables selected as a whole that matters.

Still, we cannot resist looking, and the lassocoef command was designed especially for this
purpose. We specify lassocoef with the option sort(coef, standardized). This sorts the listing
by the absolute values of the standardized coefficients with the largest displayed first. lassocoef
can list different types of coefficients and display them in different orderings. See [LASSO] lassocoef.

lasso examples — Examples of lasso for prediction 203

. lassocoef linearcv linearadaptive, sort(coef, standardized)

linearcv linearadaptive

q19
No x x

q85
No x x

q5
Yes x x

3.q156 x x

q101
No x x

(output omitted)

q160
No x x
age x x
q53 x x

2.q105 x

q102
No x x

q154
No x x

q111 x x

q142
No x x

0.q55 x
0.q97 x

q65
4 x x

1.q110 x x
q70 x

_cons x x

q44
No x

(output omitted)

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

We see that the adaptive lasso did not select four variables that the lasso did, and it selected one
that the lasso did not. All the differences occurred among the variables with smaller standardized
coefficients.

The most important question to ask is which performed better for out-of-sample prediction.
lassogof is the command for that. We specify the over() option with the name of our sample indicator

204 lasso examples — Examples of lasso for prediction

variable, sample. We specify the postselection option because for linear models, postselection
coefficients are theoretically slightly better for prediction than the penalized coefficients (which
lassogof uses by default).

. lassogof linearcv linearadaptive, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs

linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

linearadaptive
Training 8.637575 0.5057 504
Testing 14.70756 0.2595 494

The ordinary lasso did a little better in this case than the adaptive lasso.

Cross-validation folds
CV works by dividing the data randomly into K folds. One fold is chosen, and then a linear

regression is fit on the other K − 1 folds using the variables in the model for that λ. Then using
these new coefficient estimates, a prediction is computed for the data of the chosen fold. The mean
squared error (MSE) of the prediction is computed. This process is repeated for the other K− 1 folds.
The K MSEs are then averaged to give the value of the CV function.

Let’s increase the number of folds from the default of 10 to 20 by specifying selection(cv,
folds(20)).

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, selection(cv, folds(20)) rseed(9999)

20-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
Folds: 1...5....10....15....20 CVF = 17.08362

(output omitted)
Grid value 23: lambda = .1159557 no. of nonzero coef. = 74
Folds: 1...5....10....15....20 CVF = 12.12667
... cross-validation complete ... minimum found

Lasso linear model No. of obs = 458
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 20

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .8978025 4 0.0059 17.08362
19 lambda before .1682318 49 0.2999 12.03169

* 20 selected lambda .1532866 55 0.3002 12.02673
21 lambda after .139669 62 0.2988 12.05007
23 last lambda .1159557 74 0.2944 12.12667

* lambda selected by cross-validation.

. estimates store linearcv2

lasso examples — Examples of lasso for prediction 205

Which performs better for out-of-sample prediction?

. lassogof linearcv linearcv2, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs

linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

linearcv2
Training 8.545785 0.5126 502
Testing 14.7507 0.2594 488

The first lasso with 10 folds did better than the lasso with 20 folds. This is generally true. More than
10 folds typically does not yield better predictions.

We should mention again that CV is a randomized procedure. Changing the random-number seed
can result in a different λ∗ being selected and so give different predictions.

BIC
We are now going to select λ∗ by minimizing the BIC function, which we do by specifying the

option selection(bic).

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, selection(bic)

Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4

BIC = 2618.642
Grid value 2: lambda = .8180442 no. of nonzero coef. = 7

BIC = 2630.961
Grid value 3: lambda = .7453714 no. of nonzero coef. = 8

BIC = 2626.254
Grid value 4: lambda = .6791547 no. of nonzero coef. = 9

BIC = 2619.727
Grid value 5: lambda = .6188205 no. of nonzero coef. = 10

BIC = 2611.577
Grid value 6: lambda = .5638462 no. of nonzero coef. = 13

BIC = 2614.155
Grid value 7: lambda = .5137556 no. of nonzero coef. = 13

BIC = 2597.164
Grid value 8: lambda = .468115 no. of nonzero coef. = 14

BIC = 2588.189
Grid value 9: lambda = .4265289 no. of nonzero coef. = 16

BIC = 2584.638
Grid value 10: lambda = .3886373 no. of nonzero coef. = 18

BIC = 2580.891
Grid value 11: lambda = .3541118 no. of nonzero coef. = 22

BIC = 2588.984
Grid value 12: lambda = .3226535 no. of nonzero coef. = 26

BIC = 2596.792
Grid value 13: lambda = .2939899 no. of nonzero coef. = 27

BIC = 2586.521
Grid value 14: lambda = .2678726 no. of nonzero coef. = 28

BIC = 2578.211
Grid value 15: lambda = .2440755 no. of nonzero coef. = 32

BIC = 2589.632

206 lasso examples — Examples of lasso for prediction

Grid value 16: lambda = .2223925 no. of nonzero coef. = 35
BIC = 2593.753

Grid value 17: lambda = .2026358 no. of nonzero coef. = 37
BIC = 2592.923

Grid value 18: lambda = .1846342 no. of nonzero coef. = 42
BIC = 2609.975

Grid value 19: lambda = .1682318 no. of nonzero coef. = 49
BIC = 2639.437

... selection BIC complete ... minimum found

Lasso linear model No. of obs = 458
No. of covariates = 277

Selection: Bayesian information criterion

No. of
nonzero In-sample

ID Description lambda coef. R-squared BIC

1 first lambda .8978025 4 0.0308 2618.642
13 lambda before .2939899 27 0.3357 2586.521

* 14 selected lambda .2678726 28 0.3563 2578.211
15 lambda after .2440755 32 0.3745 2589.632
19 last lambda .1682318 49 0.4445 2639.437

* lambda selected by Bayesian information criterion.

. estimates store linearbic

The minimum of the BIC function was found to be at λ = 0.268. It selects λ∗ as this λ, which
corresponds to 28 variables in the model out of 277 potential variables.

After fitting a lasso using BIC, it is a good idea to plot the BIC function and look at the shape of
the curve around the minimum.

. bicplot

2580

2600

2620

2640

B
ay

es
ia

n
in

fo
rm

at
io

n
cr

ite
rio

n

λBIC

.11
λ

λBIC = .27 is the BIC minimum λ; # coefficients = 28.

BIC plot

We see that the BIC function rises sharply once it hits the minimum. By default, the lasso
command stops when it has identified a minimum.

So far, we have fit lasso linear models using CV, an adaptive lasso, and BIC. Which one performs
better in the out-of-sample prediction?

lasso examples — Examples of lasso for prediction 207

. lassogof linearcv linearadaptive linearbic, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs

linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

linearadaptive
Training 8.637575 0.5057 504
Testing 14.70756 0.2595 494

linearbic
Training 9.740229 0.4421 508
Testing 13.44496 0.3168 503

The BIC lasso performs the best.

More potential variables than observations

Lasso has no difficulty fitting models when the number of potential variables exceeds the number
of observations.

We use vl substitute to create interactions of all of our factor-variable indicators with our
continuous variables.

. vl substitute interact = i.factors##c.vlcontinuous

We fit the lasso.

. lasso linear q104 ($idemographics) $interact if sample == 1, rseed(1234)
note: 1.q32#c.q70 omitted because of collinearity with another variable.
note: 2.q34#c.q63 omitted because of collinearity with another variable.

(output omitted)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = 1.020288 no. of nonzero coef. = 4
Folds: 1...5....10 CVF = 16.93478

(output omitted)
Grid value 34: lambda = .2198144 no. of nonzero coef. = 106
Folds: 1...5....10 CVF = 12.91285
... cross-validation complete ... minimum found

Lasso linear model No. of obs = 458
No. of covariates = 7,227

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 1.020288 4 0.0146 16.93478
29 lambda before .2773743 80 0.2531 12.83525

* 30 selected lambda .2647672 85 0.2545 12.81191
31 lambda after .2527331 89 0.2541 12.81893
34 last lambda .2198144 106 0.2486 12.91285

* lambda selected by cross-validation.

. estimates store big

208 lasso examples — Examples of lasso for prediction

There were 7,227 potential covariates in our model, of which lasso selected 85. That seems
significantly more than the 49 selected by our earlier lasso.

Let’s see how they do for out-of-sample prediction.

. lassogof linearcv big, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs

linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

big
Training 6.705183 0.6117 490
Testing 17.00972 0.1403 478

Our model with thousands of potential covariates did better for in-sample prediction but significantly
worse for out-of-sample prediction.

Factor variables in lasso
It is important to understand how lasso handles factor variables. Let’s say we have a variable,

region, that has four categories representing four different regions of the country. Other Stata
estimation commands handle factor variables by setting one of the categories to be the base level;
it then makes indicator variables for the other three categories, and they become covariates for the
estimation.

Lasso does not set a base level. It creates indicator variables for all levels (1.region, 2.region,
3.region, and 4.region) and adds these to the set of potential covariates. The reason for this
should be clear. What if 1.region versus the other three categories is all that matters for prediction?
Lasso would select 1.region and not select the other three indicators. If, however, 1.region was
set as a base level and omitted from the set of potential covariates, then lasso would have to select
2.region, 3.region, and 4.region to pick up the 1.region effect. It might be wasting extra
penalty on three coefficients when only one was needed.

See [LASSO] Collinear covariates.

lasso examples — Examples of lasso for prediction 209

Lasso logit and probit models

lasso will also fit logit, probit, Poisson, and Cox models.

We fit a logit model.

. lasso logit q106 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .1155342 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 1.384878

(output omitted)
Grid value 27: lambda = .010285 no. of nonzero coef. = 88
Folds: 1...5....10 CVF = 1.147343
... cross-validation complete ... minimum found

Lasso logit model No. of obs = 458
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of-
nonzero sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .1155342 0 -0.0004 1.384878
22 lambda before .0163767 65 0.1857 1.127315

* 23 selected lambda .0149218 69 0.1871 1.125331
24 lambda after .0135962 73 0.1864 1.126333
27 last lambda .010285 88 0.1712 1.147343

* lambda selected by cross-validation.

. estimates store logit

Logit and probit lasso models are famous for having CV functions that are more wiggly than those
for linear models.

. cvplot

1.1

1.2

1.3

1.4

C
ro

ss
-v

al
id

at
io

n
fu

nc
tio

n

λCV

.01.1
λ

λCV = .015 is the cross-validation minimum λ; # coefficients = 69.

Cross-validation plot

210 lasso examples — Examples of lasso for prediction

This curve is not as smoothly convex as was the CV function for the linear lasso shown earlier. But
it is not as bad as some logit CV functions. Because the CV functions for nonlinear models are not
as smooth, lasso has a stricter criterion for declaring that a minimum of the CV function is found
than it has for linear models. lasso requires that five smaller λ’s to the right of a nominal minimum
be observed with larger CV function values by a relative difference of cvtolerance(#) or more.
Linear models only require three such λ’s be found before declaring a minimum and stopping.

Let’s now fit a probit model.

. lasso probit q106 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .1844415 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 1.384877

(output omitted)
Grid value 26: lambda = .0180201 no. of nonzero coef. = 87
Folds: 1...5....10 CVF = 1.152188
... cross-validation complete ... minimum found

Lasso probit model No. of obs = 458
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of-
nonzero sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .1844415 0 -0.0004 1.384877
21 lambda before .0286931 61 0.1820 1.132461

* 22 selected lambda .0261441 64 0.1846 1.128895
23 lambda after .0238215 70 0.1841 1.129499
26 last lambda .0180201 87 0.1677 1.152188

* lambda selected by cross-validation.

. estimates store probit

lasso examples — Examples of lasso for prediction 211

lassocoef can be used to display coefficient values. Obviously, logit and probit coefficient values
cannot be compared directly. But we do see similar relative scales.

. lassocoef logit probit, sort(coef, standardized) display(coef, standardized)

logit probit

q142
No -.50418 -.3065817

q154
No -.3875702 -.2344515

q90
No -.3771052 -.2288992

q8
No -.3263827 -.200673

(output omitted)

q37
No -.0128537 -.0062874

2.q158 .0065661 .0012856
3.q65 -.0062113

3.q110 -.0055616
q120 .0044864

0.q146 -.004312

q95
3 .0030261

Legend:
b - base level
e - empty cell
o - omitted

The probit lasso selected five fewer variables than logit, and they were the five variables with the
smallest absolute values of standardized coefficients.

We look at how they did for out-of-sample prediction.

. lassogof logit probit, over(sample)

Penalized coefficients

Deviance
Name sample Deviance ratio Obs

logit
Training .8768969 0.3674 499
Testing 1.268346 0.0844 502

probit
Training .8833892 0.3627 500
Testing 1.27267 0.0812 503

Neither did very well. The out-of-sample deviance ratios were notably worse than the in-sample
values. The deviance ratio for nonlinear models is analogous to R2 for linear models. See Methods
and formulas for [LASSO] lassogof for the formal definition.

212 lasso examples — Examples of lasso for prediction

We did not specify the postselection option in this case because there are no theoretical grounds
for using postselection coefficients for prediction with nonlinear models.

Lasso Poisson models
Next, we fit a Poisson model.

. lasso poisson q107 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .5745539 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 2.049149

(output omitted)
Grid value 21: lambda = .089382 no. of nonzero coef. = 66
Folds: 1...5....10 CVF = 1.653376
... cross-validation complete ... minimum found

Lasso Poisson model No. of obs = 458
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of-
nonzero sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .5745539 0 -0.0069 2.049149
16 lambda before .1423214 37 0.1995 1.629222

* 17 selected lambda .129678 45 0.1999 1.628315
18 lambda after .1181577 48 0.1993 1.62962
21 last lambda .089382 66 0.1876 1.653376

* lambda selected by cross-validation.

We see how it does for out-of-sample prediction.
. lassogof, over(sample)

Penalized coefficients

Deviance
sample Deviance ratio Obs

Training 1.289175 0.3515 510
Testing 1.547816 0.2480 502

Its in-sample and out-of-sample predictions are fairly close. Much closer than they were for the logit
and probit models.

Lasso Cox models
lasso will also fit Cox proportional hazards models. We illustrate lasso cox with an example

that predicts risk of death for stage I lung adenocarcinoma patients. Lung adenocarcinoma is one of
the most common non-small-cell lung cancers.

Stage I adenocarcinoma indicates that the tumor size is relatively small, and cancer has not spread
to other distant organs. Stage I adenocarcinoma patients usually have varied survival outcomes even
though they are in the early cancer development stage. For example, Yu et al. (2016) show that, in
one cohort, more than 50% of stage I adenocarcinoma patients died within 5 years after the initial
diagnosis, while about 15% of the patients survived for more than 10 years.

lasso examples — Examples of lasso for prediction 213

Histopathology image features are indispensable for prognostic analysis. Examples of the
histopathology image features include image granularity, image intensity, cell size and shape, pixel
intensity of the cell, cell texture, area occupied by cells, neighboring relation of the cells, nucleus
size and shape, and nucleus texture. We can use lasso cox to extract the top histopathology image
features that distinguish short-term survivors from long-term survivors.

We have a fictitious survival dataset (lungcancer.dta) inspired by Yu et al. (2016). The variable
t records either the time of death or censoring in months for stage I adenocarcinoma lung cancer
patients. The indicator variable died is 1 or 0 if the patient died or is censored, respectively. There
are 500 histopathology image features, histfeature1 to hisfeature500, and only 250 patients.
The analysis aims to classify a new patient into a low-risk or high-risk group, given the histopathology
image features.

We first load the dataset and then type stset to show it has already been stset.

. use https://www.stata-press.com/data/r18/lungcancer
(Fictitious data on stage I adenocarcinoma lung cancer)

. stset
-> stset t, failure(died)

Survival-time data settings

Failure event: died!=0 & died<.
Observed time interval: (0, t]

Exit on or before: failure

250 total observations
0 exclusions

250 observations remaining, representing
211 failures in single-record/single-failure data

18,465.093 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 260

Next, we need to split the entire sample into training and testing data. The training data will be
used for estimation, and the testing data will be used to measure the prediction performance. These
steps are typically used in the microarray survival literature; for an application to the performance of
a Cox model with lasso, see Sohn et al. (2009).

We use splitsample to split the data into two parts. The generate(group) option creates a
new variable group for the identification of the training and testing data. That is, group equals 1
if it belongs to the training data or 0 if it belongs to the testing data. The split(0.6 0.4) option
specifies that 60% of the entire data be used as training data and 40% of them be used as testing
data. To make the results reproducible, we specify the rseed() option.

. splitsample, generate(group) split(0.6 0.4) rseed(12345)

For the convenience of later use, we separately save the training data (lungcancer training.dta)
and the testing data (lungcancer testing.dta).

. preserve

. keep if group == 1
(100 observations deleted)

. save lungcancer_training
file lungcancer_training.dta saved

. restore

. preserve

214 lasso examples — Examples of lasso for prediction

. keep if group == 2
(150 observations deleted)

. save lungcancer_testing
file lungcancer_testing.dta saved

. restore

We are now ready to fit a lasso cox model using only the training data. By default, we use
cross-validation. We specify rseed() to make the results reproducible.

. use lungcancer_training, clear
(Fictitious data on stage I adenocarcinoma lung cancer)

. lasso cox histfeature*, rseed(12345671)

Failure _d: died
Analysis time _t: t

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .3539123 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 8.922501
Grid value 2: lambda = .3378265 no. of nonzero coef. = 1
Folds: 1...5....10 CVF = 8.917438

(output omitted)
Grid value 30: lambda = .0918411 no. of nonzero coef. = 45
Folds: 1...5....10 CVF = 8.042941
Grid value 31: lambda = .0876668 no. of nonzero coef. = 48
Folds: 1...5....10 CVF = 8.039609
Grid value 32: lambda = .0836822 no. of nonzero coef. = 52
Folds: 1...5....10 CVF = 8.05246
Grid value 33: lambda = .0798787 no. of nonzero coef. = 57
Folds: 1...5....10 CVF = 8.070293
Grid value 34: lambda = .0762481 no. of nonzero coef. = 63
Folds: 1...5....10 CVF = 8.105045
... cross-validation complete ... minimum found

Lasso Cox model No. of obs = 150
No. of covariates = 500

Selection: Cross-validation No. of CV folds = 10

No. of
nonzero In-sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .3539123 0 0.0000 8.922501
30 lambda before .0918411 45 0.2199 8.042941

* 31 selected lambda .0876668 48 0.2306 8.039609
32 lambda after .0836822 52 0.2419 8.05246
34 last lambda .0762481 63 0.2662 8.105045

* lambda selected by cross-validation.

lasso cox selects 48 of the 500 features. We can now predict the relative-hazard ratio,
which we will call riskscore training, and evaluate risk scores. We will use the median of
riskscore training as a threshold to classify a patient as low risk or high risk. We store the
median value in a global macro (median) for later use.

. predict riskscore_training
(options hr penalized assumed; predicted hazard ratio with penalized
coefficients)

lasso examples — Examples of lasso for prediction 215

. summarize riskscore_training, detail

Predicted hazard ratio, penalized

Percentiles Smallest
1% .054982 .0414753
5% .0838301 .054982

10% .1308778 .0702972 Obs 150
25% .3676802 .0727958 Sum of wgt. 150

50% .9458244 Mean 1.998198
Largest Std. dev. 3.75226

75% 2.368032 9.962103
90% 4.912702 11.13334 Variance 14.07945
95% 6.651043 12.4411 Skewness 7.054249
99% 12.4411 39.40631 Kurtosis 67.68195

. global median = r(p50)

Based on the median of the predicted risk ratio in the training data, we now use the testing
data to validate the model. First, we predict the risk ratio in the testing sample, which we will call
riskscore testing. Then, we compare riskscore testing with the median of the risk ratio
obtained in the training data ($median). If the predicted risk score is greater than or equal to the
median, the patient is labeled as high risk. If the predicted risk score is less than the median, the
patient is classified as low risk.

. use lungcancer_testing, clear
(Fictitious data on stage I adenocarcinoma lung cancer)

. predict riskscore_testing
(options hr penalized assumed; predicted hazard ratio with penalized
coefficients)

. generate byte risk = (riskscore_testing >= $median)

. label define risk_lb 1 "High risk" 0 "Low risk"

. label values risk risk_lb

To evaluate the effectiveness of risk classification, we first look at the Kaplan–Meier plot, which
draws the survival curve for both low-risk and high-risk groups.

. sts graph, by(risk)

Failure _d: died
Analysis time _t: t

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Analysis time

risk = Low risk
risk = High risk

Kaplan–Meier survival estimates

216 lasso examples — Examples of lasso for prediction

The graph shows that the predicted high-risk patients have a more steeply falling survival curve
than the predicted low-risk patients. To confirm this conjecture, we do a log-rank test.

. sts test risk

Failure _d: died
Analysis time _t: t

Equality of survivor functions
Log-rank test

Observed Expected
risk events events

Low risk 39 68.17
High risk 51 21.83

Total 90 90.00

chi2(1) = 61.50
Pr>chi2 = 0.0000

The log-rank test rejects the hypothesis that the predicted low-risk and high-risk patients have
the same survival functions. Both the Kaplan–Meier plot and the log-rank test show that using the
predicted hazard ratios’ median can effectively distinguish a low-risk patient from a high-risk patient.
We can now make prognostic predictions given new data.

The dataset (newlungcancer.dta) contains histopathology image features for some new stage I
adenocarcinoma patients, but their survival time is not recorded because they are still alive. Based
on the prediction model from lasso cox, we want to classify these new patients as low risk or high
risk. To achieve this objective, we need to predict the new patients’ hazard ratios and compare them
with the median level of risk score obtained in the training data.

. use https://www.stata-press.com/data/r18/newlungcancer, clear
(Fictitious new data on stage I adenocarcinoma lung cancer)

. predict riskscore_new
(options hr penalized assumed; predicted hazard ratio with penalized
coefficients)

. generate risk = (riskscore_new >= $median)

. label define risk_lb 1 "High risk" 0 "Low risk"

. label values risk risk_lb

. tabulate risk

risk Freq. Percent Cum.

Low risk 27 54.00 54.00
High risk 23 46.00 100.00

Total 50 100.00

The table of the predicted risk level shows that 27 patients are classified as low risk, while 23
patients are classified as high risk.

References
Sohn, I., J. Kim, S.-H. Jung, and C. Park. 2009. Gradient lasso for Cox proportional hazards model. Bioinformatics

25: 1775–1781. https://doi.org/10.1093/bioinformatics/btp322.

Yu, K., C. Zhang, G. J. Berry, R. B. Altman, C. Ré, D. L. Rubin, and M. Snyder. 2016. Predicting non-small cell
lung cancer prognosis by fully automated microscopic pathology image features. Nature Communications 7(12474).
https://doi.org/10.1038/ncomms12474.

https://doi.org/10.1093/bioinformatics/btp322
https://doi.org/10.1038/ncomms12474

lasso examples — Examples of lasso for prediction 217

Also see
[LASSO] lasso — Lasso for prediction and model selection

[LASSO] lasso fitting — The process (in a nutshell) of fitting lasso models

Title

lasso fitting — The process (in a nutshell) of fitting lasso models

Description Remarks and examples Also see

Description
This entry describes the process of fitting lasso models.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Model selection
The process

Step 1. Set the grid range
Step 2. Fit the model for next lambda in grid
Selection method none
Step 3. Identifying a minimum of the CV function
Plotting the CV function
Selecting another model

What exactly is CV?
Adaptive lasso
Plugin selection
Selection using the BIC function

Introduction

If you are to fit lasso models successfully, you need to understand how the software computes
them. There are options you can specify to modify the process and specifying them is sometimes
necessary just to find the solution. This entry explains the process.

The process of fitting lasso models applies to the three commands that directly fit lasso and related
models:

lasso sqrtlasso elasticnet

The lasso inferential commands

dsregress poregress xporegress

dslogit pologit xpologit

dspoisson popoisson xpopoisson

poivregress xpoivregress

fit multiple lasso models under the hood, and you may want to try using different lasso model-selection
methods with these commands. If you do, then this entry is also for you. All the options described
here can be used with the inferential commands to specify different lasso model-selection methods
and modify the settings that control the lasso-fitting process.

218

lasso fitting — The process (in a nutshell) of fitting lasso models 219

Model selection
Fitting lasso models requires that the software fit lots of models behind the scenes from which

one will be selected. The trick to minimizing the time needed is to avoid fitting unnecessary models,
while ensuring that you fit the right one so it is there to select.

Lasso has a way of ordering models. They are ordered on scalar parameter λ defined over 0 to
+∞. λ is a parameter of the penalty function. For ordinary lassos, the penalty is λ times the sum
of the absolute values of the coefficients of the normalized variables. Every possible model has a
λ associated with it. When λ is large, the penalty is large, and the model has few or no variables.
Models with smaller λ’s have more variables.

We can think of lasso as fitting model(λ), where λ varies over a range, and then selecting one of
them.

Which model do we select? That depends on the problem. Do we want a good model for prediction
or a parsimonious model that better reflects the “true” model?

One method of selection is called cross-validation (CV), and it works well for prediction. The
criterion is the CV function f(λ), an estimate of the out-of-sample prediction error, which we minimize.
The model for the λ that minimizes the CV function is the selected model.

To find λ∗ that minimizes f(·), and thus find the corresponding model(λ∗), we need to fit models
with λ’s near to λ∗ to be certain that we identified the minimum. Only nearby λ’s would be good
enough if your models were fit on infinite-observation datasets because this perfect f(λ) is globally
convex. Because your datasets will be finite, the empirically estimated function will jiggle around its
Platonic ideal, and that means that you will need to fit additional models to be reasonably certain
that the one you select is the one that corresponds to λ∗.

Another method, adaptive lasso, works well when the goal is to find parsimonious models—models
with fewer variables in them—that might better reflect the true model. Adaptive lasso starts by finding
the CV solution and then, using weights on the coefficients in the penalty function, does another lasso
and selects a model that has fewer variables.

A third method is called plugin lasso. It is faster than CV or adaptive lasso. It is not just faster,
it will be approaching the finish line while the others are still working out where the finish line is.
It is faster because it does not minimize f(·). It uses an iterative formula to calculate the smallest
λ that is large enough to dominate the estimation error in the coefficients. Plugin will not produce
as low an out-of-sample prediction error as CV, but it will produce more parsimonious models than
CV. Plugin is the default selection method for the inferential commands because it is so fast. For
prediction, CV has better theoretical properties.

A fourth method uses the Bayesian information criterion (BIC) function to select λ∗. That is, f(λ)
is the BIC function, and λ∗ minimizes f(·). The number of covariates selected by minimizing BIC
typically lies between the number selected by CV and the number selected by the plugin method;
however, BIC tends to be more similar to the number selected by the plugin method. Furthermore,
BIC does not require a complex derivation as does the plugin, so like CV, it can be applied in a more
general context. Typically, selection using BIC is much faster than selection using CV, but this is not
always the case.

We discuss CV, adaptive, plugin, and BIC lassos below, and we discuss a fifth selection method
that we call none. None is a do-it-yourself (DIY) method. It calculates model(λ) over a range of λ’s
and stops. You then examine them and choose one.

220 lasso fitting — The process (in a nutshell) of fitting lasso models

The process

Step 1. Set the grid range

Step 1 consumes virtually no time, but the total time steps 2 and 3 consume will depend on the
grid that step 1 sets. The grid that steps 2 and 3 will search and calculate over will range from λgmax

to λgmin and have G points on it.

Large values of λ correspond to models with few or no variables in them. Small values correspond
to models with lots of variables. Given any two values of λ, λ1, and λ2,

λ1 > λ2 usually implies that # of variables in model 1 ≤ # of variables in model 2

Most of us think of parameters as running from smallest to largest, say, 0 to +∞, but with λ, you
will be better served if you think of them as running from +∞ to 0.

The grid does not start at +∞, it starts at λgmax. The software does an excellent job of setting
λgmax. It sets λgmax to the smallest λ that puts no variables in the model. You cannot improve on
this. There is no option for resetting λgmax.

The software does a poor job of setting λgmin. There simply does not exist a scheme to set it
optimally. If we are to identify the minimum of the CV function, f(λ∗), λgmin must be less than λ∗.
That is difficult to do because obviously we do not know the value of λ∗.

Computing models for small λ’s is computationally expensive because fitting a model for a small
λ takes longer than fitting a model for a larger λ. Our strategy is to hope we set λgmin small enough
and then stop iterating over λ as soon as we are assured that we have found the minimum of the CV
function. If we did not set λgmin small enough, the software will tell us this.

The initial grid is set to

λgmax, λ2, λ3, . . . , λgmin (λgmin too small we hope)

The software sets λgmin to ratio× λgmax, where ratio defaults to 1e–4 when p < N , where p is the
number of potential covariates and N the number of observations. When p ≥ N , the default is 1e–2.

You can reset ratio with the grid(, ratio(#)) option, or you can reset λgmin directly by
specifying grid(, min(#)).

Finally, in addition to setting ratio or λgmin, you can reset the number of points on the grid. It is
set to 100 by default, meaning the initial grid will be

λgmin = λ1, λ2, λ3, . . . , λ99, λgmin = λ100

You can reset the number of points by specifying grid(#). You can specify the number of points
and a value for ratio by typing grid(#, ratio(#)). See [LASSO] lasso.

Step 2. Fit the model for next lambda in grid

We have a grid range λgmax to λgmin and number of points on the grid, which we will simply
denote by their indices:

λ1, λ2, λ3, . . . , λ99, λ100

The software obtains the models

model(λ1), model(λ2), model(λ3), . . . , model(λ100)

lasso fitting — The process (in a nutshell) of fitting lasso models 221

By “obtains”, we mean that the software chooses the variables that appear in each one. The software
proceeds from left to right. The first model, model(λ1), has no variables in it and was easy to find.
Once found, model(λ1) provides the starting point for finding model(λ2), and model(λ2) provides
the starting point for finding model(λ3), and so on. Working from the previous model to obtain the
next model is known as a warm start in the literature. Regardless of what the technique is called, this
is why the software does not allow you to set a different λgmax for λ1. To calculate model(λ) for a
small value of λ , the software has to work its way there from previous model(λ) results.

The grid points are not equally spaced. The grid points are not

λ1 = λgmax

λ2 = λ1 −∆

λ3 = λ2 −∆

λ4 = λ3 −∆

...

The grid points are instead chosen so that lnλ is equally spaced, which you can think of as the λ’s
being closer together as they get smaller:

λ1 = λgmax

λ2 = λ1 −∆1

λ3 = λ2 −∆2, 0 < ∆2 < ∆1

λ4 = λ3 −∆3, 0 < ∆3 < ∆2

...

Model estimation involves not only choosing the variables that appear in the model but also estimating
their coefficients as well.

The computation will not usually be carried out all the way to λ100. Because small λ’s are
computationally expensive, we want to stop before we get to λ100. There are two criteria for stopping.
The first is when we have identified the minimum of the CV function.

After we fit model(λ1), we compute the value of the CV function for λ1, f(λ1). Likewise after
fitting model(λ2), we compute f(λ2). For early λ’s, typically we have f(λk) > f(λk+1). Now if
we see

f(λk−1) > f(λk) < f(λk+1)

λk might give the minimum of the CV function. It is possible that the CV function is bouncing around
a bit, and it might not be the true minimum. We discuss how we declare a minimum in more detail
in the next section.

For now, assume that we have properly identified a minimum. We are done, and we need not do
any more estimations of model(λ).

But what if we do not find a minimum of the CV function? Sometimes, the CV function flattens
out and stays flat, barely changing and only slowly declining with each smaller λ.

222 lasso fitting — The process (in a nutshell) of fitting lasso models

As the software proceeds from the calculation of model(λk−1) to model(λk), it calculates the
relative differences in the in-sample deviances between models:

deviance{model(λk−1)} − deviance{model(λk)}
deviance{model(λk−1)}

This relative difference is a measure of how much predictive ability is added by proceeding to
model(λk). If it is small, that suggests the difference between the CV function values f(λk−1) and
f(λk) will be small, and changes in the function for smaller λ’s smaller yet. So we think it is likely
that we have gone far enough.

If the relative difference is less than 1e–5, the software sets the selected λ∗ = λstop = λk and
stops estimating models for more λ’s. The output tells you that the selected λ∗ was determined by
this stopping rule. This means model(λ∗) does not give the minimum of the CV function, but we
believe something close to it.

If you do not want this default behavior, there are three things you can do. The first is to change
the value of the stopping rule tolerance. If you want to use 1e–6 instead of 1e–5, specify

. lasso y x1 x2 . . ., stop(1e-6)

With a smaller tolerance, it will iterate over more λ’s, giving a greater chance that a minimum might
be identified.

The second possibility is to turn off the early stopping rule by setting the tolerance to 0. If there
is a minimum that can be identified, this will find it.

. lasso y x1 x2 . . ., stop(0)

If, however, the CV function flattens out and stays flat, specifying stop(0) might mean that the
software iterates to the end of the λ grid, and this might take a long time.

A third choice is to specify

. lasso y x1 x2 . . ., selection(cv, strict)

This is the same as the default behavior in this case, except that it throws an error! The suboption
strict says that if we do not find a minimum, end with an error. This is useful when using
selection(cv) with the inferential commands. It alerts us to the fact that we did not find a
minimum, and it leaves the lasso behind, so we can plot the CV function and decide what to do next.

Selection method none

If you specify selection(none) instead of selection(cv), the software stops when the stopping
rule tolerance is reached or when the end of the λ grid is reached.

You can specify selection(none) when you want to gain a feel for how the number of included
variables changes over λ or if you want to choose λ∗ yourself. We provide a suite of postestimation
commands for this purpose:

• lassoknots shows you a table of the λ’s and the properties of the models.

• lassocoef lists the variables in the selected model. It can compare multiple models in the
same table.

• lassoselect lets you choose a model to be treated as the selected model(λ∗).

• lassogof evaluates the selected model. It can also compare multiple models in the same
table.

lasso fitting — The process (in a nutshell) of fitting lasso models 223

What you do not have, however, is the CV function and other CV-based measures of fit, which
allow you to evaluate how well models predict and so make an informed choice as to which model
should be model(λ∗).

There is another way. Do not specify selection(none), specify selection(cv) or selec-
tion(adaptive). The above postestimation functions will work, and you can, based on your own
criteria if you wish, select the model for yourself.

Step 3. Identifying a minimum of the CV function

The minimum is identified when there are values of f(·) that rise above it on both sides. For
example, consider the following case:

f(λ1) > f(λ2) > · · · > f(λ49)

and

f(λ49) < f(λ50) < f(λ51) < f(λ52)

For linear models, f(λ49) is an identified minimum, and the software sets λ∗ = λ49. Linear models
require that there be three smaller λ’s with larger CV function values by a relative difference of
cvtolerance(#) or more.

Because the CV functions for nonlinear models are not as smooth, lasso has a stricter criterion for
declaring that a minimum of the CV function is found than it has for linear models. lasso requires
that five smaller λ’s to the right of a nominal minimum be observed with larger CV function values
by a relative difference of cvtolerance(#) or more.

If you want more assurance that you have found a minimum, you can change cvtolerance(#)
to a larger value from its default of 1e–3.

. lasso y x1 x2 . . ., cvtolerance(1e-2)

Making the tolerance larger typically means that a few more model(λ)’s are estimated to find the
required three (or five) with CV function values larger than the minimum by this tolerance.

224 lasso fitting — The process (in a nutshell) of fitting lasso models

The software provides three options that control how λ∗ is set when a identified minimum is not
found. They work like this:

λ∗ is set to
Options Case 1 Case 2 Case 3

selection(cv, strict) λcvmin error error
selection(cv, stopok) λcvmin λstop error

selection(cv, gridminok) λcvmin λstop λgmin

Case 1 is an identified minimum.
Case 2 is falling over range, stopping rule tolerance reached.
Case 3 is falling over range, stopping rule tolerance not reached.

λcvmin is the identified minimum of the CV function f(·).
λstop is the λ that meant the stopping rule tolerance.
λgmin is the last λ in the grid.
error indicates that λ∗ is not set, and the software issues an error message.

You may specify only one of the three options. selection(cv, stopok) is the
default if you do not specify one.

We emphasize that these options affect the setting of λ∗ only when an identified minimum is not
found.

selection(cv, stopok) is the default and selects λ∗ = λstop when the stopping rule tolerance
was reached.

selection(cv, strict) is the purist’s option. λ∗ is found only when a minimum is identified.
Otherwise, the software issues a minimum-not-found error.

selection(cv, gridminok) is an option that has an effect only when the early stopping rule
tolerance is not reached. We have fallen off the right edge of the grid without finding an identified
minimum. λ∗ is set to λgmin. There is no theoretical justification for this rule. Practically, it means
that λgmin was set too large. We should make it smaller and refit the model.

Plotting the CV function

Run lasso if you have not already done so. After you do, there are two possible outcomes. The
software ended by setting a λ∗, thus selecting a model, or it did not set a λ∗. You will have no
doubts as to which occurred because when λ∗ is not set, the software ends with an error message
and a nonzero return code. Note that even when it ends with a nonzero return code, results of the
lasso are left behind.

lasso fitting — The process (in a nutshell) of fitting lasso models 225

Regardless of how estimation ended, graph the CV function, f(·). It is easy to do. Type cvplot
after running a lasso. Here is one:

. lasso linear y x1 x2 . . .

. cvplot

12

14

16

18

C
ro

ss
-v

al
id

at
io

n
fu

nc
tio

n

λCV

.01 .11
λ

λCV = .11 is the cross-validation minimum λ; # coefficients = 64.

Cross-validation plot

This lasso identified a minimum of the CV function. It identified the minimum and stopped iterating
over λ. If we want to see more of the CV function, we can set cvtolerance(#) to a larger value.

. lasso linear y x1 x2 . . ., cvtolerance(0.05)

. cvplot

12

14

16

18

C
ro

ss
-v

al
id

at
io

n
fu

nc
tio

n

λCV

.01.11
λ

λCV = .11 is the cross-validation minimum λ; # coefficients = 64.

Cross-validation plot

If we want to see more of the CV function, we can specify selection(cv, alllambdas). When
the alllambdas suboption is specified, estimation does not end when a minimum of the CV function
is found. In fact, it estimates model(λ) for all λ’s first and then computes the CV function because
this is slightly more computationally efficient if we are not stopping after identifying a minimum.

226 lasso fitting — The process (in a nutshell) of fitting lasso models

. lasso linear y x1 x2 . . ., selection(cv, alllambdas)

. cvplot

12

14

16

18

C
ro

ss
-v

al
id

at
io

n
fu

nc
tio

n
λCV

.001.01.11
λ

λCV = .11 is the cross-validation minimum λ; # coefficients = 64.

Cross-validation plot

Actually, alllambdas is a lie. In this case, it estimated only 73 λ’s. It ended when the stopping rule
tolerance was reached. If we really want to see all 100 λ’s, we need to turn off the stopping rule.

. lasso linear y x1 x2 . . ., selection(cv, alllambdas) stop(0)

. cvplot

12

14

16

18

C
ro

ss
-v

al
id

at
io

n
fu

nc
tio

n

λCV

.0001.001.01.1
λ

λCV = .11 is the cross-validation minimum λ; # coefficients = 64.

Cross-validation plot

That is a plot of all 100 λ’s. Clearly, in this case, the default behavior worked fine to identify a
minimum.

lasso fitting — The process (in a nutshell) of fitting lasso models 227

Here is an example of a CV function for which a minimum was not identified. The stopping rule
tolerance was reached instead.

. lasso linear z w1 w2 . . .

. cvplot

10

15

20

25

30

35

C
ro

ss
-v

al
id

at
io

n
fu

nc
tio

n

λstop

.001.01.11
λ

λstop = .00097 is the λ where the stopping tolerance is reached; # coefficients = 15.

Cross-validation plot

To try more λ’s in a search for a minimum, we turn off the stopping rule

. lasso linear z w1 w2 . . . , stop(0)

. cvplot

10

15

20

25

30

35

C
ro

ss
-v

al
id

at
io

n
fu

nc
tio

n

.001.01.11
λ

Cross-validation plot

It went to the end of the grid without finding a minimum. The default stopping rule tolerance usually
works fine. Setting stop(0) typically burns more computer time without identifying a minimum.

Selecting another model

Imagine that you have successfully found the model that minimizes the CV function, f(λ), the
estimate of out-of-sample prediction error. If your interest is in prediction, the model that minimizes
the CV function really is best. If your interest is in model selection, however, you may want to look
at alternatives that are close in the out-of-sample prediction sense.

228 lasso fitting — The process (in a nutshell) of fitting lasso models

You can use lassoknots to see a table of the λ’s where variables were added or dropped. These
are called knot points.

You can then use lassoselect to choose one of the models. This command sets λ∗ to the λ
you specify. Once you have selected a model, you can use all of lasso’s postestimation features on
it. And then, if you wish, you can lassoselect another model. If you use estimates store after
each lassoselect, you can compare multiple models side by side using lassogof.

See [LASSO] lassoselect for an example.

What exactly is CV?

We are done discussing using CV as a selection method, and yet we have never discussed CV itself.
CV is about using one subsample of data to fit models and another to evaluate their prediction error.

Here are the details. The f(·) function is an estimate of the out-of-sample prediction error, and
the function is calculated using CV. The method starts by dividing the data into K partitions called
folds. Once that is done, for each fold k,

1. model(λ) is fit on all observations except those in fold k.

2. that result is used to predict the outcome in fold k.

3. steps 1 and 2 are repeated for each fold.

4. the prediction error is then averaged over all folds, which is to say, all observations. This
is f(λ).

Option selection(cv, folds(#)) sets K, and folds(10) is used by default.

Adaptive lasso

In Plotting the CV function, we looked at a graph of the CV function for which f(λ) had a
long flat region and the stopping rule selected λ∗. We explained that you could use the lasso DIY
postestimation commands to change the selected model to one with fewer variables in it.

Adaptive lasso is another approach for obtaining parsimonious models. It is a variation on CV,
and in fact, for each step, it uses CV. It uses the CV-selected model(λ∗) as a starting point and then
amplifies the important coefficients and attenuates the unimportant ones in one or more subsequent
lassos that also use CV.

For the second lasso, variables not selected in the first lasso’s model(λ∗) are dropped, and the
penalty term uses weights equal to the inverse of the absolute value of the coefficients from model(λ∗).
The justification being that important coefficients are large and unimportant ones, small. (Variables
are standardized so that comparison of coefficient size makes sense.) These weights tend to drive
small coefficients to zero in the second lasso. So the selected model from the second lasso almost
always has fewer variables than the selected model from the first lasso.

Plugin selection

CV selects model(λ∗) such that f(λ) is minimized. Adaptive is a variation on CV. It selects a final
model(λ∗) that minimizes a more restricted f(λ).

Plugins—selection(plugin)—are a whole different thing. Parameter λ still plays a role, but
f(·) does not. Instead, the λ∗ that determines model(λ∗) is produced by direct calculation using
the plugin function, λ∗ = g(·). The function returns the smallest value of λ that is large enough to
dominate the estimation error in the coefficients.

lasso fitting — The process (in a nutshell) of fitting lasso models 229

No search over λ is required, nor is a grid necessary. This makes plugin the fastest of the methods
provided. It is fast, but it is not instantaneous. The plugin formula is solved iteratively, and if it is
trying to calculate a small value for λ∗, it can take a little time. Those small λ’s again!

Plugin’s selected model(λ∗) are almost always more parsimonious than the minimum-f(λ) models
selected by CV. Plugin will not produce models with as low an out-of-sample prediction error as CV,
but it tends to select the most important variables and can be proven to do so for many data-generation
processes. Plugin is popular when the problem is model selection instead of out-of-sample prediction.

Selection using the BIC function

Selecting λ∗ using the BIC function—selection(bic)—is similar to selection using CV. However,
rather than the CV function being minimized, the BIC function is minimized. The BIC function is

f(λ) = −2× log likelihood + k lnN

where k is the number of coefficients in model(λ) and N is the number of observations.

Just like selection using CV, selection using BIC searches for the minimum along a grid of λ’s,
starting with large λ’s and moving toward smaller λ’s. The λ grid is set up exactly the same way
as it is for CV, and all the options to control the initialization of the grid that were described earlier
work in exactly the same manner.

The criterion for identifying the minimum with BIC is similar to that for CV. The main difference is
that a minimum λ∗ will be identified when there are only two λ’s on both sides of λ∗ that have values
of f(λ) that are larger than f(λ∗). CV requires three λ’s for linear models and five for nonlinear
models.

The stopping rules are the same for BIC as they are for CV, and the suboptions stopok, strict,
gridminok, and alllambdas can be specified with selection(bic), and all work the same
way. To change the tolerance for identifying the minimum, you set bictolerance(), rather than
cvtolerance(). See [LASSO] lasso.

Because the BIC function is computed analytically, there is no random component to its computation,
unlike CV. This means that BIC is typically much faster than CV. However, this is not always true.
The BIC function could have a flatter tail than the CV function and have to search more λ’s in the grid.
However, simulations seem to indicate that BIC typically yields a larger λ∗ than CV and so typically
selects fewer covariates than CV. In simulations, the number selected is typically close to but more
than the number selected by plugin.

230 lasso fitting — The process (in a nutshell) of fitting lasso models

Also see
[LASSO] lasso — Lasso for prediction and model selection

[LASSO] lasso examples — Examples of lasso for prediction

[LASSO] bicplot — Plot Bayesian information criterion function after lasso

[LASSO] cvplot — Plot cross-validation function after lasso

[LASSO] lassocoef — Display coefficients after lasso estimation results

[LASSO] lassogof — Goodness of fit after lasso for prediction

[LASSO] lassoknots — Display knot table after lasso estimation

[LASSO] lassoselect — Select lambda after lasso

Title

lassogof — Goodness of fit after lasso for prediction

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

lassogof calculates goodness of fit of predictions after lasso, sqrtlasso, and elasticnet. It
also calculates goodness of fit after regress, logit, probit, poisson, and stcox estimations for
comparison purposes. For linear models, mean squared error of the prediction and R2 are displayed.
For logit, probit, Poisson, and Cox models, deviance and deviance ratio are shown.

Quick start
See goodness of fit for current lasso result using penalized coefficient estimates

lassogof

See goodness of fit for current lasso result using postselection coefficient estimates
lassogof, postselection

See goodness of fit for four stored estimation results
lassogof mylasso mysqrtlasso myelasticnet myregress

See goodness of fit for all stored estimation results
lassogof *

Randomly split sample into two, fit a lasso on the first sample, and calculate goodness of fit separately
for both samples

splitsample, generate(sample) nsplit(2)
lasso linear y x* if sample == 1
lassogof, over(sample)

Menu
Statistics > Postestimation

231

232 lassogof — Goodness of fit after lasso for prediction

Syntax

lassogof
[

namelist
] [

if
] [

in
] [

, options
]

namelist is a name of a stored estimation result, a list of names, all, or *. all and * mean the
same thing. See [R] estimates store.

options Description

Main

penalized use penalized (shrunken) coefficient estimates; the default
postselection use postselection coefficient estimates
over(varname) display goodness of fit for samples defined by varname
noweights do not use weights when calculating goodness of fit

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

penalized specifies that the penalized coefficient estimates be used to calculate goodness of fit.
Penalized coefficients are those estimated by lasso with shrinkage. This is the default.

postselection specifies that the postselection coefficient estimates be used to calculate goodness of
fit. Postselection coefficients are estimated by taking the covariates selected by lasso and reestimating
the coefficients using an unpenalized estimator—namely, an ordinary linear regression, logistic
regression, probit model, Poisson regression, or Cox regression as appropriate.

over(varname) specifies that goodness of fit be calculated separately for groups of observations
defined by the distinct values of varname. Typically, this option would be used when the lasso is
fit on one sample and one wishes to compare the fit in that sample with the fit in another sample.

noweights specifies that any weights used to estimate the lasso be ignored in the calculation of
goodness of fit.

Remarks and examples
lassogof is intended for use on out-of-sample data. That is, on data different from the data used

to fit the lasso.

There are two ways to do this. One is to randomly split your data into two subsamples before
fitting a lasso model. The examples in this entry show how to do this using splitsample.

The other way is to load a different dataset in memory and run lassogof with the lasso results
on it. The steps for doing this are as follows.

1. Load the data on which you are going to fit your model.

. use datafile1

2. Run lasso (or sqrtlasso or elasticnet).

. lasso . . .

lassogof — Goodness of fit after lasso for prediction 233

3. Save the results in a file.

. estimates save filename

4. Load the data for testing the prediction.

. use datafile2, clear

5. Load the saved results, making them the current (active) estimation results.

. estimates use filename

6. Run lassogof.

. lassogof

Example 1: Comparing fit in linear models

We will show how to use lassogof after lasso linear.

Here is an example using lasso from [LASSO] lasso examples. We load the data and make the
vl variable lists active.

. use https://www.stata-press.com/data/r18/fakesurvey_vl
(Fictitious survey data with vl)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

We now use splitsample to generate a variable indicating the two subsamples.

. set seed 1234

. splitsample, generate(sample) nsplit(2)

. label define svalues 1 "Training" 2 "Testing"

. label values sample svalues

We run lasso on the first subsample and set the random-number seed using the rseed() option
so we can reproduce our results.

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, rseed(1234)

(output omitted)

Lasso linear model No. of obs = 458
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .8978025 4 0.0147 16.93341
18 lambda before .1846342 42 0.2953 12.10991

* 19 selected lambda .1682318 49 0.2968 12.08516
20 lambda after .1532866 55 0.2964 12.09189
23 last lambda .1159557 74 0.2913 12.17933

* lambda selected by cross-validation.

. estimates store linearcv

234 lassogof — Goodness of fit after lasso for prediction

After the command finished, we used estimates store to store the results in memory so we can
later compare these results with those from other lassos.

We are now going to run an adaptive lasso, which we do by specifying the option selec-
tion(adaptive).

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, rseed(4321) selection(adaptive)

(output omitted)
Lasso linear model No. of obs = 458

No. of covariates = 277
Selection: Adaptive No. of lasso steps = 2

Final adaptive step results

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

25 first lambda 48.55244 4 0.0101 17.01083
77 lambda before .3847698 46 0.3985 10.33691

* 78 selected lambda .3505879 46 0.3987 10.33306
79 lambda after .3194427 47 0.3985 10.33653

124 last lambda .0048552 59 0.3677 10.86697

* lambda selected by cross-validation in final adaptive step.

. estimates store linearadaptive

We want to see which performs better for out-of-sample prediction. We specify the over() option
with the name of our sample indicator variable, sample. We specify the postselection option
because for linear models, postselection coefficients are theoretically slightly better for prediction
than the penalized coefficients (which lassogof uses by default). See the discussion in predict in
[LASSO] lasso postestimation.

. lassogof linearcv linearadaptive, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs

linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

linearadaptive
Training 8.637575 0.5057 504
Testing 14.70756 0.2595 494

The ordinary lasso did a little better in this case than adaptive lasso.

lassogof — Goodness of fit after lasso for prediction 235

Example 2: Comparing fit in logit and probit models

We fit a logit model on the same data we used in the previous example.

. lasso logit q106 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)

(output omitted)
Lasso logit model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of-
nonzero sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .1155342 0 -0.0004 1.384878
22 lambda before .0163767 65 0.1857 1.127315

* 23 selected lambda .0149218 69 0.1871 1.125331
24 lambda after .0135962 73 0.1864 1.126333
27 last lambda .010285 88 0.1712 1.147343

* lambda selected by cross-validation.

. estimates store logit

Let’s now fit a probit model.

. lasso probit q106 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)

(output omitted)
Lasso probit model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of-
nonzero sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .1844415 0 -0.0004 1.384877
21 lambda before .0286931 61 0.1820 1.132461

* 22 selected lambda .0261441 64 0.1846 1.128895
23 lambda after .0238215 70 0.1841 1.129499
26 last lambda .0180201 87 0.1677 1.152188

* lambda selected by cross-validation.

. estimates store probit

236 lassogof — Goodness of fit after lasso for prediction

We look at how they did for out-of-sample prediction.
. lassogof logit probit, over(sample)

Penalized coefficients

Deviance
Name sample Deviance ratio Obs

logit
Training .8768969 0.3674 499
Testing 1.268346 0.0844 502

probit
Training .8833892 0.3627 500
Testing 1.27267 0.0812 503

They both did not do very well. The out-of-sample deviance ratios were notably worse than the
in-sample values. The deviance ratio for nonlinear models is analogous to R2 for linear models. See
Methods and formulas for the formal definition.

We did not specify the postselection option in this case because there are no theoretical grounds
for using postselection coefficients for prediction with nonlinear models.

Stored results
lassogof stores the following in r():
Macros

r(names) names of estimation results displayed
r(over var) name of the over() variable
r(over levels) levels of the over() variable

Matrices
r(table) matrix containing the values displayed

Methods and formulas
lassogof reports the mean squared error (MSE) and the R2 measures of fit for linear models.

It reports the deviance and the deviance ratio for logit, probit, poisson, and cox models. The
deviance ratio is also known as D2 in the literature.

See Wooldridge (2020, 720) for more about MSE and Wooldridge (2020, 76–77) for more about
R2. The deviance measures are described in Hastie, Tibshirani, and Wainwright (2015, 29–33) and
McCullagh and Nelder (1989, 33–34). For the cox model deviance, see Simon, Friedman, Hastie,
and Tibshirani (2011).

In the formulas below, we use xbi to denote the linear prediction for the ith observation. By default,
the lasso penalized coefficients β̂ are used to compute xbi. Specifying the option postselection

causes the postselection estimates ̂̃β to be used to compute xbi. See predict in [LASSO] lasso
postestimation for a discussion of penalized estimates and postselection estimates.

We also use the following notation. yi denotes the ith observation of the outcome. wi is the weight
applied to the ith observation; wi = 1 if no weights were specified in the estimation command or if
option noweights was specified in lassogof. N is the number of observations in the sample over
which the goodness-of-fit statistics are computed. If frequency weights were specified at estimation
Ns =

∑N
i=1 wi; otherwise, Ns = N .

lassogof — Goodness of fit after lasso for prediction 237

The formulas for the measures reported after linear models are

R2 = 1− RSS/TSS

MSE = 1/NsRSS

where

RSS =
N∑
i=1

wi(yi − xbi)
2

TSS =

N∑
i=1

wi(yi − y)2

y =
1

Ns

N∑
i=1

wiyi

The deviance ratio D2 is given by

D2 =
Dnull −D
Dnull

where Dnull is the deviance calculated when only a constant term is included in the model and D is
the deviance of the full model.

The formulas for the deviance and for Dnull vary by model.

For logit, the deviance and the Dnull are

D = − 2

Ns

N∑
i=1

wi [ỹixbi + ln{1 + exp(xbi)}]

Dnull = − 2

Ns

N∑
i=1

wi{ ỹi ln y + (1− ỹi) ln(1− y)}

ỹi =
{

1 yi > 0
0 otherwise

y =
1

Ns

N∑
i=1

wiỹi

238 lassogof — Goodness of fit after lasso for prediction

For probit, the deviance and the Dnull are

D = − 2

Ns

N∑
i=1

wi [ỹi ln{Φ(xbi)}+ (1− ỹi) ln{1− Φ(xbi)}]

Dnull = − 2

Ns

N∑
i=1

wi{ỹi ln y + (1− ỹi) ln(1− y)}

ỹi =
{

1 yi > 0
0 otherwise

y =
1

Ns

N∑
i=1

siwiỹi

For poisson, the deviance and the Dnull are

D = − 2

Ns

N∑
i=1

wi{yixbi − exp(xbi)− vi}

vi =

{ 0 if yi = 0

yi ln yi − yi otherwise

Dnull = − 2

Ns

N∑
i=1

wi(yi ln y − y − vi)

y =
1

Ns

N∑
i=1

wiyi

lassogof — Goodness of fit after lasso for prediction 239

For cox, the deviance and the Dnull are

D = 2 (lsaturated − l)

Dnull = 2 (lsaturated − lnull)

lsaturated = − 1

Ns

Nf∑
j=1

dj log (dj)

l = − 1

Ns

Nf∑
j=1

∑
i∈Dj

wi(xbi)− wi log

∑
`∈Rj

w` exp(xb`)

lnull = − 1

Ns

Nf∑
j=1

dj log

∑
i∈Rj

wi

dj =

∑
i∈Dj

wi

where j indexes the ordered failure times t(j), j = 1, . . . , Nf ; Dj is the set of observations that
fail at t(j); Rj is the set of observations k that are at risk at time t(j) (that is, all k such that
t0k < t(j) ≤ tk, and t0k is the entry time for the kth observation).

References
Hastie, T. J., R. J. Tibshirani, and M. Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and

Generalizations. Boca Raton, FL: CRC Press.

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. London: Chapman and Hall/CRC.

Simon, N., J. H. Friedman, T. J. Hastie, and R. J. Tibshirani. 2011. Regularization paths for Cox’s proportional hazards
model via coordinate descent. Journal of Statistical Software 39: 1–13. https://doi.org/10.18637/jss.v039.i05.

Wooldridge, J. M. 2020. Introductory Econometrics: A Modern Approach. 7th ed. Boston: Cengage.

Also see
[LASSO] lasso — Lasso for prediction and model selection

[LASSO] lassoknots — Display knot table after lasso estimation

[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

http://www.stata.com/bookstore/glm.html
https://doi.org/10.18637/jss.v039.i05
http://www.stata.com/bookstore/introductory-econometrics/

Title

lasso inference postestimation — Postestimation tools for lasso inferential models

Postestimation commands predict Remarks and examples Also see

Postestimation commands
The following postestimation commands are of special interest after the ds, po, and xpo commands:

Command Description

∗bicplot plot Bayesian information criterion function
∗coefpath plot path of coefficients
∗cvplot plot cross-validation function
lassocoef display selected coefficients
lassoinfo information about lasso estimation results
lassoknots knot table of coefficient selection and measures of fit
∗lassoselect select alternative λ∗ (and α∗ for elasticnet)

∗bicplot requires that the selection method of the lasso be selection(bic). cvplot requires that the selection
method of the lasso be selection(cv) or selection(adaptive). lassoselect requires that the selection method
of the lasso be selection(bic), selection(cv), or selection(adaptive). See [LASSO] lasso options.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
etable table of estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations of

coefficients
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict linear predictions
predictnl point estimates for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

240

lasso inference postestimation — Postestimation tools for lasso inferential models 241

predict

Description for predict

predict creates a new variable containing the linear form Xβ̂
′
, where β̂ is the vector of estimated

coefficients of the variables of interest and does not include a constant term. This is the only type of
prediction available after the ds, po, and xpo commands.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
]

Remarks and examples

After the ds, po, and xpo estimation commands, predict computes only the linear form Xβ̂
′
.

So, for example, you need to type only

. predict xbhat

The formulation of the lasso inferential models does not lend itself to making predictions for means,
probabilities, or counts.

Also see
[LASSO] Lasso inference intro — Introduction to inferential lasso models

[LASSO] Inference examples — Examples and workflow for inference

[LASSO] dslogit — Double-selection lasso logistic regression

[LASSO] dspoisson — Double-selection lasso Poisson regression

[LASSO] dsregress — Double-selection lasso linear regression

[LASSO] poivregress — Partialing-out lasso instrumental-variables regression

[LASSO] pologit — Partialing-out lasso logistic regression

[LASSO] popoisson — Partialing-out lasso Poisson regression

[LASSO] poregress — Partialing-out lasso linear regression

[LASSO] xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression

[LASSO] xpologit — Cross-fit partialing-out lasso logistic regression

[LASSO] xpopoisson — Cross-fit partialing-out lasso Poisson regression

[LASSO] xporegress — Cross-fit partialing-out lasso linear regression

[U] 20 Estimation and postestimation commands

Title

lassoinfo — Display information about lasso estimation results

Description Quick start Menu Syntax
Option Remarks and examples Stored results Also see

Description
lassoinfo displays basic information about the lasso or lassos fit by all commands that fit lassos.

Quick start
After any command that fits lassos

lassoinfo

dsregress was run and the results stored under the name mygreatmodel using estimates store;
show information about all the lassos in mygreatmodel

lassoinfo mygreatmodel

Same as above, but three models were stored
lassoinfo mygreatmodel mygoodmodel myfairmodel

After an xpo command, show information about every single lasso fit
lassoinfo, each

Menu
Statistics > Postestimation

Syntax

For all lasso estimation results

lassoinfo
[

namelist
]

For xpo estimation results

lassoinfo
[

namelist
] [

, each
]

namelist is a name of a stored estimation result, a list of names, all, or *. all and * mean the
same thing. See [R] estimates store.

collect is allowed; see [U] 11.1.10 Prefix commands.

242

lassoinfo — Display information about lasso estimation results 243

Option

each applies to xpo models only. It specifies that information be shown for each lasso for each
cross-fit fold to be displayed. If resample was specified, then information is shown for each lasso
for each cross-fit fold in each resample. By default, summary statistics are shown for the lassos.

Remarks and examples

lassoinfo is intended for use after ds, po, xpo commands and after telasso to see basic
information about the lassos they fit. It is a good idea to always run lassoinfo after these
commands to see how many variables were selected in each lasso.

Running lassoinfo is a first step toward doing a sensitivity analysis. The lassos listed by
lassoinfo can be examined using coefpath, cvplot, lassocoef, lassoknots, and lassoselect.

Example 1: lasso

lassoinfo works after lasso, sqrtlasso, and elasticnet, but it does not display much useful
information for these commands.

Here is an example using lasso from [LASSO] lasso examples. We load the data and make the
vl variable lists active.

. use https://www.stata-press.com/data/r18/fakesurvey_vl
(Fictitious survey data with vl)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

We fit the lasso.

. lasso linear q104 $idemographics $ifactors $vlcontinuous, rseed(1234)

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .9090511 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.33331

(output omitted)

Grid value 28: lambda = .0737359 no. of nonzero coef. = 80
Folds: 1...5....10 CVF = 11.92887
... cross-validation complete ... minimum found

Lasso linear model No. of obs = 914
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .9090511 0 -0.0010 18.33331
23 lambda before .1174085 58 0.3543 11.82553

* 24 selected lambda .1069782 64 0.3547 11.81814
25 lambda after .0974746 66 0.3545 11.8222
28 last lambda .0737359 80 0.3487 11.92887

* lambda selected by cross-validation.

244 lassoinfo — Display information about lasso estimation results

lassoinfo tells us nothing new.

. lassoinfo

Estimate: active
Command: lasso

No. of
Dependent Selection Selection selected
variable Model method criterion lambda variables

q104 linear cv CV min. .1069782 64

Replaying the command gives more information.

. lasso

Lasso linear model No. of obs = 914
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .9090511 0 -0.0010 18.33331
23 lambda before .1174085 58 0.3543 11.82553

* 24 selected lambda .1069782 64 0.3547 11.81814
25 lambda after .0974746 66 0.3545 11.8222
28 last lambda .0737359 80 0.3487 11.92887

* lambda selected by cross-validation.

Example 2: dsregress

lassoinfo gives important information after the ds, po, and xpo commands.

We load the data used in [LASSO] lasso examples. See that entry for details about the data.

. use https://www.stata-press.com/data/r18/fakesurvey_vl, clear
(Fictitious survey data with vl)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

We are going to fit a dsregress model with q104 as our dependent variable and variables of
interest q41 and q22. These variables of interest are currently in the variable lists factors and
vlcontinuous, which we will use to specify the control variables. So we need to move them out
of these variable lists.

. vl modify factors = factors - (q41)
note: 1 variable removed from $factors.

. vl move (q22) vlother
note: 1 variable specified and 1 variable moved.

(output omitted)
. vl rebuild
Rebuilding vl macros ...

(output omitted)

lassoinfo — Display information about lasso estimation results 245

After we moved the variables out of the variable lists, we typed vl rebuild to update the variable
list ifactors created from factors. See [D] vl for details.

We fit our dsregress model using cross-validation to select λ∗’s in the lassos.

. dsregress q104 i.q41 q22,
> controls(($idemographics) $ifactors $vlcontinuous)
> selection(cv) rseed(1234)

Estimating lasso for q104 using cv
Estimating lasso for 1bn.q41 using cv
Estimating lasso for q22 using cv

Double-selection linear model Number of obs = 914
Number of controls = 274
Number of selected controls = 123
Wald chi2(2) = 10.96
Prob > chi2 = 0.0042

Robust
q104 Coefficient std. err. z P>|z| [95% conf. interval]

q41
Yes .6003918 .2848483 2.11 0.035 .0420994 1.158684
q22 -.0681067 .0306219 -2.22 0.026 -.1281246 -.0080888

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

lassoinfo shows us how many variables were selected in each lasso.

. lassoinfo

Estimate: active
Command: dsregress

No. of
Selection Selection selected

Variable Model method criterion lambda variables

q104 linear cv CV min. .1116376 63
1bn.q41 linear cv CV min. .0135958 68

q22 linear cv CV min. .1624043 49

246 lassoinfo — Display information about lasso estimation results

lassoinfo also gives useful information after fitting the model using the default selec-
tion(plugin).

. dsregress q104 i.q41 q22, controls(($idemographics) $ifactors $vlcontinuous)

Estimating lasso for q104 using plugin
Estimating lasso for 1bn.q41 using plugin
Estimating lasso for q22 using plugin

Double-selection linear model Number of obs = 914
Number of controls = 274
Number of selected controls = 33
Wald chi2(2) = 18.72
Prob > chi2 = 0.0001

Robust
q104 Coefficient std. err. z P>|z| [95% conf. interval]

q41
Yes .8410538 .2691082 3.13 0.002 .3136114 1.368496
q22 -.0878443 .0310435 -2.83 0.005 -.1486884 -.0270001

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. lassoinfo

Estimate: active
Command: dsregress

No. of
Selection selected

Variable Model method lambda variables

q104 linear plugin .1467287 18
1bn.q41 linear plugin .1467287 16

q22 linear plugin .1467287 15

See [LASSO] lassoselect, where we continue this example and do a sensitivity analysis to examine
the differences between the lassos fit using cross-validation and the lassos fit using the plugin estimator.

lassoinfo — Display information about lasso estimation results 247

Example 3: poivregress

We want to show you some differences that arise when you fit models containing endogenous
variables using poivregress and xpoivregress.

We will not describe the data or the model here. See [LASSO] Inference examples.

We load the data,

. use https://www.stata-press.com/data/r18/mroz2, clear

set vl variable lists,

. vl create vars = (kidslt6 kidsge6 age husage city exper)
note: $vars initialized with 6 variables.

. vl substitute vars2 = c.vars c.vars#c.vars

. vl create iv = (huseduc motheduc fatheduc)
note: $iv initialized with 3 variables.

. vl substitute iv2 = c.iv c.iv#c.iv

and fit our model using poivregress.

. poivregress lwage (educ = $iv2), controls($vars2) selection(cv) rseed(12345)

Estimating lasso for lwage using cv
Estimating lasso for educ using cv
Estimating lasso for pred(educ) using cv

Partialing-out IV linear model Number of obs = 428
Number of controls = 27
Number of instruments = 9
Number of selected controls = 16
Number of selected instruments = 4
Wald chi2(1) = 11.10
Prob > chi2 = 0.0009

Robust
lwage Coefficient std. err. z P>|z| [95% conf. interval]

educ .0765154 .0229707 3.33 0.001 .0314936 .1215371

Endogenous: educ
Note: Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store poivregresscv

248 lassoinfo — Display information about lasso estimation results

We stored our estimation results using estimates store, and here we use lassoinfo with the
name used to store them.

. lassoinfo poivregresscv

Estimate: poivregresscv
Command: poivregress

No. of
Selection Selection selected

Variable Model method criterion lambda variables

lwage linear cv CV min. .0353704 3
educ linear cv CV min. .0530428 10

pred(educ) linear cv CV min. .013186 12

Note that we have two lassos for educ labeled by lassoinfo as educ and pred(educ).
poivregress and xpoivregress perform two lassos for each endogenous variable, one for the
endogenous variable and one for its prediction. lassoinfo shows us how to refer to each of these
lassos in other postestimation commands using the for() option. In this example, we would type
for(educ) and for(pred(educ)), respectively.

Example 4: xporegress

The xpo commands fit many lassos. For each lasso fit by a po command, the corresponding xpo
command fits xfolds(#)× resample(#) lassos. lassoinfo can be used to get information about
these lassos.

We will not describe the data or the model here. See [LASSO] Inference examples.

We load the data,

. use https://www.stata-press.com/data/r18/breathe, clear
(Nitrogen dioxide and attention)

set vl variable lists,

. vl set

(output omitted)
. vl move (siblings_old siblings_young) vlcontinuous
note: 2 variables specified and 2 variables moved.

(output omitted)
. vl create mycontinuous = vlcontinuous - (react no2_class)
note: $mycontinuous initialized with 10 variables.

. vl substitute mycontrols = i.vlcategorical mycontinuous

lassoinfo — Display information about lasso estimation results 249

and fit our model using xporegress with the options xfolds(3) and resample(2).

. xporegress react no2_class, controls($mycontrols) xfolds(3) resample(2)
> selection(cv) rseed(12345)

Resample 1 of 2 ...
Cross-fit fold 1 of 3 ...
Estimating lassos: 1.

Resample 1 of 2 ...
Cross-fit fold 2 of 3 ...
Estimating lassos: 1.

Resample 1 of 2 ...
Cross-fit fold 3 of 3 ...
Estimating lassos: 1.

Resample 2 of 2 ...
Cross-fit fold 1 of 3 ...
Estimating lassos: 1.

Resample 2 of 2 ...
Cross-fit fold 2 of 3 ...
Estimating lassos: 1.

Resample 2 of 2 ...
Cross-fit fold 3 of 3 ...
Estimating lassos: 1.

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32

Number of selected controls = 27
Number of folds in cross-fit = 3
Number of resamples = 2
Wald chi2(1) = 20.99
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.332193 .5090902 4.58 0.000 1.334394 3.329991

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

For each cross-fit fold and each resample, xporegress fits lassos. So it fit six lassos for the dependent
variable, react, and six for the variable of interest, no2 class. lassoinfo summarizes the numbers
of variables selected across these six lassos for react and no2 class.

. lassoinfo

Estimate: active
Command: xporegress

No. of selected variables
Selection

Variable Model method min median max

no2_class linear cv 11 15 15
react linear cv 9 15 19

250 lassoinfo — Display information about lasso estimation results

Specifying the option each gives us information on each lasso.

. lassoinfo, each

Estimate: active
Command: xporegress

No. of
Dependent Selection Resample xfold Selection sel.
variable Model method number no. criterion lambda var.

no2_class linear cv 1 1 CV min. .2663004 11
no2_class linear cv 1 2 CV min. .2860957 15
no2_class linear cv 1 3 CV min. .2887414 14
no2_class linear cv 2 1 CV min. .2337636 15
no2_class linear cv 2 2 CV min. .2824076 15
no2_class linear cv 2 3 CV min. .2515777 15

react linear cv 1 1 CV min. 6.07542 9
react linear cv 1 2 CV min. 1.704323 19
react linear cv 1 3 CV min. 3.449884 15
react linear cv 2 1 CV min. 6.034922 9
react linear cv 2 2 CV min. 4.31785 16
react linear cv 2 3 CV min. 4.096779 15

See [LASSO] lassocoef for an example where we list the variables selected by each lasso.

Stored results
lassoinfo stores the following in r():

Macros
r(names) names of estimation results displayed

Matrices
r(table) matrix containing the numerical values displayed

Also see
[LASSO] lassoselect — Select lambda after lasso

[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

Title

lassoknots — Display knot table after lasso estimation

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

lassoknots shows a table of knots after a lasso. Knots are the values of λ at which variables in
the model change.

lassoknots displays the names of the variables added or removed as models are fit for successive
λ’s. When using cross-validation (CV) to select λ∗, lassoknots will display values of the CV function.

lassoknots also displays measures of fit. After viewing measures of fit, you can select an
alternative λ∗ using lassoselect.

When telasso, ds, po, and xpo commands fit models using selection(cv), selec-
tion(adaptive), or selection(bic) (see [LASSO] lasso options), lassoknots can be used
to show the CV function (for cv and adaptive) or the BIC function or other measures of fit for each
of the lassos computed.

lassoknots does work after selection(plugin) but only shows measures for the single λ∗

estimated by the plugin formula.

Quick start
Show knot table after lasso, sqrtlasso, and elasticnet

lassoknots

Same as above, but show number of nonzero coefficients, out-of-sample R2, and variables added or
removed after a linear model

lassoknots, display(nonzero osr2 variables)

Same as above, but show in-sample R2 and CV mean-prediction error in addition to out-of-sample
R2

lassoknots, display(osr2 r2 cvmpe)

After lasso logit, lasso probit, or lasso poisson, show out-of-sample mean-deviance ratio,
in-sample deviance ratio, and Bayes information criterion (BIC)

lassoknots, display(cvdevratio devratio bic)

After a lasso fit with selection(adaptive), show knot tables for all adaptive steps
lassoknots, steps

After a ds or po estimation with selection(cv) or selection(adaptive), show the knot table
for the lasso for the dependent variable y

lassoknots, for(y)

251

252 lassoknots — Display knot table after lasso estimation

After poivregress, show the knot table for the lasso for the prediction of the endogenous variable
whatup

lassoknots, for(pred(whatup))

After xporegress with option resample, show the knot table for the lasso for x for the 4th cross-fit
fold of the 9th resample

lassoknots, for(x) xfold(4) resample(9)

After telasso estimation with selection(cv) or selection(adaptive), show the knot table for
the lasso for the outcome variable y at treatment level 1

lassoknots, for(y) tlevel(1)

Menu
Statistics > Postestimation

Syntax

After lasso, sqrtlasso, and elasticnet

lassoknots
[
, options

]
After ds and po

lassoknots, for(varspec)
[

options
]

After xpo without resample

lassoknots, for(varspec) xfold(#)
[

options
]

After xpo with resample

lassoknots, for(varspec) xfold(#) resample(#)
[

options
]

After telasso for the outcome variable

lassoknots, for(varspec) tlevel(#)
[

options
]

After telasso for the treatment variable

lassoknots, for(varspec)
[

options
]

After telasso for the outcome variable with cross-fitting but without resample

lassoknots, for(varspec) tlevel(#) xfold(#)
[

options
]

After telasso for the treatment variable with cross-fitting but without resample

lassoknots, for(varspec) xfold(#)
[

options
]

lassoknots — Display knot table after lasso estimation 253

After telasso for the outcome variable with cross-fitting and resample

lassoknots, for(varspec) tlevel(#) xfold(#) resample(#)
[

options
]

After telasso for the treatment variable with cross-fitting and resample

lassoknots, for(varspec) xfold(#) resample(#)
[

options
]

varspec is varname, except after poivregress and xpoivregress, when it is either varname or
pred(varname).

options Description

display(di opts) specify what to display; maximum of three di opts options
alllambdas show all λ’s
steps show all adaptive steps; selection(adaptive) only
nolstretch do not stretch the width of the table to accommodate long variable names
∗for(varspec) lasso for varspec; telasso, ds, po, and xpo commands only
∗xfold(#) lasso for the #th cross-fit fold; xpo commands and telasso

with xfolds only
∗resample(#) lasso for the #th resample; xpo commands and telasso

with resample only
∗tlevel(#) lasso for the outcome model with the treatment level #;

telasso only

∗for(varspec) is required for all ds, po, and xpo commands and for telasso.
xfold(#) is required for all xpo commands and for telasso when the option xfolds(#) was specified.
resample(#) is required for xpo and for telasso when the option resample(#) was specified.
tlevel(#) is required for the outcome model in telasso.

collect is allowed; see [U] 11.1.10 Prefix commands.

di opts Description

nonzero number of nonzero coefficients
variables names of variables added or removed

cvmd CV mean deviance (the CV function)
cvdevratio CV mean-deviance ratio
devratio in-sample deviance ratio

bic BIC
l1 relative `1-norm of coefficients
l2 relative `2-norm squared of coefficients

Linear models only
cvmpe CV mean-prediction error (the CV function)
osr2 out-of-sample R2

r2 in-sample R2

254 lassoknots — Display knot table after lasso estimation

Options

display(di opts) specifies what to display in the knot table. A maximum of three di opts options
can be specified. For lassos fit using selection(cv) or selection(adaptive), the default is
display(nonzero cvmpe variables) for linear models and display(nonzero cvmd vari-
ables) for logit, probit, Poisson, and Cox models. For lassos fit using selection(plugin)
or selection(bic), the default is display(nonzero r2 variables) for linear models and
display(nonzero devratio variables) for logit, probit, Poisson, and Cox models. The full
set of di opts is the following.

nonzero specifies that the number of nonzero coefficients be shown.

variables specifies that the names of variables added or removed at each knot be shown.

cvmd specifies that the CV mean deviance be shown. These are the values of the CV function that are
searched for a minimum. For linear models, it is the same as the CV mean-prediction error given by
cvmpe. cvmd is available only for lassos fit using selection(cv) or selection(adaptive).

cvdevratio specifies that the CV mean-deviance ratio be shown. The CV mean-deviance ratio
is an estimate of out-of-sample goodness of fit. As a measure of prediction performance, it is
superior to devratio, the in-sample deviance ratio. It is typically between 0 and 1, but in
some cases, it may be outside this range. For linear models, it is the same as out-of-sample
R2 given by osr2. cvdevratio is available only for lassos fit using selection(cv) or
selection(adaptive).

devratio specifies that the in-sample deviance ratio be shown. The in-sample deviance ratio is an
indicator of in-sample goodness of fit. The in-sample deviance generalizes the in-sample R2 to
nonlinear models. As a measure of prediction performance, it is inferior to cvdevratio, the CV
mean-deviance ratio. The in-sample deviance ratio is a poor measure of prediction performance
because it does not capture the cost of including additional covariates for prediction. It is always
between 0 and 1. For linear models, it is the same as in-sample R2 given by r2.

bic specifies that the BIC be shown. Note that the BIC can be displayed for lassos fit using
selection(cv) and selection(adaptive), but the CV measures—cvmd, cvdevratio, and
cvmpe—are not available for lassos fit using selection(bic).

l1 specifies that the relative `1-norm of coefficients be shown.

l2 specifies that relative `2-norm squared of coefficients be shown.

Linear models only

cvmpe specifies that the CV mean-prediction error be shown. These are the values of the
CV function that are searched for a minimum. cvmpe is available only for lassos fit using
selection(cv) or selection(adaptive).

osr2 specifies that the out-of-sample R2 be shown. The out-of-sample R2 is an estimate of
out-of-sample goodness of fit. As a measure of prediction performance, it is superior to r2,
the in-sample R2. It is typically between 0 and 1, but in some cases, it may be outside this
range.

r2 specifies that the in-sample deviance ratio be shown. The in-sample deviance ratio is an
indicator of in-sample goodness of fit. As a measure of prediction performance, it is inferior to
osr2, the out-of-sample R2. The in-sample R2 is a poor measure of prediction performance
because it does not capture the cost of including additional covariates for prediction. It is
always between 0 and 1.

lassoknots — Display knot table after lasso estimation 255

alllambdas specifies that all λ’s are to be shown, not just the knots. Measures at λ’s that are not
knots change slightly because the coefficient estimates change slightly. λ’s that are not knots can
be selected as λ∗ by lassoselect; however, this is typically not done.

steps applies to selection(adaptive) only. When specified, λ’s for all adaptive steps are shown.
By default, λ’s for only the last adaptive step are shown.

nolstretch specifies that the width of the table not be automatically widened to accommodate long
variable names. When nolstretch is specified, names are abbreviated to make the table width
no more than 79 characters. The default, lstretch, is to automatically widen the table up to the
width of the Results window. To change the default, use set lstretch off.

for(varspec) specifies a particular lasso after telasso or after a ds, po, or xpo estimation
command fit using the option selection(cv), selection(adaptive), or selection(bic).
For all commands except poivregress and xpoivregress, varspec is always varname.

For the ds, po, and xpo commands except poivregress and xpoivregress, varspec is either
depvar, the dependent variable, or one of varsofinterest for which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred(varname). The lasso
for depvar is specified with its varname. Each of the endogenous variables have two lassos,
specified by varname and pred(varname). The exogenous variables of interest each have only
one lasso, and it is specified by pred(varname).

For telasso, varspec is either the outcome variable or the treatment variable.

This option is required after telasso and after the ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command or after telasso when the
option xfolds(#) was specified. For each variable to be fit with a lasso, K lassos are done,
one for each cross-fit fold, where K is the number of folds. This option specifies which fold,
where # = 1, 2, . . . ,K. xfold(#) is required after an xpo command and after telasso when
the option xfolds(#) was specified.

resample(#) specifies a particular lasso after an xpo estimation command or after telasso fit using
the option resample(#). For each variable to be fit with a lasso, R×K lassos are done, where
R is the number of resamples and K is the number of cross-fitting folds. This option specifies
which resample, where # = 1, 2, . . . , R. resample(#), along with xfold(#), is required after
an xpo command and after telasso with resampling.

tlevel(#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Measures of fit
In-sample measures versus estimates of out-of-sample measures
BIC
Examples

256 lassoknots — Display knot table after lasso estimation

Introduction

When a lasso is fit over a grid of λ’s, it starts with the smallest λ that produces a model with
no selected variables. This initial λ is the largest λ in the grid. Lasso steps to the next λ and fits
a model for it. One or more variables are selected for this second λ (if no variables were selected,
it would be the starting λ). Lasso steps to the third λ, and more variables may be selected, or the
model may have the same variables as the model for the second λ.

In this way, lasso iterates across the grid of λ values. λ’s at which the selected variables change
are called “knots”. Variables are not only added at a knot but also sometimes removed. Typically,
when a variable is removed, one or more variables are added in its place. Usually, the number of
nonzero coefficients increases monotonically as λ gets smaller but not always. Occasionally, the net
number of variables in the model goes down, rather than up, in an iteration to a smaller λ.

lassoknots displays a table of the knots, showing the names of variables that enter and leave
the models. The option alllambdas can be specified to display all the λ’s in the grid. To view all
variables selected at a particular λ, you can use lassoselect to select that λ and then lassocoef
to list the variables and, optionally, the coefficients.

Selection methods selection(cv), selection(adaptive), selection(bic), and selec-
tion(none) fit models for each λ in the grid. The method selection(plugin) calculates λ∗ using
a formula so there is only one λ.

Measures of fit

lassoknots will also display other measures. The methods selection(cv) and selec-
tion(adaptive) use CV. When CV is performed, lassoknots by default displays the number
of nonzero coefficients, the CV function, and the names of variables that enter or leave the model.

Optionally, there are five other measures that can be displayed. For linear models, they are in-sample
R2 (r2), estimates of out-of-sample R2 (osr2), the BIC (bic), relative `1-norm of coefficients (l1),
and relative `2-norm squared of coefficients (l2).

For nonlinear models, in place of the R2 measures, there are the analogous measures, the in-sample
deviance ratio (devratio) and estimates of out-of-sample deviance ratio (cvdevratio).

The in-sample measures, BIC, and relative norms are available regardless of whether CV was done.

The out-of-sample R2 and out-of-sample deviance ratio are not computed on out-of-sample data,
but rather they are estimates of what these measures would be on out-of-sample data. The CV procedure
provides these estimates.

In-sample measures versus estimates of out-of-sample measures

Estimates of out-of-sample measures are superior to in-sample measures.

Consider a linear lasso. The set of covariates that produces the smallest out-of-sample MSE is the
set that produces the best predictions. CV is used to estimate out-of-sample MSE and select the set
that produces the smallest estimate.

In contrast, we should not use in-sample MSE to select the set of covariates. In-sample MSE
systematically underestimates out-of-sample prediction error. In-sample MSE can be made smaller and
smaller simply by including more covariates (as long as they are not collinear with covariates already
in the model). In-sample MSE does not capture the cost of including more covariates.

lassoknots — Display knot table after lasso estimation 257

For the same reason, estimates of out-of-sample R2 are superior to in-sample R2 for linear models.
For logit, probit, and Poisson models, estimates of out-of-sample deviance ratios are superior to
in-sample deviance ratios.

See Hastie, Tibshirani, and Friedman (2009, sec. 7.2) for an introduction to a comparison of
in-sample and out-of-sample measures of the predictive ability of a model.

BIC
Information criteria, like the BIC, have a term that penalizes for each additional parameter. Selecting

the set of covariates that minimizes the BIC is another way to select a set of covariates that will
predict well out of sample. Zhang, Li, and Tsai (2010) show that the λ selected by minimizing the
BIC will select a set of covariates close to the true set under the conditions described in their article.

In practice, the BIC is more informative than the in-sample measures reported by lassoknots for
selection(plugin) and selection(none).

Examples

Example 1: lasso linear

Here is an example using lasso from [LASSO] lasso examples. We load the data and make the
vl variable lists active.

. use https://www.stata-press.com/data/r18/fakesurvey_vl
(Fictitious survey data with vl)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

We fit a lasso linear model.

. lasso linear q104 $idemographics $ifactors $vlcontinuous, rseed(1234)

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .9090511 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.33331

(output omitted)
Grid value 28: lambda = .0737359 no. of nonzero coef. = 80
Folds: 1...5....10 CVF = 11.92887
... cross-validation complete ... minimum found

Lasso linear model No. of obs = 914
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .9090511 0 -0.0010 18.33331
23 lambda before .1174085 58 0.3543 11.82553

* 24 selected lambda .1069782 64 0.3547 11.81814
25 lambda after .0974746 66 0.3545 11.8222
28 last lambda .0737359 80 0.3487 11.92887

* lambda selected by cross-validation.

258 lassoknots — Display knot table after lasso estimation

We run lassoknots.

. lassoknots

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

2 .8282935 2 18.24362 A 0.q19 0.q88
3 .7547102 4 17.99053 A 0.q85 3.q156
5 .6265736 7 17.26211 A 0.q48 0.q73 0.q101
6 .5709106 11 16.7744 A 4.q38 q31 q76

q139
7 .5201924 15 16.19275 A 0.q5 2.q34 0.q43

0.q50
8 .47398 16 15.58941 A q22

11 .3585485 19 14.07708 A 0.q41 0.q56 2.q84
12 .326696 22 13.69483 A 3.q16 0.q89 0.q118
13 .2976732 25 13.3281 A 0.q91 age 0.gender
14 .2712288 26 12.99274 A 3.q38
16 .2251789 32 12.48904 A 0.q3 0.q49 0.q150

2.q155 0.q160 q111
18 .1869475 34 12.15245 A 2.q6 3.q78
19 .1703396 39 12.03358 A 0.q14 0.q33 0.q126

0.q147 0.q149
20 .1552071 42 11.94361 A 0.q25 0.q82 1.q110
21 .1414189 46 11.88652 A 0.q96 q20 3.q110

1.q134
22 .1288556 50 11.84693 A 0.q32 0.q102 1.q105

0.q122
23 .1174085 58 11.82553 A 0.q4 0.q7 1.q34

0.q40 3.q84 q53
q93 2.q134

* 24 .1069782 64 11.81814 A 0.q51 0.q55 0.q75
0.q77 q63 0.q115

25 .0974746 66 11.8222 A 3.q6 0.q117
26 .0888152 70 11.84669 A 0.q59 3.q95 q21

0.q125
27 .0809251 72 11.88463 A 0.q100 4.q155
28 .0737359 80 11.92887 A 0.q13 0.q30 0.q68

q52 q70 2.q110
0.q153 0.q159

* lambda selected by cross-validation.

The table ends at the 28th λ. The default grid had 100 λ’s. The iteration over the λ grid ended after
a minimum of the CV function was found. There are other cases in which the iteration ends before
the end of the grid is reached. See The CV function in [LASSO] lasso and [LASSO] lasso fitting for
details.

lassoknots — Display knot table after lasso estimation 259

The option alllambdas shows all the λ’s for which models were fit. In this case, the first 28 λ’s
in the grid.

. lassoknots, alllambdas

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

1 .9090511 0 18.33331 U
2 .8282935 2 18.24362 A 0.q19 0.q88
3 .7547102 4 17.99053 A 0.q85 3.q156
4 .6876638 4 17.6434 U
5 .6265736 7 17.26211 A 0.q48 0.q73 0.q101
6 .5709106 11 16.7744 A 4.q38 q31 q76

q139
7 .5201924 15 16.19275 A 0.q5 2.q34 0.q43

0.q50
8 .47398 16 15.58941 A q22
9 .4318729 16 15.01285 U

10 .3935065 16 14.50648 U
11 .3585485 19 14.07708 A 0.q41 0.q56 2.q84
12 .326696 22 13.69483 A 3.q16 0.q89 0.q118
13 .2976732 25 13.3281 A 0.q91 age 0.gender
14 .2712288 26 12.99274 A 3.q38
15 .2471336 26 12.71385 U
16 .2251789 32 12.48904 A 0.q3 0.q49 0.q150

2.q155 0.q160 q111
17 .2051746 32 12.30196 U
18 .1869475 34 12.15245 A 2.q6 3.q78
19 .1703396 39 12.03358 A 0.q14 0.q33 0.q126

0.q147 0.q149
20 .1552071 42 11.94361 A 0.q25 0.q82 1.q110
21 .1414189 46 11.88652 A 0.q96 q20 3.q110

1.q134
22 .1288556 50 11.84693 A 0.q32 0.q102 1.q105

0.q122
23 .1174085 58 11.82553 A 0.q4 0.q7 1.q34

0.q40 3.q84 q53
q93 2.q134

* 24 .1069782 64 11.81814 A 0.q51 0.q55 0.q75
0.q77 q63 0.q115

25 .0974746 66 11.8222 A 3.q6 0.q117
26 .0888152 70 11.84669 A 0.q59 3.q95 q21

0.q125
27 .0809251 72 11.88463 A 0.q100 4.q155
28 .0737359 80 11.92887 A 0.q13 0.q30 0.q68

q52 q70 2.q110
0.q153 0.q159

* lambda selected by cross-validation.

The λ’s that are not knots have a U for unchanged in the variables column. At these λ’s, the variables
in the model do not change, but their coefficient estimates do. In this example, the selected λ∗ is a
knot, but frequently the selected λ∗ will not be a knot.

260 lassoknots — Display knot table after lasso estimation

We display the number of nonzero coefficients again, but this time with estimates of out-of-sample
R2 and in-sample R2.

. lassoknots, display(nonzero osr2 r2)

No. of Out-of-
nonzero sample In-sample

ID lambda coef. R-squared R-squared

2 .8282935 2 0.0039 0.0102
3 .7547102 4 0.0177 0.0278
5 .6265736 7 0.0575 0.0707
6 .5709106 11 0.0841 0.1051
7 .5201924 15 0.1159 0.1414
8 .47398 16 0.1488 0.1790

11 .3585485 19 0.2314 0.2635
12 .326696 22 0.2523 0.2861
13 .2976732 25 0.2723 0.3090
14 .2712288 26 0.2906 0.3288
16 .2251789 32 0.3181 0.3610
18 .1869475 34 0.3365 0.3870
19 .1703396 39 0.3430 0.3981
20 .1552071 42 0.3479 0.4081
21 .1414189 46 0.3510 0.4176
22 .1288556 50 0.3532 0.4263
23 .1174085 58 0.3543 0.4342

* 24 .1069782 64 0.3547 0.4418
25 .0974746 66 0.3545 0.4486
26 .0888152 70 0.3532 0.4546
27 .0809251 72 0.3511 0.4598
28 .0737359 80 0.3487 0.4647

* lambda selected by cross-validation.

In-sample R2 is significantly larger than the estimates of out-of-sample R2. As we discussed in
In-sample measures versus estimates of out-of-sample measures above, in-sample R2 should not be
used for assessing fit. It is, however, occasionally useful for exposing problems with the specification
of the set of potential covariates. For example, suppose our dependent variable is log-income and we
accidentally include income as a potential covariate. It will no doubt be selected, and we will see an
R2 of 1 or close to it. Seeing that, we realize we made a mistake in the specification of potential
variables.

lassoknots — Display knot table after lasso estimation 261

We run lassoknots again to display BIC and the relative norms of the coefficient vectors.

. lassoknots, display(l1 l2 bic)

Relative Relative
L1 L2

ID lambda BIC length length

2 .8282935 5262.546 0.0084 0.0013
3 .7547102 5259.79 0.0244 0.0060
5 .6265736 5238.991 0.0696 0.0313
6 .5709106 5231.834 0.1066 0.0544
7 .5201924 5221.257 0.1449 0.0840
8 .47398 5187.164 0.1903 0.1195

11 .3585485 5108.273 0.3092 0.2504
12 .326696 5100.274 0.3492 0.2982
13 .2976732 5090.95 0.3948 0.3487
14 .2712288 5071.186 0.4375 0.4001
16 .2251789 5067.137 0.5179 0.4999
18 .1869475 5042.754 0.5959 0.5949
19 .1703396 5060.244 0.6344 0.6398
20 .1552071 5065.277 0.6734 0.6834
21 .1414189 5077.835 0.7133 0.7259
22 .1288556 5091.401 0.7543 0.7677
23 .1174085 5133.245 0.7955 0.8091

* 24 .1069782 5161.662 0.8388 0.8503
25 .0974746 5164.198 0.8805 0.8904
26 .0888152 5181.477 0.9213 0.9286
27 .0809251 5186.25 0.9606 0.9651
28 .0737359 5232.569 1.0000 1.0000

* lambda selected by cross-validation.

The relative norms are relative to the coefficient vector for the last λ. If we were using BIC to select
λ∗, we would have chosen λ at ID = 18.

262 lassoknots — Display knot table after lasso estimation

Example 2: lasso logit

We fit a lasso logit model using the same data as in the previous example.
. lasso logit q106 $idemographics $ifactors $vlcontinuous, rseed(1234)

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .0886291 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 1.386903

(output omitted)
Grid value 27: lambda = .0078899 no. of nonzero coef. = 87
Folds: 1...5....10 CVF = 1.103886
... cross-validation complete ... minimum found

Lasso logit model No. of obs = 914
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of-
nonzero sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .0886291 0 -0.0004 1.386903
23 lambda before .0114469 68 0.2102 1.094953

* 24 selected lambda .01043 76 0.2103 1.09471
25 lambda after .0095034 79 0.2091 1.096417
27 last lambda .0078899 87 0.2037 1.103886

* lambda selected by cross-validation.

The default lassoknots gives a table that is the same as that for a linear model, except that
instead of CV mean-prediction error, CV mean deviance is shown. The CV function for logit (and
probit and Poisson) is the CV mean deviance.

. lassoknots

No. of
nonzero CV mean Variables (A)dded, (R)emoved,

ID lambda coef. deviance or left (U)nchanged

2 .0807555 3 1.38295 A 0.q90 2.q134 0.q142
3 .0735814 5 1.37237 A 0.q8 q53
4 .0670447 8 1.357427 A 0.q68 0.q77 q22
5 .0610886 9 1.33969 A 0.q46
6 .0556616 12 1.319525 A 0.q13 2.q16 2.q95
7 .0507168 14 1.299571 A 1.q84 q20
8 .0462113 18 1.279802 A 0.q29 0.q133 0.q140

1.q144

(output omitted)
23 .0114469 68 1.094953 A 0.q26 0.q73 0.q118

* 24 .01043 76 1.09471 A 0.q4 q1 0.q50
2.q65 3.q65 0.q83
q24 1.q155

25 .0095034 79 1.096417 A q76 0.q108 0.q122
26 .0086591 83 1.09945 A 2.q6 0.q64 0.q100

q132
27 .0078899 87 1.103886 A 0.q58 0.q74 0.q113

q103

* lambda selected by cross-validation.

We can look at in-sample CV deviance ratio and estimates of out-of-sample CV deviance ratio.
These are analogous to the linear in-sample R2 and out-of-sample R2. The in-sample CV deviance

lassoknots — Display knot table after lasso estimation 263

ratio is always between 0 and 1. The estimates of out-of-sample CV deviance ratio are usually, but
not always, between 0 and 1.

. lassoknots, display(cvdevratio devratio bic)

Out-of- In-sample
sample deviance

ID lambda dev. ratio ratio BIC

2 .0807555 0.0024 0.0057 1287.176
3 .0735814 0.0100 0.0180 1285.111
4 .0670447 0.0208 0.0323 1287.477
5 .0610886 0.0336 0.0488 1273.364
6 .0556616 0.0482 0.0657 1272.417
7 .0507168 0.0626 0.0835 1263.5
8 .0462113 0.0768 0.1022 1267.165

(output omitted)
23 .0114469 0.2102 0.3209 1330.907

* 24 .01043 0.2103 0.3297 1374.27
25 .0095034 0.2091 0.3379 1384.306
26 .0086591 0.2069 0.3461 1401.188
27 .0078899 0.2037 0.3535 1419.149

* lambda selected by cross-validation.

Example 3: dsregress

We load the data used in [LASSO] lasso examples. See that entry for details about the data.

. use https://www.stata-press.com/data/r18/fakesurvey_vl, clear
(Fictitious survey data with vl)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

We are going to fit a dsregress model with q104 as our dependent variable and variables of
interest q41 and q22. These variables of interest are currently in the variable lists factors and
vlcontinuous, which we will use to specify the control variables. So we need to move them out
of these variable lists.

. vl modify factors = factors - (q41)
note: 1 variable removed from $factors.

. vl move (q22) vlother
note: 1 variable specified and 1 variable moved.

(output omitted)
. vl rebuild
Rebuilding vl macros ...

(output omitted)

After we moved the variables out of the variable lists, we typed vl rebuild to update the variable
list ifactors created from factors. See [D] vl for details.

264 lassoknots — Display knot table after lasso estimation

We fit our dsregress model using the default plugin selection method.

. dsregress q104 i.q41 q22, controls(($idemographics) $ifactors $vlcontinuous)

Estimating lasso for q104 using plugin
Estimating lasso for 1bn.q41 using plugin
Estimating lasso for q22 using plugin

Double-selection linear model Number of obs = 914
Number of controls = 274
Number of selected controls = 33
Wald chi2(2) = 18.72
Prob > chi2 = 0.0001

Robust
q104 Coefficient std. err. z P>|z| [95% conf. interval]

q41
Yes .8410538 .2691082 3.13 0.002 .3136114 1.368496
q22 -.0878443 .0310435 -2.83 0.005 -.1486884 -.0270001

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

lassoinfo shows the lassos that dsregress fit.

. lassoinfo

Estimate: active
Command: dsregress

No. of
Selection selected

Variable Model method lambda variables

q104 linear plugin .1467287 18
1bn.q41 linear plugin .1467287 16

q22 linear plugin .1467287 15

The knot table for the lasso for the dependent variable q104 can be seen using the for(q104)
option. We also show BIC and in-sample R2.

. lassoknots, display(nonzero r2 bic) for(q104)

No. of
nonzero In-sample

ID lambda coef. R-squared BIC

* 1 .1467287 14 0.1623 5191.862

* lambda selected by plugin assuming heteroskedastic errors.

A lasso fit with plugin fits only one model for one λ. So that is all we get from lassoknots.

If we wanted to see the same table for the variable of interest i.q41, we would type

. lassoknots, display(nonzero r2 bic) for(1bn.q41)

In the for() option, we specify the variable name for the lasso exactly as it is shown in lassoinfo.

lassoknots — Display knot table after lasso estimation 265

We run dsregress again, this time specifying selection(cv).

. dsregress q104 i.q41 q22,
> controls(($idemographics) $ifactors $vlcontinuous)
> selection(cv) rseed(1234)

Estimating lasso for q104 using cv
Estimating lasso for 1bn.q41 using cv
Estimating lasso for q22 using cv

Double-selection linear model Number of obs = 914
Number of controls = 274
Number of selected controls = 123
Wald chi2(2) = 10.96
Prob > chi2 = 0.0042

Robust
q104 Coefficient std. err. z P>|z| [95% conf. interval]

q41
Yes .6003918 .2848483 2.11 0.035 .0420994 1.158684
q22 -.0681067 .0306219 -2.22 0.026 -.1281246 -.0080888

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

lassoknots now shows knots up to the minimum and slightly passed it.

. lassoknots, display(nonzero cvmpe osr2) for(q104)

No. of CV mean Out-of-
nonzero pred. sample

ID lambda coef. error R-squared

1 .864369 4 17.9727 0.0187
2 .7875809 6 17.88282 0.0236
3 .7176144 7 17.64713 0.0365
4 .6538635 8 17.32777 0.0539
5 .595776 12 16.87904 0.0784
6 .5428489 14 16.3203 0.1089
7 .4946237 15 15.74852 0.1401
8 .4506827 18 15.2143 0.1693

(output omitted)
22 .1225221 52 12.02453 0.3435

* 23 .1116376 59 12.02148 0.3436
24 .10172 62 12.02571 0.3434
25 .0926835 71 12.03785 0.3427
26 .0844497 76 12.0626 0.3414
27 .0769474 80 12.09713 0.3395
27 .0769474 80 12.09713 0.3395

* lambda selected by cross-validation.

For a sensitivity analysis that uses lassoselect after lassoknots, see [LASSO] lassoselect.

266 lassoknots — Display knot table after lasso estimation

Stored results
lassoknots stores the following in r():

Matrices
r(table) matrix containing the values displayed

Methods and formulas
Methods and formulas are presented under the following headings:

Overview
Statistics that measure the size of the coefficient vector
Statistics that measure fit
CV measures of fit
Single-sample measures of fit
Deviance formulas

Saturated log likelihood
Prediction error formulas
BIC formula

Overview

All the reported statistics depend on the p-dimensional coefficient vector β̂λ, which is the penalized
estimate of β for given penalty value λ.

We present the formulas in the context of lasso, but formulas for elasticnet and sqrtlasso
are the same, although the context would have some subtle differences that we can safely ignore.

Statistics that measure the size of the coefficient vector
Option display(nonzero) displays the number of nonzero coefficients, which is given by

nonzero =

p∑
j=1

dj

dj =

{
1 if β̂λ,j 6= 0
0 otherwise

Option display(l1) displays the sum of the absolute values of the coefficients, which is known
as the `1-norm:

l1 =

p∑
j=1

|β̂λ,j |

Option display(l2) displays the sum of the squared values of the coefficients, which is the
square of the `2-norm:

l2 =

p∑
j=1

β̂ 2
λ,j

lassoknots — Display knot table after lasso estimation 267

Statistics that measure fit
All statistics that measure fit are functions of the observation-level contributions of either the

squared prediction error, spei, or the log likelihood, `i.

The contribution of observation i to a statistic can be calculated using a single-sample calculation
or using CV. The CV version estimates the out-of-sample equivalent. The single-sample versions are
in-sample measures that do not reliably estimate their out-of-sample equivalents.

CV measures of fit

When CV is performed, CV versions of spei and `i are available. Here is how we compute these
observation-level quantities.

1. The data are partitioned into K folds.

2. For each value of λ,

a. the coefficients are estimated on the observations not in fold k using λ.

b. for each observation i in fold k, the fit measures spei and `i are computed using the penalized
coefficient estimates.

Single-sample measures of fit

The single-sample measures of fit are computed as follows.

1. For each value of λ,

a. the coefficients are estimated on all the observations using λ.

b. for each observation i the fit measures spei and `i are computed using the penalized coefficient
estimates.

Deviance formulas

The CV version of `i is used in the formulas for cvmd and cvdevratio. The single-sample version
of `i is used in the formula for devratio.

For all models, the deviance, Di, for the ith observation is given by

Di = −2(`i − `saturated)

where `i is the value of the log-likelihood function at observation i, and `saturated is the value of
the saturated log-likelihood function. Formulas for the `i and for the `saturated are given below. The
penalized coefficient estimates are used in these computations.

The mean deviance D is given by

D =
1

N

N∑
i=1

Di

The formula for the deviance ratio D2 is

D2 = 1− D

Dnull

268 lassoknots — Display knot table after lasso estimation

where the Dnull is the null deviance and is given by

Dnull =
1

N

N∑
i=1

−2(`0,i − `saturated)

and `0,i is the ith observation of the log likelihood from the model that includes only a constant term.

Saturated log likelihood

For linear, logit, and probit models, the log-likelihood function of the saturated model is zero. For
the Poisson model,

`saturated =
1

N

N∑
i=1

(−yi + yi ln yi)

For the Cox model,

`saturated = − 1

N

Nf∑
j=1

dj log (dj)

where j indexes the ordered failure times t(j), j = 1, . . . , Nf ; Dj is the set of observations that fail
at t(j); and dj is the number of observations in Dj .

Prediction error formulas
These formulas are used only for linear models. The squared prediction error for the ith observation

is given by

spei =
(
yi − xiβ̂λ

)2

where yi is the ith observation of the dependent variable and xiβ̂λ is the predicted mean of yi
conditional on xi.

For cvmpe and osr2, the CV version of spei is used. For r2, the single-sample version of spei is
used.

R2 is given by

R2 = 1− MSE

MSEnull

where the mean squared error (MSE) is given by

MSE =
1

N

N∑
i=1

spei

and the MSE of the null model is given by

MSEnull =
1

N

N∑
i=1

(yi − y)2

where y is the sample average of y.

lassoknots — Display knot table after lasso estimation 269

BIC formula
BIC is given by

BIC = −2`+ k lnN

where ` =
∑N
i=1 `i, k = nonzero + 1 is the number of coefficients in the model including the

constant term, and each `i is always calculated using the single-sample methods.

References
Hastie, T. J., R. J. Tibshirani, and J. H. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference,

and Prediction. 2nd ed. New York: Springer.

Zhang, Y., R. Li, and C.-L. Tsai. 2010. Regularization parameter selections via generalized information criterion.
Journal of the American Statistical Association 105: 312–323. https://doi.org/10.1198/jasa.2009.tm08013.

Also see
[LASSO] lasso — Lasso for prediction and model selection

[LASSO] lasso fitting — The process (in a nutshell) of fitting lasso models

[LASSO] lassocoef — Display coefficients after lasso estimation results

[LASSO] lassoselect — Select lambda after lasso

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[CAUSAL] telasso postestimation — Postestimation tools for telasso

https://doi.org/10.1198/jasa.2009.tm08013

Title

lasso options — Lasso options for inferential models

Description Syntax Options Remarks and examples Reference Also see

Description
This entry describes the options that control the lassos, either individually or globally, in the ds,

po, and xpo estimation commands.

For an introduction to lasso inferential models, see [LASSO] Lasso inference intro.

For examples of the ds, po, and xpo estimation commands and the use of these options, see
[LASSO] Inference examples.

Syntax
lasso inference cmd . . .

[
, . . . options

]
lasso inference cmd is one of dslogit, dspoisson, dsregress, poivregress, pologit,

popoisson, poregress, xpoivregress, xpologit, xpopoisson, or xporegress.

options Description

Model

selection(plugin) select λ∗ using a plugin iterative formula for all lassos;
the default

selection(cv) select λ∗ using cross-validation (CV) for all lassos
selection(adaptive) select λ∗ using adaptive lasso for all lassos
selection(bic) select λ∗ using Bayesian information criterion (BIC) for all

lassos
sqrtlasso fit square-root lassos instead of regular lassos

Advanced

lasso(varlist, lasso options) specify options for lassos for variables in varlist
sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist

lasso options Description

selection(sel method) selection method to select an optimal value of the lasso
penalty parameter λ∗ from the set of possible λ’s

grid(#g

[
, ratio(#) min(#)

]
) specify the set of possible λ’s using a logarithmic grid with

#g grid points
stop(#) tolerance for stopping the iteration over the λ grid early
cvtolerance(#) tolerance for identification of the CV function minimum
bictolerance(#) tolerance for identification of the BIC function minimum
tolerance(#) convergence tolerance for coefficients based on their values
dtolerance(#) convergence tolerance for coefficients based on deviance

270

lasso options — Lasso options for inferential models 271

sel method Description

plugin
[
, plugin opts

]
select λ∗ using a plugin iterative formula; the default

cv
[
, cv opts

]
select λ∗ using CV

adaptive
[
, adapt opts cv opts

]
select λ∗ using an adaptive lasso; only available for lasso()

bic
[
, bic opts

]
select λ∗ using BIC

plugin opts Description

heteroskedastic assume model errors are heteroskedastic; the default
homoskedastic assume model errors are homoskedastic

cv opts Description

folds(#) use # folds for CV
alllambdas fit models for all λ’s in the grid or until the stop(#) tolerance is reached;

by default, the CV function is calculated sequentially by λ, and estimation
stops when a minimum is identified

serule use the one-standard-error rule to select λ∗

stopok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for λ was reached at λstop, set the selected λ∗ to be
λstop; the default

strict do not select λ∗ when the CV function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for λ was not reached, set the selected λ∗ to be the
minimum of the λ grid, λgmin; this is a looser alternative to the default
stopok and is rarely used

adapt opts Description

steps(#) use # adaptive steps (counting the initial lasso as step 1)
unpenalized use the unpenalized estimator to construct initial weights
ridge use the ridge estimator to construct initial weights
power(#) raise weights to the # th power

272 lasso options — Lasso options for inferential models

bic opts Description

alllambdas fit models for all λ’s in the grid or until the stop(#) tolerance is reached;
by default, the BIC function is calculated sequentially by λ, and estimation
stops when a minimum is identified

stopok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for λ was reached at λstop, set the selected λ∗ to be
λstop; the default

strict do not select λ∗ when the BIC function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for λ was not reached, set the selected λ∗ to be the
minimum of the λ grid, λgmin; this is a looser alternative to the default
stopok and is rarely used

postselection use postselection coefficients to compute BIC

Options

� � �
Model �

selection(plugin | cv | adaptive | bic) is a global option that specifies that all lassos use the given
selection method. It is the same as specifying lasso(*, selection(plugin | cv | adaptive |
bic)). The default is selection(plugin). That is, not specifying this option implies a global
selection(plugin) for all lassos. This global form of the option does not allow suboptions. To
specify suboptions, use the lasso() or sqrtlasso() option described below.

sqrtlasso is a global option that specifies that all lassos be square-root lassos. It is the same as
specifying sqrtlasso(*), except for logit and Poisson models. For logit and Poisson models,
it is the same as sqrtlasso(varsofinterest), where varsofinterest are all the variables that have
lassos excluding the dependent variable. This global form of the option does not allow suboptions.
To specify suboptions, use the sqrtlasso() option described below.

� � �
Advanced �

lasso(varlist, lasso options) and sqrtlasso(varlist, lasso options) let you set different options
for different lassos and square-root lassos. These options also let you specify advanced options for all
lassos and all square-root lassos. The lasso() and sqrtlasso() options override the global options
selection(plugin | cv | adaptive) and sqrtlasso for the lassos for the specified variables.
If lasso(varlist, lasso options) or sqrtlasso(varlist, lasso options) does not contain a
selection() specification as part of lasso options, then the global option for selection() is
assumed.

lasso(varlist, lasso options) specifies that the variables in varlist be fit using lasso with the
selection method, set of possible λ’s, and convergence criteria determined by lasso options.

sqrtlasso(varlist, lasso options) specifies that the variables in varlist be fit using square-root
lasso with the selection method, set of possible λ’s, and convergence criteria determined by
lasso options.

For lasso() and sqrtlasso(), varlist consists of one or more variables from depvar, the
dependent variable, or varsofinterest, the variables of interest. To specify options for all lassos,
you may use * or all to specify depvar and all varsofinterest.

lasso options — Lasso options for inferential models 273

For models with endogeneity, namely, poivregress and xpoivregress models, lassos are
done for depvar, the exogenous variables, exovars, and the endogenous variables, endovars.
Any of these variables can be specified in the lasso() option. All of them can be specified
using * or all.

The lasso() and sqrtlasso() options are repeatable as long as different variables are given
in each specification of lasso() and sqrtlasso(). The type of lasso for any depvar or
varsofinterest (or exovars or endovars) not specified in any lasso() or sqrtlasso() option
is determined by the global lasso options described above.

For all lasso inferential commands, linear lassos are done for each of the varsofinterest (or
exovars and endovars). For linear models, linear lassos are also done for depvar. For logit
models, however, logit lassos are done for depvar. For Poisson models, Poisson lassos are
done for depvar. Square-root lassos are linear models, so sqrtlasso(depvar, . . .) cannot
be specified for the dependent variable in logit and Poisson models. For the same reason,
sqrtlasso(*, . . .) and sqrtlasso(all, . . .) cannot be specified for logit and Poisson
models. For logit and Poisson models, you must specify sqrtlasso(varsofinterest, . . .) to
set options for square-root lassos and specify lasso(depvar, . . .) to set options for the logit
or Poisson lasso for depvar.

Suboptions for lasso() and sqrtlasso()

selection(plugin
[
, heteroskedastic homoskedastic

]
) selects λ∗ based on a “plugin”

iterative formula dependent on the data. The plugin estimator calculates a value for λ∗ that
dominates the noise in the estimating equations, which ensures that the variables selected belong
to the true model with high probability. See Methods and formulas in [LASSO] lasso.

selection(plugin) does not estimate coefficients for any other values of λ, so it does not require
a λ grid, and none of the grid options apply. It is much faster than the other selection methods
because estimation is done only for a single value of λ. It is an iterative procedure, however, and
if the plugin is computing estimates for a small λ (which means many nonzero coefficients), the
estimation can still be time consuming.

heteroskedastic assumes model errors are heteroskedastic. It is the default. Specifying
selection(plugin) for linear lassos is equivalent to specifying selection(plugin, het-
eroskedastic). This suboption can be specified only for linear lassos. Hence, this suboption
cannot be specified for depvar for logit and Poisson models, where depvar is the depen-
dent variable. For these models, specify lasso(depvar, selection(plugin)) to have the
logit or Poisson plugin formula used for the lasso for depvar. See Methods and formulas in
[LASSO] lasso.

homoskedastic assumes model errors are homoskedastic. This suboption can be specified only
for linear lassos. Hence, this suboption cannot be specified for depvar for logit and Poisson
models, where depvar is the dependent variable.

selection(cv
[
, folds(#) alllambdas serule stopok strict gridminok

]
) selects λ∗ to be

the λ that gives the minimum of the CV function.

folds(#) specifies that CV with # folds be done. The default is folds(10).

alllambdas specifies that models be fit for all λ’s in the grid or until the stop(#) tolerance is
reached. By default, models are calculated sequentially from largest to smallest λ, and the CV
function is calculated after each model is fit. If a minimum of the CV function is found, the
computation ends at that point without evaluating additional smaller λ’s.

274 lasso options — Lasso options for inferential models

alllambdas computes models for these additional smaller λ’s. Because computation time
is greater for smaller λ, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the CV function is wanted
for assurance that a true minimum has been found. Regardless of whether alllambdas is
specified, the selected λ∗ will be the same.

serule selects λ∗ based on the “one-standard-error rule” recommended by Hastie, Tibshirani, and
Wainwright (2015, 13–14) instead of the λ that minimizes the CV function. The one-standard-
error rule selects the largest λ for which the CV function is within a standard error of the
minimum of the CV function.

stopok, strict, and gridminok specify what to do when the CV function does not have an
identified minimum. A minimum is identified at λ∗ when the CV function at both larger and
smaller adjacent λ is greater than it is at λ∗. When the CV function has an identified minimum,
stopok, strict, and gridminok all do the same thing: the selected λ∗ is the λ that gives
the minimum.

In some cases, however, the CV function declines monotonically as λ gets smaller and never
rises to identify a minimum. When the CV function does not have an identified minimum,
stopok and gridminok make alternative selections for λ∗, and strict makes no selection.
You may specify only one of stopok, strict, or gridminok; stopok is the default if you
do not specify one. With each of these suboptions, estimation results are always left in place,
and alternative λ∗ can be selected and evaluated.

stopok specifies that when the CV function does not have an identified minimum and the
stop(#) stopping tolerance for λ was reached, the selected λ∗ is λstop, the λ that met
the stopping criterion. λstop is the smallest λ for which coefficients are estimated, and it is
assumed that λstop has a CV function value close to the true minimum. When no minimum
is identified and the stop(#) criterion is not met, an error is issued.

strict requires the CV function to have an identified minimum. If it does not, an error is
issued.

gridminok is a rarely used suboption that specifies that when the CV function has no identified
minimum and the stop(#) stopping criterion was not met, λgmin, the minimum of the λ
grid, is the selected λ∗.

The gridminok selection criterion is looser than the default stopok, which is looser than
strict. With strict, only an identified minimum is selected. With stopok, either the
identified minimum or λstop is selected. With gridminok, either the identified minimum or
λstop or λgmin is selected, in this order.

selection(adaptive
[
, steps(#) unpenalized ridge power(#) cv options

]
) can be specified

only as a suboption for lasso(). It cannot be specified as a suboption for sqrtlasso(). It selects
λ∗ using the adaptive lasso selection method. It consists of multiple lassos with each lasso step
using CV. Variables with zero coefficients are discarded after each successive lasso, and variables
with nonzero coefficients are given penalty weights designed to drive small coefficient estimates
to zero in the next step. Hence, the final model typically has fewer nonzero coefficients than a
single lasso.

selection(bic
[
, bic opts

]
) selects λ∗ to be the λ that gives the minimum of the BIC function.

bic opts are alllambdas, stopok, strict, gridminok, and postselection.

alllambdas specifies that models be fit for all λ’s in the grid or until the stop(#) tolerance
is reached. By default, models are calculated sequentially from largest to smallest λ, and

lasso options — Lasso options for inferential models 275

the BIC function is calculated after each model is fit. If a minimum of the BIC function is
found, the computation ends at that point without evaluating additional smaller λ’s.

alllambdas computes models for these additional smaller λ’s. Because computation time
is greater for smaller λ, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the BIC function is wanted
for assurance that a true minimum has been found. Regardless of whether alllambdas is
specified, the selected λ∗ will be the same.

stopok, strict, and gridminok specify what to do when the BIC function does not have
an identified minimum. A minimum is identified at λ∗ when the BIC function at both
larger and smaller adjacent λ’s is greater than it is at λ∗. When the BIC function has an
identified minimum, these options all do the same thing: the selected λ∗ is the λ that gives
the minimum. In some cases, however, the BIC function declines monotonically as λ gets
smaller and never rises to identify a minimum. When the BIC function does not have an
identified minimum, stopok and gridminok make alternative selections for λ∗, and strict
makes no selection. You may specify only one of stopok, strict, or gridminok; stopok
is the default if you do not specify one. With each of these options, estimation results are
always left in place, and alternative λ∗ can be selected and evaluated.

stopok specifies that when the BIC function does not have an identified minimum and the
stop(#) stopping tolerance for λ was reached, the selected λ∗ is λstop, the λ that met
the stopping criterion. λstop is the smallest λ for which coefficients are estimated, and
it is assumed that λstop has a BIC function value close to the true minimum. When no
minimum is identified and the stop(#) criterion is not met, an error is issued.

strict requires the BIC function to have an identified minimum, and if not, an error is
issued.

gridminok is a rarely used option that specifies that when the BIC function has no identified
minimum and the stop(#) stopping criterion was not met, then λgmin, the minimum of
the λ grid, is the selected λ∗.

The gridminok selection criterion is looser than the default stopok, which is looser than
strict. With strict, only an identified minimum is selected. With stopok, either the
identified minimum or λstop is selected. With gridminok, either the identified minimum
or λstop or λgmin is selected, in this order.

postselection specifies to use the postselection coefficients to compute the BIC function.
By default, the penalized coefficients are used.

steps(#) specifies that adaptive lasso with # lassos be done. By default, # = 2. That is, two
lassos are run. After the first lasso estimation, terms with nonzero coefficients βi are given
penalty weights equal to 1/|βi|, terms with zero coefficients are omitted, and a second lasso is
estimated. Terms with small coefficients are given large weights, making it more likely that small
coefficients become zero in the second lasso. Setting # > 2 can produce more parsimonious
models. See Methods and formulas in [LASSO] lasso

unpenalized specifies that the adaptive lasso use the unpenalized estimator to construct the
initial weights in the first lasso. unpenalized is useful when CV cannot find a minimum.
unpenalized cannot be specified with ridge.

ridge specifies that the adaptive lasso use the ridge estimator to construct the initial weights in
the first lasso. ridge cannot be specified with unpenalized.

power(#) specifies that the adaptive lasso raise the weights to the # th power. The default power
is 1. The specified power must be in the interval [0.25, 2].

276 lasso options — Lasso options for inferential models

cv options are all the suboptions that can be specified for selection(cv), namely, folds(#), al-
llambdas, serule, stopok, strict, and gridminok. The suboptions alllambdas, strict,
and gridminok apply only to the first lasso estimated. For second and subsequent lassos,
gridminok is the default. When ridge is specified, gridminok is automatically used for the
first lasso.

grid(#g
[
, ratio(#) min(#)

]
) specifies the set of possible λ’s using a logarithmic grid with #g

grid points.

#g is the number of grid points for λ. The default is #g = 100. The grid is logarithmic with
the ith grid point (i = 1, . . . , n = #g) given by lnλi = [(i − 1)/(n − 1)] ln r + lnλgmax,
where λgmax = λ1 is the maximum, λgmin = λn = min(#) is the minimum, and r =
λgmin/λgmax = ratio(#) is the ratio of the minimum to the maximum.

ratio(#) specifies λgmin/λgmax. The maximum of the grid, λgmax, is set to the smallest λ
for which all the coefficients in the lasso are estimated to be zero (except the coefficients of
the alwaysvars). λgmin is then set based on ratio(#). When p < N , where p is the total
number of othervars and alwaysvars (not including the constant term) and N is the number of
observations, the default value of ratio(#) is 1e−4. When p ≥ N , the default is 1e−2.

min(#) sets λgmin. By default, λgmin is based on ratio(#) and λgmax, which is computed from
the data.

stop(#) specifies a tolerance that is the stopping criterion for the λ iterations. The default is 1e−5.
This suboption does not apply when the selection method is selection(plugin). Estimation
starts with the maximum grid value, λgmax, and iterates toward the minimum grid value, λgmin.
When the relative difference in the deviance produced by two adjacent λ grid values is less than
stop(#), the iteration stops and no smaller λ’s are evaluated. The value of λ that meets this
tolerance is denoted by λstop. Typically, this stopping criterion is met before the iteration reaches
λgmin.

Setting stop(#) to a larger value means that iterations are stopped earlier at a larger λstop. To
produce coefficient estimates for all values of the λ grid, stop(0) can be specified. Note, however,
that computations for small λ’s can be extremely time consuming. In terms of time, when using
selection(cv), selection(adaptive), or selection(bic), the optimal value of stop(#) is
the largest value that allows estimates for just enough λ’s to be computed to identify the minimum
of the CV or BIC function. When setting stop(#) to larger values, be aware of the consequences
of the default λ∗ selection procedure given by the default stopok. You may want to override the
stopok behavior by using strict.

cvtolerance(#) is a rarely used option that changes the tolerance for identifying the minimum CV
function. For linear models, a minimum is identified when the CV function rises above a nominal
minimum for at least three smaller λ’s with a relative difference in the CV function greater than
#. For nonlinear models, at least five smaller λ’s are required. The default is 1e−3. Setting # to
a bigger value makes a stricter criterion for identifying a minimum and brings more assurance
that a declared minimum is a true minimum, but it also means that models may need to be fit for
additional smaller λ, which can be time consuming. See Methods and formulas for [LASSO] lasso
for more information about this tolerance and the other tolerances.

bictolerance(#) is a rarely used option that changes the tolerance for identifying the minimum
BIC function. A minimum is identified when the BIC function rises above a nominal minimum for
at least two smaller λ’s with a relative difference in the BIC function greater than #. The default is
1e−2. Setting # to a bigger value makes a stricter criterion for identifying a minimum and brings
more assurance that a declared minimum is a true minimum, but it also means that models may
need to be fit for additional smaller λ, which can be time consuming. See Methods and formulas
in [LASSO] lasso for more information about this tolerance and the other tolerances.

lasso options — Lasso options for inferential models 277

tolerance(#) is a rarely used option that specifies the convergence tolerance for the coefficients.
Convergence is achieved when the relative change in each coefficient is less than this tolerance.
The default is tolerance(1e-7).

dtolerance(#) is a rarely used option that changes the convergence criterion for the coefficients.
When dtolerance(#) is specified, the convergence criterion is based on the change in deviance
instead of the change in the values of coefficient estimates. Convergence is declared when the
relative change in the deviance is less than #. More-accurate coefficient estimates are typically
achieved by not specifying this option and instead using the default tolerance(1e-7) criterion
or specifying a smaller value for tolerance(#).

Remarks and examples
All the options shown here may seem overwhelming. However, you will likely never need to use

many of them.

You would typically use the global options to change the selection method for each of the lassos
performed by one of the lasso inference commands. For example, you can specify selection(cv),
selection(adaptive), or selection(bic) to change the selection method globally from the
default selection(plugin).

Sometimes, CV fails to identify a minimum of the CV function and so fails to select λ∗; thus,
the inferential command fails. Lasso inference postestimation commands provide tools to see what
happened. Then it may be possible to set options so that an acceptable λ∗ is selected. Of course, in
many cases, the issue is not with the computation but rather with model specification or simply not
having enough data.

To understand the selection(cv), selection(adaptive), and selection(bic) selection
methods and how to set options to control them, you should first become familiar with lasso for
prediction and model selection.

Notice, however, that options for the lasso and sqrtlasso commands are specified slightly
differently than they are when used as suboptions for lasso inference commands. For instance, with
lasso, you might specify selection(cv, folds(20)). With dsregress or one of the other
inference commands, you would specify lasso(*, selection(cv, folds(20))) to specify that
CV with 20 folds be used to select λ∗ for each lasso.

Read [LASSO] lasso and [LASSO] lasso fitting to learn about the lasso options in greater detail.

Reference
Hastie, T. J., R. J. Tibshirani, and M. Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and

Generalizations. Boca Raton, FL: CRC Press.

Also see
[LASSO] Lasso intro — Introduction to lasso

[LASSO] Lasso inference intro — Introduction to inferential lasso models

[LASSO] lasso — Lasso for prediction and model selection

[LASSO] lasso fitting — The process (in a nutshell) of fitting lasso models

Title

lassoselect — Select lambda after lasso

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
lassoselect allows the user to select a different λ∗ after lasso and sqrtlasso when the selection

method was selection(cv), selection(adaptive), selection(bic), or selection(none).

After elasticnet, the user can select a different (α∗, λ∗) pair.

When the telasso, ds, po, and xpo commands fit models using selection(cv), selec-
tion(adaptive), or selection(bic) ([LASSO] lasso options), lassoselect can be used to select
a different λ∗ for a particular lasso.

Quick start
After lasso with selection(cv), change the selected λ∗ to that with ID = 52

lassoselect id = 52

Same as above, but change the selected λ∗ to the λ closest to 0.01
lassoselect lambda = 0.01

After elasticnet, change the selected (α∗, λ∗) to (0.5, 0.267345)

lassoselect alpha = 0.5 lambda = 0.267345

After dsregress with selection(adaptive), change the selected λ∗ to 1.65278 for the adaptive
lasso for the variable y

lassoselect lambda = 1.65278, for(y)

After poivregress with selection(bic), change the selected λ∗ to the λ closest to 0.7 for the
lasso for the prediction of the variable income

lassoselect lambda = 0.7, for(pred(income))

After xporegress with selection(cv) and resample, change the selected λ∗ to 0.234189 for the
lasso for the variable x26 for the 5th cross-fit fold in the 9th resample

lassoselect lambda = 0.234189, for(x26) xfold(5) resample(9)

After telasso with selection(cv), change the selected λ∗ to the λ closest to 0.7 for the lasso
for the outcome variable y at treatment level 1

lassoselect lambda = 0.7, for(y) tlevel(1)

Menu
Statistics > Postestimation

278

lassoselect — Select lambda after lasso 279

Syntax

After lasso, sqrtlasso, and elasticnet

lassoselect id = #

After lasso and sqrtlasso

lassoselect lambda = #

After elasticnet

lassoselect alpha = # lambda = #

After ds and po with selection(cv) or selection(adaptive)

lassoselect { id | lambda } = # , for(varspec)

After xpo without resample and with selection(cv) or selection(adaptive)

lassoselect { id | lambda } = # , for(varspec) xfold(#)

After xpo with resample and selection(cv) or selection(adaptive)

lassoselect { id | lambda } = # , for(varspec) xfold(#) resample(#)

After telasso for the outcome variable and with selection(cv) or selection(adaptive)

lassoselect { id | lambda } = #, for(varspec) tlevel(#)

After telasso for the treatment variable and with selection(cv) or selection(adaptive)

lassoselect { id | lambda } = #, for(varspec)

After telasso for the outcome variable with cross-fitting but without resample and with selec-
tion(cv) or selection(adaptive)

lassoselect { id | lambda } = #, for(varspec) tlevel(#) xfold(#)

After telasso for the treatment variable with cross-fitting but without resample

lassoselect { id | lambda } = #, for(varspec) xfold(#)

After telasso for the outcome variable with cross-fitting and resample and with selection(cv)
or selection(adaptive)

lassoselect { id | lambda } = #, for(varspec) tlevel(#) xfold(#) resample(#)

280 lassoselect — Select lambda after lasso

After telasso for the treatment variable with cross-fitting and resample and with selection(cv)
or selection(adaptive)

lassoselect { id | lambda } = #, for(varspec) xfold(#) resample(#)

varspec is varname, except after poivregress and xpoivregress, when it is either varname or
pred(varname).

options Description

∗for(varspec) lasso for varspec; telasso, ds, po, and xpo commands only
∗xfold(#) lasso for the #th cross-fit fold; xpo commands and telasso

with xfolds only
∗resample(#) lasso for the #th resample; xpo commands and telasso

with resample only
∗tlevel(#) lasso for the outcome model with the treatment level #;

telasso only

∗for(varspec) is required for all ds, po, and xpo commands and for telasso.
xfold(#) is required for all xpo commands and for telasso when the option xfolds(#) was specified.
resample(#) is required for xpo and for telasso when the option resample(#) was specified.
tlevel(#) is required for the outcome model in telasso.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
for(varspec) specifies a particular lasso after telasso or after a ds, po, or xpo estimation

command fit using the option selection(cv), selection(adaptive), or selection(bic).
For all commands except poivregress and xpoivregress, varspec is always varname.

For the ds, po, and xpo commands except poivregress and xpoivregress, varspec is either
depvar, the dependent variable, or one of varsofinterest for which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred(varname). The lasso
for depvar is specified with its varname. Each of the endogenous variables have two lassos,
specified by varname and pred(varname). The exogenous variables of interest each have only
one lasso, and it is specified by pred(varname).

For telasso, varspec is either the outcome variable or the treatment variable.

This option is required after telasso and after the ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command or after telasso when the
option xfolds(#) was specified. For each variable to be fit with a lasso, K lassos are done,
one for each cross-fit fold, where K is the number of folds. This option specifies which fold,
where # = 1, 2, . . . ,K. xfold(#) is required after an xpo command and after telasso when
the option xfolds(#) was specified.

resample(#) specifies a particular lasso after an xpo estimation command or after telasso fit using
the option resample(#). For each variable to be fit with a lasso, R×K lassos are done, where
R is the number of resamples and K is the number of cross-fitting folds. This option specifies
which resample, where # = 1, 2, . . . , R. resample(#), along with xfold(#), is required after
an xpo command and after telasso with resampling.

lassoselect — Select lambda after lasso 281

tlevel(#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

Remarks and examples

Example 1: lasso linear

Here is an example using lasso from [LASSO] lasso examples. We load the data and make the
vl variable lists active.

. use https://www.stata-press.com/data/r18/fakesurvey_vl
(Fictitious survey data with vl)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

We want to evaluate our lasso predictions on a sample that we did not use to fit the lasso. So we
randomly split our data into two samples of equal sizes. We will fit models on one, and we will use
the other to test their predictions. We use splitsample to generate a variable indicating the two
subsamples.

. set seed 1234

. splitsample, generate(sample) nsplit(2)

. label define svalues 1 "Training" 2 "Testing"

. label values sample svalues

We fit a lasso linear model on the first subsample.

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, rseed(1234)

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
Folds: 1...5....10 CVF = 16.93341

(output omitted)
Grid value 23: lambda = .1159557 no. of nonzero coef. = 74
Folds: 1...5....10 CVF = 12.17933
... cross-validation complete ... minimum found

Lasso linear model No. of obs = 458
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .8978025 4 0.0147 16.93341
18 lambda before .1846342 42 0.2953 12.10991

* 19 selected lambda .1682318 49 0.2968 12.08516
20 lambda after .1532866 55 0.2964 12.09189
23 last lambda .1159557 74 0.2913 12.17933

* lambda selected by cross-validation.

We store the results because we want to compare these results with other results later.

. estimates store lassocv

282 lassoselect — Select lambda after lasso

We run lassoknots with options to show the number of nonzero coefficients, estimates of
out-of-sample R2, and the Bayes information criterion (BIC).

. lassoknots, display(nonzero osr2 bic)

No. of Out-of-
nonzero sample

ID lambda coef. R-squared BIC

1 .8978025 4 0.0147 2618.642
2 .8180442 7 0.0236 2630.961
3 .7453714 8 0.0421 2626.254
4 .6791547 9 0.0635 2619.727
5 .6188205 10 0.0857 2611.577
6 .5638462 13 0.1110 2614.155
8 .468115 14 0.1581 2588.189
9 .4265289 16 0.1785 2584.638

10 .3886373 18 0.1980 2580.891
11 .3541118 22 0.2170 2588.984
12 .3226535 26 0.2340 2596.792
13 .2939899 27 0.2517 2586.521
14 .2678726 28 0.2669 2578.211
15 .2440755 32 0.2784 2589.632
16 .2223925 35 0.2865 2593.753
17 .2026358 37 0.2919 2592.923
18 .1846342 42 0.2953 2609.975

* 19 .1682318 49 0.2968 2639.437
20 .1532866 55 0.2964 2663.451
21 .139669 62 0.2952 2693.929
22 .1272612 66 0.2934 2707.174
23 .1159557 74 0.2913 2744.508

* lambda selected by cross-validation.

Research indicates that under certain conditions, selecting the λ that minimizes the BIC gives good
predictions. See BIC in [LASSO] lassoknots.

Here the λ with ID = 14 gives the minimum value of the BIC. Let’s select it.

. lassoselect id = 14
ID = 14 lambda = .2678726 selected

When lassoselect runs, it changes the current estimation results to correspond with the selected
lambda. It is almost the same as running another estimation command and wiping out the old estimation
results. We say “almost” because it is easy to change λ∗ back to what it was originally. We stored
our earlier results knowing lassoselect was going to do this.

Let’s store the new results from lassoselect.

. estimates store lassosel

lassoselect — Select lambda after lasso 283

We plot the CV function with the new selected λ∗ marked along with the λ selected by cross-
validation—the λ that gives the minimum of the CV function.

. cvplot

12

13

14

15

16

17

C
ro

ss
-v

al
id

at
io

n
fu

nc
tio

n

λCVλLS

.11
λ

λCV = .17 is the cross-validation minimum λ; # coefficients = 49.
λLS = .27 is the lassoselect specified λ; # coefficients = 28.

Cross-validation plot

The CV function is curving upward at the value of the new selected λ∗. Alternative λ∗’s in a
region where the CV function is still relatively flat are sometimes selected, but that is not the case
here.

The real test is to see how well it does for out-of-sample prediction compared with the original
λ∗. We run lassogof to do this.

. lassogof lassocv lassosel, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs

lassocv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

lassosel
Training 9.740229 0.4421 508
Testing 13.44496 0.3168 503

The model for λ∗ that minimized the BIC did considerably better on out-of-sample prediction than
the model for λ∗ that minimized the CV function. In-sample prediction was better for the λ∗ that
minimized the CV function. That is expected because that model contains more variables. But it
appears these extra variables were mostly fitting noise, and that hurt the model’s out-of-sample
predictive ability.

Example 2: dsregress

lassoselect can be used after the ds, po, and xpo commands when they are fit using selec-
tion(cv) or selection(adaptive). See [LASSO] lasso options.

284 lassoselect — Select lambda after lasso

We load the data used in [LASSO] lasso examples. See that entry for details about the data.

. use https://www.stata-press.com/data/r18/fakesurvey_vl, clear
(Fictitious survey data with vl)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

We are going to fit a dsregress model with q104 as our dependent variable and variables of
interest q41 and q22. These variables of interest are currently in the variable lists factors and
vlcontinuous, which we will use to specify the control variables. So we need to move them out
of these variable lists.

. vl modify factors = factors - (q41)
note: 1 variable removed from $factors.

. vl move (q22) vlother
note: 1 variable specified and 1 variable moved.

(output omitted)
. vl rebuild
Rebuilding vl macros ...

(output omitted)

After we moved the variables out of the variable lists, we typed vl rebuild to update the variable
list ifactors created from factors. See [D] vl for details.

Before we fit our dsregress model using cross-validation, let’s fit it using the default selec-
tion(plugin).

. dsregress q104 i.q41 q22, controls(($idemographics) $ifactors $vlcontinuous)

Estimating lasso for q104 using plugin
Estimating lasso for 1bn.q41 using plugin
Estimating lasso for q22 using plugin

Double-selection linear model Number of obs = 914
Number of controls = 274
Number of selected controls = 33
Wald chi2(2) = 18.72
Prob > chi2 = 0.0001

Robust
q104 Coefficient std. err. z P>|z| [95% conf. interval]

q41
Yes .8410538 .2691082 3.13 0.002 .3136114 1.368496
q22 -.0878443 .0310435 -2.83 0.005 -.1486884 -.0270001

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

lassoselect — Select lambda after lasso 285

We run lassoinfo to see how many nonzero coefficients were in each lasso fit by dsregress.
It is a good idea to always run lassoinfo after any ds, po, or xpo command.

. lassoinfo

Estimate: active
Command: dsregress

No. of
Selection selected

Variable Model method lambda variables

q104 linear plugin .1467287 18
1bn.q41 linear plugin .1467287 16

q22 linear plugin .1467287 15

We now run dsregress with selection(cv),

. dsregress q104 i.q41 q22,
> controls(($idemographics) $ifactors $vlcontinuous)
> selection(cv) rseed(1234)

Estimating lasso for q104 using cv
Estimating lasso for 1bn.q41 using cv
Estimating lasso for q22 using cv

Double-selection linear model Number of obs = 914
Number of controls = 274
Number of selected controls = 123
Wald chi2(2) = 10.96
Prob > chi2 = 0.0042

Robust
q104 Coefficient std. err. z P>|z| [95% conf. interval]

q41
Yes .6003918 .2848483 2.11 0.035 .0420994 1.158684
q22 -.0681067 .0306219 -2.22 0.026 -.1281246 -.0080888

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

and then run lassoinfo.

. lassoinfo

Estimate: active
Command: dsregress

No. of
Selection Selection selected

Variable Model method criterion lambda variables

q104 linear cv CV min. .1116376 63
1bn.q41 linear cv CV min. .0135958 68

q22 linear cv CV min. .1624043 49

The selection(cv) lassos selected considerably more variables than the selection(plugin)
lassos. The CV lassos selected 63, 68, and 49 variables for the lassos, whereas the plugin lassos
selected 18, 16, and 15 variables.

286 lassoselect — Select lambda after lasso

We are going to use lassoselect to change the selected λ∗ for CV lassos to match the number
of selected variables in the plugin lassos.

. lassoknots, display(nonzero cvmpe osr2) for(q104)

No. of CV mean Out-of-
nonzero pred. sample

ID lambda coef. error R-squared

1 .864369 4 17.9727 0.0187
2 .7875809 6 17.88282 0.0236
3 .7176144 7 17.64713 0.0365
4 .6538635 8 17.32777 0.0539
5 .595776 12 16.87904 0.0784
6 .5428489 14 16.3203 0.1089
7 .4946237 15 15.74852 0.1401
8 .4506827 18 15.2143 0.1693

(output omitted)
22 .1225221 52 12.02453 0.3435

* 23 .1116376 59 12.02148 0.3436
24 .10172 62 12.02571 0.3434
25 .0926835 71 12.03785 0.3427
26 .0844497 76 12.0626 0.3414
27 .0769474 80 12.09713 0.3395
27 .0769474 80 12.09713 0.3395

* lambda selected by cross-validation.

. lassoknots, display(nonzero cvmpe osr2) for(1bn.q41)

No. of CV mean Out-of-
nonzero pred. sample

ID lambda coef. error R-squared

1 .1155307 4 .2509624 -0.0044
2 .1052673 5 .248763 0.0044
3 .0959156 8 .2442525 0.0224
4 .0873947 9 .2388787 0.0439
5 .0796308 11 .2328436 0.0681
6 .0725566 12 .2262371 0.0945

10 .0500105 15 .2076117 0.1691
12 .0415196 16 .2020617 0.1913

(output omitted)
23 .0149214 61 .1898068 0.2403

* 24 .0135958 64 .1895992 0.2412
25 .012388 68 .1896789 0.2408
26 .0112875 76 .1900733 0.2393
27 .0102847 87 .190537 0.2374
28 .0093711 94 .190995 0.2356

* lambda selected by cross-validation.

lassoselect — Select lambda after lasso 287

. lassoknots, display(nonzero cvmpe osr2) for(q22)

No. of CV mean Out-of-
nonzero pred. sample

ID lambda coef. error R-squared

1 1.380036 4 22.19516 0.0403
2 1.257437 6 21.66035 0.0634
3 1.14573 7 21.01623 0.0913
5 .9512051 8 19.70951 0.1478
9 .6556288 9 18.04511 0.2197

10 .5973845 10 17.74092 0.2329
11 .5443145 11 17.41052 0.2472
12 .4959591 13 17.09005 0.2610
13 .4518995 15 16.78501 0.2742

(output omitted)
23 .1782385 39 14.93049 0.3544

* 24 .1624043 45 14.92344 0.3547
25 .1479767 55 14.93826 0.3541
26 .1348309 67 14.94057 0.3540
27 .1228529 70 14.93962 0.3540
28 .111939 75 14.95101 0.3535

* lambda selected by cross-validation.

When we look at the lassoinfo output for the plugin lassos, we see that the value of λ∗ for
each lasso was the same, namely, 0.1467287. This value does not match up with the same numbers
of nonzero coefficients for the CV lassos in these knot tables.

The plugin estimator for λ∗ uses estimated coefficient-level weights in its lassos. In theoretical
terms, these coefficient-level weights put λ∗ on the correct scale for covariate selection by normalizing
the scores of the unpenalized estimator. In practical terms, these weights cause the effective scale of
λ for selection(plugin) and selection(cv) to differ.

We select the λ∗’s for each CV lasso to match the number of nonzero coefficients of the plugin
lassos.

. lassoselect id = 6, for(q104)
ID = 6 lambda = .5428489 selected

. lassoselect id = 6, for(1bn.q41)
ID = 6 lambda = .0725566 selected

. lassoselect id = 11, for(q22)
ID = 11 lambda = .5443145 selected

288 lassoselect — Select lambda after lasso

To update our dsregress model with these new λ∗’s, we rerun the command with the reestimate
option. Then, we run lassoinfo to confirm that the lassos produced the same number of nonzero
coefficients.

. dsregress, reestimate

Double-selection linear model Number of obs = 914
Number of controls = 274
Number of selected controls = 33
Wald chi2(2) = 18.72
Prob > chi2 = 0.0001

Robust
q104 Coefficient std. err. z P>|z| [95% conf. interval]

q41
Yes .8410538 .2691082 3.13 0.002 .3136114 1.368496
q22 -.0878443 .0310435 -2.83 0.005 -.1486884 -.0270001

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. lassoinfo

Estimate: active
Command: dsregress

No. of
Selection Selection selected

Variable Model method criterion lambda variables

q104 linear user user .5428489 18
1bn.q41 linear user user .0725566 16

q22 linear user user .5443145 15

These new dsregress results are exactly the same as the dsregress results produced with plugin
lassos.

lassoselect — Select lambda after lasso 289

We can plot the CV function and see where the new λ∗ falls. We do so for the lasso for the
dependent variable q104.

. cvplot, for(q104)

12

14

16

18

C
ro

ss
-v

al
id

at
io

n
fu

nc
tio

n

λCVλLS

.01 .11
λ

λCV = .11 is the cross-validation minimum λ; # coefficients = 59.
λLS = .54 is the lassoselect specified λ; # coefficients = 14.

Cross-validation plot for q104

It may be that the plugin lassos underselected controls for this problem. Or it may be that the
plugin lassos actually did fine and the CV lassos overselected controls. We might want to continue
these sensitivity analyses and pick some λ∗’s intermediate between the plugin values and the CV
values. Plugin selection and CV selection are not just two different numerical techniques, they are
two different modeling techniques, each with a different set of assumptions. See [LASSO] Inference
requirements.

Stored results
lassoselect stores the following in r():

Macros
r(varlist) selected variables

Also see
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[CAUSAL] telasso postestimation — Postestimation tools for telasso

Title

poivregress — Partialing-out lasso instrumental-variables regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

poviregress fits a lasso instrumental-variables linear regression model and reports coefficients
along with standard errors, test statistics, and confidence intervals for specified covariates of interest.
The covariates of interest may be endogenous or exogenous. The partialing-out method is used to
estimate effects for these variables and to select from potential control variables and instruments to
be included in the model.

Quick start
Estimate a coefficient for endogenous d1 in a linear regression of y on d1, and include x1 to x100

as potential control variables and z1 to z100 as potential instruments to be selected by lassos
poivregress y (d1 = z1-z100), controls(x1-x100)

Same as above, and estimate the coefficient for the exogenous d2

poivregress y d2 (d1 = z1-z100), controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal λ∗ in each lasso
poivregress y d2 (d1 = z1-z100), controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility
poivregress y d2 (d1 = z1-z100), controls(x1-x100) selection(cv) ///

rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off
poivregress y d2 (d1 = z1-z100), controls(x1-x100) ///

lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d2, and d1

poivregress y d2 (d1 = z1-z100), controls(x1-x100) ///
lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.
poivregress y d2 (d1 = z1-z100), controls(x1-x100) ///

lasso(*, selection(cv, alllambdas))

Menu
Statistics > Lasso > Lasso inferential models > Continuous outcomes > Partialing-out IV model

290

poivregress — Partialing-out lasso instrumental-variables regression 291

Syntax
poivregress depvar

[
exovars

]
(endovars = instrumvars)

[
if
] [

in
]
,

controls(
[
(alwaysvars)

]
othervars)

[
options

]
Coefficients and standard errors are estimated for the exogenous variables, exovars, and the endogenous
variables, endovars. The set of instrumental variables, instrumvars, may be high dimensional.

options Description

Model
∗controls(

[
(alwaysvars)

]
othervars) alwaysvars and othervars are control variables for depvar,

exovars, and endovars; instrumvars are an additional set
of control variables that apply only to the endovars;
alwaysvars are always included; lassos choose
whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter λ∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

sqrtlasso use square-root lassos
missingok after fitting lassos, ignore missing values in any instrumvars

or othervars not selected, and include these observations
in the final model

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization[
no
]
log display or suppress an iteration log

verbose display a verbose iteration log
rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

reestimate refit the model after using lassoselect to select a different
λ∗

noheader do not display the header on the coefficient table
coeflegend display legend instead of statistics

292 poivregress — Partialing-out lasso instrumental-variables regression

∗controls() is required.
exovars, endovars, instrumvars, alwaysvars, and othervars may contain factor variables. Base levels of factor variables

cannot be set for instrumvars, alwaysvars, and othervars. See [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
reestimate, noheader, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls(
[
(alwaysvars)

]
othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. alwaysvars are variables that
are always to be included in lassos. alwaysvars are optional. othervars are variables that lassos
will choose to include or exclude. The instrumental variables, instrumvars, are an additional set
of control variables, but they apply only to the endovars. controls() is required.

poivregress fits lassos for depvar and each one of the exovars and endovars. The control
variables for the lassos for depvar and exovars are alwaysvars (always included) and othervars
(lasso will include or exclude). The control variables for lassos for endovars are exovars (always
included), alwaysvars (always included), instrumvars (lasso will include or exclude), and othervars
(lasso will include or exclude).

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal
value of the lasso penalty parameter λ∗ for each lasso or square-root lasso estimation. Separate
lassos are estimated for depvar and each variable in varsofinterest. Specifying selection()
changes the selection method for all of these lassos. You can specify different selection methods
for different lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso()
is used to specify a different selection method for the lassos of some variables, they override the
global setting made using selection() for the specified variables.

selection(plugin) is the default. It selects λ∗ based on a “plugin” iterative formula dependent
on the data. See [LASSO] lasso options.

selection(cv) selects the λ∗ that gives the minimum of the CV function. See [LASSO] lasso
options.

selection(adaptive) selects λ∗ using the adaptive lasso selection method. It cannot be specified
when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the λ∗ that gives the minimum of the BIC function. See [LASSO] lasso
options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos. The option lasso()
can be used with sqrtlasso to specify that regular lasso be done for some variables, overriding
the global sqrtlasso setting for these variables. See [LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the
nonmissing observations of variables in the final model. In all cases, any observation with missing
values for depvar, exovars, endovars, instrumvars, alwaysvars, and othervars is omitted from
the estimation sample for the lassos. By default, the same sample is used for calculation of the
coefficients of the exovars and endovars and their standard errors.

poivregress — Partialing-out lasso instrumental-variables regression 293

When missingok is specified, the initial estimation sample is the same as the default, but the
sample used for the calculation of the coefficients of the exovars and endovars can be larger. Now
observations with missing values for any instrumvars and othervars not selected will be added to
the estimation sample (provided there are no missing values for any of the variables in the final
model).

missingok may produce more efficient estimates when data are missing completely at random. It
does, however, have the consequence that estimation samples can change when selected variables
differ in models fit using different selection methods. That is, when instrumvars and othervars
contain missing values, the estimation sample for a model fit using the default selection(plugin)
will likely differ from the estimation sample for a model fit using, for example, selection(cv).

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust
to some kinds of misspecification (robust) and that allow for intragroup correlation (cluster
clustvar); see [R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso,
this affects how the log-likelihood function is computed and how the sample is split in cross-
validation; see Methods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar) may
lead to different selected controls and therefore to different point estimates for your variable of
interest when compared to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation. By default, one-line

messages indicating when each lasso estimation begins are shown. Specify verbose to see a more
detailed log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful
when doing selection(cv) or selection(adaptive). It allows you to monitor the progress
of the lasso estimations for these selection methods, which can be time consuming when there are
many othervars specified in controls() or many instrumvars.

rseed(#) sets the random-number seed. This option can be used to reproduce results for se-
lection(cv) and selection(adaptive). The default selection method selection(plugin)
does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running
poivregress. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options
for all lassos. You specify a varlist followed by the options you want to apply to the lassos
for these variables, where varlist consists of one or more variables from depvar, exovars, or
endovars. all or * may be used to specify depvar and all exovars and endovars. This op-
tion is repeatable as long as different variables are given in each specification. lasso options

294 poivregress — Partialing-out lasso instrumental-variables regression

are selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and cvtoler-
ance(#). When lasso(varlist, selection(. . .)) is specified, it overrides any global selec-
tion() option for the variables in varlist. It also overrides the global sqrtlasso option for these
variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables
from depvar, exovars, or endovars. This option is repeatable as long as different variables are given
in each specification. lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#),
dtolerance(#), and cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is spec-
ified, it overrides any global selection() option for the variables in varlist. See [LASSO] lasso
options.

The following options are available with poivregress but are not shown in the dialog box:

reestimate is an advanced option that refits the poivregress model based on changes made
to the underlying lassos using lassoselect. After running poivregress, you can select a
different λ∗ for one or more of the lassos estimated by poivregress. After selecting λ∗, you
type poivregress, reestimate to refit the poivregress model based on the newly selected
λ’s.

reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples

poivregress performs partialing-out lasso instrumental-variables linear regression. This command
estimates coefficients, standard errors, and confidence intervals and performs tests for variables of
interest, both exogenous and endogenous, while using lassos to select from among potential control
variables and instruments.

The instrumental-variables linear regression model is

y = dα′d + fα′f + xβ′ + ε

where d are the endogenous variables, f are the exogenous variables for which we wish to make
inferences, and x are the potential control variables from which the lassos select. In addition, lassos
select from potential instrumental variables, z. poivregress reports estimated coefficients for αd
and αf . However, partialing-out does not provide estimates of the coefficients on the control variables
or their standard errors. No estimation results can be reported for β.

For an introduction to the partialing-out lasso method for inference, as well as the double-selection
and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use poivregress and the other lasso inference commands are
presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an
introduction to the examples and to the vl command, which provides tools for working with the large
lists of variables that are often included when using lasso methods. See 2 Fitting and interpreting
inferential models for comparisons of the different methods of fitting inferential models that are
available in Stata. See 6 Fitting an inferential model with endogenous covariates for examples and
discussion specific to models that account for endogenous covariates.

poivregress — Partialing-out lasso instrumental-variables regression 295

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring
inferential model lassos in [LASSO] Inference examples.

Stored results
poivregress stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(k varsofinterest) number of variables of interest
e(k controls) number of potential control variables
e(k controls sel) number of selected control variables
e(k inst) number of potential instruments
e(k inst sel) number of selected instruments
e(df) degrees of freedom for test of variables of interest
e(chi2) χ2

e(p) p-value for test of variables of interest
e(rank) rank of e(V)

Macros
e(cmd) poivregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(lasso depvars) names of dependent variables for all lassos
e(varsofinterest) variables of interest
e(controls) potential control variables
e(controls sel) selected control variables
e(exog) exogenous variables
e(endog) endogenous variables
e(inst) potential instruments
e(inst sel) selected instruments
e(model) linear
e(title) title in estimation output
e(clustvar) name of cluster variable
e(chi2type) Wald; type of χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(rngstate) random-number state used
e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

296 poivregress — Partialing-out lasso instrumental-variables regression

Methods and formulas
poivregress implements partialing-out lasso instrumental-variables regression described in Cher-

nozhukov, Hansen, and Spindler (2015). The model is

y = dα′d + fα′f + xβ′ + ε

where d contains the Jd endogenous covariates of interest, f contains the Jf exogenous covariates
of interest, and x contains the px controls. We also have pz outside instrumental variables, denoted
by z, that are correlated with d but not with ε. The number of controls in x and the number of
instruments in z can be large and, in theory, can grow with the sample size; however, the number of
nonzero elements in β and nonzero coefficients of z must not be too large, which is to say that the
model must be sparse. See Stata commands for inference in [LASSO] Lasso intro for a discussion on
what it means for the model to be sparse.

In the following algorithm, each lasso can choose the lasso penalty parameter (λ∗) using the
plugin estimator, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is
the default.

Partialing-out lasso instrumental-variables regression algorithm

1. Perform a linear lasso of y on x, and denote the selected controls by x̃y .

Fit a linear regression of y on x̃y , and denote the residual for the ith observation from this
regression by ρ̃i.

2. For j = 1, . . . , Jd, perform a linear lasso of dj on f , x, and z, denote the selected controls by
x̃d,j , and denote the selected instruments by z̃j .

Fit a linear regression of dj on f , x̃d,j , and z̃j , and denote the linear prediction from this
regression by d̂j .

Perform a linear lasso of d̂j on the controls x, and denote the selected controls by x̌d,j .

Fit a linear regression of d̂j on x̌d,j , let β̌j be the estimated coefficients, and denote the
residuals from this regression by ďj , with its ith observation denoted by ďj,i.

Also compute the “residuals” for the levels

d̃j = dj − x̌jβ̌j

and denote its ith observation by d̃j,i.

3. For j = 1, . . . , Jf , perform a linear lasso of fj on the controls x, and denote the selected
controls by x̃f,j .

Fit a linear regression of fj on x̃f,j , and denote the residual for the ith observation by f̃j,i.

4. Form the vector of instruments

wi =
(
ď1,i, . . . , ďJd,i, f̃1,i, . . . , f̃Jf ,i

)
5. Form the vector of partialed-out covariates

pi =
(
d̃1,i, . . . , d̃Jd,i, f̃1,i, . . . , f̃Jf ,i

)

poivregress — Partialing-out lasso instrumental-variables regression 297

6. Compute α̂ by solving the following Jd + Jf sample-moment equations.

1

n

n∑
i=1

w′i(ρ̃i − piα̂
′) = 0

7. The variance for α̂ is estimated by

V̂ar(α̂) =
1

n

(
Ĵ−1

0

)
Ψ̂
(
Ĵ−1

0

)′
where

Ĵ0 =
1

n

n∑
i=1

w′ipi

Ψ̂ =
1

n

n∑
i=1

ψ̂iψ̂
′
i

ψ̂i = w′i(ρ̃i − piα̂
′)

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1, 2, and 3
choose their penalty parameters (λ∗).

Reference
Chernozhukov, V., C. B. Hansen, and M. Spindler. 2015. Valid post-selection and post-regularization inference: An

elementary, general approach. Annual Review of Economics 7: 649–688. https://doi.org/10.1146/annurev-economics-
012315-015826.

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression

[R] ivregress — Single-equation instrumental-variables regression

[U] 20 Estimation and postestimation commands

https://doi.org/10.1146/annurev-economics-012315-015826
https://doi.org/10.1146/annurev-economics-012315-015826

Title

pologit — Partialing-out lasso logistic regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

pologit fits a lasso logistic regression model and reports odds ratios along with standard errors,
test statistics, and confidence intervals for specified covariates of interest. The partialing-out method
is used to estimate effects for these variables and to select from potential control variables to be
included in the model.

Quick start
Report an odds ratio from a logistic regression of y on d1, and include x1 to x100 as potential

control variables to be selected by lassos
pologit y d1, controls(x1-x100)

Same as above, and estimate odds ratios for the levels of categorical d2
pologit y d1 i.d2, controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal λ∗ in each lasso
pologit y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility
pologit y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off
pologit y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2

pologit y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.
pologit y d1 i.d2, controls(x1-x100) lasso(*, selection(cv, alllambdas))

Menu
Statistics > Lasso > Lasso inferential models > Binary outcomes > Partialing-out logit model

298

pologit — Partialing-out lasso logistic regression 299

Syntax
pologit depvar varsofinterest

[
if
] [

in
]
,

controls(
[
(alwaysvars)

]
othervars)

[
options

]
varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗controls(

[
(alwaysvars)

]
othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter λ∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

sqrtlasso use square-root lassos for varsofinterest
missingok after fitting lassos, ignore missing values in any othervars

not selected, and include these observations in the final
model

offset(varname) include varname in the lasso and model for depvar with
its coefficient constrained to be 1

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

or report odds ratios; the default
coef report estimated coefficients
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization[
no
]
log display or suppress an iteration log

verbose display a verbose iteration log
rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

300 pologit — Partialing-out lasso logistic regression

reestimate refit the model after using lassoselect to select a different
λ∗

noheader do not display the header on the coefficient table
coeflegend display legend instead of statistics
∗controls() is required.
varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for

alwaysvars and othervars. See [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
reestimate, noheader, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls(
[
(alwaysvars)

]
othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. pologit fits lassos for
depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in
these lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include
or exclude. That is, each lasso will select a subset of othervars. The selected subset of othervars
may differ across lassos. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal
value of the lasso penalty parameter λ∗ for each lasso or square-root lasso estimation. Separate
lassos are estimated for depvar and each variable in varsofinterest. Specifying selection()
changes the selection method for all of these lassos. You can specify different selection methods
for different lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso()
is used to specify a different selection method for the lassos of some variables, they override the
global setting made using selection() for the specified variables.

selection(plugin) is the default. It selects λ∗ based on a “plugin” iterative formula dependent
on the data. See [LASSO] lasso options.

selection(cv) selects the λ∗ that gives the minimum of the CV function. See [LASSO] lasso
options.

selection(adaptive) selects λ∗ using the adaptive lasso selection method. It cannot be specified
when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the λ∗ that gives the minimum of the BIC function. See [LASSO] lasso
options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos for the varsofinterest.
This option does not apply to depvar. Square-root lassos are linear models, and the lasso for depvar
is always a logit lasso. The option lasso() can be used with sqrtlasso to specify that regular
lasso be done for some variables, overriding the global sqrtlasso setting for these variables. See
[LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only
the nonmissing observations of variables in the final model. In all cases, any observation with
missing values for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation
sample for the lassos. By default, the same sample is used for calculation of the coefficients of
the varsofinterest and their standard errors.

pologit — Partialing-out lasso logistic regression 301

When missingok is specified, the initial estimation sample is the same as the default, but the sample
used for the calculation of the coefficients of the varsofinterest can be larger. Now observations
with missing values for any othervars not selected will be added to the estimation sample (provided
there are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It
does, however, have the consequence that estimation samples can change when selected variables
differ in models fit using different selection methods. That is, when othervars contain missing
values, the estimation sample for a model fit using the default selection(plugin) will likely
differ from the estimation sample for a model fit using, for example, selection(cv).

offset(varname) specifies that varname be included in the lasso and model for depvar with its
coefficient constrained to be 1.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust
to some kinds of misspecification (robust) and that allow for intragroup correlation (cluster
clustvar); see [R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso,
this affects how the log-likelihood function is computed and how the sample is split in cross-
validation; see Methods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar) may
lead to different selected controls and therefore to different point estimates for your variable of
interest when compared to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, eα. Standard errors and
confidence intervals are similarly transformed. or is the default.

coef reports the estimated coefficients α rather than the odds ratios (eα). This option affects how
results are displayed, not how they are estimated. coef may be specified at estimation or when
replaying previously estimated results.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation. By default, one-line

messages indicating when each lasso estimation begins are shown. Specify verbose to see a more
detailed log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful
when doing selection(cv) or selection(adaptive). It allows you to monitor the progress
of the lasso estimations for these selection methods, which can be time consuming when there are
many othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results for selec-
tion(cv) and selection(adaptive). The default selection method selection(plugin) does
not use random numbers. rseed(#) is equivalent to typing set seed # prior to running pologit.
See [R] set seed.

302 pologit — Partialing-out lasso logistic regression

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options
for all lassos. You specify a varlist followed by the options you want to apply to the lassos for these
variables. varlist consists of one or more variables from depvar or varsofinterest. all or * may be
used to specify depvar and all varsofinterest. This option is repeatable as long as different variables
are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#), toler-
ance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .)) is
specified, it overrides any global selection() option for the variables in varlist. It also overrides
the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables
from varsofinterest. Square-root lassos are linear models, and this option cannot be used with
depvar. This option is repeatable as long as different variables are given in each specification.
lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and
cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is specified, it overrides any
global selection() option for the variables in varlist. See [LASSO] lasso options.

The following options are available with pologit but are not shown in the dialog box:

reestimate is an advanced option that refits the pologit model based on changes made to the
underlying lassos using lassoselect. After running pologit, you can select a different λ∗

for one or more of the lassos estimated by pologit. After selecting λ∗, you type pologit,
reestimate to refit the pologit model based on the newly selected λ’s.

reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
pologit performs partialing-out lasso logistic regression. This command estimates odds ratios,

standard errors, and confidence intervals and performs tests for variables of interest while using lassos
to select from among potential control variables.

The logistic regression model is

Pr(y = 1|d,x) =
exp(dα′ + xβ′)

1 + exp(dα′ + xβ′)

where d are the variables for which we wish to make inferences and x are the potential control variables
from which the lassos select. pologit estimates the α coefficients and reports the corresponding
odds ratios, eα. However, partialing-out does not provide estimates of the coefficients on the control
variables (β) or their standard errors. No estimation results can be reported for β.

For an introduction to the partialing-out lasso method for inference, as well as the double-selection
and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use pologit and the other lasso inference commands are
presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an
introduction to the examples and to the vl command, which provides tools for working with the large
lists of variables that are often included when using lasso methods. See 2 Fitting and interpreting
inferential models for comparisons of the different methods of fitting inferential models that are

pologit — Partialing-out lasso logistic regression 303

available in Stata. Everything we say there about methods of selection is applicable to both linear and
nonlinear models. See 3 Fitting logit inferential models to binary outcomes. What is different? for
examples and discussion specific to logistic regression models. The primary difference from linear
models involves interpreting the results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring
inferential model lassos in [LASSO] Inference examples.

Stored results
pologit stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(k varsofinterest) number of variables of interest
e(k controls) number of potential control variables
e(k controls sel) number of selected control variables
e(df) degrees of freedom for test of variables of interest
e(chi2) χ2

e(p) p-value for test of variables of interest
e(rank) rank of e(V)

Macros
e(cmd) pologit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(lasso depvars) names of dependent variables for all lassos
e(varsofinterest) variables of interest
e(controls) potential control variables
e(controls sel) selected control variables
e(model) logit
e(title) title in estimation output
e(offset) linear offset variable
e(clustvar) name of cluster variable
e(chi2type) Wald; type of χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(rngstate) random-number state used
e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

304 pologit — Partialing-out lasso logistic regression

Methods and formulas
pologit implements partialing-out lasso logit regression (POLLR) as described in Belloni, Cher-

nozhukov, and Wei (2016, table 1 and sec. 2.1). The regression model is

E[y|d, x] = G(dα′ + β0 + xβ′)

where G(a) = exp(a)/{1 + exp(a)}, d contains the J covariates of interest, and x contains the p
controls. The number of covariates in d must be small and fixed. The number of controls in x can
be large and, in theory, can grow with the sample size; however, the number of nonzero elements in
β must not be too large, which is to say that the model must be sparse.

POLLR algorithm
1. Perform a logit lasso of y on d and x, and denote the selected controls by x̃.

This logit lasso can choose the lasso penalty parameter (λ∗) using the plugin estimator, adaptive
lasso, or CV. The plugin value is the default.

2. Fit a logit regression of y on d and x̃, denoting the estimated coefficient vectors by α̃ and β̃,
respectively.

3. Let s̃i = x̃iβ̃
′

be the ith observation of the predicted value of xβ′ and wi = G′(diα̃
′ + s̃i)

be the ith observation of the predicted value of the derivative of G(·).

4. For j = 1, . . . , J , perform a linear lasso of dj on x using observation-level weights wi, and
denote the selected controls by x̌j .

Each of these lassos can choose the lasso penalty parameter (λ∗j) using one of the plugin
estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the
linear lasso is the default.

5. For j = 1, . . . , J , fit a linear regression of dj on the selected controls x̌j using observation-level
weights wi, denote the unweighted residuals by d̃j , with d̃j,i its ith observation, and create the
instrument zj with ith observation given by zj,i = d̃j,i.

Collect the J instruments for the ith observation into the vector zi = (z1,i, . . . , zJ,i).

6. Compute α̂ by solving the following J sample-moment equations

1

n

n∑
i=1

{yi −G(diα
′ + s̃i)} z′i = 0

7. Store the point estimates α̂ in e(b) and their variance estimates (VCE) in e(V).

The VCE is estimated by the robust estimator for method of moments.

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 4 choose
their penalty parameter (λ∗).

Reference
Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many

controls. Journal of Business and Economic Statistics 34: 606–619. https://doi.org/10.1080/07350015.2016.1166116.

https://doi.org/10.1080/07350015.2016.1166116

pologit — Partialing-out lasso logistic regression 305

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] dslogit — Double-selection lasso logistic regression

[LASSO] xpologit — Cross-fit partialing-out lasso logistic regression

[R] logit — Logistic regression, reporting coefficients

[R] logistic — Logistic regression, reporting odds ratios

[U] 20 Estimation and postestimation commands

Title

popoisson — Partialing-out lasso Poisson regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

popoisson fits a lasso Poisson regression model and reports incidence-rate ratios along with standard
errors, test statistics, and confidence intervals for specified covariates of interest. The partialing-out
method is used to estimate effects for these variables and to select from potential control variables
to be included in the model.

Quick start
Report an incidence-rate ratio from a Poisson regression of y on d1, and include x1 to x100 as

potential control variables to be selected by lassos
popoisson y d1, controls(x1-x100)

Same as above, and estimate incidence-rate ratios for the levels of categorical d2
popoisson y d1 i.d2, controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal λ∗ in each lasso
popoisson y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility
popoisson y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off
popoisson y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2

popoisson y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.
popoisson y d1 i.d2, controls(x1-x100) ///

lasso(*, selection(cv, alllambdas))

Menu
Statistics > Lasso > Lasso inferential models > Count outcomes > Partialing-out Poisson model

306

popoisson — Partialing-out lasso Poisson regression 307

Syntax
popoisson depvar varsofinterest

[
if
] [

in
]
,

controls(
[
(alwaysvars)

]
othervars)

[
options

]
varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗controls(

[
(alwaysvars)

]
othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter λ∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

sqrtlasso use square-root lassos for varsofinterest
missingok after fitting lassos, ignore missing values in any othervars

not selected, and include these observations in the final
model

offset(varnameo) include varnameo in the lasso and model for depvar with
its coefficient constrained to be 1

exposure(varnamee) include ln(varnamee) in the lasso and model for depvar
with its coefficient constrained to be 1

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios; the default
coef report estimated coefficients
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization[
no
]
log display or suppress an iteration log

verbose display a verbose iteration log
rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

308 popoisson — Partialing-out lasso Poisson regression

reestimate refit the model after using lassoselect to select a different
λ∗

noheader do not display the header on the coefficient table
coeflegend display legend instead of statistics
∗controls() is required.
varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for

alwaysvars and othervars. See [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
reestimate, noheader, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls(
[
(alwaysvars)

]
othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. popoisson fits lassos for
depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in
these lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include
or exclude. That is, each lasso will select a subset of othervars. The selected subset of othervars
may differ across lassos. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal
value of the lasso penalty parameter λ∗ for each lasso or square-root lasso estimation. Separate
lassos are estimated for depvar and each variable in varsofinterest. Specifying selection()
changes the selection method for all of these lassos. You can specify different selection methods
for different lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso()
is used to specify a different selection method for the lassos of some variables, they override the
global setting made using selection() for the specified variables.

selection(plugin) is the default. It selects λ∗ based on a “plugin” iterative formula dependent
on the data. See [LASSO] lasso options.

selection(cv) selects the λ∗ that gives the minimum of the CV function. See [LASSO] lasso
options.

selection(adaptive) selects λ∗ using the adaptive lasso selection method. It cannot be specified
when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the λ∗ that gives the minimum of the BIC function. See [LASSO] lasso
options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos for the varsofinterest.
This option does not apply to depvar. Square-root lassos are linear models, and the lasso for
depvar is always a Poisson lasso. The option lasso() can be used with sqrtlasso to specify
that regular lasso be done for some variables, overriding the global sqrtlasso setting for these
variables. See [LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only
the nonmissing observations of variables in the final model. In all cases, any observation with
missing values for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation
sample for the lassos. By default, the same sample is used for calculation of the coefficients of
the varsofinterest and their standard errors.

popoisson — Partialing-out lasso Poisson regression 309

When missingok is specified, the initial estimation sample is the same as the default, but the sample
used for the calculation of the coefficients of the varsofinterest can be larger. Now observations
with missing values for any othervars not selected will be added to the estimation sample (provided
there are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It
does, however, have the consequence that estimation samples can change when selected variables
differ in models fit using different selection methods. That is, when othervars contain missing
values, the estimation sample for a model fit using the default selection(plugin) will likely
differ from the estimation sample for a model fit using, for example, selection(cv).

offset(varnameo) specifies that varnameo be included in the lasso and model for depvar with its
coefficient constrained to be 1.

exposure(varnamee) specifies that ln(varnamee) be included in the lasso and model for depvar with
its coefficient constrained to be 1.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust
to some kinds of misspecification (robust) and that allow for intragroup correlation (cluster
clustvar); see [R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso,
this affects how the log-likelihood function is computed and how the sample is split in cross-
validation; see Methods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar) may
lead to different selected controls and therefore to different point estimates for your variable of
interest when compared to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, eα. Standard errors
and confidence intervals are similarly transformed. irr is the default.

coef reports the estimated coefficients α rather than the incidence-rate ratios, eα. This option affects
how results are displayed, not how they are estimated. coef may be specified at estimation or
when replaying previously estimated results.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation. By default, one-line

messages indicating when each lasso estimation begins are shown. Specify verbose to see a more
detailed log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful
when doing selection(cv) or selection(adaptive). It allows you to monitor the progress
of the lasso estimations for these selection methods, which can be time consuming when there are
many othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results for se-
lection(cv) and selection(adaptive). The default selection method selection(plugin)
does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running
popoisson. See [R] set seed.

310 popoisson — Partialing-out lasso Poisson regression

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options
for all lassos. You specify a varlist followed by the options you want to apply to the lassos for these
variables. varlist consists of one or more variables from depvar or varsofinterest. all or * may be
used to specify depvar and all varsofinterest. This option is repeatable as long as different variables
are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#), toler-
ance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .)) is
specified, it overrides any global selection() option for the variables in varlist. It also overrides
the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables
from varsofinterest. Square-root lassos are linear models, and this option cannot be used with
depvar. This option is repeatable as long as different variables are given in each specification.
lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and
cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is specified, it overrides any
global selection() option for the variables in varlist. See [LASSO] lasso options.

The following options are available with popoisson but are not shown in the dialog box:

reestimate is an advanced option that refits the popoisson model based on changes made to the
underlying lassos using lassoselect. After running popoisson, you can select a different λ∗

for one or more of the lassos estimated by popoisson. After selecting λ∗, you type popoisson,
reestimate to refit the popoisson model based on the newly selected λ∗’s.

reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
popoisson performs partialing-out lasso Poisson regression. This command estimates incidence-

rate ratios, standard errors, and confidence intervals and performs tests for variables of interest while
using lassos to select from among potential control variables.

The Poisson regression model is

E[y|d, x] = exp(dα′ + xβ′)

where d are the variables for which we wish to make inferences and x are the potential control variables
from which the lassos select. popoisson estimates the α coefficients and reports the corresponding
incidence-rate ratios, eα. However, partialing-out does not provide estimates of the coefficients on
the control variables (β) or their standard errors. No estimation results can be reported for β.

For an introduction to the partialing-out lasso method for inference, as well as the double-selection
and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use popoisson and the other lasso inference commands are
presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an
introduction to the examples and to the vl command, which provides tools for working with the large
lists of variables that are often included when using lasso methods. See 2 Fitting and interpreting
inferential models for comparisons of the different methods of fitting inferential models that are
available in Stata. Everything we say there about methods of selection is applicable to both linear

popoisson — Partialing-out lasso Poisson regression 311

and nonlinear models. See 4 Fitting inferential models to count outcomes. What is different? for
examples and discussion specific to Poisson regression models. The primary difference from linear
models involves interpreting the results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring
inferential model lassos in [LASSO] Inference examples.

Stored results
popoisson stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(k varsofinterest) number of variables of interest
e(k controls) number of potential control variables
e(k controls sel) number of selected control variables
e(df) degrees of freedom for test of variables of interest
e(chi2) χ2

e(p) p-value for test of variables of interest
e(rank) rank of e(V)

Macros
e(cmd) popoisson
e(cmdline) command as typed
e(depvar) name of dependent variable
e(lasso depvars) names of dependent variables for all lassos
e(varsofinterest) variables of interest
e(controls) potential control variables
e(controls sel) selected control variables
e(model) poisson
e(title) title in estimation output
e(offset) linear offset variable
e(clustvar) name of cluster variable
e(chi2type) Wald; type of χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(rngstate) random-number state used
e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

312 popoisson — Partialing-out lasso Poisson regression

Methods and formulas
popoisson implements partialing-out lasso Poisson regression (POLPR) as described in Belloni,

Chernozhukov, and Wei (2016, table 1 and sec. 2.1). The regression model is

E[y|d, x] = G(dα′ + β0 + xβ′)

where G(a) = exp(a), d contains the J covariates of interest, and x contains the p controls. The
number of covariates in d must be small and fixed. The number of controls in x can be large and,
in theory, can grow with the sample size; however, the number of nonzero elements in β must not
be too large, which is to say that the model must be sparse.

POLPR algorithm
1. Perform a Poisson lasso of y on d and x, and denote the selected controls by x̃.

This Poisson lasso can choose the lasso penalty parameter (λ∗) using the plugin estimator,
adaptive lasso, or CV. The plugin value is the default.

2. Fit a Poisson regression of y on d and x̃, denoting the estimated coefficient vectors by α̃ and
β̃, respectively.

3. Let s̃i = x̃iβ̃
′

be the ith observation of the predicted value of xβ′ and wi = G′(diα̃
′ + s̃i)

be the ith observation of the predicted value of the derivative of G(·).

4. For j = 1, . . . , J , perform a linear lasso of dj on x using observation-level weights wi, and
denote the selected controls by x̌j .

Each of these lassos can choose the lasso penalty parameter (λ∗j) using one of the plugin
estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the
linear lasso is the default.

5. For j = 1, . . . , J , fit a linear regression of dj on the selected controls x̌j using observation-level
weights wi, denote the unweighted residuals by d̃j , with d̃j,i its ith observation, and create the
instrument zj with ith observation given by zj,i = d̃j,i.

Collect the J instruments for the ith observation into the vector zi = (z1,i, . . . , zJ,i).

6. Compute α̂ by solving the following J sample-moment equations

1

n

n∑
i=1

{yi −G(diα
′ + s̃i)} z′i = 0

7. Store the point estimates α̂ in e(b) and their variance estimates (VCE) in e(V).

The VCE is estimated by the robust estimator for method of moments.

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 4 choose
their penalty parameter (λ∗).

Reference
Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many

controls. Journal of Business and Economic Statistics 34: 606–619. https://doi.org/10.1080/07350015.2016.1166116.

https://doi.org/10.1080/07350015.2016.1166116

popoisson — Partialing-out lasso Poisson regression 313

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] dspoisson — Double-selection lasso Poisson regression

[LASSO] xpopoisson — Cross-fit partialing-out lasso Poisson regression

[R] poisson — Poisson regression

[U] 20 Estimation and postestimation commands

Title

poregress — Partialing-out lasso linear regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

poregress fits a lasso linear regression model and reports coefficients along with standard errors,
test statistics, and confidence intervals for specified covariates of interest. The partialing-out method
is used to estimate effects for these variables and to select from potential control variables to be
included in the model.

Quick start
Estimate a coefficient for d1 in a linear regression of y on d1, and include x1 to x100 as potential

control variables to be selected by lassos
poregress y d1, controls(x1-x100)

Same as above, and estimate coefficients for the levels of categorical d2
poregress y d1 i.d2, controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal λ∗ in each lasso
poregress y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility
poregress y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off
poregress y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2

poregress y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.
poregress y d1 i.d2, controls(x1-x100) ///

lasso(*, selection(cv, alllambdas))

Menu
Statistics > Lasso > Lasso inferential models > Continuous outcomes > Partialing-out model

314

poregress — Partialing-out lasso linear regression 315

Syntax

poregress depvar varsofinterest
[

if
] [

in
]
,

controls(
[
(alwaysvars)

]
othervars)

[
options

]
varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗controls(

[
(alwaysvars)

]
othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter λ∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

sqrtlasso use square-root lassos
semi use semipartialing-out lasso regression estimator
missingok after fitting lassos, ignore missing values in any othervars

not selected, and include these observations in the final
model

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization[
no
]
log display or suppress an iteration log

verbose display a verbose iteration log
rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

reestimate refit the model after using lassoselect to select a different
λ∗

noheader do not display the header on the coefficient table
coeflegend display legend instead of statistics

316 poregress — Partialing-out lasso linear regression

∗controls() is required.
varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for

alwaysvars and othervars. See [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
reestimate, noheader, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls(
[
(alwaysvars)

]
othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. poregress fits lassos for
depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in
these lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include
or exclude. That is, each lasso will select a subset of othervars. The selected subset of othervars
may differ across lassos. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal
value of the lasso penalty parameter λ∗ for each lasso or square-root lasso estimation. Separate
lassos are estimated for depvar and each variable in varsofinterest. Specifying selection()
changes the selection method for all of these lassos. You can specify different selection methods
for different lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso()
is used to specify a different selection method for the lassos of some variables, they override the
global setting made using selection() for the specified variables.

selection(plugin) is the default. It selects λ∗ based on a “plugin” iterative formula dependent
on the data. See [LASSO] lasso options.

selection(cv) selects the λ∗ that gives the minimum of the CV function. See [LASSO] lasso
options.

selection(adaptive) selects λ∗ using the adaptive lasso selection method. It cannot be specified
when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the λ∗ that gives the minimum of the BIC function. See [LASSO] lasso
options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos. The option lasso()
can be used with sqrtlasso to specify that regular lasso be done for some variables, overriding
the global sqrtlasso setting for these variables. See [LASSO] lasso options.

semi specifies that the semipartialing-out lasso regression estimator be used instead of the fully
partialing-out lasso estimator, which is the default. See Methods and formulas in [LASSO] poregress.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only
the nonmissing observations of variables in the final model. In all cases, any observation with
missing values for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation
sample for the lassos. By default, the same sample is used for calculation of the coefficients of
the varsofinterest and their standard errors.

When missingok is specified, the initial estimation sample is the same as the default, but the sample
used for the calculation of the coefficients of the varsofinterest can be larger. Now observations
with missing values for any othervars not selected will be added to the estimation sample (provided
there are no missing values for any of the variables in the final model).

poregress — Partialing-out lasso linear regression 317

missingok may produce more efficient estimates when data are missing completely at random. It
does, however, have the consequence that estimation samples can change when selected variables
differ in models fit using different selection methods. That is, when othervars contain missing
values, the estimation sample for a model fit using the default selection(plugin) will likely
differ from the estimation sample for a model fit using, for example, selection(cv).

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust
to some kinds of misspecification (robust) and that allow for intragroup correlation (cluster
clustvar); see [R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso,
this affects how the log-likelihood function is computed and how the sample is split in cross-
validation; see Methods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar) may
lead to different selected controls and therefore to different point estimates for your variable of
interest when compared to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation. By default, one-line

messages indicating when each lasso estimation begins are shown. Specify verbose to see a more
detailed log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful
when doing selection(cv) or selection(adaptive). It allows you to monitor the progress
of the lasso estimations for these selection methods, which can be time consuming when there are
many othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results for se-
lection(cv) and selection(adaptive). The default selection method selection(plugin)
does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running
poregress. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options
for all lassos. You specify a varlist followed by the options you want to apply to the lassos for these
variables. varlist consists of one or more variables from depvar or varsofinterest. all or * may be
used to specify depvar and all varsofinterest. This option is repeatable as long as different variables
are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#), toler-
ance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .)) is
specified, it overrides any global selection() option for the variables in varlist. It also overrides
the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables
from depvar or varsofinterest. This option is repeatable as long as different variables are given

318 poregress — Partialing-out lasso linear regression

in each specification. lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#),
dtolerance(#), and cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is speci-
fied, it overrides any global selection() option for the variables in varlist. See [LASSO] lasso
options.

The following options are available with poregress but are not shown in the dialog box:

reestimate is an advanced option that refits the poregress model based on changes made to the
underlying lassos using lassoselect. After running poregress, you can select a different λ∗

for one or more of the lassos estimated by poregress. After selecting λ∗, you type poregress,
reestimate to refit the poregress model based on the newly selected λ’s.

reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
poregress performs partialing-out lasso linear regression. This command estimates coefficients,

standard errors, and confidence intervals and performs tests for variables of interest while using lassos
to select from among potential control variables.

The linear regression model is

E[y|d, x] = dα′ + xβ′

where d are the variables for which we wish to make inferences and x are the potential control
variables from which the lassos select. poregress reports estimated coefficients for α. However,
partialing-out does not provide estimates of the coefficients on the control variables (β) or their
standard errors. No estimation results can be reported for β.

For an introduction to the partialing-out lasso method for inference, as well as the double-selection
and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use poregress and the other lasso inference commands are
presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an
introduction to the examples and to the vl command, which provides tools for working with the large
lists of variables that are often included when using lasso methods. See 2 Fitting and interpreting
inferential models for examples of fitting inferential lasso linear models and comparisons of the
different methods available in Stata.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring
inferential model lassos in [LASSO] Inference examples.

poregress — Partialing-out lasso linear regression 319

Stored results
poregress stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(k varsofinterest) number of variables of interest
e(k controls) number of potential control variables
e(k controls sel) number of selected control variables
e(df) degrees of freedom for test of variables of interest
e(chi2) χ2

e(p) p-value for test of variables of interest
e(rank) rank of e(V)

Macros
e(cmd) poregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(lasso depvars) names of dependent variables for all lassos
e(varsofinterest) variables of interest
e(controls) potential control variables
e(controls sel) selected control variables
e(model) linear
e(title) title in estimation output
e(clustvar) name of cluster variable
e(chi2type) Wald; type of χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(rngstate) random-number state used
e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
poregress implements two methods for the partialing-out lasso regression. We call the default

method partialing-out lasso regression (POLR). We call the optional method, obtained by specifying
option semi, a semipartialing-out lasso regression (SPOLR). We refer to these methods as versions of
partialing-out regression because they reduce to the classic method of partialing-out regression in a
special case discussed below.

320 poregress — Partialing-out lasso linear regression

The POLR was derived by Belloni et al. (2012) and Chernozhukov, Hansen, and Spindler (2015a,
2015b). The SPOLR was derived by Belloni et al. (2012), Belloni, Chernozhukov, and Hansen (2014),
Belloni, Chernozhukov, and Kato (2015), and Belloni, Chernozhukov, and Wei (2016).

The authors referred to their methods as “instrumental-variable methods”. We refer to these
methods as partialing-out regression methods because the idea of partialing-out regression is more
cross-disciplinary and because these methods do not need outside instrumental variables when the
covariates are exogenous.

Mechanically, the POLR and the SPOLR methods are method of moments estimators in which the
moment conditions are the score equations from an ordinary least-squares (OLS) estimator of a partial
outcome on one or more partial covariates. The partial outcome is the residual from a regression of
the outcome on the controls selected by a lasso. Each of the partial covariates is a residual from a
regression of the covariate on the controls selected by a lasso.

The POLR method is limited to a linear model for the outcome. This method follows from
Chernozhukov, Hansen, and Spindler (2015a; 2015b, sec. 5) and Chernozhukov et al. (2018, C18).
The algorithm described in Chernozhukov, Hansen, and Spindler (2015a, 2015b) is for endogenous
variables with many outside instruments and many controls. As they note, imposing an exogeneity
assumption and assuming that there are no outside instruments reduces their algorithm to one for
exogenous covariates with many controls.

The SPOLR method extends naturally to nonlinear models for the outcome and has two sources. It
is implied by Belloni, Chernozhukov, and Kato (2015, algorithm 1), which is for a median regression
of y on x. Replacing median regression with mean regression in their step (i) and replacing the
median moment condition with the mean moment condition in step (iii) produces the SPOLR algorithm
detailed below. This algorithm is also implied by Belloni, Chernozhukov, and Wei (2016, table 1 and
sec. 2.1) for a linear model.

The regression model is
E[y|d, x] = dα′ + β0 + xβ′

where d contains the J covariates of interest and x contains the p controls. The number of covariates
in d must be small and fixed. The number of controls in x can be large and, in theory, can grow
with the sample size; however, the number of nonzero elements in β must not be too large, which is
to say that the model must be sparse.

POLR algorithm
1. For j = 1, . . . , J , perform a linear lasso of dj on x, and denote the selected controls by x̃j .

Each of these lassos can choose the lasso penalty parameter (λ∗j) using the plugin estimator,
adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

2. For j = 1, . . . , J , fit a linear regression of dj on x̃j , denote the estimated coefficients by γ̂j ,
and define the partial-covariate variable zj = dj − x̃j γ̂j , with its ith observation denoted by
zj,i.

Collect the J partial covariates for the ith observation into the vector zi = (z1,i, . . . , zJ,i).

3. Perform a linear lasso of y on x to select covariates x̃y .

This lasso can choose the lasso penalty parameter (λ∗) using the plugin estimator, adaptive
lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

4. Fit a linear regression of y on x̃y , denote the estimated coefficients by β̃y , and define the
partial outcome for the ith observation by ỹi = yi − x̃y,iβ̃y .

poregress — Partialing-out lasso linear regression 321

5. Compute α̂ by solving the following J sample-moment equations.

1

n

n∑
i=1

(ỹi − ziα
′)z′i = 0

The VCE is estimated by the robust estimator for method of moments.

SPOLR algorithm

1. For j = 1, . . . , J , perform a linear lasso of dj on x, and denote the selected controls by x̃j .

Each of these lassos can choose the lasso penalty parameter (λ∗j) using the plugin estimator,
adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

2. For j = 1, . . . , J , fit a linear regression of dj on x̃j , denote the estimated coefficients by γ̂j ,
and define the partial-covariate variable zj = dj − x̃j γ̂j , with its ith observation denoted by
zj,i.

Collect the J partial covariates for the ith observation into the vector zi = (z1,i, . . . , zJ,i).

3. Perform a linear lasso of y on d and x to select covariates x̌y .

This lasso can choose the lasso penalty parameter (λ∗) using the plugin estimator, adaptive
lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

4. Fit a linear regression of y on d and x̌y , let β̌ be the estimated coefficients on x̌y , and define
the partial outcome for the ith observation by y̌i = yi − x̌y,iβ̌

′
.

5. Compute α̂ by solving the following J sample-moment equations.

1

n

n∑
i=1

(y̌i − diα
′)z′i = 0

The VCE is estimated by the robust estimator for method of moments.

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 3 of both
algorithms choose their penalty parameter (λ∗).

References
Belloni, A., D. Chen, V. Chernozhukov, and C. B. Hansen. 2012. Sparse models and methods for optimal instruments

with an application to eminent domain. Econometrica 80: 2369–2429. https://doi.org/10.3982/ECTA9626.

Belloni, A., V. Chernozhukov, and C. B. Hansen. 2014. Inference on treatment effects after selection among
high-dimensional controls. Review of Economic Studies 81: 608–650. https://doi.org/10.1093/restud/rdt044.

Belloni, A., V. Chernozhukov, and K. Kato. 2015. Uniform post-selection inference for least absolute deviation
regression and other Z-estimation problems. Biometrika 102: 77–94. https://doi.org/10.1093/biomet/asu056.

Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many
controls. Journal of Business and Economic Statistics 34: 606–619. https://doi.org/10.1080/07350015.2016.1166116.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. B. Hansen, W. K. Newey, and J. M. Robins. 2018.
Double/debiased machine learning for treatment and structural parameters. Econometrics Journal 21: C1–C68.
https://doi.org/10.1111/ectj.12097.

Chernozhukov, V., C. B. Hansen, and M. Spindler. 2015a. Post-selection and post-regularization infer-
ence in linear models with many controls and instruments. American Economic Review 105: 486–490.
https://doi.org/10.1257/aer.p20151022.

https://doi.org/10.3982/ECTA9626
https://doi.org/10.1093/restud/rdt044
https://doi.org/10.1093/biomet/asu056
https://doi.org/10.1080/07350015.2016.1166116
https://doi.org/10.1111/ectj.12097
https://doi.org/10.1257/aer.p20151022

322 poregress — Partialing-out lasso linear regression

. 2015b. Valid post-selection and post-regularization inference: An elementary, general approach. Annual Review
of Economics 7: 649–688. https://doi.org/10.1146/annurev-economics-012315-015826.

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] dsregress — Double-selection lasso linear regression

[LASSO] xporegress — Cross-fit partialing-out lasso linear regression

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands

https://doi.org/10.1146/annurev-economics-012315-015826

Title

sqrtlasso — Square-root lasso for prediction and model selection

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

sqrtlasso selects covariates and fits linear models using square-root lasso. Results from sqrt-
lasso can be used for prediction and model selection. Results from sqrtlasso are typically similar
to results from lasso.

sqrtlasso saves but does not display estimated coefficients. The [LASSO] lasso postestimation
commands can be used to generate predictions, report coefficients, and display measures of fit.

For an introduction to lasso, see [LASSO] Lasso intro.

Quick start
Fit a linear model for y1, and select covariates from x1 to x100 using cross-validation (CV)

sqrtlasso y x1-x100

Same as above, but force x1 and x2 to be in the model while square-root lasso selects from x3 to
x100

sqrtlasso y (x1 x2) x3-x100

Set a random-number seed for reproducibility
sqrtlasso y x1-x100, rseed(1234)

Calculate the CV function beyond the CV minimum to get the full coefficient paths, knots, etc.
sqrtlasso y x1-x100, selection(cv, alllambdas)

Menu
Statistics > Lasso > Square-root lasso

Syntax

sqrtlasso depvar
[
(alwaysvars)

]
othervars

[
if
] [

in
] [

weight
] [

, options
]

alwaysvars are variables that are always included in the model.

othervars are variables that sqrtlasso will choose to include in or exclude from the model.

323

324 sqrtlasso — Square-root lasso for prediction and model selection

options Description

Model

noconstant suppress constant term
selection(sel method) selection method to select a value of the square-root

lasso penalty parameter λ∗ from the set of possible λ’s
offset(varnameo) include varnameo in model with coefficient constrained to 1
cluster(clustvar) specify cluster variable clustvar

Optimization[
no
]
log display or suppress an iteration log

rseed(#) set random-number seed
grid(#g

[
, ratio(#) min(#)

]
) specify the set of possible λ’s using a logarithmic grid with

#g grid points
stop(#) tolerance for stopping the iteration over the λ grid early
cvtolerance(#) tolerance for identification of the CV function minimum
bictolerance(#) tolerance for identification of the BIC function minimum
tolerance(#) convergence tolerance for coefficients based on their values
dtolerance(#) convergence tolerance for coefficients based on deviance

penaltywt(matname) programmer’s option for specifying a vector of weights for
the coefficients in the penalty term

sel method Description

cv
[
, cv opts

]
select λ∗ using CV; the default

plugin
[
, plugin opts

]
select λ∗ using a plugin iterative formula

bic
[
, bic opts

]
select λ∗ using BIC function

none do not select λ∗

cv opts Description

folds(#) use # folds for CV
alllambdas fit models for all λ’s in the grid or until the stop(#) tolerance is reached;

by default, the CV function is calculated sequentially by λ, and estimation
stops when a minimum is identified

serule use the one-standard-error rule to select λ∗

stopok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for λ was reached at λstop, set the selected λ∗ to be
λstop; the default

strict do not select λ∗ when the CV function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for λ was not reached, set the selected λ∗ to be the
minimum of the λ grid, λgmin; this is a looser alternative to the default
stopok and is rarely used

sqrtlasso — Square-root lasso for prediction and model selection 325

plugin opts Description

heteroskedastic assume model errors are heteroskedastic; the default
homoskedastic assume model errors are homoskedastic

bic opts Description

alllambdas fit models for all λ’s in the grid or until the stop(#) tolerance is reached;
by default, the BIC function is calculated sequentially by λ, and estimation
stops when a minimum is identified

stopok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for λ was reached at λstop, set the selected λ∗ to be
λstop; the default

strict do not select λ∗ when the BIC function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for λ was not reached, set the selected λ∗ to be the
minimum of the λ grid, λgmin; this is a looser alternative to the default
stopok and is rarely used

postselection use postselection coefficients to compute BIC

alwaysvars and othervars may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
Default weights are not allowed. iweights are allowed with all sel method options. See [U] 11.1.6 weight.
penaltywt(matname) does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

See [LASSO] lasso fitting for an overview of the lasso estimation procedure and a detailed description
of how to set options to control it.

� � �
Model �

noconstant omits the constant term. Note, however, when there are factor variables among the
othervars, sqrtlasso can potentially create the equivalent of the constant term by including all
levels of a factor variable. This option is likely best used only when all the othervars are continuous
variables and there is a conceptual reason why there should be no constant term.

selection(cv), selection(plugin), selection(bic), and selection(none) specify the se-
lection method used to select λ∗. These options also allow suboptions for controlling the specified
selection method.

selection(cv
[
, cv opts

]
) is the default. It selects λ∗ to be the λ that gives the minimum of

the CV function. lasso postestimation commands can be used after selection(cv) to assess
alternative λ∗ values.

cv opts are folds(#), alllambdas, serule, stopok, strict, and gridminok.

folds(#) specifies that CV with # folds be done. The default is folds(10).

326 sqrtlasso — Square-root lasso for prediction and model selection

alllambdas specifies that models be fit for all λ’s in the grid or until the stop(#) tolerance
is reached. By default, models are calculated sequentially from largest to smallest λ, and
the CV function is calculated after each model is fit. If a minimum of the CV function is
found, the computation ends at that point without evaluating additional smaller λ’s.

alllambdas computes models for these additional smaller λ’s. Because computation time
is greater for smaller λ, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the CV function is wanted
for assurance that a true minimum has been found. Regardless of whether alllambdas is
specified, the selected λ∗ will be the same.

serule selects λ∗ based on the “one-standard-error rule” recommended by Hastie, Tibshirani,
and Wainwright (2015, 13–14) instead of the λ that minimizes the CV function. The one-
standard-error rule selects the largest λ for which the CV function is within a standard error
of the minimum of the CV function.

stopok, strict, and gridminok specify what to do when the CV function does not have
an identified minimum. A minimum is identified at λ∗ when the CV function at both larger
and smaller adjacent λ’s is greater than it is at λ∗. When the CV function has an identified
minimum, these options all do the same thing: the selected λ∗ is the λ that gives the
minimum. In some cases, however, the CV function declines monotonically as λ gets smaller
and never rises to identify a minimum. When the CV function does not have an identified
minimum, stopok and gridminok make alternative selections for λ∗, and strict makes
no selection. You may specify only one of stopok, strict, or gridminok; stopok is the
default if you do not specify one. With each of these options, estimation results are always
left in place, and alternative λ∗ can be selected and evaluated.

stopok specifies that when the CV function does not have an identified minimum and the
stop(#) stopping tolerance for λ was reached, the selected λ∗ is λstop, the λ that met
the stopping criterion. λstop is the smallest λ for which coefficients are estimated, and
it is assumed that λstop has a CV function value close to the true minimum. When no
minimum is identified and the stop(#) criterion is not met, an error is issued.

strict requires the CV function to have an identified minimum, and if not, an error is
issued.

gridminok is a rarely used option that specifies that when the CV function has no identified
minimum and the stop(#) stopping criterion was not met, λgmin, the minimum of the
λ grid, is the selected λ∗.

The gridminok selection criterion is looser than the default stopok, which is looser than
strict. With strict, only an identified minimum is selected. With stopok, either the
identified minimum or λstop is selected. With gridminok, either the identified minimum
or λstop or λgmin is selected, in this order.

selection(plugin
[
, plugin opts

]
) selects λ∗ based on a “plugin” iterative formula dependent

on the data. The plugin method was designed for lasso inference methods and is useful when
using sqrtlasso to manually implement inference methods, such as double-selection lasso.
The plugin estimator calculates a value for λ∗ that dominates the noise in the estimating
equations, which makes it less likely to include variables that are not in the true model. See
Methods and formulas.

selection(plugin) does not estimate coefficients for any other values of λ, so it does not
require a λ grid, and none of the grid options apply. It is much faster than selection(cv)
because estimation is done only for a single value of λ. It is an iterative procedure, however,
and if the plugin is computing estimates for a small λ (which means many nonzero coefficients),

sqrtlasso — Square-root lasso for prediction and model selection 327

the estimation can still be time consuming. Because estimation is done only for one λ, you
cannot assess alternative λ∗ as the other selection methods allow.

plugin opts are heteroskedastic and homoskedastic.

heteroskedastic assumes model errors are heteroskedastic. It is the default. Specifying se-
lection(plugin) is equivalent to specifying selection(plugin, heteroskedastic).

homoskedastic assumes model errors are homoskedastic. See Methods and formulas.

selection(bic
[
, bic opts

]
) selects λ∗ by using the Bayesian information criterion function.

It selects the λ∗ with the minimum BIC function value.

bic opts are alllambdas, stopok, strict, gridminok, and postselection.

alllambdas specifies that models be fit for all λ’s in the grid or until the stop(#) tolerance
is reached. By default, models are calculated sequentially from largest to smallest λ, and
the BIC function is calculated after each model is fit. If a minimum of the BIC function is
found, the computation ends at that point without evaluating additional smaller λ’s.

alllambdas computes models for these additional smaller λ’s. Because computation time
is greater for smaller λ, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the BIC function is wanted
for assurance that a true minimum has been found. Regardless of whether alllambdas is
specified, the selected λ∗ will be the same.

stopok, strict, and gridminok specify what to do when the BIC function does not have
an identified minimum. A minimum is identified at λ∗ when the BIC function at both
larger and smaller adjacent λ’s is greater than it is at λ∗. When the BIC function has an
identified minimum, these options all do the same thing: the selected λ∗ is the λ that gives
the minimum. In some cases, however, the BIC function declines monotonically as λ gets
smaller and never rises to identify a minimum. When the BIC function does not have an
identified minimum, stopok and gridminok make alternative selections for λ∗, and strict
makes no selection. You may specify only one of stopok, strict, or gridminok; stopok
is the default if you do not specify one. With each of these options, estimation results are
always left in place, and alternative λ∗ can be selected and evaluated.

stopok specifies that when the BIC function does not have an identified minimum and the
stop(#) stopping tolerance for λ was reached, the selected λ∗ is λstop, the λ that met
the stopping criterion. λstop is the smallest λ for which coefficients are estimated, and
it is assumed that λstop has a BIC function value close to the true minimum. When no
minimum is identified and the stop(#) criterion is not met, an error is issued.

strict requires the BIC function to have an identified minimum, and if not, an error is
issued.

gridminok is a rarely used option that specifies that when the BIC function has no identified
minimum and the stop(#) stopping criterion was not met, then λgmin, the minimum of
the λ grid, is the selected λ∗.

The gridminok selection criterion is looser than the default stopok, which is looser than
strict. With strict, only an identified minimum is selected. With stopok, either the
identified minimum or λstop is selected. With gridminok, either the identified minimum
or λstop or λgmin is selected, in this order.

postselection specifies to use the postselection coefficients to compute the BIC function.
By default, the penalized coefficients are used.

328 sqrtlasso — Square-root lasso for prediction and model selection

selection(none) does not select a λ∗. Square-root lasso is estimated for the grid of values
for λ, but no attempt is made to determine which λ should be selected. The postestimation
command lassoknots can be run to view a table of λ’s that define the knots (the sets of
nonzero coefficients) for the estimation. The lassoselect command can be used to select a
value for λ∗, and lassogof can be run to evaluate the prediction performance of λ∗.

When selection(none) is specified, the CV function is not computed. If you want to view
the knot table with values of the CV function shown and then select λ∗, you must specify
selection(cv). There are no suboptions for selection(none).

offset(varnameo) specifies that varnameo be included in the model with its coefficient constrained
to be 1.

cluster(clustvar) specifies the cluster variable clustvar. Specifying a cluster variable will affect how
the log-likelihood function is computed and the sample split in cross-validation. The log-likelihood
function is computed as the sum of the log likelihood at the cluster levels. If option selection(cv)
is specified, the cross-validation sample is split by the clusters defined by clustvar. That is, the
subsample in each fold is drawn on the cluster level. Therefore, all observations in a cluster are
kept together in the same subsample.

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation.

rseed(#) sets the random-number seed. This option can be used to reproduce results for selec-
tion(cv). The other selection methods, selection(plugin) and selection(none), do not
use random numbers. rseed(#) is equivalent to typing set seed # prior to running sqrtlasso.
See [R] set seed.

grid(#g
[
, ratio(#) min(#)

]
) specifies the set of possible λ’s using a logarithmic grid with #g

grid points.

#g is the number of grid points for λ. The default is #g = 100. The grid is logarithmic with
the ith grid point (i = 1, . . . , n = #g) given by lnλi = [(i − 1)/(n − 1)] ln r + lnλgmax,
where λgmax = λ1 is the maximum, λgmin = λn = min(#) is the minimum, and r =
λgmin/λgmax = ratio(#) is the ratio of the minimum to the maximum.

ratio(#) specifies λgmin/λgmax. The maximum of the grid, λgmax, is set to the smallest λ
for which all the coefficients in the lasso are estimated to be zero (except the coefficients of
the alwaysvars). λgmin is then set based on ratio(#). When p < N , where p is the total
number of othervars and alwaysvars (not including the constant term) and N is the number of
observations, the default value of ratio(#) is 1e−4. When p ≥ N , the default is 1e−2.

min(#) sets λgmin. By default, λgmin is based on ratio(#) and λgmax, which is computed from
the data.

stop(#) specifies a tolerance that is the stopping criterion for the λ iterations. The default is 1e−5.
This option does not apply when the selection method is selection(plugin). Estimation starts
with the maximum grid value, λgmax, and iterates toward the minimum grid value, λgmin. When
the relative difference in the deviance produced by two adjacent λ grid values is less than stop(#),
the iteration stops and no smaller λ’s are evaluated. The value of λ that meets this tolerance is
denoted by λstop. Typically, this stopping criterion is met before the iteration reaches λgmin.

Setting stop(#) to a larger value means that iterations are stopped earlier at a larger λstop. To
produce coefficient estimates for all values of the λ grid, you can specify stop(0). Note, however,
that computations for small λ’s can be extremely time consuming. In terms of time, when you use
selection(cv), the optimal value of stop(#) is the largest value that allows estimates for just
enough λ’s to be computed to identify the minimum of the CV function. When setting stop(#)

sqrtlasso — Square-root lasso for prediction and model selection 329

to larger values, be aware of the consequences of the default λ∗ selection procedure given by the
default stopok. You may want to override the stopok behavior by using strict.

cvtolerance(#) is a rarely used option that changes the tolerance for identifying the minimum CV
function. For linear models, a minimum is identified when the CV function rises above a nominal
minimum for at least three smaller λ’s with a relative difference in the CV function greater than
#. For nonlinear models, at least five smaller λ’s are required. The default is 1e−3. Setting # to
a bigger value makes a stricter criterion for identifying a minimum and brings more assurance
that a declared minimum is a true minimum, but it also means that models may need to be fit for
additional smaller λ, which can be time consuming. See Methods and formulas for [LASSO] lasso
for more information about this tolerance and the other tolerances.

bictolerance(#) is a rarely used option that changes the tolerance for identifying the minimum
BIC function. A minimum is identified when the BIC function rises above a nominal minimum for
at least two smaller λ’s with a relative difference in the BIC function greater than #. The default is
1e−2. Setting # to a bigger value makes a stricter criterion for identifying a minimum and brings
more assurance that a declared minimum is a true minimum, but it also means that models may
need to be fit for additional smaller λ, which can be time consuming. See Methods and formulas
in [LASSO] lasso for more information about this tolerance and the other tolerances.

tolerance(#) is a rarely used option that specifies the convergence tolerance for the coefficients.
Convergence is achieved when the relative change in each coefficient is less than this tolerance.
The default is tolerance(1e-7).

dtolerance(#) is a rarely used option that changes the convergence criterion for the coefficients.
When dtolerance(#) is specified, the convergence criterion is based on the change in deviance
instead of the change in the values of coefficient estimates. Convergence is declared when the
relative change in the deviance is less than #. More-accurate coefficient estimates are typically
achieved by not specifying this option and instead using the default tolerance(1e-7) criterion
or specifying a smaller value for tolerance(#).

The following option is available with sqrtlasso but is not shown in the dialog box:

penaltywt(matname) is a programmer’s option for specifying a vector of weights for the coefficients
in the penalty term. The contribution of each coefficient to the square-root lasso penalty term is
multiplied by its corresponding weight. Weights must be nonnegative. By default, each coefficient’s
penalty weight is 1.

Remarks and examples

We assume you have read the lasso introduction [LASSO] Lasso intro.

The square-root lasso is an alternative version of lasso. Lasso minimizes

1

2N
(y −Xβ′)′(y −Xβ′) + λ

p∑
j=1

|βj |

whereas square-root lasso minimizes

√
1

N
(y −Xβ′)′(y −Xβ′) +

λ

N

p∑
j=1

|βj |

330 sqrtlasso — Square-root lasso for prediction and model selection

In the square-root formulation, the standard deviation of the error term becomes a multiplicative
constant that drops out of the minimization. This lack of dependence facilitates the derivation of
plugin estimators for the lasso penalty parameter λ∗ because there is no need to estimate the standard
deviation of the error term as part of the plugin formula.

Square-root lasso is primarily used in combination with a plugin estimator for λ∗. The resulting
square-root lasso estimation can be used with the double-selection or partialing-out methods described
in [LASSO] Lasso inference intro.

Square-root lasso can also be used on its own for prediction or model selection. To be consistent
with lasso, the default selection method for λ∗ is CV. To use the plugin estimator, specify the option
selection(plugin).

Square-root lasso was formulated by Belloni, Chernozhukov, and Wang (2011), who also derived
the square-root lasso plugin estimator for λ, which is implemented here.

Example 1: Square-root lasso and lasso

Let’s compare square-root lasso with an ordinary lasso to illustrate that their results are numerically
similar when used with CV.

We load the example dataset we used in [LASSO] lasso examples. It has stored variable lists created
by vl. See [D] vl for a complete description of the vl system and how to use it to manage large
variable lists.

After we load the dataset, we type vl rebuild to make the saved variable lists active again.

. use https://www.stata-press.com/data/r18/fakesurvey_vl
(Fictitious survey data with vl)

. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 98 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 29 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 12 all missing or constant variables

User
$demographics 4 variables
$factors 110 variables
$idemographics factor-variable list
$ifactors factor-variable list

We randomly split our data into two samples of equal sizes. One we will fit lassos on, and the
other we will use to test their predictions. We use splitsample to generate a variable indicating the
samples.

. set seed 1234

. splitsample, generate(sample) nsplit(2)

. label define svalues 1 "Training" 2 "Testing"

. label values sample svalues

sqrtlasso — Square-root lasso for prediction and model selection 331

We have four user-defined variable lists, demographics, factors, idemographics, and ifac-
tors. The variable lists idemographics and ifactors contain factor-variable versions of the
categorical variables in demographics and factors. That is, a variable q3 in demographics is
i.q3 in idemographics. See the examples in [LASSO] lasso examples to see how we created these
variable lists.

We are going to use idemographics and ifactors along with the system-defined variable list
vlcontinuous as arguments to sqrtlasso. Together they contain the potential variables we want to
specify. Variable lists are actually global macros, and when we use them as arguments in commands,
we put a $ in front of them.

We also set the random-number seed using the rseed() option so we can reproduce our results.

. sqrtlasso q104 $idemographics $ifactors $vlcontinuous if sample == 1,
> rseed(1234)

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = 104.6235 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 17.2848

(output omitted)
Grid value 23: lambda = 13.51264 no. of nonzero coef. = 87
Folds: 1...5....10 CVF = 12.35321
... cross-validation complete ... minimum found

Square-root lasso linear model No. of obs = 458
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 104.6235 0 -0.0058 17.2848
17 lambda before 23.61373 53 0.2890 12.21892

* 18 selected lambda 21.51595 61 0.2901 12.19933
19 lambda after 19.60453 67 0.2899 12.20295
23 last lambda 13.51264 87 0.2812 12.35321

* lambda selected by cross-validation.

. estimates store sqrtcv

The square-root lasso with the default CV selection method selected a model with 61 variables in it.

332 sqrtlasso — Square-root lasso for prediction and model selection

Let’s run lasso with the same potential variables.

. lasso linear q104 $idemographics $ifactors $vlcontinuous if sample == 1,
> rseed(1234)

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .9469819 no. of nonzero coef. = 0

(output omitted)
Grid value 25: lambda = .1015418 no. of nonzero coef. = 78
Folds: 1...5....10 CVF = 12.26768
... cross-validation complete ... minimum found

Lasso linear model No. of obs = 458
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .9469819 0 -0.0046 17.26383
19 lambda before .1774471 47 0.2899 12.20399

* 20 selected lambda .1616832 51 0.2912 12.18122
21 lambda after .1473197 60 0.2908 12.18739
25 last lambda .1015418 78 0.2862 12.26768

* lambda selected by cross-validation.

. estimates store lassocv

Lasso selected a model with 51 variables in it.

After we ran sqrtlasso and lasso, we used estimates store to keep the results in memory.
This lets us compare the models. We can use lassocoef to view the coefficient estimates. We display
the standardized coefficients and sort them so that the biggest in absolute values are shown first.

. lassocoef sqrtcv lassocv, display(coef, standardized) sort(coef, standardized)

sqrtcv lassocv

q19
No -.8446332 -.8119414

q85
No -.7089993 -.6940387

3.q156 -.6843823 -.6727969

q101
No .5981556 .5785246

q48
No -.5867942 -.5502145

q88
No .5793049 .553872

q38
4 -.5275709 -.5089004

q5
No -.4795077 -.467305
q22 -.4610605 -.4410858
q31 .4556527 .4047143

sqrtlasso — Square-root lasso for prediction and model selection 333

q56
No -.4482692 -.4026312

q139 -.4189969 -.4118033

q73
No -.3565698 -.3368294

q96
No -.3149921 -.2950566

3.q16 -.263147 -.2278278

q43
No -.2605833 -.2355772

q50
No .2455526 .2307073

q149
No -.2407299 -.2070948

2.q84 -.2321074 -.2150944

q109
No .1965246 .1530308

q49
No .1937052 .1626059

q159
No .1870743 .1771646

q115
No .153256 .1272736

3.q134 .1525998 .1418469

q108
No -.1491124 -.1469051

q91
No -.1475877 -.1252736

q140
No -.142592 -.1192079

2.q34 .1397604 .1155922
q93 -.1379424 -.0964044

q14
No -.1377481 -.0964684

gender
Female -.1296337 -.1047897

q153
No .1238655 .0835772
q53 .1123144 .0813566

q65
3 .1035524 .084643

q38
3 .0922535 .086774

334 sqrtlasso — Square-root lasso for prediction and model selection

q160
No -.0901901 -.0763008

q3
No -.082771 -.0574645
age -.0707354 -.0590426

q102
No -.0578734 -.0427812

q44
No .0561402 .0301015

1.q110 -.0556488 -.0268615

q154
No .0492342 .0188979

q130
No -.0453674 -.0288351
q18 -.0428028 -.018666

q97
No .0427896 .021222

q142
No -.0427358 -.0188524

q75
No -.0341663 -.0011199

q111 -.0333302 -.0294021
3.q95 -.0214817

q65
4 -.0213682

q38
2 .0197855

0.q74 .0165583
0.q33 -.016441

q20 .0147089

q94
No .0136563 .013323
q52 .0132519

0.q138 -.0125278
0.q71 .012269

q13
No .0094304 .0027091

q105
Fair .0052163 .00026
0.q59 .0036381
_cons -3.55e-15 0

Legend:
b - base level
e - empty cell
o - omitted

sqrtlasso — Square-root lasso for prediction and model selection 335

Numerically, the coefficients are similar. The six variables that square-root lasso selected—but lasso
did not—are among the variables with the smallest coefficients.

We split the sample in half so we could look at the out-of-sample prediction. We use lassogof
to do this using postselection coefficients.

. lassogof sqrtcv lassocv, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs

sqrtcv
Training 8.419174 0.5184 503
Testing 15.09863 0.2402 487

lassocv
Training 8.595046 0.5083 503
Testing 14.66581 0.2600 491

Both square-root lasso and lasso did significantly worse predicting out of sample than they did in
sample. This is typical in many cases when there are many variables with small coefficients in the
models.

Let’s compare the plugin estimators for both square-root lasso and lasso.

. sqrtlasso q104 $idemographics $ifactors $vlcontinuous, selection(plugin)

Computing plugin lambda ...
Iteration 1: lambda = 134.4262 no. of nonzero coef. = 5
Iteration 2: lambda = 134.4262 no. of nonzero coef. = 8
Iteration 3: lambda = 134.4262 no. of nonzero coef. = 8

Square-root lasso linear model No. of obs = 914
No. of covariates = 277

Selection: Plugin heteroskedastic

No. of
nonzero In-sample

ID Description lambda coef. R-squared BIC

* 1 selected lambda 134.4262 8 0.0835 5233.117

* lambda selected by plugin formula assuming heteroskedastic errors.

336 sqrtlasso — Square-root lasso for prediction and model selection

Square-root lasso with plugin selected only 8 variables. Let’s see what lasso does.

. lasso linear q104 $idemographics $ifactors $vlcontinuous,
> selection(plugin) rseed(1234)

Computing plugin lambda ...
Iteration 1: lambda = .1470747 no. of nonzero coef. = 8
Iteration 2: lambda = .1470747 no. of nonzero coef. = 11
Iteration 3: lambda = .1470747 no. of nonzero coef. = 13
Iteration 4: lambda = .1470747 no. of nonzero coef. = 15
Iteration 5: lambda = .1470747 no. of nonzero coef. = 15

Lasso linear model No. of obs = 914
No. of covariates = 277

Selection: Plugin heteroskedastic

No. of
nonzero In-sample

ID Description lambda coef. R-squared BIC

* 1 selected lambda .1470747 15 0.1549 5206.721

* lambda selected by plugin formula assuming heteroskedastic errors.

Lasso with plugin selected a few more—15 variables in total. We can see from the in-sample R2 that
the predictive capabilities of models using plugin are much lower than those using CV. We expect
this because plugin estimators were designed as a tool for inferential models, not for prediction.

Stored results
sqrtlasso stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(k allvars) number of potential variables
e(k nonzero sel) number of nonzero coefficients for selected model
e(k nonzero cv) number of nonzero coefficients at CV mean function minimum
e(k nonzero serule) number of nonzero coefficients for one-standard-error rule
e(k nonzero min) minimum number of nonzero coefficients among estimated λ’s
e(k nonzero max) maximum number of nonzero coefficients among estimated λ’s
e(k nonzero bic) number of nonzero coefficients at BIC function minimum
e(lambda sel) value of selected λ∗

e(lambda gmin) value of λ at grid minimum
e(lambda gmax) value of λ at grid maximum
e(lambda last) value of last λ computed
e(lambda cv) value of λ at CV mean function minimum
e(lambda serule) value of λ for one-standard-error rule
e(lambda bic) value of λ at BIC function minimum
e(ID sel) ID of selected λ∗

e(ID cv) ID of λ at CV mean function minimum
e(ID serule) ID of λ for one-standard-error rule
e(ID bic) ID of λ at BIC function minimum
e(cvm min) minimum CV mean function value
e(cvm serule) CV mean function value at one-standard-error rule
e(devratio min) minimum deviance ratio
e(devratio max) maximum deviance ratio
e(L1 min) minimum value of `1-norm of penalized unstandardized coefficients
e(L1 max) maximum value of `1-norm of penalized unstandardized coefficients
e(L2 min) minimum value of `2-norm of penalized unstandardized coefficients

sqrtlasso — Square-root lasso for prediction and model selection 337

e(L2 max) maximum value of `2-norm of penalized unstandardized coefficients
e(ll sel) log-likelihood value of selected model
e(n lambda) number of λ’s
e(n fold) number of CV folds
e(stop) stopping rule tolerance

Macros
e(cmd) sqrtlasso
e(cmdline) command as typed
e(depvar) name of dependent variable
e(allvars) names of all potential variables
e(allvars sel) names of all selected variables
e(alwaysvars) names of always-included variables
e(othervars sel) names of other selected variables
e(post sel vars) all variables needed for post-square-root lasso
e(clustvar) name of cluster variable
e(lasso selection) selection method
e(sel criterion) criterion used to select λ∗

e(plugin type) type of plugin λ
e(model) linear, logit, poisson, or probit
e(title) title in estimation output
e(rngstate) random-number state used
e(properties) b
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) penalized unstandardized coefficient vector
e(b standardized) penalized standardized coefficient vector
e(b postselection) postselection coefficient vector

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
This section provides the methods and formulas for the methods implemented in sqrtlasso. The

square-root lasso was derived by Belloni and Chernozhukov (2011).

Methods and formulas are presented under the following headings:

Notation
Plugin estimators

Notation

sqrtlasso estimates the parameters by finding the minimum of a penalized objective function.
The penalized objective function is

Q =

√√√√ 1

N

N∑
i=1

wi(yi − β0 − xiβ
′)2 +

λ

N

p∑
j=1

κj |βj | (1)

338 sqrtlasso — Square-root lasso for prediction and model selection

where N is the number of observations, wi are observation-level weights, β0 is the intercept, xi is
the 1× p vector of covariates, β is the 1× p vector of coefficients, λ is the lasso penalty parameter
that must be ≥ 0, and κj are coefficient-level weights.

When λ = 0, there is no penalty term, and Q is the objective function for a version of the
reweighted least-squares estimator.

By default, the coefficient-level weights κj are 1. The heteroskedastic plugin estimator uses
coefficient-level weights that differ from 1. In addition, they may be set to other values using option
penaltywt().

sqrtlasso uses the coordinate descent algorithm to minimize Q for a given value of λ. See
Friedman et al. (2007) for an introduction to the coordinate descent algorithm.

The numerical problem is made much easier and more stable by standardizing all the covariates
to have mean 0 and standard deviation 1. The standardization also removes β0 from the problem.

The grid of values for λ is specified as described in Methods and formulas in [LASSO] lasso.

As with lasso and elastic net, we need to select a value of λ∗. The available selection methods are
selection(cv) (CV, the default), selection(plugin), selection(bic), and selection(none).
The square-root lasso was designed to facilitate the derivation of the plugin estimator for λ∗ discussed
below. CV and BIC for the square-root lasso use the same algorithm as the regular lasso; see Methods
and formulas in [LASSO] lasso for details.

If option cluster() is specified, the penalized objective function with clusters is

Q =

√√√√ 1

Nclust

Nclust∑
i=1

{
1

Ti

Ti∑
t=1

wit(yit − β0 − xitβ
′)2

}
+

λ

Nclust

p∑
j=1

κj |βj |

where Nclust is the total number of clusters and Ti is the number of observations in cluster i. For
the tth observation in cluster i, wit is its observational level weight, yit is the dependent variable,
and xit are the covariates.

Plugin estimators

The same formula for the plugin estimator is used for the homoskedastic and the heteroskedastic
cases with the square-root lasso. This result is essentially why the square-root lasso was derived; see
Belloni, Chernozhukov, and Wang (2011). In the homoskedastic case, the coefficient-level weights
are all 1 because the variables have been normalized. In the heteroskedastic case, the coefficient-level
weights are estimated using algorithm 1, which comes from Belloni, Chernozhukov, and Wang (2011,
769).

The formula for λ∗ is

λsqrt = 2c
√
N Φ−1

(
1− γ

2p

)
where c = 1.1 per the recommendation of Belloni and Chernozhukov (2011), N is the sample size, γ
is the probability of not removing variable xj when it has a coefficient of 0, and p is the number of
candidate covariates in the model. Also, per the recommendation of Belloni and Chernozhukov (2011),
we set γ = 0.1/ ln[max{p,N}].

sqrtlasso — Square-root lasso for prediction and model selection 339

Algorithm 1: Estimate coefficient-level weights for the heteroskedastic case
1. Remove the mean and standardize each of the covariates xj to have variance one. Remove the

mean from y.

2. Initialize the maximum number of iterations K = 15, initialize the iteration counter k = 0,
and initialize each of the coefficient-level weights,

κj,0 = max1≤i≤N |xij | for j ∈ {1, . . . , p}

3. Update k = k + 1, and estimate the square-root lasso coefficients β̂ using the coefficient-level
weights κj,k−1 and the above formula for λsqrt.

4. Update the coefficient-level weights,

κj,k = max

1,

√
1
N

∑N
i=1(xijri)2√

1
N

∑N
i=1 r

2
i

where ri = yi − xiβ̂

′
.

References
Belloni, A., and V. Chernozhukov. 2011. High dimensional sparse econometric models: An Introduction. In Inverse

Problems of High-Dimensional Estimation, ed. P. Alguier, E. Gautier, and G. Stoltz, 121–156. Berlin: Springer.

Belloni, A., V. Chernozhukov, and L. Wang. 2011. Square-root lasso: Pivotal recovery of sparse signals via conic
programming. Biometrika 98: 791–806. https://doi.org/10.1093/biomet/asr043.

Friedman, J. H., T. J. Hastie, H. Höfling, and R. J. Tibshirani. 2007. Pathwise coordinate optimization. Annals of
Applied Statistics 1: 302–332. https://doi.org/10.1214/07-AOAS131.

Hastie, T. J., R. J. Tibshirani, and M. Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and
Generalizations. Boca Raton, FL: CRC Press.

Also see
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] elasticnet — Elastic net for prediction and model selection

[LASSO] lasso — Lasso for prediction and model selection

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands

https://doi.org/10.1093/biomet/asr043
https://doi.org/10.1214/07-AOAS131

Title

xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Also see

Description

xpoivregress fits a lasso instrumental-variables linear regression model and reports coefficients
along with standard errors, test statistics, and confidence intervals for specified covariates of interest.
The covariates of interest may be endogenous or exogenous. The cross-fit partialing-out method is used
to estimate effects for these variables and to select from potential control variables and instruments
to be included in the model.

Quick start
Estimate a coefficient for endogenous d1 in a linear regression of y on d1, and include x1 to x100

as potential control variables and z1 to z100 as potential instruments to be selected by lassos
xpoivregress y (d1 = z1-z100), controls(x1-x100)

Same as above, and estimate the coefficient for the exogenous d2

xpoivregress y d2 (d1 = z1-z100), controls(x1-x100)

Same as above, but use 20 folds instead of 10 for cross-fitting
xpoivregress y d2 (d1 = z1-z100), controls(x1-x100) xfolds(20)

Same as above, but repeat the cross-fitting procedure 15 times, and average the results
xpoivregress y d2 (d1 = z1-z100), controls(x1-x100) xfolds(20) ///

resample(15)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal λ∗ in each lasso
xpoivregress y d2 (d1 = z1-z100), controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility
xpoivregress y d2 (d1 = z1-z100), controls(x1-x100) selection(cv) ///

rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off
xpoivregress y d2 (d1 = z1-z100), controls(x1-x100) ///

lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d2, and d1

xpoivregress y d2 (d1 = z1-z100), controls(x1-x100) ///
lasso(*, selection(cv), stop(0))

Menu
Statistics > Lasso > Lasso inferential models > Continuous outcomes > Cross-fit partialing-out IV model

340

xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression 341

Syntax
xpoivregress depvar

[
exovars

]
(endovars = instrumvars)

[
if
] [

in
]
,

controls(
[
(alwaysvars)

]
othervars)

[
options

]
Coefficients and standard errors are estimated for the exogenous variables, exovars, and the endogenous
variables, endovars. The set of instrumental variables, instrumvars, may be high dimensional.

options Description

Model
∗controls(

[
(alwaysvars)

]
othervars) alwaysvars and othervars are control variables for depvar,

exovars, and endovars; instrumvars are an additional set
of control variables that apply only to the endovars;
alwaysvars are always included; lassos choose
whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter λ∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

sqrtlasso use square-root lassos
xfolds(#) use # folds for cross-fitting
resample

[
(#)
]

repeat sample splitting # times and average results
technique(dml1 | dml2) use either double machine learning 1 (dml1) or double

machine learning 2 (dml2) estimation technique;
dml2 is the default

missingok after fitting lassos, ignore missing values in any instrumvars
or othervars not selected, and include these observations
in the final model

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization[
no
]
log display or suppress an iteration log

verbose display a verbose iteration log
rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

342 xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression

reestimate refit the model after using lassoselect to select a different
λ∗

noheader do not display the header on the coefficient table
coeflegend display legend instead of statistics
∗controls() is required.
exovars, endovars, instrumvars, alwaysvars, and othervars may contain factor variables. Base levels of factor variables

cannot be set for instrumvars, alwaysvars, and othervars. See [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
reestimate, noheader, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls(
[
(alwaysvars)

]
othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. alwaysvars are variables that
are always to be included in lassos. alwaysvars are optional. othervars are variables that lassos
will choose to include or exclude. The instrumental variables, instrumvars, are an additional set
of control variables, but they apply only to the endovars. controls() is required.

xpoivregress fits lassos for depvar and each one of the exovars and endovars. The control
variables for the lassos for depvar and exovars are alwaysvars (always included) and othervars
(lasso will include or exclude). The control variables for lassos for endovars are exovars (always
included), alwaysvars (always included), instrumvars (lasso will include or exclude), and othervars
(lasso will include or exclude).

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal
value of the lasso penalty parameter λ∗ for each lasso or square-root lasso estimation. Separate
lassos are estimated for depvar and each variable in varsofinterest. Specifying selection()
changes the selection method for all of these lassos. You can specify different selection methods
for different lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso()
is used to specify a different selection method for the lassos of some variables, they override the
global setting made using selection() for the specified variables.

selection(plugin) is the default. It selects λ∗ based on a “plugin” iterative formula dependent
on the data. See [LASSO] lasso options.

selection(cv) selects the λ∗ that gives the minimum of the CV function. See [LASSO] lasso
options.

selection(adaptive) selects λ∗ using the adaptive lasso selection method. It cannot be specified
when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the λ∗ that gives the minimum of the BIC function. See [LASSO] lasso
options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos. The option lasso()
can be used with sqrtlasso to specify that regular lasso be done for some variables, overriding
the global sqrtlasso setting for these variables. See [LASSO] lasso options.

xfolds(#) specifies the number of folds for cross-fitting. The default is xfolds(10).

xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression 343

resample
[
(#)
]

specifies that sample splitting be repeated and results averaged. This reduces the effects
of the randomness of sample splitting on the estimated coefficients. Not specifying resample or
resample(#) is equivalent to specifying resample(1). In other words, by default no resampling
is done. Specifying resample alone is equivalent to specifying resample(10). That is, sample
splitting is repeated 10 times. For each sample split, lassos are computed. So when this option is
not specified, lassos are repeated xfolds(#) times. But when resample(#) is specified, lassos
are repeated xfolds(#)× resample(#) times. Thus, while we recommend using resample to
get final results, note that it can be an extremely time-consuming procedure.

technique(dml1 | dml2) specifies which cross-fitting technique is used, either double machine
learning 1 (dml1) or double machine learning 2 (dml2). For both techniques, the initial estimation
steps are the same. The sample is split into K = xfolds(#) folds. Then, coefficients on the
controls are estimated using only the observations not in the kth fold, for k = 1, 2, . . . ,K. Moment
conditions for the coefficients on the varsofinterest are formed using the observations in fold k.
The default technique, dml2, solves the moment conditions jointly across all the observations. The
optional technique, dml1, solves the moment conditions in each fold k to produce K different
estimates, which are then averaged to form a single vector of estimates. See Methods and formulas.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the
nonmissing observations of variables in the final model. In all cases, any observation with missing
values for depvar, exovars, endovars, instrumvars, alwaysvars, and othervars is omitted from
the estimation sample for the lassos. By default, the same sample is used for calculation of the
coefficients of the exovars and endovars and their standard errors.

When missingok is specified, the initial estimation sample is the same as the default, but the
sample used for the calculation of the coefficients of the exovars and endovars can be larger. Now
observations with missing values for any instrumvars and othervars not selected will be added to
the estimation sample (provided there are no missing values for any of the variables in the final
model).

missingok may produce more efficient estimates when data are missing completely at random. It
does, however, have the consequence that estimation samples can change when selected variables
differ in models fit using different selection methods. That is, when instrumvars and othervars
contain missing values, the estimation sample for a model fit using the default selection(plugin)
will likely differ from the estimation sample for a model fit using, for example, selection(cv).

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust
to some kinds of misspecification (robust) and that allow for intragroup correlation (cluster
clustvar); see [R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso,
this affects how the log-likelihood function is computed and how the sample is split in cross-
validation; see Methods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar) may
lead to different selected controls and therefore to different point estimates for your variable of
interest when compared to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

344 xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation. By default, one-line

messages indicating when each lasso estimation begins are shown. Specify verbose to see a more
detailed log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful
when doing selection(cv) or selection(adaptive). It allows you to monitor the progress
of the lasso estimations for these selection methods, which can be time consuming when there are
many othervars specified in controls() or many instrumvars.

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is
equivalent to typing set seed # prior to running xpoivregress. Random numbers are used to
produce split samples for cross-fitting. So for all selection() options, if you want to reproduce
your results, you must either use this option or use set seed. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options
for all lassos. You specify a varlist followed by the options you want to apply to the lassos
for these variables, where varlist consists of one or more variables from depvar, exovars, or
endovars. all or * may be used to specify depvar and all exovars and endovars. This op-
tion is repeatable as long as different variables are given in each specification. lasso options
are selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and cvtoler-
ance(#). When lasso(varlist, selection(. . .)) is specified, it overrides any global selec-
tion() option for the variables in varlist. It also overrides the global sqrtlasso option for these
variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables
from depvar, exovars, or endovars. This option is repeatable as long as different variables are given
in each specification. lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#),
dtolerance(#), and cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is spec-
ified, it overrides any global selection() option for the variables in varlist. See [LASSO] lasso
options.

The following options are available with xpoivregress but are not shown in the dialog box:

reestimate is an advanced option that refits the xpoivregress model based on changes made
to the underlying lassos using lassoselect. After running xpoivregress, you can select a
different λ∗ for one or more of the lassos estimated by xpoivregress. After selecting λ∗, you
type xpoivregress, reestimate to refit the xpoivregress model based on the newly selected
λ’s.

reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
xpoivregress performs cross-fit partialing-out lasso instrumental-variables linear regression.

This command estimates coefficients, standard errors, and confidence intervals and performs tests
for variables of interest, both exogenous and endogenous, while using lassos to select from among
potential control variables and instruments.

xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression 345

The instrumental-variables linear regression model is

y = dα′d + fα′f + xβ′ + ε

where d are the endogenous variables, f are the exogenous variables for which we wish to make
inferences, and x are the potential control variables from which the lassos select. In addition, lassos
select from potential instrumental variables, z. xpoivregress reports estimated coefficients for αd
and αf . However, cross-fit partialing-out does not provide estimates of the coefficients on the control
variables or their standard errors. No estimation results can be reported for β.

For an introduction to the cross-fit partialing-out lasso method for inference, as well as the
double-selection and partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use xpoivregress and the other lasso inference commands are
presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an
introduction to the examples and to the vl command, which provides tools for working with the large
lists of variables that are often included when using lasso methods. See 2 Fitting and interpreting
inferential models for comparisons of the different methods of fitting inferential models that are
available in Stata. See 6 Fitting an inferential model with endogenous covariates for examples and
discussion specific to models that account for endogenous covariates.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring
inferential model lassos in [LASSO] Inference examples.

Stored results
xpoivregress stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(k varsofinterest) number of variables of interest
e(k controls) number of potential control variables
e(k controls sel) number of selected control variables
e(k inst) number of potential instruments
e(k inst sel) number of selected instruments
e(df) degrees of freedom for test of variables of interest
e(chi2) χ2

e(p) p-value for test of variables of interest
e(n xfolds) number of folds for cross-fitting
e(n resample) number of resamples
e(rank) rank of e(V)

Macros
e(cmd) xpoivregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(lasso depvars) names of dependent variables for all lassos
e(varsofinterest) variables of interest
e(controls) potential control variables
e(controls sel) selected control variables
e(exog) exogenous variables
e(endog) endogenous variables
e(inst) potential instruments
e(inst sel) selected instruments
e(model) linear
e(title) title in estimation output
e(clustvar) name of cluster variable
e(chi2type) Wald; type of χ2 test

346 xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(rngstate) random-number state used
e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
xpoivregress implements cross-fit partialing-out lasso instrumental-variables regression. See

Methods and formulas in [LASSO] xporegress for details about cross-fitting methods DML1 and DML2
and resampling the partitions. See Methods and formulas in [LASSO] poivregress for details about
partialing-out lasso instrumental-variables regression. The model is

y = dα′d + fα′f + xβ′ + ε

where d contains the Jd endogenous covariates of interest, f contains the Jf exogenous covariates
of interest, and x contains the px controls. We also have pz outside instrumental variables, denoted
by z, that are correlated with d but not with ε. The number of controls in x and the number of
instruments in z can be large and, in theory, can grow with the sample size; however, the number of
nonzero elements in β and nonzero coefficients of z must not be too large, which is to say that the
model must be sparse. See Stata commands for inference in [LASSO] Lasso intro for a discussion on
what it means for the model to be sparse.

Cross-fit partialing-out lasso instrumental-variables regression algorithm
1. Randomly partition the sample into K subsamples called folds.

2. Define Ik to be the observations in fold k, and define ICk to be the sample observations not
in fold k.

3. For each k = 1, . . . ,K, fill in the observations of i ∈ Ik for the Jd + Jf moment conditions
that identify α. These moment conditions use out-of-sample estimates of the high-dimensional
components estimated using the observations i ∈ ICk.

a. Using the observations i ∈ ICk, perform a linear lasso of y on x to select controls x̃k,y .

This lasso can choose the lasso penalty parameter (λ∗) using one of the plugin estimators
for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the
linear lasso is the default.

xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression 347

b. Using the observations i ∈ ICk, fit a linear regression of y on x̃k,y , and let δ̂k be the
estimated coefficients on x̃k,y .

c. For the observations i ∈ Ik, fill in the residual.

ρ̃i = yi − x̃k,y,iδ̂
′
k

d. Using the observations i ∈ ICk, for each j = 1, . . . , Jd, perform a linear lasso of dj on
f , x, and z to select the controls x̃d,k,j and the instruments z̃k,j .

Each of these lassos can choose the lasso penalty parameter (λ∗j) using one of the plugin
estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator
for the linear lasso is the default.

e. Using the observations i ∈ ICk, for each j = 1, . . . , Jd, fit a linear regression of dj on
f , x̃d,k,j and z̃k,j , and denote their coefficient estimates by π̂k, γ̂k,j , and θ̂k,j .

f. For the observations i ∈ Ik, for each j = 1, . . . , Jd, fill in the prediction for dj,i,

d̂j,i = fiπ̂
′
k + x̃d,k,j,iγ̂

′
k,j + z̃k,j,iθ̂

′
k,j

g. Using observations i ∈ ICk, for each j = 1, . . . , Jd, perform a linear lasso of d̂j on x,
and let x̌j be the selected controls.

Each of these lassos can choose the lasso penalty parameter (λ∗j) using one of the plugin
estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator
for the linear lasso is the default.

h. Using observations i ∈ ICk, for each j = 1, . . . , Jd, fit a linear regression of d̂j on x̌j ,
and let γ̌j denote the coefficient estimates.

i. For the observations i ∈ Ik, for each j = 1, . . . , Jd, fill in

ďj,i = d̂j,i − x̌j,iγ̌
′
j

j. For the observations i ∈ Ik, for each j = 1, . . . , Jd, fill in

d̃j,i = dj,i − x̌j,iγ̌
′
j

k. Using the observations i ∈ ICk, for each j = 1, . . . , Jf , perform a linear lasso of fj on
x to select the controls x̃f,k,j .

Each of these lassos can choose the lasso penalty parameter (λ∗j) using one of the plugin
estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator
for the linear lasso is the default.

l. Using the observations i ∈ ICk, for each j = 1, . . . , Jf , fit a linear regression of fj on
x̃f,k,j , and let γ̂f,k,j denote the coefficient estimates.

m. For the observations i ∈ Ik, for each j = 1, . . . , Jf , fill in the residuals

f̃j,i = fj,i − x̃f,k,j γ̂
′
f,k,j

348 xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression

n. For the observations i ∈ Ik, form the vector of instruments

wi = (ď1,i, . . . , ďJd,i, f̃1,i, . . . , f̃Jf ,i)

o. For the observations i ∈ Ik, form the vector of partialed-out covariates

pi = (d̃1,i, . . . , d̃Jd,i, f̃1,i, . . . , f̃Jf ,i)

4. Compute the point estimates.

For DML2, compute α̂ by solving the following sample-moment equations.

1

n

n∑
i=1

w′i(ρ̃i − piα
′) = 0

For DML1, α̂ is given by

α̂ =
1

K

K∑
k=1

α̂k

where α̂k is computed by solving the sample-moment equations

1

nk

∑
i∈Ik

w′i(ρ̃i − piα
′
k) = 0

and nk is the number of observations in Ik.

5. The VCE is estimated by

V̂ar(α̂) =
1

n
Ĵ−1

0 Ψ̂
(
Ĵ−1

0

)′
where

Ψ̂ =
1

K

K∑
k=1

Ψ̂k

Ψ̂k =
1

nk

∑
i∈Ik

ψ̂iψ̂
′
i

ψ̂i = w′i(ρ̃i − piα̂
′)

Ĵ0 =
1

K

K∑
k=1

(
1

nk

∑
i∈Ik

ψ̂
a

i

)

xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression 349

and

ψ̂
a

i = w′ipi

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 3a, 3d, 3g,
and 3k choose their penalty parameters (λ∗).

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] poivregress — Partialing-out lasso instrumental-variables regression

[R] ivregress — Single-equation instrumental-variables regression

[U] 20 Estimation and postestimation commands

Title

xpologit — Cross-fit partialing-out lasso logistic regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

xpologit fits a lasso logistic regression model and reports odds ratios along with standard errors,
test statistics, and confidence intervals for specified covariates of interest. The cross-fit partialing-out
method is used to estimate effects for these variables and to select from potential control variables
to be included in the model.

Quick start
Report an odds ratio from a logistic regression of y on d1, and include x1 to x100 as potential

control variables to be selected by lassos
xpologit y d1, controls(x1-x100)

Same as above, and estimate odds ratios for the levels of categorical d2
xpologit y d1 i.d2, controls(x1-x100)

Same as above, but use 20 folds instead of 10 for cross-fitting
xpologit y d1 i.d2, controls(x1-x100) xfolds(20)

Same as above, but repeat the cross-fitting procedure 15 times, and average the results
xpologit y d1 i.d2, controls(x1-x100) xfolds(20) resample(15)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal λ∗ in each lasso
xpologit y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility
xpologit y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off
xpologit y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2

xpologit y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Menu
Statistics > Lasso > Lasso inferential models > Binary outcomes > Cross-fit partialing-out logit model

350

xpologit — Cross-fit partialing-out lasso logistic regression 351

Syntax
xpologit depvar varsofinterest

[
if
] [

in
]
,

controls(
[
(alwaysvars)

]
othervars)

[
options

]
varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗controls(

[
(alwaysvars)

]
othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter λ∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

sqrtlasso use square-root lassos
xfolds(#) use # folds for cross-fitting
resample

[
(#)
]

repeat sample splitting # times and average results
technique(dml1 | dml2) use either double machine learning 1 (dml1) or double

machine learning 2 (dml2) estimation technique;
dml2 is the default

missingok after fitting lassos, ignore missing values in any othervars
not selected, and include these observations in the final
model

offset(varname) include varname in the lasso and model for depvar with
its coefficient constrained to be 1

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

or report odds ratios; the default
coef report estimated coefficients
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization[
no
]
log display or suppress an iteration log

verbose display a verbose iteration log
rseed(#) set random-number seed

352 xpologit — Cross-fit partialing-out lasso logistic regression

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

reestimate refit the model after using lassoselect to select a different
λ∗

noheader do not display the header on the coefficient table
coeflegend display legend instead of statistics
∗controls() is required.
varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for

alwaysvars and othervars. See [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
reestimate, noheader, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls(
[
(alwaysvars)

]
othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. xpologit fits lassos for
depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in
these lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include
or exclude. That is, each lasso will select a subset of othervars and other lassos will potentially
select different subsets of othervars. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal
value of the lasso penalty parameter λ∗ for each lasso or square-root lasso estimation. Separate
lassos are estimated for depvar and each variable in varsofinterest. Specifying selection()
changes the selection method for all of these lassos. You can specify different selection methods
for different lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso()
is used to specify a different selection method for the lassos of some variables, they override the
global setting made using selection() for the specified variables.

selection(plugin) is the default. It selects λ∗ based on a “plugin” iterative formula dependent
on the data. See [LASSO] lasso options.

selection(cv) selects the λ∗ that gives the minimum of the CV function. See [LASSO] lasso
options.

selection(adaptive) selects λ∗ using the adaptive lasso selection method. It cannot be specified
when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the λ∗ that gives the minimum of the BIC function. See [LASSO] lasso
options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos for the varsofinterest.
This option does not apply to depvar. Square-root lassos are linear models, and the lasso for depvar
is always a logit lasso. The option lasso() can be used with sqrtlasso to specify that regular
lasso be done for some variables, overriding the global sqrtlasso setting for these variables. See
[LASSO] lasso options.

xpologit — Cross-fit partialing-out lasso logistic regression 353

xfolds(#) specifies the number of folds for cross-fitting. The default is xfolds(10).

resample
[
(#)
]

specifies that sample splitting be repeated and results averaged. This reduces the effects
of the randomness of sample splitting on the estimated coefficients. Not specifying resample or
resample(#) is equivalent to specifying resample(1). In other words, by default no resampling
is done. Specifying resample alone is equivalent to specifying resample(10). That is, sample
splitting is repeated 10 times. For each sample split, lassos are computed. So when this option is
not specified, lassos are repeated xfolds(#) times. But when resample(#) is specified, lassos
are repeated xfolds(#)× resample(#) times. Thus, while we recommend using resample to
get final results, note that it can be an extremely time-consuming procedure.

technique(dml1 | dml2) specifies which cross-fitting technique is used, either double machine
learning 1 (dml1) or double machine learning 2 (dml2). For both techniques, the initial estimation
steps are the same. The sample is split into K = xfolds(#) folds. Then, coefficients on the
controls are estimated using only the observations not in the kth fold, for k = 1, 2, . . . ,K. Moment
conditions for the coefficients on the varsofinterest are formed using the observations in fold k.
The default technique, dml2, solves the moment conditions jointly across all the observations. The
optional technique, dml1, solves the moment conditions in each fold k to produce K different
estimates, which are then averaged to form a single vector of estimates. See Methods and formulas.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only
the nonmissing observations of variables in the final model. In all cases, any observation with
missing values for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation
sample for the lassos. By default, the same sample is used for calculation of the coefficients of
the varsofinterest and their standard errors.

When missingok is specified, the initial estimation sample is the same as the default, but the sample
used for the calculation of the coefficients of the varsofinterest can be larger. Now observations
with missing values for any othervars not selected will be added to the estimation sample (provided
there are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It
does, however, have the consequence that estimation samples can change when selected variables
differ in models fit using different selection methods. That is, when othervars contain missing
values, the estimation sample for a model fit using the default selection(plugin) will likely
differ from the estimation sample for a model fit using, for example, selection(cv).

offset(varname) specifies that varname be included in the lasso and model for depvar with its
coefficient constrained to be 1.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust
to some kinds of misspecification (robust) and that allow for intragroup correlation (cluster
clustvar); see [R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso,
this affects how the log-likelihood function is computed and how the sample is split in cross-
validation; see Methods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar) may
lead to different selected controls and therefore to different point estimates for your variable of
interest when compared to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

354 xpologit — Cross-fit partialing-out lasso logistic regression

or reports the estimated coefficients transformed to odds ratios, that is, eα. Standard errors and
confidence intervals are similarly transformed. or is the default.

coef reports the estimated coefficients α rather than the odds ratios (eα). This option affects how
results are displayed, not how they are estimated. coef may be specified at estimation or when
replaying previously estimated results.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation. By default, one-line

messages indicating when each lasso estimation begins are shown. Specify verbose to see a more
detailed log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful
when doing selection(cv) or selection(adaptive). It allows you to monitor the progress
of the lasso estimations for these selection methods, which can be time consuming when there are
many othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#)
is equivalent to typing set seed # prior to running xpologit. Random numbers are used to
produce split samples for cross-fitting. So for all selection() options, if you want to reproduce
your results, you must either use this option or use set seed. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options
for all lassos. You specify a varlist followed by the options you want to apply to the lassos for these
variables. varlist consists of one or more variables from depvar or varsofinterest. all or * may be
used to specify depvar and all varsofinterest. This option is repeatable as long as different variables
are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#), toler-
ance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .)) is
specified, it overrides any global selection() option for the variables in varlist. It also overrides
the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables
from varsofinterest. Square-root lassos are linear models, and this option cannot be used with
depvar. This option is repeatable as long as different variables are given in each specification.
lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and
cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is specified, it overrides any
global selection() option for the variables in varlist. See [LASSO] lasso options.

The following options are available with xpologit but are not shown in the dialog box:

reestimate is an advanced option that refits the xpologit model based on changes made to the
underlying lassos using lassoselect. After running xpologit, you can select a different λ∗

for one or more of the lassos estimated by xpologit. After selecting λ∗, you type xpologit,
reestimate to refit the xpologit model based on the newly selected λ’s.

reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

xpologit — Cross-fit partialing-out lasso logistic regression 355

Remarks and examples
xpologit performs cross-fit partialing-out lasso logistic regression. This command estimates odds

ratios, standard errors, and confidence intervals and performs tests for variables of interest while using
lassos to select from among potential control variables.

The logistic regression model is

Pr(y = 1|d,x) =
exp(dα′ + xβ′)

1 + exp(dα′ + xβ′)

where d are the variables for which we wish to make inferences and x are the potential control variables
from which the lassos select. xpologit estimates the α coefficients and reports the corresponding
odds ratios, eα. However, cross-fit partialing-out does not provide estimates of the coefficients on the
control variables (β) or their standard errors. No estimation results can be reported for β.

For an introduction to the cross-fit partialing-out lasso method for inference, as well as the
double-selection and partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use xpologit and the other lasso inference commands are
presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an
introduction to the examples and to the vl command, which provides tools for working with the large
lists of variables that are often included when using lasso methods. See 2 Fitting and interpreting
inferential models for comparisons of the different methods of fitting inferential models that are
available in Stata. Everything we say there about methods of selection is applicable to both linear and
nonlinear models. See 3 Fitting logit inferential models to binary outcomes. What is different? for
examples and discussion specific to logistic regression models. The primary difference from linear
models involves interpreting the results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring
inferential model lassos in [LASSO] Inference examples.

Stored results
xpologit stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(k varsofinterest) number of variables of interest
e(k controls) number of potential control variables
e(k controls sel) number of selected control variables
e(df) degrees of freedom for test of variables of interest
e(chi2) χ2

e(p) p-value for test of variables of interest
e(n xfolds) number of folds for cross-fitting
e(n resample) number of resamples
e(rank) rank of e(V)

Macros
e(cmd) xpologit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(lasso depvars) names of dependent variables for all lassos
e(varsofinterest) variables of interest
e(controls) potential control variables
e(controls sel) selected control variables
e(model) logit

356 xpologit — Cross-fit partialing-out lasso logistic regression

e(title) title in estimation output
e(offset) linear offset variable
e(clustvar) name of cluster variable
e(chi2type) Wald; type of χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(rngstate) random-number state used
e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
xpologit implements cross-fit partialing-out lasso logit regression (XPOLLR) as described in

Chernozhukov et al. (2018), where they derived two versions of cross fitting that are known as double
machine learning 1 (DML1) and double machine learning 2 (DML2). DML2 is the default method and
corresponds with option technique(dml2). Specify option technique(dml1) to get DML1 instead.

Methods DML1 and DML2 have a similar structure. Each does the following.

1. Partitions the sample into K folds.

2. Uses the postlasso estimates computed using the observations not in a specific fold to fill in
the moment conditions for the observations in that fold.

DML1 solves the moment conditions using the observations in each fold to produce K different
estimates and then averages these K estimates to produce the final estimate for the coefficients of
interest. DML2 uses all the observations to solve the moment conditions to produce a single final
estimate for the coefficients of interest.

TheK folds are chosen once by default. Specify option resample(#) to have theK folds randomly
selected # times. This resampling removes the dependence of the estimator on any specifically selected
folds, at the cost of more computer time. See Methods and formulas in [LASSO] xporegress for details
about resampling.

The regression model is
E[y|d, x] = G(dα′ + β0 + xβ′)

where G(a) = exp(a)/{1 + exp(a)}, d contains the J covariates of interest, and x contains the p
controls. The number of covariates in d must be small and fixed. The number of controls in x can
be large and, in theory, can grow with the sample size; however, the number of nonzero elements in
β must not be too large, which is to say that the model must be sparse.

xpologit — Cross-fit partialing-out lasso logistic regression 357

XPOLLR algorithm
1. Randomly partition the sample into K subsamples called folds.

2. Define Ik to be the observations in fold k, and define ICk to be the sample observations not
in fold k.

3. For each k = 1, . . . ,K, fill in the observations of i ∈ Ik for the J moment conditions
that identify α. These moment conditions use out-of-sample estimates of the high-dimensional
components estimated using the observations i ∈ ICk.

a. Using the observations i ∈ ICk, perform a logit lasso of y on d and x to select controls
x̃k,y .

This logit lasso can choose the lasso penalty parameter (λ∗k) using the plugin estimator,
adaptive lasso, or CV. The plugin value is the default.

b. Using the observations i ∈ ICk, fit a logit regression of y on d and x̃k,y , let α̃k be the
estimated coefficients on d, and let δ̃k be the estimated coefficients on x̃k,y .

c. For the observations i ∈ Ik, fill in the prediction for the high-dimensional component
using the out-of-sample estimate δ̃k.

s̃i = x̃k,y,iδ̃
′
k

d. Using the observations i ∈ ICk, for j = 1, . . . , J , perform a linear lasso of dj on x
using observation-level weights

wi = G′(diα̃
′
k + s̃i)

where G′() is the derivative of G(), and denote the selected controls by x̃k,j .

Each of these lassos can choose the lasso penalty parameter (λ∗j) using one of the plugin
estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator
for the linear lasso is the default.

e. Using the observations i ∈ ICk, for j = 1, . . . , J , fit a linear regression of dj on x̃k,j ,
and denote the coefficient estimates by γ̂k,j .

f. For each observation i ∈ Ik, and for j = 1, . . . , J , fill in the instrument

zj,i = dj,i − x̃k,j,iγ̂
′
k,j

g. For each observation i ∈ Ik, collect the instruments into a vector zi = (z1,i, z2,i, . . . , zJ,i).

4. Compute the point estimates.

For DML2, compute α̂ by solving the following sample-moment equations.

1

n

n∑
i=1

{yi −G(diα
′ + s̃i)} z′i = 0

For DML1, α̂ is given by

α̂ =
1

K

K∑
k=1

α̂k

358 xpologit — Cross-fit partialing-out lasso logistic regression

where α̂k is computed by solving the sample-moment equations

1

nk

∑
i∈Ik

{yi −G(diα
′
k + s̃i)} z′i = 0

and nk is the number of observations in Ik.

5. The VCE is estimated by

V̂ar(α̂) =
1

n
Ĵ−1

0 Ψ̂
(
Ĵ−1

0

)′
where

Ψ̂ =
1

K

K∑
k=1

Ψ̂k

Ψ̂k =
1

nk

∑
i∈Ik

ψ̂iψ̂
′
i

ψ̂i =
{
yi −G(diα̂

′ + s̃i)
}
z′i

Ĵ0 =
1

K

K∑
k=1

(
1

nk

∑
i∈Ik

ψ̂
a

i

)

and

ψ̂
a

i =
∂ψ̂i
∂α̂

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 3a and 3d choose
their penalty parameters (λ∗).

Reference
Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. B. Hansen, W. K. Newey, and J. M. Robins. 2018.

Double/debiased machine learning for treatment and structural parameters. Econometrics Journal 21: C1–C68.
https://doi.org/10.1111/ectj.12097.

https://doi.org/10.1111/ectj.12097

xpologit — Cross-fit partialing-out lasso logistic regression 359

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] dslogit — Double-selection lasso logistic regression

[LASSO] pologit — Partialing-out lasso logistic regression

[R] logit — Logistic regression, reporting coefficients

[R] logistic — Logistic regression, reporting odds ratios

[U] 20 Estimation and postestimation commands

Title

xpopoisson — Cross-fit partialing-out lasso Poisson regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

xpopoisson fits a lasso Poisson regression model and reports incidence-rate ratios along with
standard errors, test statistics, and confidence intervals for specified covariates of interest. The cross-fit
partialing-out method is used to estimate effects for these variables and to select from potential control
variables to be included in the model.

Quick start
Report an incidence-rate ratio from a Poisson regression of y on d1, and include x1 to x100 as

potential control variables to be selected by lassos
xpopoisson y d1, controls(x1-x100)

Same as above, and estimate incidence-rate ratios for the levels of categorical d2
xpopoisson y d1 i.d2, controls(x1-x100)

Same as above, but use 20 folds instead of 10 for cross-fitting
xpopoisson y d1 i.d2, controls(x1-x100) xfolds(20)

Same as above, but repeat the cross-fitting procedure 15 times, and average the results
xpopoisson y d1 i.d2, controls(x1-x100) xfolds(20) resample(15)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal λ∗ in each lasso
xpopoisson y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility
xpopoisson y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off
xpopoisson y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2

xpopoisson y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Menu
Statistics > Lasso > Lasso inferential models > Count outcomes > Cross-fit partialing-out Poisson model

360

xpopoisson — Cross-fit partialing-out lasso Poisson regression 361

Syntax
xpopoisson depvar varsofinterest

[
if
] [

in
]
,

controls(
[
(alwaysvars)

]
othervars)

[
options

]
varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗controls(

[
(alwaysvars)

]
othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter λ∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

sqrtlasso use square-root lassos for varsofinterest
xfolds(#) use # folds for cross-fitting
resample

[
(#)
]

repeat sample splitting # times and average results
technique(dml1 | dml2) use either double machine learning 1 (dml1) or double

machine learning 2 (dml2) estimation technique;
dml2 is the default

missingok after fitting lassos, ignore missing values in any othervars
not selected, and include these observations in the final
model

offset(varnameo) include varnameo in the lasso and model for depvar with
its coefficient constrained to be 1

exposure(varnamee) include ln(varnamee) in the lasso and model for depvar
with its coefficient constrained to be 1

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios; the default
coef report estimated coefficients
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization[
no
]
log display or suppress an iteration log

verbose display a verbose iteration log
rseed(#) set random-number seed

362 xpopoisson — Cross-fit partialing-out lasso Poisson regression

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

reestimate refit the model after using lassoselect to select a different
λ∗

noheader do not display the header on the coefficient table
coeflegend display legend instead of statistics
∗controls() is required.
varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for

alwaysvars and othervars. See [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
reestimate, noheader, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls(
[
(alwaysvars)

]
othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. xpopoisson fits lassos for
depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in
these lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include
or exclude. That is, each lasso will select a subset of othervars and other lassos will potentially
select different subsets of othervars. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal
value of the lasso penalty parameter λ∗ for each lasso or square-root lasso estimation. Separate
lassos are estimated for depvar and each variable in varsofinterest. Specifying selection()
changes the selection method for all of these lassos. You can specify different selection methods
for different lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso()
is used to specify a different selection method for the lassos of some variables, they override the
global setting made using selection() for the specified variables.

selection(plugin) is the default. It selects λ∗ based on a “plugin” iterative formula dependent
on the data. See [LASSO] lasso options.

selection(cv) selects the λ∗ that gives the minimum of the CV function. See [LASSO] lasso
options.

selection(adaptive) selects λ∗ using the adaptive lasso selection method. It cannot be specified
when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the λ∗ that gives the minimum of the BIC function. See [LASSO] lasso
options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos for the varsofinterest.
This option does not apply to depvar. Square-root lassos are linear models, and the lasso for
depvar is always a Poisson lasso. The option lasso() can be used with sqrtlasso to specify
that regular lasso be done for some variables, overriding the global sqrtlasso setting for these
variables. See [LASSO] lasso options.

xpopoisson — Cross-fit partialing-out lasso Poisson regression 363

xfolds(#) specifies the number of folds for cross-fitting. The default is xfolds(10).

resample
[
(#)
]

specifies that sample splitting be repeated and results averaged. This reduces the effects
of the randomness of sample splitting on the estimated coefficients. Not specifying resample or
resample(#) is equivalent to specifying resample(1). In other words, by default no resampling
is done. Specifying resample alone is equivalent to specifying resample(10). That is, sample
splitting is repeated 10 times. For each sample split, lassos are computed. So when this option is
not specified, lassos are repeated xfolds(#) times. But when resample(#) is specified, lassos
are repeated xfolds(#)× resample(#) times. Thus, while we recommend using resample to
get final results, note that it can be an extremely time-consuming procedure.

technique(dml1 | dml2) specifies which cross-fitting technique is used, either double machine
learning 1 (dml1) or double machine learning 2 (dml2). For both techniques, the initial estimation
steps are the same. The sample is split into K = xfolds(#) folds. Then, coefficients on the
controls are estimated using only the observations not in the kth fold, for k = 1, 2, . . . ,K. Moment
conditions for the coefficients on the varsofinterest are formed using the observations in fold k.
The default technique, dml2, solves the moment conditions jointly across all the observations. The
optional technique, dml1, solves the moment conditions in each fold k to produce K different
estimates, which are then averaged to form a single vector of estimates. See Methods and formulas.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only
the nonmissing observations of variables in the final model. In all cases, any observation with
missing values for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation
sample for the lassos. By default, the same sample is used for calculation of the coefficients of
the varsofinterest and their standard errors.

When missingok is specified, the initial estimation sample is the same as the default, but the sample
used for the calculation of the coefficients of the varsofinterest can be larger. Now observations
with missing values for any othervars not selected will be added to the estimation sample (provided
there are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It
does, however, have the consequence that estimation samples can change when selected variables
differ in models fit using different selection methods. That is, when othervars contain missing
values, the estimation sample for a model fit using the default selection(plugin) will likely
differ from the estimation sample for a model fit using, for example, selection(cv).

offset(varnameo) specifies that varnameo be included in the lasso and model for depvar with its
coefficient constrained to be 1.

exposure(varnamee) specifies that ln(varnamee) be included in the lasso and model for depvar with
its coefficient constrained to be 1.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust
to some kinds of misspecification (robust) and that allow for intragroup correlation (cluster
clustvar); see [R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso,
this affects how the log-likelihood function is computed and how the sample is split in cross-
validation; see Methods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar) may
lead to different selected controls and therefore to different point estimates for your variable of
interest when compared to the estimation that ignores clustering.

364 xpopoisson — Cross-fit partialing-out lasso Poisson regression

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, eα. Standard errors
and confidence intervals are similarly transformed. irr is the default.

coef reports the estimated coefficients α rather than the incidence-rate ratios, eα. This option affects
how results are displayed, not how they are estimated. coef may be specified at estimation or
when replaying previously estimated results.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation. By default, one-line

messages indicating when each lasso estimation begins are shown. Specify verbose to see a more
detailed log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful
when doing selection(cv) or selection(adaptive). It allows you to monitor the progress
of the lasso estimations for these selection methods, which can be time consuming when there are
many othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#)
is equivalent to typing set seed # prior to running xpopoisson. Random numbers are used to
produce split samples for cross-fitting. So for all selection() options, if you want to reproduce
your results, you must either use this option or use set seed. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options
for all lassos. You specify a varlist followed by the options you want to apply to the lassos for these
variables. varlist consists of one or more variables from depvar or varsofinterest. all or * may be
used to specify depvar and all varsofinterest. This option is repeatable as long as different variables
are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#), toler-
ance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .)) is
specified, it overrides any global selection() option for the variables in varlist. It also overrides
the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables
from varsofinterest. Square-root lassos are linear models, and this option cannot be used with
depvar. This option is repeatable as long as different variables are given in each specification.
lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and
cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is specified, it overrides any
global selection() option for the variables in varlist. See [LASSO] lasso options.

The following options are available with xpopoisson but are not shown in the dialog box:

reestimate is an advanced option that refits the xpopoisson model based on changes made to the
underlying lassos using lassoselect. After running xpopoisson, you can select a different λ∗

for one or more of the lassos estimated by xpopoisson. After selecting λ∗, you type xpopoisson,
reestimate to refit the xpopoisson model based on the newly selected λ∗’s.

reestimate may be combined only with reporting options.

xpopoisson — Cross-fit partialing-out lasso Poisson regression 365

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
xpopoisson performs cross-fit partialing-out lasso Poisson regression. This command estimates

incidence-rate ratios, standard errors, and confidence intervals and performs tests for variables of
interest while using lassos to select from among potential control variables.

The Poisson regression model is

E[y|d, x] = exp(dα′ + xβ′)

where d are the variables for which we wish to make inferences and x are the potential control
variables from which the lassos select. xpopoisson estimates the α coefficients and reports the
corresponding incidence-rate ratios, eα. However, cross-fit partialing-out does not provide estimates
of the coefficients on the control variables (β) or their standard errors. No estimation results can be
reported for β.

For an introduction to the cross-fit partialing-out lasso method for inference, as well as the
double-selection and partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use xpopoisson and the other lasso inference commands are
presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an
introduction to the examples and to the vl command, which provides tools for working with the large
lists of variables that are often included when using lasso methods. See 2 Fitting and interpreting
inferential models for comparisons of the different methods of fitting inferential models that are
available in Stata. Everything we say there about methods of selection is applicable to both linear
and nonlinear models. See 4 Fitting inferential models to count outcomes. What is different? for
examples and discussion specific to Poisson regression models. The primary difference from linear
models involves interpreting the results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring
inferential model lassos in [LASSO] Inference examples.

Stored results
xpopoisson stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(k varsofinterest) number of variables of interest
e(k controls) number of potential control variables
e(k controls sel) number of selected control variables
e(df) degrees of freedom for test of variables of interest
e(chi2) χ2

e(p) p-value for test of variables of interest
e(n xfolds) number of folds for cross-fitting
e(n resample) number of resamples
e(rank) rank of e(V)

Macros
e(cmd) xpopoisson
e(cmdline) command as typed

366 xpopoisson — Cross-fit partialing-out lasso Poisson regression

e(depvar) name of dependent variable
e(lasso depvars) names of dependent variables for all lassos
e(varsofinterest) variables of interest
e(controls) potential control variables
e(controls sel) selected control variables
e(model) poisson
e(title) title in estimation output
e(offset) linear offset variable
e(clustvar) name of cluster variable
e(chi2type) Wald; type of χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(rngstate) random-number state used
e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
xpopoisson implements cross-fit partialing-out lasso Poisson regression (XPOLPR) as described in

Chernozhukov et al. (2018), where they derived two versions of cross-fitting that are known as double
machine learning 1 (DML1) and double machine learning 2 (DML2). DML2 is the default method and
corresponds with option technique(dml2). Specify option technique(dml1) to get DML1 instead.

Methods DML1 and DML2 have a similar structure. Each does the following:

1. Partitions the sample into K folds.

2. Uses the postlasso estimates computed using the observations not in a specific fold to fill in
the moment conditions for the observations in that fold.

DML1 solves the moment conditions using the observations in each fold to produce K different
estimates and then averages these K estimates to produce the final estimate for the coefficients of
interest. DML2 uses all the observations to solve the moment conditions to produce a single final
estimate for the coefficients of interest.

TheK folds are chosen once by default. Specify option resample(#) to have theK folds randomly
selected # times. This resampling removes the dependence of the estimator on any specifically selected
folds, at the cost of more computer time. See Methods and formulas in [LASSO] xporegress for details
about resampling.

The regression model is
E[y|d, x] = G(dα′ + β0 + xβ′)

xpopoisson — Cross-fit partialing-out lasso Poisson regression 367

where G(a) = exp(a), d contains the J covariates of interest, and x contains the p controls. The
number of covariates in d must be small and fixed. The number of controls in x can be large and,
in theory, can grow with the sample size; however, the number of nonzero elements in β must not
be too large, which is to say that the model must be sparse.

XPOLPR algorithm
1. Randomly partition the sample into K subsamples called folds.

2. Define Ik to be the observations in fold k, and define ICk to be the sample observations not
in fold k.

3. For each k = 1, . . . ,K, fill in the observations of i ∈ Ik for the J moment conditions
that identify α. These moment conditions use out-of-sample estimates of the high-dimensional
components estimated using the observations i ∈ ICk.

a. Using the observations i ∈ ICk, perform a Poisson lasso of y on d and x to select
controls x̃k,y .

This Poisson lasso can choose the lasso penalty parameter (λ∗k) using the plugin estimator,
adaptive lasso, or CV. The plugin value is the default.

b. Using the observations i ∈ ICk, fit a Poisson regression of y on d and x̃k,y , let α̃k be
the estimated coefficients on d, and let δ̃k be the estimated coefficients on x̃k,y .

c. For the observations i ∈ Ik, fill in the prediction for the high-dimensional component
using the out-of-sample estimate δ̃k.

s̃i = x̃k,y,iδ̃
′
k

d. Using the observations i ∈ ICk, for j = 1, . . . , J , perform a linear lasso of dj on x
using observation-level weights

wi = G′(diα̃
′
k + s̃i)

where G′(·) is the derivative of G(·), and denote the selected controls by x̃k,j .

Each of these lassos can choose the lasso penalty parameter (λ∗j) using one of the plugin
estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator
for the linear lasso is the default.

e. Using the observations i ∈ ICk, for j = 1, . . . , J , fit a linear regression of dj on x̃k,j ,
and denote the coefficient estimates by γ̂k,j .

f. For each observation i ∈ Ik, and for j = 1, . . . , J , fill in the instrument

zj,i = dj,i − x̃k,j,iγ̂
′
k,j

g. For each observation i ∈ Ik, collect the instruments into a vector zi = (z1,i, z2,i, . . . , zJ,i).

4. Compute the point estimates.

For DML2, compute α̂ by solving the following sample-moment equations.

1

n

n∑
i=1

{yi −G(diα
′ + s̃i)} z′i = 0

368 xpopoisson — Cross-fit partialing-out lasso Poisson regression

For DML1, α̂ is given by

α̂ =
1

K

K∑
k=1

α̂k

where α̂k is computed by solving the sample-moment equations

1

nk

∑
i∈Ik

{yi −G(diα
′
k + s̃i)} z′i = 0

and nk is the number of observations in Ik.

5. The VCE is estimated by

V̂ar(α̂) =
1

n
Ĵ−1

0 Ψ̂
(
Ĵ−1

0

)′
where

Ψ̂ =
1

K

K∑
k=1

Ψ̂k

Ψ̂k =
1

nk

∑
i∈Ik

ψ̂iψ̂
′
i

ψ̂i =
{
yi −G(diα̂

′ + s̃i)
}
z′i

Ĵ0 =
1

K

K∑
k=1

(
1

nk

∑
i∈Ik

ψ̂
a

i

)

and

ψ̂
a

i =
∂ψ̂i
∂α̂

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 3a and 3d choose
their penalty parameters (λ∗).

Reference
Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. B. Hansen, W. K. Newey, and J. M. Robins. 2018.

Double/debiased machine learning for treatment and structural parameters. Econometrics Journal 21: C1–C68.
https://doi.org/10.1111/ectj.12097.

https://doi.org/10.1111/ectj.12097

xpopoisson — Cross-fit partialing-out lasso Poisson regression 369

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] dspoisson — Double-selection lasso Poisson regression

[LASSO] popoisson — Partialing-out lasso Poisson regression

[R] poisson — Poisson regression

[U] 20 Estimation and postestimation commands

Title

xporegress — Cross-fit partialing-out lasso linear regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

xporegress fits a lasso linear regression model and reports coefficients along with standard errors,
test statistics, and confidence intervals for specified covariates of interest. The cross-fit partialing-out
method is used to estimate effects for these variables and to select from potential control variables
to be included in the model.

Quick start
Estimate a coefficient for d1 in a linear regression of y on d1, and include x1 to x100 as potential

control variables to be selected by lassos
xporegress y d1, controls(x1-x100)

Same as above, and estimate coefficients for the levels of categorical d2
xporegress y d1 i.d2, controls(x1-x100)

Same as above, but use 20 folds instead of 10 for cross-fitting
xporegress y d1 i.d2, controls(x1-x100) xfolds(20)

Same as above, but repeat the cross-fitting procedure 15 times, and average the results
xporegress y d1 i.d2, controls(x1-x100) xfolds(20) resample(15)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal λ∗ in each lasso
xporegress y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility
xporegress y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off
xporegress y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2

xporegress y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Menu
Statistics > Lasso > Lasso inferential models > Continuous outcomes > Cross-fit partialing-out model

370

xporegress — Cross-fit partialing-out lasso linear regression 371

Syntax
xporegress depvar varsofinterest

[
if
] [

in
]
,

controls(
[
(alwaysvars)

]
othervars)

[
options

]
varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗controls(

[
(alwaysvars)

]
othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter λ∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter λ∗ for each lasso

sqrtlasso use square-root lassos
xfolds(#) use # folds for cross-fitting
resample

[
(#)
]

repeat sample splitting # times and average results
technique(dml1 | dml2) use either double machine learning 1 (dml1) or double

machine learning 2 (dml2) estimation technique;
dml2 is the default

semi use semipartialing-out lasso regression estimator
missingok after fitting lassos, ignore missing values in any othervars

not selected, and include these observations in the final
model

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization[
no
]
log display or suppress an iteration log

verbose display a verbose iteration log
rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

372 xporegress — Cross-fit partialing-out lasso linear regression

reestimate refit the model after using lassoselect to select a different
λ∗

noheader do not display the header on the coefficient table
coeflegend display legend instead of statistics
∗controls() is required.
varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for

alwaysvars and othervars. See [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
reestimate, noheader, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options� � �
Model �

controls(
[
(alwaysvars)

]
othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. xporegress fits lassos for
depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in
these lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include
or exclude. That is, each lasso will select a subset of othervars and other lassos will potentially
select different subsets of othervars. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal
value of the lasso penalty parameter λ∗ for each lasso or square-root lasso estimation. Separate
lassos are estimated for depvar and each variable in varsofinterest. Specifying selection()
changes the selection method for all of these lassos. You can specify different selection methods
for different lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso()
is used to specify a different selection method for the lassos of some variables, they override the
global setting made using selection() for the specified variables.

selection(plugin) is the default. It selects λ∗ based on a “plugin” iterative formula dependent
on the data. See [LASSO] lasso options.

selection(cv) selects the λ∗ that gives the minimum of the CV function. See [LASSO] lasso
options.

selection(adaptive) selects λ∗ using the adaptive lasso selection method. It cannot be specified
when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the λ∗ that gives the minimum of the BIC function. See [LASSO] lasso
options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos. The option lasso()
can be used with sqrtlasso to specify that regular lasso be done for some variables, overriding
the global sqrtlasso setting for these variables. See [LASSO] lasso options.

xfolds(#) specifies the number of folds for cross-fitting. The default is xfolds(10).

resample
[
(#)
]

specifies that sample splitting be repeated and results averaged. This reduces the effects
of the randomness of sample splitting on the estimated coefficients. Not specifying resample or
resample(#) is equivalent to specifying resample(1). In other words, by default no resampling
is done. Specifying resample alone is equivalent to specifying resample(10). That is, sample
splitting is repeated 10 times. For each sample split, lassos are computed. So when this option is
not specified, lassos are repeated xfolds(#) times. But when resample(#) is specified, lassos
are repeated xfolds(#)× resample(#) times. Thus, while we recommend using resample to
get final results, note that it can be an extremely time-consuming procedure.

xporegress — Cross-fit partialing-out lasso linear regression 373

technique(dml1 | dml2) specifies which cross-fitting technique is used, either double machine
learning 1 (dml1) or double machine learning 2 (dml2). For both techniques, the initial estimation
steps are the same. The sample is split into K = xfolds(#) folds. Then, coefficients on the
controls are estimated using only the observations not in the kth fold, for k = 1, 2, . . . ,K. Moment
conditions for the coefficients on the varsofinterest are formed using the observations in fold k.
The default technique, dml2, solves the moment conditions jointly across all the observations. The
optional technique, dml1, solves the moment conditions in each fold k to produce K different
estimates, which are then averaged to form a single vector of estimates. See Methods and formulas.

semi specifies that the semipartialing-out lasso regression estimator be used instead of the fully
partialing-out lasso estimator, which is the default. See Methods and formulas.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only
the nonmissing observations of variables in the final model. In all cases, any observation with
missing values for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation
sample for the lassos. By default, the same sample is used for calculation of the coefficients of
the varsofinterest and their standard errors.

When missingok is specified, the initial estimation sample is the same as the default, but the sample
used for the calculation of the coefficients of the varsofinterest can be larger. Now observations
with missing values for any othervars not selected will be added to the estimation sample (provided
there are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It
does, however, have the consequence that estimation samples can change when selected variables
differ in models fit using different selection methods. That is, when othervars contain missing
values, the estimation sample for a model fit using the default selection(plugin) will likely
differ from the estimation sample for a model fit using, for example, selection(cv).

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust
to some kinds of misspecification (robust) and that allow for intragroup correlation (cluster
clustvar); see [R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso,
this affects how the log-likelihood function is computed and how the sample is split in cross-
validation; see Methods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar) may
lead to different selected controls and therefore to different point estimates for your variable of
interest when compared to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation. By default, one-line

messages indicating when each lasso estimation begins are shown. Specify verbose to see a more
detailed log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful
when doing selection(cv) or selection(adaptive). It allows you to monitor the progress

374 xporegress — Cross-fit partialing-out lasso linear regression

of the lasso estimations for these selection methods, which can be time consuming when there are
many othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#)
is equivalent to typing set seed # prior to running xporegress. Random numbers are used to
produce split samples for cross-fitting. So for all selection() options, if you want to reproduce
your results, you must either use this option or use set seed. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options
for all lassos. You specify a varlist followed by the options you want to apply to the lassos for these
variables. varlist consists of one or more variables from depvar or varsofinterest. all or * may be
used to specify depvar and all varsofinterest. This option is repeatable as long as different variables
are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#), toler-
ance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .)) is
specified, it overrides any global selection() option for the variables in varlist. It also overrides
the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables
from depvar or varsofinterest. This option is repeatable as long as different variables are given
in each specification. lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#),
dtolerance(#), and cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is speci-
fied, it overrides any global selection() option for the variables in varlist. See [LASSO] lasso
options.

The following options are available with xporegress but are not shown in the dialog box:

reestimate is an advanced option that refits the xporegress model based on changes made to the
underlying lassos using lassoselect. After running xporegress, you can select a different λ∗

for one or more of the lassos estimated by xporegress. After selecting λ∗, you type xporegress,
reestimate to refit the xporegress model based on the newly selected λ’s.

reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
xporegress performs cross-fit partialing-out lasso linear regression. This command estimates

coefficients, standard errors, and confidence intervals and performs tests for variables of interest while
using lassos to select from among potential control variables.

The linear regression model is

E[y|d, x] = dα′ + xβ′

where d are the variables for which we wish to make inferences and x are the potential control
variables from which the lassos select. xporegress reports estimated coefficients for α. However,
cross-fit partialing-out does not provide estimates of the coefficients on the control variables (β) or
their standard errors. No estimation results can be reported for β.

xporegress — Cross-fit partialing-out lasso linear regression 375

For an introduction to the cross-fit partialing-out lasso method for inference, as well as the
double-selection and partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use xporegress and the other lasso inference commands are
presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an
introduction to the examples and to the vl command, which provides tools for working with the large
lists of variables that are often included when using lasso methods. See 2 Fitting and interpreting
inferential models for examples of fitting inferential lasso linear models and comparisons of the
different methods available in Stata.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring
inferential model lassos in [LASSO] Inference examples.

Stored results
xporegress stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(k varsofinterest) number of variables of interest
e(k controls) number of potential control variables
e(k controls sel) number of selected control variables
e(df) degrees of freedom for test of variables of interest
e(chi2) χ2

e(p) p-value for test of variables of interest
e(n xfolds) number of folds for cross-fitting
e(n resample) number of resamples
e(rank) rank of e(V)

Macros
e(cmd) xporegress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(lasso depvars) names of dependent variables for all lassos
e(varsofinterest) variables of interest
e(controls) potential control variables
e(controls sel) selected control variables
e(model) linear
e(title) title in estimation output
e(clustvar) name of cluster variable
e(chi2type) Wald; type of χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(rngstate) random-number state used
e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

376 xporegress — Cross-fit partialing-out lasso linear regression

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
xporegress implements cross-fit partialing-out lasso linear regression as described in Chernozhukov

et al. (2018), where they derived two versions of cross-fitting that are known as double machine
learning 1 (DML1) and double machine learning 2 (DML2). DML2 is the default method and corresponds
with option technique(dml2). Specify option technique(dml1) to get DML1 instead.

Methods DML1 and DML2 have a similar structure. Each does the following.

1. Partitions the sample into K folds.

2. Uses the postlasso estimates computed using the observations not in a specific fold to fill in
the moment conditions for the observations in that fold.

DML1 solves the moment conditions using the observations in each fold to produce K different
estimates and then averages these K estimates to produce the final estimate for the coefficients of
interest. DML2 uses all the observations to solve the moment conditions to produce a single final
estimate for the coefficients of interest.

xporegress implements two methods for the partialing-out lasso regression. We call the default
method partialing-out lasso regression (POLR). We call the optional method, obtained by speci-
fying option semi, a semipartialing-out lasso regression (SPOLR). See Methods and formulas in
[LASSO] poregress for a brief literature review of POLR and SPOLR.

The regression model is
E[y|d, x] = dα′ + β0 + xβ′

where d contains the J covariates of interest and x contains the p controls. The number of covariates
in d must be small and fixed. The number of controls in x can be large and, in theory, can grow
with the sample size; however, the number of nonzero elements in β must not be too large, which is
to say that the model must be sparse.

Cross-fit POLR algorithm
1. Randomly partition the sample into K subsamples called folds.

2. Define Ik to be the observations in fold k, and define ICk to be the sample observations not
in fold k.

3. For each k = 1, . . . ,K, fill in the observations of i ∈ Ik for the J moment conditions
that identify α. These moment conditions use out-of-sample estimates of the high-dimensional
components estimated using the observations i ∈ ICk.

a. Using the observations i ∈ ICk, perform a linear lasso of y on x to select covariates
x̃k,y .

This lasso can choose the lasso penalty parameter (λ∗) using one of the plugin estimators
for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the
linear lasso is the default.

b. Using the observations i ∈ ICk, fit a linear regression of y on x̃k,y , and let δ̂k be the
estimated coefficients on x̃k,y .

xporegress — Cross-fit partialing-out lasso linear regression 377

c. For the observations i ∈ Ik, fill in the partial outcome.

ỹi = yi − x̃k,y,iδ̂
′
k

d. Using the observations i ∈ ICk, for each j = 1, . . . , J , perform a linear lasso of dj on
x to select covariates x̃k,j .

Each of these lassos can choose the lasso penalty parameter (λ∗j) using one of the plugin
estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator
for the linear lasso is the default.

e. Using the observations i ∈ ICk, for j = 1, . . . , J , fit a linear regression of dj on x̃k,j ,
and denote the coefficient estimates by γ̂k,j .

f. For each observation i ∈ Ik, and for j = 1, . . . , J , fill in the instrument

zj,i = dj,i − x̃k,j,iγ̂
′
k,j

g. For each observation i ∈ Ik, collect the instruments into a vector zi = (z1,i, z2,i, . . . , zJ,i).

4. Compute the point estimates.

For DML2, compute α̂ by solving the following sample-moment equations.

1

n

n∑
i=1

z′i(ỹi − ziα
′) = 0

For DML1, α̂ is given by

α̂ =
1

K

K∑
k=1

α̂k

where α̂k is computed by solving the sample-moment equations

1

nk

∑
i∈Ik

z′i(ỹi − ziα
′
k) = 0

and nk is the number of observations in Ik.

5. The VCE is estimated by

V̂ar(α̂) =
1

n
Ĵ−1

0 Ψ̂
(
Ĵ−1

0

)′

378 xporegress — Cross-fit partialing-out lasso linear regression

where

Ψ̂ =
1

K

K∑
k=1

Ψ̂k

Ψ̂k =
1

nk

∑
i∈Ik

ψ̂iψ̂
′
i

ψ̂i = z′i(ỹi − ziα̂
′)

Ĵ0 =
1

K

K∑
k=1

(
1

nk

∑
i∈Ik

ψ̂
a

i

)

and

ψ̂
a

i = z′izi

Cross-fit SPOLR algorithm
1. Randomly partition the sample into K subsamples called folds.

2. Define Ik to be the observations in fold k, and define ICk to be the sample observations not
in fold k.

3. For each k = 1, . . . ,K, fill in the observations of i ∈ Ik for the J moment conditions
that identify α. These moment conditions use out-of-sample estimates of the high-dimensional
components estimated using the observations i ∈ ICk.

a. Using the observations i ∈ ICk, perform a linear lasso of y on d and x to select
covariates x̃k,y .

This lasso can choose the lasso penalty parameter (λ∗) using one of the plugin estimators
for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the
linear lasso is the default.

b. Using the observations i ∈ ICk, fit a linear regression of y on d and x̃k,y , and let δ̂k
be the estimated coefficients on x̃k,y .

c. For the observations i ∈ Ik, fill in the partial outcome.

ỹi = yi − x̃k,y,iδ̂
′
k

d. Using the observations i ∈ ICk, for each j = 1, . . . , J , perform a linear lasso of dj on
x to select covariates x̃k,j .

Each of these lassos can choose the lasso penalty parameter (λ∗j) using one of the plugin
estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator
for the linear lasso is the default.

e. Using the observations i ∈ ICk, for j = 1, . . . , J , fit a linear regression of dj on x̃k,j ,
and denote the coefficient estimates by γ̂k,j .

xporegress — Cross-fit partialing-out lasso linear regression 379

f. For each observation i ∈ Ik, and for j = 1, . . . , J , fill in the instrument

zj,i = dj,i − x̃k,j,iγ̂
′
k,j

g. For each observation i ∈ Ik, collect the instruments into a vector zi = (z1,i, z2,i, . . . , zJ,i).

4. Compute the point estimates.

For DML2, compute α̂ by solving the following sample-moment equations.

1

n

n∑
i=1

(ỹi − diα
′)z′i = 0

For DML1, α̂ is given by

α̂ =
1

K

K∑
k=1

α̂k

where α̂k is computed by solving the sample-moment equations

1

nk

∑
i∈Ik

(ỹi − diα̂
′
k)z′i = 0

and nk is the number of observations in Ik.

5. The VCE is estimated by

V̂ar(α̂) =
1

n
Ĵ−1

0 Ψ̂
(
Ĵ−1

0

)′
where

Ψ̂ =
1

K

K∑
k=1

Ψ̂k

Ψ̂k =
1

nk

∑
i∈Ik

ψ̂iψ̂
′
i

ψ̂i = (ỹi − diα̂
′)z′i

Ĵ0 =
1

K

K∑
k=1

(
1

nk

∑
i∈Ik

ψ̂
a

i

)

and

ψai = diz
′
i

380 xporegress — Cross-fit partialing-out lasso linear regression

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 3a and 3d of
both algorithms choose their penalty parameters (λ∗).

Resampling the partitions
TheK folds are chosen once by default. Specify option resample(#) to have theK folds randomly

selected # times. This resampling removes the dependence of the estimator on any specifically selected
folds, at the cost of more computer time.

Let S be the specified number of resamples.

1. For each random partition s = 1, . . . , S, use a cross-fit estimator to obtain the DM1 or the DM2

point estimates α̂s and the estimated VCE V̂ar(α̂s).

2. The mean resampling-corrected point estimates are

α̃ =
1

S

S∑
s=1

α̂s

3. The mean resampling-corrected estimate of the VCE is

Ṽar(α̃) =
1

S

S∑
s=1

{
V̂ar(α̂s) + (α̂s − α̃)(α̂s − α̃)′

}

Reference
Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. B. Hansen, W. K. Newey, and J. M. Robins. 2018.

Double/debiased machine learning for treatment and structural parameters. Econometrics Journal 21: C1–C68.
https://doi.org/10.1111/ectj.12097.

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] dsregress — Double-selection lasso linear regression

[LASSO] poregress — Partialing-out lasso linear regression

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands

https://doi.org/10.1111/ectj.12097

Glossary

adaptive lasso. Adaptive lasso is one of three methods that Stata provides for fitting lasso models.
The other two methods are cross-validation and plugins. Adaptive lasso tends to include fewer
covariates than cross-validation and more covariates than plugins. Adaptive lasso is not used for
fitting square-root lasso and elastic-net models.

Bayesian information criterion, BIC. The Bayesian information criterion (BIC), also known as
Schwarz criterion, is an information-based criterion used for model selection. It is given by the
formula −2× log likelihood + k lnN , where k is the number of parameters in the model and N
is the sample size.

beta-min condition. Beta-min condition is a mathematical statement that the smallest nonzero coeffi-
cient, in absolute value, be sufficiently large in the true or best approximating model. The condition
is seldom met in lasso models because lasso tends to omit covariates with small coefficients. That
is not an issue for prediction, but it is for inference. Stata’s double selection, partialing out, and
cross-fit partialing out work around the issue.

coefficients of interest. See covariates of interest and control covariates.

control variables. See covariates of interest and control covariates.

covariates. Covariates, also known as explanatory variables and RHS variables, refer to the variables
that appear or potentially appear on the right-hand side of a model and that predict the values of
the outcome variable. This manual often refers to “potential covariates” and “selected covariates”
to distinguish the variables that lasso considers from those it selects for inclusion in the model.

covariates of interest and control covariates. Covariates of interest and control covariates compose the
covariates that are specified when fitting lasso models for inference. In these cases, the coefficients
and standard errors for the covariates of interest are estimated and reported. The coefficients for
the control covariates are not reported nor are they recoverable, but they nonetheless appear in the
model to improve the measurement of the coefficients of interest.

Covariates of interest and control covariates are often called variables of interest and control
variables.

The coefficients on the covariates of interest are called the coefficients of interest.

covariate selection. Covariate selection refers to processes that automatically select the covariates to
be included in a model. Lasso, square-root lasso, and elastic net are three such processes. What
makes them special is that they can handle so many potential covariates.

Covariate selection is handled at the same time as estimation. Covariates are included and excluded
based on coefficient estimates. When estimates are 0, covariates are excluded.

cross-fitting. Cross-fitting is another term for double machine learning.

cross-validation (CV). Cross-validation (CV) is a method for fitting lasso models. The other methods
that Stata provides are adaptive lasso and plugins.

The term in general refers to techniques that validate how well predictive models perform. Classic
CV uses one dataset to fit the model and another to evaluate its predictions. When the term is
used in connection with lasso, however, CV refers to K-fold CV, a technique that uses the same
dataset to fit the model and to produce an estimate of how well the model would do if used to
make out-of-sample predictions. See folds.

381

382 Glossary

cross-validation function. The cross-validation (CV) function is calculated by first dividing the data
into K folds. The model for each λ (and α for elastic net) is fit on data in all but one fold,
and then the prediction on that excluded fold is computed and a measure of fit calculated. These
K measures of fit are averaged to give the value of the CV function. For linear models, the CV
function is the CV mean prediction error. For nonlinear models, the CV function is the CV mean
deviance. CV finds the minimum of the CV function, and the value of λ (and α) that gives the
minimum is the selected λ∗ (and α∗).

cross-validation mean deviance. Cross-validation mean deviance is a cross-validation function that
uses the observation-level deviance as a measure of fit.

cross-validation mean deviance ratio. Cross-validation mean deviance ratio is the cross-validation
function using the mean of the deviance ratio as the measure of fit.

cross-validation mean prediction error. Cross-validation mean prediction error is the cross-validation
function using the mean of the square of the prediction error as the measure of fit. For the linear
model, the prediction error is the difference between the individual-level outcome and the linear
prediction x′iβ.

data-generating process (DGP) and data-generating mechanism (DGM). Data-generating process
(DGP) and data-generating mechanism (DGM) are synonyms for the underlying process that generated
the data being analyzed. The scientific and statistical models that researchers fit are sometimes
approximations of the DGP.

deviance. The deviance is a measure-of-fit statistic for linear and nonlinear likelihood-based models.
The deviance for an observation i, Di, is given by

Di = −2(li − lsaturated)

where li is the observation-level likelihood and lsaturated is the value of the saturated likelihood.

deviance null. The deviance null is the mean of the deviance evaluated for the log likelihood of a
model that only includes a constant.

deviance ratio. The deviance ratio is a measure-of-fit statistic for linear and nonlinear likelihood-based
models. It is given by D2

D2 = 1−D/(Dnull)

where D is the mean of the deviance and Dnull is the deviance null.

double machine learning (DML). Double machine learning (DML) is a method for estimating the
coefficients of interest and their standard errors. When lasso is used for inference, you specify
the covariates of interest and the potential control covariates. DML is a family of techniques that
combine sample splitting and robust moment conditions. See double selection, partialing out, and
cross-fit partialing out.

double selection, partialing out, and cross-fit partialing out. Double selection, partialing out, and
cross-fit partialing out are three different estimation techniques for performing inference on a subset
of the coefficients in a lasso model. Stata provides these techniques for linear, logit, probit, Poisson,
and instrumental-variables models. Cross-fit partialing out is also known as double machine learning
(DML). Also see [LASSO] Lasso inference intro.

ds. A shorthand that we use in this manual to refer to all the double-selection inference commands—
dsregress, dslogit, and dspoisson.

Glossary 383

elastic net. Elastic net is a penalized estimator designed to be less likely than lasso to exclude highly
collinear covariates. Stata’s elasticnet command fits elastic-net models using cross-validation.

excluded covariates. See covariate selection.

folds and K-fold cross-validation. Folds andK-fold cross-validation refer to a technique for estimating
how well a model would perform in out-of-sample prediction without actually having a second
dataset. The same data that were used to fit the model are then divided into K approximately
equal-sized, mutually exclusive subsamples called folds. For each fold k, the model is refit on the
data in the other K − 1 folds, and that result is then used to make predictions for the values in
fold k. When the process is complete for all K folds, the predictions in the combined folds are
compared with actual values. The number of folds, K, is usually set to 10.

included covariates. See covariate selection.

inference. Inference means statistical inference or scientific inference. It involves using samples of
data to infer the values of parameters in the underlying population along with measures of their
likely accuracy. The likely accuracy is stated in terms of probabilities, confidence intervals, credence
intervals, standard errors, and other statistical measures.

Inference can also refer to scientific inference. Scientific inference is statistical inference on a causal
parameter. These parameters characterize cause-and-effect relationships. Does more education cause
higher incomes, or is it simply a proxy that is associated with higher incomes because those who
have it are judged to be smarter or have more drive to succeed or simply spent more time with
the right people? If the interest were in simply making statistical predictions, it would not matter.

in-sample R2. The in-sample R2 is the R2 evaluated at the sample where the model is fit.

knots. Knots are the values of the penalty parameters at which variables in the model change.

lambda and alpha. Lambda and alpha (λ and α) are lasso’s and elastic-net’s penalty parameters.

Lambda is lasso’s and square-root lasso’s penalty parameter. Lambda is greater than or equal to 0.
When it is 0, all possible covariates are included in the model. At its largest value (which is model
dependent), no covariates are included. Thus, lambda orders the models.

Alpha is elastic-net’s penalty parameter. Alpha is bounded by 0 and 1, inclusive. When alpha is 0,
the elastic net becomes ridge regression. When alpha is 1, the elastic net becomes lasso.

lasso. Lasso has different meanings in this glossary, depending on usage.

First, we use lasso to mean lasso, the word that started as LASSO because it was an acronym for
“least absolute shrinkage and selection operator”.

Second, we use lasso to mean lasso and square-root lasso, which are two different types of lasso.
See square-root lasso.

Third, we use lasso to mean lasso, square-root lasso, and elastic net. Elastic net is yet another
type of lasso that uses a different penalty function. See elastic net.

Lasso in the broadest sense is widely used for prediction and covariate selection.

Lasso in the narrowest sense is implemented by Stata’s lasso command. It fits linear, logit, probit,
Poisson, and Cox models. It fits them using any of four methods: cross-validation, adaptive lasso,
plugins (not available for Cox models), and the Bayesian information criterion function.

Square-root lasso is implemented by Stata’s sqrtlasso command. It fits linear models using
cross-validation or plugins.

Elastic net is implemented by Stata’s elasticnet command. It fits linear, logit, probit, Poisson,
and Cox models. It uses cross-validation.

384 Glossary

Regardless of the particular lasso used, these methods estimate coefficients on potential covariates.
Covariates are included and excluded based on the estimate. When estimates are 0, covariates are
excluded.

lasso selection. See covariate selection.

nonzero coefficients. Nonzero coefficients are the coefficients estimated for the selected covariates.

not-selected covariates. Not-selected covariates is a synonym for excluded covariates; see covariate
selection.

outcome variable. Outcome variable, also known as dependent variable and LHS variable, refers to
the variable whose values are predicted by the independent variables, which are also known as
covariates and RHS variables.

out-of-sample R2. The out-of-sample R2 is the R2 evaluated for a sample distinct from the one for
which the model was fit.

penalized coefficients. Penalized coefficients are the coefficient estimates produced by lasso when
the covariates are not standardized to have a mean of 0 and standard deviation of 1.

penalized estimators. Penalized estimators are statistical estimators that minimize a measure of fit that
includes a penalty term. That term penalizes models based on their complexity. Lasso, square-root
lasso, and elastic net are penalized estimators.

What distinguishes lasso from elastic net, and is the only thing that distinguishes them, is the
particular form of the penalty term. Lasso uses the sum of the absolute values of the coefficients
for the included covariates. Elastic net uses the same penalty term plus the sum of the squared
coefficients. The additional term is designed to prevent exclusion of highly collinear covariates.

Square-root lasso uses the same penalty term as lasso, but the form of the objective function to
which the penalty is added differs.

penalty loadings. Penalty loadings refer to coefficient-specific penalty weights in adaptive lasso and
plugins. Allowing coefficients to have different penalty weights improves the model chosen by
lasso, square-root lasso, and elastic net.

penalty parameter. Penalty parameter is the formal term for lambda (λ), lasso’s and square-root
lasso’s penalty parameter, and alpha (α), elastic-net’s penalty parameter. See lambda and alpha.

plugins. Plugins are the method for fitting lasso and square-root lasso models, but not elastic-net
models. It is an alternative to cross-validation. Cross-validation tends to include more covariates
than are justified, at least in comparison with the best approximating model. Plugins were developed
to address this problem. Plugins have the added advantage of being quicker to execute, but they
will sometimes miss important covariates that cross-validation will find.

po. A shorthand that we use in this manual to refer to all the partialing-out inference commands—
poregress, pologit, popoisson, and poivregress.

postlasso coefficients. Postlasso coefficients, also known as postselection coefficients, are the estimated
coefficients you would obtain if you refit the model selected by lasso. To be clear about it, you fit
a linear model by using lasso. It selected covariates. You then refit the model on those covariates
by using regress, logit, etc. Those are the postselection coefficients, and they will differ from
those produced by lasso. They will differ because lasso is a shrinkage estimator, and that leads to
the question: which are better for prediction?

There is no definitive answer to that question. The best answer we can give you is to use split
samples and lassogof to evaluate both sets of predictions and choose the better one.

For your information, Stata’s lasso commands—lasso, sqrtlasso, and elasticnet—provide
both the lasso and the postselection coefficients. The lasso coefficients are stored in e(b). The

Glossary 385

postselection coefficients are stored in e(b postselection). You can do in-sample and out-of-
sample prediction with predict. predict by default uses the lasso coefficients. Specify option
postselection, and it uses the postselection coefficients.

potential covariates. See covariates.

prediction and predictive modeling. Prediction and predictive modeling refer to predicting values
of the outcome variable based on covariates. Prediction is what lasso was originally designed to
do. The variables on which the predictions are based do not necessarily have a cause-and-effect
relationship with the outcome. They might be proxies for the cause and effects. Also see inference.

regularized estimator. Regularized estimators is another term used for penalized estimators. See
penalized estimators.

R2. R2 is a measure of goodness of fit. It tells you what fraction of the variance of the outcome is
explained by your model.

sample splitting. Sample splitting is a way of creating two or more smaller datasets from one dataset.
Observations are randomly assigned to subsamples. Stata’s splitsample command does this.
Samples are sometimes split to use the resulting subsamples in different ways. One could use the
first subsample to fit the model and the second subsample to evaluate its predictions.

saturated likelihood. The saturated likelihood is the likelihood for a model that has as many estimated
parameters as data points.

selected covariates. Selected covariates is synonym for included covariates; see covariate selection.

sparsity assumption. Sparsity assumption refers to a requirement for lasso to produce reliable results.
That requirement is that the true model that lasso seeks has few variables, where “few” is measured
relative to the number of observations in the dataset used to fit the model.

square-root lasso. Square-root lasso is a variation on lasso. Development of square-root lassos was
motivated by a desire to better fit linear models with homoskedastic but not normal errors, but it
can also be used with heteroskedastic errors. Stata’s sqrtlasso command fits square-root lassos.

standardized coefficients. Standardized coefficients are the coefficient estimates produced by lasso
when the covariates are standardized to have a mean of 0 and standard deviation of 1.

variable selection. See covariate selection.

variables of interest. See covariates of interest and control covariates.

xpo. A shorthand that we use in this manual to refer to all the cross-fit partialing-out inference
commands—xporegress, xpologit, xpopoisson, and xpoivregress.

Subject and author index

See the combined subject index and the combined author index in the Stata Index.

386

	Contents
	[IG] Installation Guide
	Simple installation
	Before you install
	Stata for Windows installation
	Stata for Mac installation
	Stata for Unix installation

	Installing Stata for Windows
	Upgrade or update?
	Upgrading to Stata/MP, Stata/SE, or Stata/IC
	Before you install
	Installation
	Initialize the license
	Update Stata if necessary
	Register your copy
	Creating network shortcuts
	Other ways to start Stata
	Exiting Stata
	Verifying installation

	Installing Stata for Mac
	Upgrade or update?
	Upgrading to Stata/MP, Stata/SE, or Stata/IC
	Warning against multiple Stata applications
	Before you install
	Installation
	Initialize the license
	Update Stata if necessary
	Register your copy
	Other ways to start Stata
	Exiting Stata

	Installing Stata for Unix
	Installation overview
	Find your installation DVD and paper license
	Obtain superuser access
	Create a directory for Stata
	Upgrading
	Install Stata
	Initialize the license
	Set the message of the day (optional)
	Verify that Stata is working
	Modify shell start-up script
	Update Stata if necessary
	Starting Stata
	Exiting Stata
	Troubleshooting Unix installation
	Troubleshooting Unix start-up
	Stata(console) starts but Stata(GUI) does not

	Platforms and flavors
	Available platforms
	Available flavors

	Documentation

	[GS] Getting Started
	[GSM] Mac
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Video example
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Sidebar
	The Variables window
	The Properties window
	The History window
	Tabs
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk
	How to load a set of frames from disk and save them to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode
	Variable labels in column headers and column width control
	Pinning rows and columns

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View > Do-file Editor menu
	Saving interactive commands from Stata as a do-file
	Navigating your do-file
	Projects
	Auto backup
	Adding user-defined keywords for syntax highlighting

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding community-contributed commands by keyword
	Downloading community-contributed commands

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Other ways to launch Stata
	B.3 Stata batch mode
	B.4 Changing Stata's locale
	B.5 More
	B.6 Memory size considerations

	C More on Stata for Mac
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Stata and the Notification Manager
	C.4 Stata(console) for Mac
	C.5 Calling Stata from Python
	C.6 Changing a Stata for Mac license

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

	[GSU] Unix
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Video example
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Variables window
	The Properties window
	The History window
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer in Stata(GUI)
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk
	How to load a set of frames from disk and save them to disk

	6 Using the Data Editor
	The Data Editor in Stata(GUI)
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode
	Variable labels in column headers and column width control
	Pinning rows and columns

	7 Using the Variables Manager
	The Variables Manager in Stata(GUI)
	The Variable pane
	Right-clicking on the Variable pane
	The Variable properties pane
	Managing notes

	8 Importing data
	Copying and pasting in Stata(GUI)
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor in Stata(GUI)
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Navigating your do-file
	Projects
	Auto backup
	Adding user-defined keywords for syntax highlighting

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Finding community-contributed commands by keyword
	Downloading community-contributed commands

	A Troubleshooting Stata
	A.1 If Stata(GUI) and Stata(console) do not start
	A.2 If Stata(console) starts but Stata(GUI) does not
	A.3 Troubleshooting tips

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Advanced starting of Stata for Unix
	B.3 Stata batch mode
	B.4 Using X Windows remotely
	B.5 Summary of environment variables
	B.6 Changing Stata's locale
	B.7 More
	B.8 Memory size considerations

	C Stata manual pages for Unix
	conren
	Syntax
	Description
	Finding a color scheme
	Can your terminal underline?
	If you had success
	If you did not have success
	Also see

	stata
	Syntax
	Description
	Remarks and examples

	pystata
	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	[GSW] Windows
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Video example
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Variables window
	The Properties window
	The History window
	Menus and dialogs
	The working directory
	Fine control of Stata's windows
	Window types
	Docking windows
	Auto Hide and pinning
	Nondocking windows

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk
	How to load a set of frames from disk and save them to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode
	Variable labels in column headers and column width control
	Pinning rows and columns

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Navigating your do-file
	Projects
	Auto backup
	Adding user-defined keywords for syntax highlighting

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding community-contributed commands by keyword
	Downloading community-contributed commands

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 The Windows Properties Sheet
	B.2 Making shortcuts
	B.3 Executing commands every time Stata is started
	B.4 Other ways to launch Stata
	B.5 Stata batch mode
	B.6 Running simultaneous Stata sessions
	B.7 Changing Stata's locale
	B.8 More
	B.9 Memory size considerations

	C More on Stata for Windows
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Installing Stata for Windows on a network drive
	C.4 Calling Stata from Python
	C.5 Changing a Stata for Windows license

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

	[U] User's Guide
	Contents
	Stata basics
	1 Read this---it will help
	1.1 Getting Started with Stata
	1.2 The User's Guide and the Reference manuals
	1.3 What's new
	1.4 References

	2 A brief description of Stata
	3 Resources for learning and using Stata
	3.1 Overview
	3.2 Stata on the Internet (www.stata.com and other resources)
	3.3 Stata Press
	3.4 The Stata Journal
	3.5 Updating and adding features from the web
	3.6 Conferences and training
	3.7 Books and other support materials
	3.8 Technical support
	3.9 Reference

	4 Stata's help and search facilities
	4.1 Introduction
	4.2 Getting started
	4.3 help: Stata's help system
	4.4 Accessing PDF manuals from help entries
	4.5 Searching
	4.6 More on search
	4.7 More on help
	4.8 search: All the details
	4.9 net search: Searching net resources

	5 Editions of Stata
	5.1 StataNow
	5.2 Platforms
	5.3 Stata/MP, Stata/SE, or Stata/BE
	5.4 Size limits of Stata/MP, SE, and BE
	5.5 Speed comparison of Stata/MP, SE, and BE
	5.6 Feature comparison of Stata/MP, SE, and BE

	6 Managing memory
	6.1 Memory-size considerations
	6.2 Compressing data
	6.3 Setting maxvar
	6.4 The memory command
	6.5 Setting aside memory for temporary storage of preserved datasets

	7 --more-- conditions
	7.1 Description
	7.2 set more
	7.3 The more programming command

	8 Error messages and return codes
	8.1 Making mistakes
	8.2 The return message for obtaining command timings

	9 The Break key
	9.1 Making Stata stop what it is doing
	9.2 Side effects of clicking on Break
	9.3 Programming considerations

	10 Keyboard use
	10.1 Description
	10.2 F-keys
	10.3 Editing keys in Stata
	10.4 Editing keys in Stata for Unix(console)
	10.5 Editing previous lines in Stata
	10.6 Tab expansion of variable names

	Elements of Stata
	11 Language syntax
	11.1 Overview
	11.2 Abbreviation rules
	11.3 Naming conventions
	11.4 varname and varlists
	11.5 by varlist: construct
	11.6 Filenaming conventions
	11.7 References

	12 Data
	12.1 Data and datasets
	12.2 Numbers
	12.3 Dates and times
	12.4 Strings
	12.5 Formats: Controlling how data are displayed
	12.6 Dataset, variable, and value labels
	12.7 Notes attached to data
	12.8 Characteristics
	12.9 Data Editor and Variables Manager
	12.10 Data frames
	12.11 References

	13 Functions and expressions
	13.1 Overview
	13.2 Operators
	13.3 Functions
	13.4 System variables (_variables)
	13.5 Accessing coefficients and standard errors
	13.6 Accessing results from Stata commands
	13.7 Explicit subscripting
	13.8 Using the Expression Builder
	13.9 Indicator values for levels of factor variables
	13.10 Time-series operators
	13.11 Label values
	13.12 Precision and problems therein
	13.13 References

	14 Matrix expressions
	14.1 Overview
	14.2 Row and column names
	14.3 Vectors and scalars
	14.4 Inputting matrices by hand
	14.5 Accessing matrices created by Stata commands
	14.6 Creating matrices by accumulating data
	14.7 Matrix operators
	14.8 Matrix functions
	14.9 Subscripting
	14.10 Using matrices in scalar expressions
	14.11 Reference

	15 Saving and printing output---log files
	15.1 Overview
	15.2 Placing comments in logs
	15.3 Logging only what you type
	15.4 The log-button alternative
	15.5 Printing logs
	15.6 Creating multiple log files for simultaneous use

	16 Do-files
	16.1 Description
	16.2 Calling other do-files
	16.3 Creating and running do-files
	16.4 Programming with do-files
	16.5 References

	17 Ado-files
	17.1 Description
	17.2 What is an ado-file?
	17.3 How can I tell if a command is built in or an ado-file?
	17.4 How can I look at an ado-file?
	17.5 Where does Stata look for ado-files?
	17.6 How do I install an addition?
	17.7 How do I add my own ado-files?
	17.8 How do I install official updates?
	17.9 How do I install updates to community-contributed additions?
	17.10 References

	18 Programming Stata
	18.1 Description
	18.2 Relationship between a program and a do-file
	18.3 Macros
	18.4 Program arguments
	18.5 Scalars and matrices
	18.6 Temporarily destroying the data in memory
	18.7 Temporary objects
	18.8 Accessing results calculated by other programs
	18.9 Accessing results calculated by estimation commands
	18.10 Storing results
	18.11 Ado-files
	18.12 Tools for interacting with programs outside Stata and with other languages
	18.13 A compendium of useful commands for programmers
	18.14 References

	19 Immediate commands
	19.1 Overview
	19.2 The display command
	19.3 The power, precision, and sample-size commands

	20 Estimation and postestimation commands
	20.1 All estimation commands work the same way
	20.2 Standard syntax
	20.3 Replaying prior results
	20.4 Cataloging estimation results
	20.5 Saving estimation results
	20.6 Specification search tools
	20.7 Specifying the estimation subsample
	20.8 Specifying the width of confidence intervals
	20.9 Formatting the coefficient table
	20.10 Obtaining the variance--covariance matrix
	20.11 Obtaining predicted values
	20.12 Accessing estimated coefficients
	20.13 Performing hypothesis tests on the coefficients
	20.14 Obtaining linear combinations of coefficients
	20.15 Obtaining nonlinear combinations of coefficients
	20.16 Obtaining marginal means, adjusted predictions, and predictive margins
	20.17 Obtaining conditional and average marginal effects
	20.18 Obtaining pairwise comparisons
	20.19 Obtaining contrasts, tests of interactions, and main effects
	20.20 Graphing margins, marginal effects, and contrasts
	20.21 Dynamic forecasts and simulations
	20.22 Obtaining robust variance estimates
	20.23 Obtaining scores
	20.24 Weighted estimation
	20.25 A list of postestimation commands
	20.26 References

	21 Creating reports
	21.1 Overview
	21.2 The dynamic document commands
	21.3 The putdocx, putpdf, and putexcel commands

	Advice
	22 Entering and importing data
	22.1 Overview
	22.2 Determining which method to use
	22.3 If you run out of memory
	22.4 ODBC sources
	22.5 JDBC sources

	23 Combining datasets
	23.1 References

	24 Working with strings
	24.1 Description
	24.2 Categorical string variables
	24.3 Mistaken string variables
	24.4 Complex strings
	24.5 References

	25 Working with dates and times
	25.1 Overview
	25.2 Inputting dates and times
	25.3 Displaying dates and times
	25.4 Typing dates and times (datetime literals)
	25.5 Extracting components of dates and times
	25.6 Converting between date and time values
	25.7 Business dates and calendars
	25.8 References

	26 Working with categorical data and factor variables
	26.1 Continuous, categorical, and indicator variables
	26.2 Estimation with factor variables
	26.3 References

	27 Overview of Stata estimation commands
	27.1 Introduction
	27.2 Means, proportions, and related statistics
	27.3 Continuous outcomes
	27.4 Binary outcomes
	27.5 Fractional outcomes
	27.6 Ordinal outcomes
	27.7 Categorical outcomes
	27.8 Count outcomes
	27.9 Generalized linear models
	27.10 Choice models
	27.11 Exact estimators
	27.12 Models with endogenous covariates
	27.13 Models with endogenous sample selection
	27.14 Time-series models
	27.15 Panel-data models
	27.16 Multilevel mixed-effects models
	27.17 Survival analysis models
	27.18 Meta-analysis
	27.19 Spatial autoregressive models
	27.20 Causal inference
	27.21 Pharmacokinetic data
	27.22 Multivariate analysis
	27.23 Maximum likelihood estimation
	27.24 Generalized method of moments (GMM)
	27.25 Structural equation modeling (SEM)
	27.26 Latent class models
	27.27 Finite mixture models (FMMs)
	27.28 Item response theory (IRT)
	27.29 Dynamic stochastic general equilibrium (DSGE) models
	27.30 Lasso
	27.31 Survey data
	27.32 Multiple imputation
	27.33 Power, precision, and sample-size analysis
	27.34 Bayesian analysis
	27.35 Bayesian model averaging
	27.36 Reference

	28 Commands everyone should know
	29 Using the Internet to keep up to date
	29.1 Overview
	29.2 Sharing datasets (and other files)
	29.3 Official updates
	29.4 Downloading and managing additions by users
	29.5 Making your own download site

	Glossary
	A
	B
	C
	D
	E
	F
	H
	I
	L
	N
	O
	P
	S
	T
	U
	V

	[ADAPT] Adaptive Designs
	Contents
	Intro
	Description
	Remarks and examples
	References
	Also see

	GSD intro
	Description
	Remarks and examples
	Introduction
	FSDs
	GSDs

	Components of GSD
	Origins of GSD
	Brief overview of GSD
	Graphing group sequential boundaries

	References
	Also see

	gs
	Description
	Menu
	Syntax
	Remarks and examples
	Introduction
	Efficacy stopping
	Futility stopping
	Graphing stopping boundaries
	Boundary and sample-size calculations using gsdesign
	One-sample tests
	Two-sample tests
	Survival analysis
	Add your own methods

	Stored results
	Acknowledgments
	References
	Also see

	gsbounds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples
	Efficacy stopping
	Efficacy and futility stopping
	Nonbinding futility bounds
	One-sided tests
	Error-spending bounds
	Unevenly spaced looks
	Futility-only stopping

	Stored results
	Methods and formulas
	Group sequential bounds
	Classical (Wang--Tsiatis) bounds
	Error-spending bounds
	Significance level approach

	References
	Also see

	gsdesign
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples
	Design for GSD with tests of two means
	Background on the BHAT study
	Design for GSD with survival analysis

	Stored results
	Methods and formulas
	Sample sizes at interim analyses
	Expected sample size

	References
	Also see

	gsdesign onemean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using gsdesign onemean
	Background for examples
	Computing sample size and stopping boundaries
	Unknown standard deviation and hypothesis tests on mean
	Stopping for both efficacy and futility

	Stored results
	Methods and formulas
	References
	Also see

	gsdesign twomeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using gsdesign twomeans
	Background for examples 1 and 2
	Computing sample size and stopping boundaries with known standard deviation
	Unknown standard deviation and hypothesis tests on means
	Background for example 3
	Efficacy and futility stopping

	Stored results
	Methods and formulas
	References
	Also see

	gsdesign oneproportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using gsdesign oneproportion
	Background for examples
	Computing sample size and stopping boundaries

	Stored results
	Methods and formulas
	References
	Also see

	gsdesign twoproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using gsdesign twoproportions
	Background for examples
	Computing sample size and stopping boundaries

	Stored results
	Methods and formulas
	References
	Also see

	gsdesign logrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using gsdesign logrank
	Background for examples
	Computing sample size and boundaries in the absence of censoring
	Computing sample size and boundaries in the presence of censoring
	Computing sample size and boundaries with uniform accrual

	Stored results
	Methods and formulas
	References
	Also see

	gsdesign usermethod
	Description
	Syntax
	Options
	Remarks and examples
	Steps for adding a new method to the gsdesign command
	A quick example
	Convention for naming options and storing results
	Example: A log-rank test for substantial superiority
	Graphing boundaries

	Initializer and parser
	Using an initializer and parser
	Initializer's s() return settings

	Stored results
	References
	Also see

	Glossary
	Reference

	[BAYES] Bayesian Analysis
	Contents
	Intro
	Description
	Remarks and examples
	What is Bayesian analysis?
	Bayesian versus frequentist analysis, or why Bayesian analysis?
	How to do Bayesian analysis
	Advantages and disadvantages of Bayesian analysis
	Brief background and literature review
	Bayesian statistics
	Posterior distribution
	Selecting priors
	Point and interval estimation
	Comparing Bayesian models
	Posterior prediction

	Bayesian computation
	Markov chain Monte Carlo methods
	Metropolis--Hastings algorithm
	Adaptive random-walk Metropolis--Hastings
	Blocking of parameters
	Metropolis--Hastings with Gibbs updates
	Convergence diagnostics of MCMC

	Summary
	Video examples

	References
	Also see

	Bayesian commands
	Description
	Remarks and examples
	Overview example

	Acknowledgments
	References
	Also see

	Bayesian estimation
	Description
	Video examples
	Also see

	bayes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using the bayes prefix
	Likelihood model
	Default priors
	Initial values
	Command-specific options

	Introductory example
	Linear regression: A case of informative default priors
	Logistic regression with perfect predictors
	Multinomial logistic regression
	Generalized linear model
	Truncated Poisson regression
	Zero-inflated negative binomial model
	Parametric survival model
	Heckman selection model
	Multilevel models
	Two-level models
	Crossed-effects model
	Blocked-diagonal covariance structures

	Panel-data models
	Time-series and DSGE models
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	bayesmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using bayesmh
	Setting up a posterior model
	Likelihood model
	Prior distributions
	Declaring model parameters
	Referring to model parameters
	Specifying arguments of likelihood models and prior distributions
	Substitutable expressions
	Constraints on coefficients in linear combinations
	Random effects
	Checking model specification

	Specifying MCMC sampling procedure
	Reproducing results
	Burn-in period and MCMC sample size
	Improving efficiency of the MH algorithm---blocking of parameters
	Gibbs and hybrid MH sampling
	Adaptation of the MH algorithm
	Specifying initial values

	Summarizing and reporting results
	Posterior summaries and credible intervals
	Saving MCMC results

	Convergence of MCMC
	Video examples
	Getting started examples
	Mean of a normal distribution with a known variance
	Mean of a normal distribution with an unknown variance
	Simple linear regression
	Multiple linear regression
	Improving efficiency of the MH sampling

	Convergence diagnostics using multiple chains
	Multiple chains using default initial values
	Multiple chains using overdispersed initial values

	Bayesian predictions
	Simulating replicated outcomes
	Posterior predictive checks

	Logistic regression model: A case of nonidentifiable parameters
	Ordered probit regression
	Beta-binomial model
	Multivariate regression
	Panel-data and multilevel models
	Two-level random-intercept model or panel-data model
	Linear growth curve model---a random-coefficient model
	Multilevel logistic regression
	Three-level nonlinear model

	Survival models
	Bayesian analysis of change-point problem
	Bioequivalence in a crossover trial
	Random-effects meta-analysis of clinical trials
	Item response theory
	Latent growth model

	Stored results
	Methods and formulas
	Adaptive MH algorithm
	Adaptive MH algorithm for random effects
	Gibbs sampling for some likelihood-prior and prior-hyperprior configurations
	Likelihood-prior configurations
	Prior-hyperprior configurations

	Marginal likelihood

	References
	Also see

	bayesmh evaluators
	Description
	Syntax
	Options
	Remarks and examples
	Program evaluators
	Simple linear regression model
	Logistic regression model
	Multivariate normal regression model
	Cox proportional hazards regression
	Global macros

	Stored results
	Reference
	Also see

	Bayesian postestimation
	Postestimation commands
	Remarks and examples
	Different ways of specifying model parameters
	Specifying functions of model parameters
	Storing estimation results after Bayesian estimation
	Different ways of specifying predictions and their functions

	Also see

	bayesgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using bayesgraph
	Examples
	Trace plots
	Autocorrelation plots
	Histogram plots
	Kernel density plots
	Cumulative sum plots
	Bivariate scatterplots
	Diagnostic plots
	Functions of model parameters

	Methods and formulas
	References
	Also see

	bayesstats
	Description
	Also see

	bayesstats ess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Effective sample size and MCMC sampling efficiency
	Using bayesstats ess

	Stored results
	Methods and formulas
	Also see

	bayesstats grubin
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Gelman--Rubin convergence diagnostic
	Using bayesstats grubin

	Stored results
	Methods and formulas
	References
	Also see

	bayesstats ic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Bayesian information criteria
	Bayes factors
	Using bayesstats ic

	Stored results
	Methods and formulas
	References
	Also see

	bayesstats ppvalues
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Posterior predictive checks
	PPPs
	Nonlinear effect of labor and capital on companies' output

	Stored results
	Methods and formulas
	References
	Also see

	bayesstats summary
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Bayesian summaries for an auto data example

	Stored results
	Methods and formulas
	Point estimates
	Credible intervals

	References
	Also see

	bayestest
	Description
	Remarks and examples
	Also see

	bayestest interval
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Interval tests for continuous parameters
	Interval tests for discrete parameters

	Stored results
	Methods and formulas
	Reference
	Also see

	bayestest model
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Testing nested hypotheses
	Comparing models with different priors

	Stored results
	Methods and formulas
	Also see

	bayespredict
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for predictions
	Options for posterior summaries
	Options for bayesreps

	Remarks and examples
	Overview of Bayesian predictions
	Prior and posterior predictive distributions
	Simulated outcomes
	Posterior predictive checking and replicated outcomes

	Using bayespredict and bayesreps
	Generating and saving simulated outcomes
	Defining test statistics using Mata functions
	User-defined Stata programs
	Posterior summaries of simulated outcomes
	Prediction dataset

	Bayesian predictions
	Posterior predictive inference
	Out-of-sample prediction
	One-step-ahead Bayesian forecast after Bayesian VAR

	Stored results
	Methods and formulas
	Posterior predictive distribution
	MCMC sampling from posterior predictive distribution
	Residuals and expected values

	References
	Also see

	set clevel
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	bayes: betareg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: binreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: biprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: clogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: cloglog
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: dsge
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: dsgenl
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: dsge postestimation
	Postestimation commands
	Remarks and examples
	Also see

	bayes: fracreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: glm
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: gnbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: heckman
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: heckoprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: heckprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: hetoprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: hetprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: hetregress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: intreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: logistic
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	bayes: logit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	bayes: mecloglog
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meglm
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Additional model parameters

	Stored results
	Methods and formulas
	Also see

	bayes: meintreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: melogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: menbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meoprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mepoisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mestreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Ancillary model parameters

	Stored results
	Methods and formulas
	Also see

	bayes: metobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mixed
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mlogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mvreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: nbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: ologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: oprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: poisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: probit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: qreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	bayes: regress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Video examples

	Stored results
	Methods and formulas
	Also see

	bayes: streg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Ancillary model parameters

	Stored results
	Methods and formulas
	Also see

	bayes: tnbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: tobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: tpoisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: truncreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: var
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Advantages of Bayesian VAR models
	Introductory examples
	US macroeconomic examples

	Stored results
	Methods and formulas
	VAR model specification
	Original Minnesota prior with known (fixed) error covariance
	Conjugate Minnesota prior for VAR model with unknown error covariance
	MVN-inverse Wishart prior
	MVN-diffuse (normal-Jeffreys) prior

	References
	Also see

	bayes: var postestimation
	Postestimation commands
	Also see

	bayesvarstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	bayesfcast
	Description
	Quick start
	Syntax
	Also see

	bayesfcast compute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Bayesian dynamic forecasts
	Dynamic forecasts after bayes: var

	Reference
	Also see

	bayesfcast graph
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	bayesirf
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	bayesirf create
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	IRFs after Bayesian vector autoregression (VAR) models
	Technical aspects of IRF files

	Methods and formulas
	Also see

	bayesirf graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	bayesirf cgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	bayesirf ograph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	bayesirf table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	bayesirf ctable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	bayes: xtlogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtmlogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtnbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	bayes: xtologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtoprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtpoisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: zinb
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: ziologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: zioprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: zip
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	Glossary
	Reference

	[BMA] Bayesian Model Averaging
	Contents
	Intro
	Description
	Remarks and examples
	Brief motivation
	What is model averaging and why do we need it?
	Bayesian model averaging (BMA)
	Concepts of BMA
	Usage of BMA
	BMA versus frequentist model averaging
	Computational methods for BMA
	Motivating examples
	Brief background and literature review

	References
	Also see

	BMA commands
	Description
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	bmaregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to BMA for linear regression
	Convergence of BMA
	Interpretation of BMA regression coefficients
	Using the bmaregress command
	Groups of predictors
	Handling factor variables and interactions
	Getting started examples
	BMA predictive performance for the USA crime rate data
	BMA analysis of cross-country economic growth data

	Stored results
	Methods and formulas
	Model assumptions and generic formulas
	Priors on the model space
	Priors for parameter g
	Fixed g priors
	Random g priors

	Centering
	Conditional posterior distribution of model parameters
	Conditional posterior predictive distribution
	MCMC algorithms
	Fixed g parameter
	Random g parameter

	Inference
	Posterior model probability
	Posterior inclusion probability
	Posterior distributions of regression coefficients
	Posterior means and variances of model parameters

	References
	Also see

	bmacoefsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Enumerated model space
	Simulated model space

	Also see

	BMA postestimation
	Description
	Remarks and examples
	Also see

	bmagraph
	Description
	Remarks and examples
	Also see

	bmagraph coefdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	bmagraph msize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	bmagraph pmp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	bmagraph varmap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	bmapredict
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for analytical posterior predictive summaries
	Options for MCMC-sample posterior predictive summaries
	Options for predictions of simulated outcome
	Options for bmareps
	Option for log predictive-scores

	Remarks and examples
	Methods and formulas
	BMA predictions for the linear model
	Analytic predictive mean and standard deviation for fixed g
	Simulating outcome from its posterior predictive distribution

	Reference
	Also see

	bmastats
	Description
	Remarks and examples
	Also see

	bmastats jointness
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Jointness as a measure of variable-inclusion dependence
	Example: Jointness of growth determinants

	Stored results
	Methods and formulas
	References
	Also see

	bmastats lps
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	bmastats models
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	bmastats msize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	bmastats pip
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	Glossary
	References

	[CAUSAL] Causal
	Contents
	Intro
	Description
	Remarks and examples
	Motivation: Causation versus association
	Causal inference workflow
	Potential-outcomes framework
	Treatment-effect estimands
	Assumptions required in potential-outcomes framework
	Relaxing causal assumptions

	Causal diagrams
	Importance of identification before estimation

	References

	Causal inference commands
	Description
	Remarks and examples
	teffects
	stteffects
	telasso
	Difference in differences
	Endogenous treatment
	Causal mediation
	Extended regression models
	margins

	Also see

	DID intro
	Description
	Remarks and examples
	Introduction
	Intuition for estimating effects
	DID with heterogeneous treatment effects
	Standard error considerations
	Different types of data and specification
	Specifying groups and time as binary indicators
	Excluding group and time effects
	Exploring treatment-effect heterogeneity

	Conclusion

	References
	Also see

	didregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	DID estimation
	Graphical diagnostics and tests
	Specifying a 2-by-2 DID
	Standard error considerations
	Default cluster{--}robust standard errors

	Stored results
	Methods and formulas
	DID for repeated cross-sectional data
	DDD model

	DID and DDD models with longitudinal data
	Aggregation estimators
	Wild bootstrap confidence intervals and p-values
	Bias-corrected clustered standard error

	Acknowledgment
	References
	Also see

	didregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat trendplots
	Options for estat grangerplot
	Options for estat bdecomp

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	eteffects
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	eteffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Also see

	etpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Basic example
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	References
	Also see

	etpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	etregress
	Description
	Quick start
	Menu
	Syntax
	Options for maximum likelihood estimates
	Options for two-step consistent estimates
	Options for control-function estimates
	Remarks and examples
	Overview
	Basic examples
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	Constrained model
	General potential-outcome model
	Average treatment effect
	Average treatment effect on the treated

	References
	Also see

	etregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	hdidregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	The RA, IPW, and AIPW estimators
	The TWFE estimator

	Acknowledgments
	References
	Also see

	hdidregress postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat atetplot
	Options for estat aggregation
	Options for estat sci

	Remarks and examples
	Stored results
	Methods and formulas
	Test for all pretreatment period ATETs being zero
	Aggregations for the RA, IPW, and AIPW estimators
	Aggregations for the TWFE estimator
	SCIs

	Reference
	Also see

	mediate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Approaches to mediation analysis
	Workflow for causal mediation
	Forming research questions
	Potential outcomes and effect decompositions
	Evaluating assumptions for causal inference
	Estimation of effects

	Technical overview of causal mediation
	Mediation analysis in the potential-outcomes framework
	Total, direct, and indirect effects
	Comparison of potential outcomes and classical mediation analysis
	Accounting for treatment--mediator interaction
	Assumptions for causal identification

	Examples
	Example 1: A simple causal mediation model
	Example 2: Including covariates and relaxing the no-interaction assumption
	Example 3: Referring to treatment effects using an alternative naming scheme
	Example 4: Causal mediation model with a binary mediator
	Example 5: Causal mediation model with a binary outcome
	Example 6: Causal mediation model with a binary mediator and binary outcome
	Example 7: Causal mediation model with a count mediator
	Example 8: Causal mediation model with an exponential-mean outcome
	Example 9: Causal mediation model with multivalued treatment
	Example 10: Causal mediation model with continuous treatment
	Example 11: Estimating controlled direct effects
	Example 12: Estimating treatment effects on different scales

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	mediate postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat proportion
	Options for estat cde
	Options for estat or, estat rr, and estat irr
	Options for estat effectsplot

	Remarks and examples
	Stored results
	Also see

	stteffects
	Description
	Syntax
	Also see

	stteffects intro
	Description
	Remarks and examples
	Introduction
	A quick tour of the estimators
	Regression adjustment
	Inverse-probability weighting
	Combinations of RA and IPW
	Weighted regression adjustment

	Average treatment effect on the treated
	Comparison of treatment-effects estimators
	Assumptions and tradeoffs
	The conditional independence assumption
	The sufficient overlap assumption
	The correct adjustment for censoring assumption
	Assumptions for the ATET

	Specification diagnostics and tests
	Multivalued treatments

	Acknowledgments
	References
	Also see

	stteffects ipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	stteffects ipwra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Regression-adjusted estimators
	Weighted-adjusted-censoring assumptions
	Weighted regression-adjusted estimators
	Inverse-probability-weighted estimators
	Uncensored data

	Inverse-probability-weighted regression-adjustment estimators
	Weighted-adjusted-censoring IPWRA
	Likelihood-adjusted-censoring IPWRA

	Functional-form details

	References
	Also see

	stteffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntaxes for predict
	Syntax for predict after stteffects ipw
	Syntax for predict after stteffects ipwra
	Syntax for predict after stteffects ra
	Syntax for predict after stteffects wra

	Options for predict
	Options for predict after stteffects ipw
	Options for predict after stteffects ipwra
	Options for predict after stteffects ra
	Options for predict after stteffects wra

	Remarks and examples
	References
	Also see

	stteffects ra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	stteffects wra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tebalance
	Description
	Syntax
	Remarks and examples
	Methods and formulas
	Introduction
	Matched samples
	IPW samples
	Testing the propensity-score model specification

	References
	Also see

	tebalance box
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	tebalance density
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	tebalance overid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	tebalance summarize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	teffects
	Description
	Syntax
	Also see

	teffects intro
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	Estimating treatment effects
	Regression adjustment
	Inverse-probability weighting
	Doubly robust combinations of RA and IPW
	Matching

	Caveats and assumptions
	A quick tour of the estimators
	RA
	IPW
	IPWRA
	AIPW
	Nearest-neighbor matching
	Propensity-score matching

	Video examples

	References
	Also see

	teffects intro advanced
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	The potential-outcome model
	Assumptions needed for estimation
	The CI assumption
	The overlap assumption
	The i.i.d. assumption

	Comparing the ATE and ATET
	Overview of treatment-effect estimators
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators
	Nearest-neighbor matching estimators
	Propensity-score matching estimators
	Choosing among estimators
	Model choice

	Acknowledgments
	References
	Also see

	teffects aipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Parameters and notation
	Overview of EE estimators
	VCE for EE estimators
	TM and OM estimating functions
	TM estimating functions
	OM estimating functions

	Effect estimating functions
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators

	References
	Also see

	teffects ipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects ipwra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects multivalued
	Description
	Remarks and examples
	Introduction
	Parameters and notation
	Illustrating multivalued treatments
	Examples

	References
	Also see

	teffects nnmatch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Nearest-neighbor matching estimator
	Bias-corrected matching estimator

	Propensity-score matching estimator
	PSM, ATE, and ATET variance adjustment

	References
	Also see

	teffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntaxes for predict
	Syntax for predict after aipw and ipwra
	Syntax for predict after ipw
	Syntax for predict after nnmatch and psmatch
	Syntax for predict after ra

	Options for predict
	Options for predict after aipw and ipwra
	Options for predict after ipw
	Options for predict after nnmatch and psmatch
	Options for predict after ra

	Remarks and examples
	Also see

	teffects psmatch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects ra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	telasso
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Estimating the ATE with lassos for covariate selection
	Choosing the tuning parameter
	Estimating the ATET
	High-dimensional semiparametric models

	Stored results
	Methods and formulas
	The model
	Neyman orthogonal moments
	Double machine learning
	Resampling the partitions

	References
	Also see

	telasso postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Also see

	teoverlap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	xthdidregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The model
	The RA, IPW, and AIPW estimators
	Panel data

	The TWFE estimator

	Acknowledgments
	References
	Also see

	xthdidregress postestimation
	Description

	Glossary

	[CM] Choice Models
	Contents
	Intro
	Description
	Remarks and examples
	Introductions
	Declaring and summarizing data
	Fitting choice models
	Postestimation
	Glossary

	Intro 1
	Description
	Remarks and examples
	Interpretation of coefficients
	Inferences from margins
	Expected choice probabilities
	Effects of a continuous covariate
	Effects of a categorical covariate
	Effects of an alternative-specific covariate

	More inferences using margins

	Also see

	Intro 2
	Description
	Remarks and examples
	Data layout for choice models
	cmset: Cross-sectional data
	cmset: Panel data

	Also see

	Intro 3
	Description
	Remarks and examples
	cmchoiceset: Tabulating choice sets
	cmsample: Looking at problem observations
	cmtab: Tabulating chosen alternatives versus other variables
	cmsummarize: Descriptive statistics for CM variables

	Also see

	Intro 4
	Description
	Remarks and examples
	Specialized choice model commands
	Other commands for choice models
	Models for cross-sectional data
	Models for panel data
	Multilevel models for clustered data

	Intro 5
	Description
	Remarks and examples
	Overview of CM commands for discrete choices
	cmclogit: McFadden's choice model
	Looking at cases with missing values using cmsample
	margins after CM estimation
	cmmixlogit: Mixed logit choice models
	cmmprobit: Multinomial probit choice models
	nlogit: Nested logit choice models
	Relationships with other estimation commands
	Duplicating cmclogit using clogit
	Multinomial logistic regression and McFadden's choice model

	Estimation considerations
	Setting the number of integration points
	Convergence
	More than one chosen alternative

	References
	Also see

	Intro 6
	Description
	Remarks and examples
	Overview of CM commands for rank-ordered alternatives
	cmroprobit: Probit regression for rank-ordered alternatives
	Expected choice probabilities (the margins command) after cmroprobit
	cmrologit: Logistic regression for rank-ordered alternatives

	References
	Also see

	Intro 7
	Description
	Remarks and examples
	Data layout for panel choice data
	A cmxtmixlogit model
	Time-series operators
	Using other cm estimation commands with panel data

	Also see

	Intro 8
	Description
	Remarks and examples
	Random utility models
	Alternative-specific variables and case-specific variables
	Independence of irrelevant alternatives
	Estimators that do not assume IIA
	Maximum simulated likelihood

	References
	Also see

	cmchoiceset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmclogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cmclogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Testing coefficient estimates
	Predicted probabilities
	Casewise versus alternativewise sample selection

	Obtaining estimation statistics for the alternatives

	Also see

	cmmixlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cmmixlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	cmmprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The multinomial probit model
	Covariance structures
	Applying constraints to correlation parameters

	Convergence problems

	Stored results
	Methods and formulas
	Overview
	Simulated likelihood

	References
	Also see

	cmmprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat covariance, estat correlation, and estat facweights

	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics

	Also see

	cmrologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Examples
	Comparing respondents
	Incomplete rankings and ties
	Clustered choice data
	Comparison of cmrologit and clogit
	On reversals of rankings

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cmrologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	cmroprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	cmroprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat covariance, estat correlation, and estat facweights

	Remarks and examples
	Also see

	cmsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmsummarize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	cmtab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmxtmixlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cmxtmixlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	margins
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Estimating margins for case-specific variables
	Estimating margins for alternative-specific variables
	The altsubpop suboption for unbalanced choice sets
	More on unbalanced choice sets
	The outcomecontrast() and alternativecontrast() suboptions

	Graphing margins results

	Stored results
	Also see

	nlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Specification and options for lev#_equation
	Options for nlogit
	Specification and options for nlogitgen
	Specification and options for nlogittree

	Remarks and examples
	Introduction
	Data setup and the tree structure
	Estimation
	Testing for the IIA
	Nonnormalized model

	Stored results
	Methods and formulas
	Two-level nested logit model
	Three-level nested logit model

	References
	Also see

	nlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Also see

	Glossary

	[D] Data Management
	Contents
	Intro
	Description
	Also see

	Data management
	Description
	References
	Also see

	append
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Reference
	Also see

	assert
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	assertnested
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	bcal
	Description
	Quick start
	Menu
	Syntax
	Option for bcal check
	Options for bcal create
	Remarks and examples
	Stored results
	Reference
	Also see

	by
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	cd
	Description
	Quick start
	Syntax
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix

	Also see

	cf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Also see

	changeeol
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	checksum
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	clear
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	clonevar
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Acknowledgments
	Also see

	codebook
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collapse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Variablewise or casewise deletion
	Weights
	A final example

	Acknowledgment
	Also see

	compare
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	compress
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Video example

	Also see

	contract
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	copy
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	corr2data
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	count
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	References
	Also see

	cross
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	Data types
	Description
	Remarks and examples
	Precision of numeric storage types

	Also see

	datasignature
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using datasignature interactively
	Using datasignature in do-files
	Interpreting data signatures
	The logic of data signatures

	Stored results
	Methods and formulas
	Reference
	Also see

	Datetime
	Description
	Quick start
	Syntax
	Types of dates and how they are displayed
	How Stata dates are stored
	Converting dates stored as strings to Stata dates
	Formatting Stata dates for display
	Creating dates from components
	Converting among units
	Extracting time-of-day components from datetimes
	Extracting date components from daily dates
	Typing dates into expressions

	Remarks and examples
	Introduction
	Example 1: Converting string datetimes to Stata datetimes
	Example 2: Extracting date components
	Example 3: Building dates from components
	Example 4: Converting among date types
	Example 5: Using dates in expressions

	References
	Also see

	Datetime business calendars
	Description
	Syntax
	Remarks and examples
	Step 1: Read the data, date as string
	Step 2: Convert date variable to %td date
	Step 3: Convert %td date to %tb date
	Key feature: Each business calendar has its own encoding
	Key feature: Omitted dates really are omitted
	Key feature: Extracting components from %tb dates
	Key feature: Merging on dates

	Also see

	Datetime business calendars creation
	Description
	Syntax
	Remarks and examples
	Introduction
	Concepts
	The preliminary commands
	The omit commands: from/to and if
	The omit commands: and
	The omit commands: omit date
	The omit commands: omit dayofweek
	The omit commands: omit dowinmonth
	Creating stbcal-files with bcal create
	Where to place stbcal-files
	How to debug stbcal-files
	Ideas for calendars that may not occur to you

	Also see

	Datetime conversion
	Description
	Quick start
	Syntax
	Remarks and examples
	Introduction
	Specifying the mask
	How the conversion functions interpret the mask
	Working with two-digit years
	Working with incomplete dates and times
	Converting run-together dates, such as 20060125
	Valid times
	The clock() and Clock() functions
	Why there are two datetime encodings
	Advice on using datetime/c and datetime/C
	Determining when leap seconds occurred
	The date() function
	The other conversion functions

	Reference
	Also see

	Datetime display formats
	Description
	Quick start
	Syntax
	Remarks and examples
	Specifying display formats
	Times are truncated, not rounded, when displayed

	Also see

	Datetime durations
	Description
	Quick start
	Syntax
	Functions for calculating durations
	Functions for converting units of a duration

	Remarks and examples
	Calculating ages and differences of dates
	Calculating differences of datetimes

	Reference
	Also see

	Datetime relative dates
	Description
	Quick start
	Syntax
	Remarks and examples
	Current date and time
	Birthdays and anniversaries
	Months: Number of days, first day, and last day
	Determining leap years
	Determining leap seconds
	Dates of days of week

	Also see

	Datetime values from other software
	Description
	Remarks and examples
	Introduction
	Converting SAS dates
	Converting SPSS dates
	Converting R dates
	Converting Excel dates
	Example 1: Converting Excel dates to Stata dates

	Converting OpenOffice dates
	Converting Unix time

	Reference
	Also see

	describe
	Description
	Quick start
	Menu
	Syntax
	Options to describe data in memory
	Options to describe data in a file
	Remarks and examples
	describe
	describe, replace

	Stored results
	References
	Also see

	destring
	Description
	Quick start
	Menu
	Syntax
	Options for destring
	Options for tostring
	Remarks and examples
	destring
	tostring
	Saved characteristics
	Video example

	Acknowledgment
	References
	Also see

	dir
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	drawnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	ds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Also see

	duplicates
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for duplicates examples and duplicates list
	Option for duplicates tag
	Option for duplicates drop

	Remarks and examples
	Video example

	Stored results
	Acknowledgments
	References
	Also see

	dyngen
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	edit
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Modes
	The current observation and current variable
	Assigning value labels to variables
	Changing values of existing cells
	Adding new variables
	Adding new observations
	Copying and pasting
	Logging changes
	Advice

	Also see

	egen
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Summary statistics
	Definitions of egen summary functions

	Missing values
	Generating patterns
	Marking differences among variables
	Ranks
	Standardized variables
	Row functions
	Categorical and integer variables
	String variables

	Acknowledgments
	References
	Also see

	encode
	Description
	Quick start
	Menu
	Syntax
	Options for encode
	Options for decode
	Remarks and examples
	encode
	decode
	Video example

	References
	Also see

	erase
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	expand
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	expandcl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	export
	Description
	Remarks and examples
	Summary of the different methods
	export excel
	export delimited
	jdbc
	odbc
	outfile
	export sasxport5 and export sasxport8
	export spss
	export dbase

	Also see

	filefilter
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	fillin
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	format
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Setting formats
	Setting European formats
	Details of formats
	Other effects of formats
	Displaying current formats
	Video example

	References
	Also see

	fralias
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Overview
	Everything you need to know about fralias add
	Where are alias variables not allowed
	Breaking alias variables
	Rename or drop the linked variable
	Rename or drop the linkage variable
	Rename or drop a matching variable
	Rename or drop the linked frame
	Change sort order in the linked frame

	Stored results
	Also see

	frames intro
	Description
	Remarks and examples
	What frames can do for you
	Use frames to multitask
	Use frames to perform tasks integral to your work
	Use frames to work with separate datasets simultaneously
	Use frames to record statistics gathered from simulations
	Frames make Stata (preserve/restore) faster
	Other uses will occur to you that we should have listed

	Learning frames
	The current frame
	Creating new frames
	Type frame or frames, it does not matter
	Switching frames
	Copying frames
	Dropping frames
	Resetting frames
	Frame prefix command
	Linking frames
	Ignore the _frval() function
	Posting new observations to frames
	Saving, loading, and describing a set of frames

	Programming with frames
	Ado-programming with frames
	Mata programming with frames

	References
	Also see

	frames
	Description
	Menu
	Syntax
	Also see

	frame change
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frame copy
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	frame create
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frame drop
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frame prefix
	Description
	Quick start
	Syntax
	Remarks and examples
	Example of interactive use
	Example of use in programs

	Also see

	frame put
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	frame pwf
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	frame rename
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frames describe
	Description
	Quick start
	Menu
	Syntax
	Options
	Options to describe frames in memory
	Options to describe frames in a file

	Remarks and examples
	Stored results
	Also see

	frames dir
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	frames reset
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frames save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	frames use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	frget
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Overview
	Everything you need to know about frget

	Stored results
	Also see

	frlink
	Description
	Quick start
	Syntax
	Options
	Options for frlink 1:1 and frlink m:1
	Options for frlink rebuild

	Remarks and examples
	Overview of the frlink command
	Everything you need to know about linkages
	Example 1: A typical m:1 linkage
	How link variables work
	Advanced examples
	Example 2: A complex m:1 linkage
	Example 3: A 1:1 linkage, a simple solution to a hard problem

	Stored results
	Also see

	frunalias
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	generate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	generate and replace
	set type
	Video examples

	References
	Also see

	gsort
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	hexdump
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	icd
	Description
	Remarks and examples
	Introduction to ICD coding
	Terminology
	Diagnosis codes
	Procedure codes
	Working with multiple codes

	References
	Also see

	icd9
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd9 check
	Options for icd9 clean
	Options for icd9 generate
	Option for icd9 search

	Remarks and examples
	Using icd9 and icd9p
	Verifying and cleaning variables
	Interactive utilities
	Creating new variables

	Stored results
	References
	Also see

	icd9p
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd9p check
	Options for icd9p clean
	Options for icd9p generate
	Option for icd9p search

	Remarks and examples
	Verifying and cleaning variables
	Interactive utilities
	Creating new variables

	Stored results
	References
	Also see

	icd10
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd10 check
	Options for icd10 clean
	Options for icd10 generate
	Option for icd10 lookup
	Options for icd10 search

	Remarks and examples
	Introduction
	Managing datasets with ICD-10 codes
	Creating new variables

	Stored results
	Acknowledgments
	References
	Also see

	icd10cm
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd10cm check
	Options for icd10cm clean
	Options for icd10cm generate
	Option for icd10cm lookup
	Options for icd10cm search

	Remarks and examples
	Introduction
	Managing datasets with ICD-10-CM codes
	Interactive utilities

	Stored results
	Acknowledgments
	Reference
	Also see

	icd10pcs
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd10pcs check
	Options for icd10pcs clean
	Options for icd10pcs generate
	Option for icd10pcs lookup
	Options for icd10pcs search

	Remarks and examples
	Introduction
	Managing datasets with ICD-10-PCS codes
	Interactive utilities

	Stored results
	Acknowledgments
	Also see

	import
	Description
	Remarks and examples
	Summary of the different methods
	import excel
	import delimited
	jdbc
	odbc
	infile (free format)---infile without a dictionary
	infix (fixed format)
	infile (fixed format)---infile with a dictionary
	import sas
	import sasxport5 and import sasxport8
	import spss
	import fred
	import haver (Windows only)
	import dbase
	spshape2dta

	Examples
	Video example

	References
	Also see

	import dbase
	Description
	Quick start
	Menu
	Syntax
	Options for import dbase
	Options for export dbase
	Remarks
	Stored results
	Also see

	import delimited
	Description
	Quick start
	Menu
	Syntax
	Options for import delimited
	Options for export delimited
	Remarks and examples
	Introduction
	Importing a text file
	Using other delimiters
	Specifying variable types

	Exporting to a text file
	Video example

	Stored results
	Also see

	import excel
	Description
	Quick start
	Menu
	Syntax
	Options for import excel
	Options for export excel
	Remarks and examples
	Video example

	Stored results
	References
	Also see

	import fred
	Description
	Quick start
	Menu
	Syntax
	Options
	Option for set fredkey
	Options for import fred
	Options for freddescribe
	Options for fredsearch

	Remarks and examples
	Introduction and setup
	The FRED interface
	Advanced imports using the import fred command
	Importing historical vintage data
	Searching, saving, and retrieving series information
	Describing series

	Stored results
	References
	Also see

	import haver
	Description
	Quick start
	Menu
	Syntax
	Options for import haver
	Options for import haver, describe
	Option for set haverdir
	Remarks and examples
	Installation
	Setting the path to Haver databases
	Download example Haver databases
	Determining the contents of a Haver database
	Loading a Haver database
	Loading a Haver database from a describe file
	Temporal aggregation
	Daily data
	Weekly data

	Stored results
	Acknowledgment
	Also see

	import sas
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	import sasxport5
	Description
	Quick start
	Menu
	Syntax
	Options for import sasxport5
	Options for export sasxport5
	Remarks and examples
	Saving XPORT files for transferring to SAS
	Determining the contents of XPORT files received from SAS
	Using XPORT files received from SAS

	Stored results
	Technical appendix
	A1. Overview of SAS XPORT Transport format
	A2. Implications for writing XPORT datasets from Stata
	A3. Implications for reading XPORT datasets into Stata

	Also see

	import sasxport8
	Description
	Quick start
	Menu
	Syntax
	Options for import sasxport8
	Options for export sasxport8
	Remarks and examples
	Stored results
	Also see

	import spss
	Description
	Quick start
	Menu
	Syntax
	Options for import spss
	Option for export spss
	Remarks and examples
	Stored results
	Also see

	infile (fixed format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Dictionary directives

	Remarks and examples
	Introduction
	Reading free-format files
	Reading fixed-format files
	Numeric formats
	String formats
	Specifying column and line numbers
	Examples of reading fixed-format files
	Reading fixed-block files
	Reading EBCDIC files

	Also see

	infile (free format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reading free-format data
	Reading comma-separated data
	Specifying variable types
	Reading string variables
	Skipping variables
	Skipping observations
	Reading time-series data

	Also see

	infix (fixed format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Specifications

	Remarks and examples
	Two ways to use infix
	Reading string variables
	Reading data with multiple lines per observation
	Reading subsets of observations

	Also see

	input
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	insobs
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	inspect
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	ipolate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	isid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	jdbc
	Description
	Quick start
	Syntax
	Options
	Options for jdbc connect and jdbc add
	Options for jdbc load
	Options for jdbc insert

	Remarks and examples
	JDBC drivers
	Connecting to a database
	Data source names
	Exploring a database
	Loading data from a database
	Inserting data into a database
	Executing SQL on a database

	Stored results
	References
	Also see

	joinby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	References
	Also see

	label
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video examples

	Stored results
	References
	Also see

	label language
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Creating labels in the first language
	Creating labels in the second and subsequent languages
	Creating labels from a clean slate
	Creating labels from a previously existing language
	Switching languages
	Changing the name of a language
	Deleting a language
	Appendix: Selected ISO 639-1 two-letter codes

	Stored results
	Methods and formulas
	References
	Also see

	labelbook
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for labelbook
	Options for numlabel
	Options for uselabel

	Remarks and examples
	labelbook
	Diagnosing problems
	numlabel
	uselabel

	Stored results
	Acknowledgments
	References
	Also see

	list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	lookfor
	Description
	Quick start
	Syntax
	Remarks and examples
	Stored results
	Reference
	Also see

	memory
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Examples
	Serious bug in Linux OS
	Notes for system administrators

	Stored results
	Also see

	merge
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Basic description
	1:1 merges
	m:1 merges
	1:m merges
	m:m merges
	Sequential merges
	Treatment of overlapping variables
	Sort order
	Troubleshooting m:m merges
	Working with alias variables
	Examples
	Video example

	References
	Also see

	Missing values
	Description
	Remarks and examples
	References
	Also see

	mkdir
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	mvencode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Acknowledgment
	Also see

	notes
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	How notes are numbered
	Attaching and listing notes
	Selectively listing notes
	Searching and replacing notes
	Deleting notes
	Warnings
	Video example

	Reference
	Also see

	obs
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	odbc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Unicode and ODBC
	Setting up the data sources
	Listing ODBC data source names
	Listing available table names from a specified data source's system catalog
	Describing a specified table
	Loading data from ODBC sources

	Reference
	Also see

	order
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	outfile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	pctile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	pctile
	xtile
	_pctile

	Stored results
	Methods and formulas
	Acknowledgment
	Also see

	putmata
	Description
	Quick start
	Syntax
	Options for putmata
	Options for getmata
	Remarks and examples
	Use of putmata
	Use of putmata and getmata
	Using putmata and getmata on subsets of observations
	Using views
	Constructing do-files

	Stored results
	Reference
	Also see

	range
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	recast
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	recode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Simple examples
	Setting up value labels with recode
	Referring to the minimum and maximum in rules
	Recoding missing values
	Recoding subsets of the data
	Otherwise rules
	Test for overlapping rules
	Video example

	Acknowledgment
	Also see

	rename
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	rename group
	Description
	Quick start
	Menu
	Syntax
	Options for renaming variables
	Options for changing the case of groups of variable names
	Remarks and examples
	Advice
	Explanation
	* matches 0 or more characters; use ?* to match 1 or more
	* is greedy
	# is greedier

	Stored results
	Also see

	reshape
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Description of basic syntax
	Wide and long data forms
	Avoiding and correcting mistakes
	reshape long and reshape wide without arguments
	Missing variables
	Advanced issues with basic syntax: i()
	Advanced issues with basic syntax: j()
	Advanced issues with basic syntax: xij
	Advanced issues with basic syntax: String identifiers for j()
	Advanced issues with basic syntax: Second-level nesting
	Description of advanced syntax
	Why favor memory over speed?
	Video examples

	Stored results
	Acknowledgment
	References
	Also see

	rmdir
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	sample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	save
	Description
	Quick start
	Menu
	Syntax
	Options for save
	Options for saveold
	Remarks and examples
	Also see

	separate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Reference
	Also see

	shell
	Description
	Syntax
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix(GUI)
	Stata for Unix(console)

	Reference
	Also see

	snapshot
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	sort
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Finding the smallest values (and the largest)
	Tracking sort order
	Sorting on multiple variables
	Descending sorts
	Sorting on string variables
	Sorting with ties

	References
	Also see

	split
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Also see

	splitsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	stack
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	statsby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Collecting coefficients and standard errors
	Collecting stored results
	All subsets

	Acknowledgment
	References
	Also see

	sysuse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	A note concerning shipped datasets
	Using user-installed datasets
	How sysuse works

	Stored results
	Also see

	type
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	unicode
	Description
	Remarks and examples
	Also see

	unicode collator
	Description
	Syntax
	Remarks and examples
	Overview of collation
	The role of locales in collation
	Further controlling collation

	Also see

	unicode convertfile
	Description
	Syntax
	Options
	Remarks and examples
	Conversion between encodings
	Invalid and unsupported characters
	Examples

	Also see

	unicode encoding
	Description
	Syntax
	Remarks and examples
	Also see

	unicode locale
	Description
	Syntax
	Remarks and examples
	Overview
	Default locale and locale fallback

	Also see

	unicode translate
	Description
	Syntax
	Options
	Remarks and examples
	What is this about?
	Do I need to translate my files?
	Overview of the process
	How to determine the extended ASCII encoding
	Use of unicode analyze
	Use of unicode translate: Overview
	Use of unicode translate: A word on backups
	Use of unicode translate: Output
	Translating binary strLs

	Also see

	use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	varmanage
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	vl
	Description
	Remarks and examples
	Introduction
	vl set and system-defined variable lists
	Classification criteria for system-defined variable lists
	Moving variables into another classification
	vl create and user-defined variable lists
	vl list
	vl substitute and factor-variable operators
	Exploring data with vl set
	Changing the cutoffs for classification
	Moving variables from one classification to another
	Dropping variables and rebuilding variable lists
	Changing variables and updating variable lists
	Saving and using datasets with variable lists
	User-defined variable lists and factor-variable operators
	Updating variable lists created by vl substitute

	Also see

	vl create
	Description
	Quick start
	Syntax
	Remarks and examples
	vl create
	vl modify

	Using variable lists with other Stata commands
	vl substitute

	Also see

	vl drop
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	vl list
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	vl rebuild
	Description
	Quick start
	Syntax
	Remarks and examples
	Reloading datasets
	Merging datasets
	Dropping variables
	vl substitute and vl rebuild
	Characteristics

	Stored results
	Also see

	vl set
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	webuse
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Typical use
	A note concerning example datasets
	Redirecting the source

	Also see

	xpose
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	zipfile
	Description
	Quick start
	Syntax
	Options for zipfile
	Options for unzipfile
	Remarks and examples
	Stored results

	Glossary

	[DSGE] DSGE
	Contents
	Intro
	Description
	Remarks and examples
	Also see

	Intro 1
	Description
	Remarks and examples
	Introduction to DSGE models
	An example: A nonlinear DSGE model
	Writing down nonlinear DSGEs
	Data preparation
	Specifying the model to dsgenl
	Parameter estimation and interpretation of nonlinear DSGEs

	An example: A linear DSGE model
	Writing down linearized DSGEs
	Specifying the model to dsge
	Parameter estimation and interpretation of linear DSGEs

	Postestimation
	Policy and transition matrices
	Impulse responses
	Forecasts

	Structural and reduced forms of DSGE models

	References
	Also see

	Intro 2
	Description
	Remarks and examples
	Introduction
	Syntax for linear DSGE models
	Preview of dsge syntax
	Specifying the system of linear equations
	Control variables
	State variables and shocks
	Expectations of future values of control variables
	Specifying parameters using dsge's substitutable expressions

	Syntax for nonlinear DSGE models
	Preview of dsgenl syntax
	Specifying the system of nonlinear equations
	State and control variables
	Expectations in nonlinear models

	Also see

	Intro 3
	Description
	Remarks and examples
	Also see

	Intro 3a
	Description
	Remarks and examples
	The model
	Parameter estimation
	Policy and transition matrices
	One-step-ahead predictions
	Estimating an unobserved state

	Reference
	Also see

	Intro 3b
	Description
	Remarks and examples
	The model
	Solving the model
	Policy and transition matrices
	Impulse responses
	Sensitivity analysis

	Reference
	Also see

	Intro 3c
	Description
	Remarks and examples
	The model
	Parameter estimation
	Policy and transition matrices
	Impulse responses

	Also see

	Intro 3d
	Description
	Remarks and examples
	The model
	Parameter estimation
	Policy and transition matrices
	Impulse responses
	A change in constraints

	Reference
	Also see

	Intro 3e
	Description
	Remarks and examples
	The model
	Parameter estimation
	Steady state
	Model-implied covariances
	Policy and transition matrices
	Impulse responses
	Sensitivity analysis

	Reference
	Also see

	Intro 3f
	Description
	Remarks and examples
	The model
	Approximating the solution to a nonlinear DSGE model
	Specifying the model to Stata
	After solving
	The steady state
	Approximations to the policy and transition matrices
	Linear and log-linear approximations

	References
	Also see

	Intro 4
	Description
	Remarks and examples
	Introduction
	Shocks to a control equation
	Including a lag of a control variable
	Including a lag of a state variable
	Including an expectation of a control dated by more than one period ahead
	Including a second-order lag of a control variable
	Including an observed exogenous variable

	Also see

	Intro 4a
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4b
	Description
	Remarks and examples
	A model with a lagged endogenous variable
	Parameter estimation

	Also see

	Intro 4c
	Description
	Remarks and examples
	A model with a lagged state variable
	Parameter estimation

	Also see

	Intro 4d
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4e
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4f
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4g
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 5
	Description
	Remarks and examples
	Why we care about stability
	What if the initial values are not saddle-path stable?

	References
	Also see

	Intro 6
	Description
	Remarks and examples
	Reference
	Also see

	Intro 7
	Description
	Remarks and examples
	Also see

	Intro 8
	Description
	Remarks and examples
	Wald tests vary with nonlinear transforms
	LR tests do not vary with nonlinear transforms

	References
	Also see

	Intro 9
	Description
	Remarks and examples
	Introduction
	Principles of Bayesian DSGE estimation
	An uninformative prior
	An informative prior
	Convergence diagnostics

	Also see

	Intro 9a
	Description
	Remarks and examples
	The model
	Parameter estimation
	Posterior diagnostics and plots
	Improving sampling efficiency
	Impulse responses

	Also see

	Intro 9b
	Description
	Remarks and examples
	The model
	Parameter estimation
	Posterior diagnostics and plots
	Impulse responses

	Reference
	Also see

	dsge
	Description
	Menu
	Syntax
	Options
	Remarks
	Stored results
	Methods and formulas
	References
	Also see

	dsge postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	dsgenl
	Description
	Menu
	Syntax
	Options
	Remarks
	Stored results
	Methods and formulas
	Reference
	Also see

	dsgenl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	estat covariance
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estat policy
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estat stable
	Description
	Menu for estat
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	estat steady
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estat transition
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	Glossary
	Reference

	[ERM] Extended Regression
	Contents
	Intro
	Description
	Remarks and examples
	Introductions
	Examples
	ERM commands
	Postestimation
	Technical details
	Glossary

	Intro 1
	Description
	Remarks and examples
	The problems ERMs solve
	The simple syntax of ERMs
	Normality assumption underlying ERMs
	Learning more about ERMs

	Reference
	Also see

	Intro 2
	Description
	Remarks and examples
	Linear regression models
	Interval regression models
	Probit regression models
	Ordered probit regression models

	Also see

	Intro 3
	Description
	Remarks and examples
	What are endogenous and exogenous covariates?
	Solving the problem of endogenous covariates
	Solving the problem of reverse causation
	You can interact endogenous covariates
	You can have continuous, binary, and ordered endogenous covariates
	You can have instruments that are themselves endogenous
	Video example

	Also see

	Intro 4
	Description
	Remarks and examples
	Is sample selection a concern in your research problem?
	The problem and solution of endogenous sample selection
	Endogenous sample selection handles missing not at random
	Endogenous sample selection can be used with other features of ERMs
	Mechanical notes
	Video example

	Also see

	Intro 5
	Description
	Remarks and examples
	What are treatment-effect models?
	Treatment-effect models and potential outcomes
	Endogenous and exogenous treatment effects
	Binary and ordinal treatment effects
	Sample versus population standard errors
	Using treatment effects with other ERMs
	Using treatment effects with other features of ERMs
	Using treat() and select() to handle lost to follow-up
	Treatment statistics reported by estat teffects
	Video example

	Also see

	Intro 6
	Description
	Remarks and examples
	Random-effects models that ERMs handle
	Random effects can be used with other features of ERMs

	Also see

	Intro 7
	Description
	Remarks and examples
	Use margins
	Endogenous covariates
	How to interpret coefficients
	How to use and interpret margins
	How to use margins in models without endogenous covariates
	How to use margins with endogenous covariates
	margins with predict(asf)
	margins with predict(fixedasf)
	When to use which
	Using margins with nonlinear and random-effects models
	Advanced options: Using margins predict(base()) and predict(fix())

	References
	Also see

	Intro 8
	Description
	Remarks and examples
	Also see

	Intro 9
	Description
	Remarks and examples
	Introduction
	Complications
	Endogenous covariates
	Nonrandom treatment assignment
	Endogenous sample selection

	Interpreting effects
	Video examples

	References
	Also see

	eintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Endogenous covariates
	Continuous endogenous covariates
	Binary and ordinal endogenous covariates

	Treatment
	Endogenous sample selection
	Probit endogenous sample selection
	Tobit endogenous sample selection

	Random effects
	Combinations of features
	Confidence intervals

	References
	Also see

	eintreg postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	eintreg predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	Methods and formulas
	Also see

	eoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	intro
	Endogenous covariates
	contendog
	catendog

	Treatment
	Endogenous sample selection
	probitsel
	tobitsel

	Random effects
	Combinations of features
	ci

	References
	Also see

	eoprobit postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	eoprobit predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	Using predict after eoprobit and xteoprobit
	How to think about nonlinear models

	Methods and formulas
	Also see

	eprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	intro
	Endogenous covariates
	contendog
	catendog

	Treatment
	Endogenous sample selection
	probitsel
	tobitsel

	Random effects
	Combined model
	ci
	likelihood

	References
	Also see

	eprobit postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	asf
	predtotal

	References
	Also see

	eprobit predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	Using predict after eprobit
	How to think about nonlinear models

	Methods and formulas
	Also see

	eregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	intro
	Endogenous covariates
	contendog
	catendog

	Treatment
	Endogenous sample selection
	probitsel
	tobitsel

	Random effects
	Combinations of features
	ci

	References
	Also see

	eregress postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	eregress predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	How to think about the model you fit
	The default asf mean calculation for predictions
	The fixedasf calculation for predictions

	Methods and formulas
	References
	Also see

	ERM options
	Description
	Syntax
	Options
	Also see

	estat teffects
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Example 1a
	Description
	Remarks and examples
	Video example

	Also see

	Example 1b
	Description
	Remarks and examples
	Also see

	Example 1c
	Description
	Remarks and examples
	Also see

	Example 2a
	Description
	Remarks and examples
	Also see

	Example 2b
	Description
	Remarks and examples
	Also see

	Example 2c
	Description
	Remarks and examples
	Video example

	Also see

	Example 3a
	Description
	Remarks and examples
	Also see

	Example 3b
	Description
	Remarks and examples
	Also see

	Example 4a
	Description
	Remarks and examples
	Also see

	Example 4b
	Description
	Remarks and examples
	Also see

	Example 5
	Description
	Remarks and examples
	Also see

	Example 6a
	Description
	Remarks and examples
	Also see

	Example 6b
	Description
	Remarks and examples
	Also see

	Example 7
	Description
	Remarks and examples
	Reference
	Also see

	Example 8a
	Description
	Remarks and examples
	Also see

	Example 8b
	Description
	Remarks and examples
	Also see

	Example 9
	Description
	Remarks and examples
	Also see

	predict advanced
	Description
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	predict treatment
	Description
	Syntax
	Options
	Remarks and examples
	Predicting treatment effects after eregress, eintreg, xteregress, and xteintreg
	Predicting treatment effects after eprobit and xteprobit
	Predicting treatment effects after eoprobit and xteoprobit

	Methods and formulas
	Also see

	Triangularize
	Description
	Remarks and examples
	What is a triangular system?
	Triangularizing nontriangular systems
	You can only triangularize linear equations
	Options entreat(), select(), and tobitselect() also add endogenous variables
	Workarounds involving the main equation
	Why the above is a workaround and not a fix

	Also see

	Glossary
	References

	[FMM] Finite Mixture Models
	Contents
	fmm intro
	Description
	Remarks and examples
	Introduction
	Finite mixture models
	ex1
	Beyond mixtures of distributions

	Acknowledgment
	References
	Also see

	fmm estimation
	Description
	Also see

	fmm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The likelihood
	The EM algorithm
	Survey data
	Predictions

	Also see

	fmm: betareg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	fmm: cloglog
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: glm
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: intreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: ivregress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: logit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: mlogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: nbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: ologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: oprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: pointmass
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: poisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: probit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: regress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: streg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: tobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: tpoisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: truncreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	estat eform
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Also see

	estat lcmean
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat lcprob
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Example 1a
	Description
	Remarks and examples
	References
	Also see

	Example 1b
	Description
	Remarks and examples
	Also see

	Example 1c
	Description
	Remarks and examples
	Also see

	Example 1d
	Description
	Remarks and examples
	Also see

	Example 2
	Description
	Remarks and examples
	References
	Also see

	Example 3
	Description
	Remarks and examples
	References
	Also see

	Example 4
	Description
	Remarks and examples
	References
	Also see

	Glossary

	[FN] Functions
	Contents
	Intro
	Description
	Reference
	Also see

	Functions by category
	Contents
	Date and time functions
	Mathematical functions
	Matrix functions
	Programming functions
	Random-number functions
	Selecting time-span functions
	Statistical functions
	String functions
	Trigonometric functions
	Also see

	Functions by name
	
	Also see

	Date and time functions
	Contents
	Functions
	age()
	age_frac()
	birthday()
	bofd()
	Cdhms()
	Chms()
	Clock()
	clock()
	Clockdiff()
	clockdiff()
	Clockdiff_frac()
	clockdiff_frac()
	Clockpart()
	clockpart()
	Cmdyhms()
	Cofc()
	cofC()
	Cofd()
	cofd()
	daily()
	date()
	datediff()
	datediff_frac()
	datepart()
	day()
	daysinmonth()
	dayssincedow()
	dayssinceweekday()
	daysuntildow()
	daysuntilweekday()
	dhms()
	dmy()
	dofb()
	dofC()
	dofc()
	dofh()
	dofm()
	dofq()
	dofw()
	dofy()
	dow()
	doy()
	firstdayofmonth()
	firstdowofmonth()
	firstweekdayofmonth()
	halfyear()
	halfyearly()
	hh()
	hhC()
	hms()
	hofd()
	hours()
	isleapsecond()
	isleapyear()
	lastdayofmonth()
	lastdowofmonth()
	lastweekdayofmonth()
	mdy()
	mdyhms()
	minutes()
	mm()
	mmC()
	mofd()
	month()
	monthly()
	msofhours()
	msofminutes()
	msofseconds()
	nextbirthday()
	nextdow()
	nextleapyear()
	nextweekday()
	now()
	previousbirthday()
	previousdow()
	previousleapyear()
	previousweekday()
	qofd()
	quarter()
	quarterly()
	seconds()
	ss()
	ssC()
	tC()
	tc()
	td()
	th()
	tm()
	today()
	tq()
	tw()
	week()
	weekly()
	wofd()
	year()
	yearly()
	yh()
	ym()
	yofd()
	yq()
	yw()

	Remarks and examples
	Video example

	Methods and formulas
	References
	Also see

	Mathematical functions
	Contents
	Functions
	abs()
	ceil()
	cloglog()
	comb()
	digamma()
	exp()
	expm1()
	floor()
	int()
	invcloglog()
	invlogit()
	ln()
	ln1m()
	ln1p()
	lnfactorial()
	lngamma()
	log()
	log10()
	log1m()
	log1p()
	logit()
	max()
	min()
	mod()
	reldif()
	round()
	sign()
	sqrt()
	sum()
	trigamma()
	trunc()

	Video example
	References
	Also see

	Matrix functions
	Contents
	Functions
	Matrix functions returning a matrix
	cholesky()
	corr()
	diag()
	get()
	hadamard()
	I()
	inv()
	invsym()
	invvech()
	invvecp()
	J()
	matuniform()
	nullmat()
	sweep()
	vec()
	vecdiag()
	vech()
	vecp()
	Matrix functions returning a scalar
	coleqnumb()
	colnfreeparms()
	colnumb()
	colsof()
	det()
	diag0cnt()
	el()
	issymmetric()
	matmissing()
	mreldif()
	roweqnumb()
	rownfreeparms()
	rownumb()
	rowsof()
	trace()

	Reference
	Also see

	Programming functions
	Contents
	Functions
	autocode()
	byteorder()
	c()
	_caller()
	chop()
	clip()
	cond()
	e()
	e(sample)
	epsdouble()
	epsfloat()
	fileexists()
	fileread()
	filereaderror()
	filewrite()
	float()
	fmtwidth()
	frval()
	frvalu()
	_frval()
	_frvaliv()
	has_eprop()
	inlist()
	inrange()
	irecode()
	matrix()
	maxbyte()
	maxdouble()
	maxfloat()
	maxint()
	maxlong()
	mi()
	minbyte()
	mindouble()
	minfloat()
	minint()
	minlong()
	missing()
	r()
	recode()
	replay()
	return()
	s()
	scalar()
	smallestdouble()

	References
	Also see

	Random-number functions
	Contents
	Functions
	runiform()
	runiform(ab)
	runiformint()
	rbeta()
	rbinomial()
	rcauchy()
	rchi2()
	rexponential()
	rgamma()
	rhypergeometric()
	rigaussian()
	rlaplace()
	rlogistic()
	rlogistic(s)
	rlogistic(ms)
	rnbinomial()
	rnormal()
	rnormal(m)
	rnormal(ms)
	rpoisson()
	rt()
	rweibull()
	rweibull(ab)
	rweibull(abg)
	rweibullph()
	rweibullph(ab)
	rweibullph(abg)

	Remarks and examples
	Methods and formulas
	kiss32 generator

	Acknowledgments
	References
	Also see

	Selecting time-span functions
	Contents
	Functions
	tin()
	twithin()

	Also see

	Statistical functions
	Contents
	Functions
	Beta and noncentral beta distributions
	betaden()
	ibeta()
	ibetatail()
	invibeta()
	invibetatail()
	nbetaden()
	nibeta()
	invnibeta()
	Binomial distribution
	binomialp()
	binomial()
	binomialtail()
	invbinomial()
	invbinomialtail()
	Cauchy distribution
	cauchyden()
	cauchy()
	cauchytail()
	invcauchy()
	invcauchytail()
	lncauchyden()
	Chi-squared and noncentral chi-squared distributions
	chi2den()
	chi2()
	chi2tail()
	invchi2()
	invchi2tail()
	nchi2den()
	nchi2()
	nchi2tail()
	invnchi2()
	invnchi2tail()
	npnchi2()
	Dunnett's multiple range distribution
	dunnettprob()
	invdunnettprob()
	Exponential distribution
	exponentialden()
	exponential()
	exponentialtail()
	invexponential()
	invexponentialtail()
	F and noncentral F distributions
	Fden()
	F()
	Ftail()
	invF()
	invFtail()
	nFden()
	nF()
	nFtail()
	invnF()
	invnFtail()
	npnF()
	Gamma distribution
	gammaden()
	gammap()
	gammaptail()
	invgammap()
	invgammaptail()
	dgammapda()
	dgammapdada()
	dgammapdadx()
	dgammapdx()
	dgammapdxdx()
	lnigammaden()
	Hypergeometric distribution
	hypergeometricp()
	hypergeometric()
	Inverse Gaussian distribution
	igaussianden()
	igaussian()
	igaussiantail()
	invigaussian()
	invigaussiantail()
	lnigaussianden()
	Laplace distribution
	laplaceden()
	laplace()
	laplacetail()
	invlaplace()
	invlaplacetail()
	lnlaplaceden()
	Logistic distribution
	logisticden(x)
	logisticden(sx)
	logisticden()
	logisticden(msx)
	logistic()
	logistic(x)
	logistic(sx)
	logistic(msx)
	logistictail()
	logistictail(x)
	logistictail(sx)
	logistictail(msx)
	invlogistic()
	invlogistic(p)
	invlogistic(sp)
	invlogistic(msp)
	invlogistictail()
	invlogistictail(p)
	invlogistictail(sp)
	invlogistictail(msp)
	Negative binomial distribution
	nbinomialp()
	nbinomial()
	nbinomialtail()
	invnbinomial()
	invnbinomialtail()
	Normal (Gaussian), binormal, and multivariate normal distributions
	normalden()
	normalden(xs)
	normalden(xms)
	normal()
	invnormal()
	lnnormalden()
	lnnormalden(xs)
	lnnormalden(xms)
	lnnormal()
	binormal()
	lnmvnormalden()
	Poisson distribution
	poissonp()
	poisson()
	poissontail()
	invpoisson()
	invpoissontail()
	Student's t and noncentral Student's t distributions
	tden()
	t()
	ttail()
	invt()
	invttail()
	invnt()
	invnttail()
	ntden()
	nt()
	nttail()
	npnt()
	Tukey's Studentized range distribution
	tukeyprob()
	invtukeyprob()
	Weibull distribution
	weibullden()
	weibullden(abx)
	weibullden(abgx)
	weibull()
	weibull(abx)
	weibull(abgx)
	weibulltail()
	weibulltail(abx)
	weibulltail(abgx)
	invweibull()
	invweibull(abp)
	invweibull(abgp)
	invweibulltail()
	invweibulltail(abp)
	invweibulltail(abgp)
	Weibull (proportional hazards) distribution
	weibullphden()
	weibullphden(abx)
	weibullphden(abgx)
	weibullph()
	weibullph(abx)
	weibullph(abgx)
	weibullphtail()
	weibullphtail(abx)
	weibullphtail(abgx)
	invweibullph()
	invweibullph(abp)
	invweibullph(abgp)
	invweibullphtail()
	invweibullphtail(abp)
	invweibullphtail(abgp)
	Wishart distribution
	lnwishartden()
	lniwishartden()

	References
	Also see

	String functions
	Contents
	Functions
	abbrev()
	char()
	uchar()
	collatorlocale()
	collatorversion()
	indexnot()
	plural()
	real()
	regexcapture()
	regexcapturenamed()
	regexm()
	regexmatch()
	regexr()
	regexreplace()
	regexreplaceall()
	regexs()
	ustrregexm()
	ustrregexrf()
	ustrregexra()
	ustrregexs()
	soundex()
	soundex_nara()
	strcat()
	strdup()
	string()
	string(ns)
	stritrim()
	strlen()
	ustrlen()
	udstrlen()
	strlower()
	ustrlower()
	strltrim()
	ustrltrim()
	strmatch()
	strofreal()
	strofreal(ns)
	strpos()
	ustrpos()
	strproper()
	ustrtitle()
	strreverse()
	ustrreverse()
	strrpos()
	ustrrpos()
	strrtrim()
	ustrrtrim()
	strtoname()
	ustrtoname()
	strtrim()
	ustrtrim()
	strupper()
	ustrupper()
	subinstr()
	usubinstr()
	subinword()
	substr()
	usubstr()
	udsubstr()
	tobytes()
	uisdigit()
	uisletter()
	ustrcompare()
	ustrcompareex()
	ustrfix()
	ustrfrom()
	ustrinvalidcnt()
	ustrleft()
	ustrnormalize()
	ustrright()
	ustrsortkey()
	ustrsortkeyex()
	ustrto()
	ustrtohex()
	ustrunescape()
	word()
	ustrword()
	wordbreaklocale()
	wordcount()
	ustrwordcount()

	References
	Also see

	Trigonometric functions
	Contents
	Functions
	acos()
	acosh()
	asin()
	asinh()
	atan()
	atan2()
	atanh()
	cos()
	cosh()
	sin()
	sinh()
	tan()
	tanh()

	References
	Also see

	[G] Graphics
	Contents
	Introduction
	Intro
	Description
	Also see

	Graph intro
	Remarks and examples
	Suggested reading order
	A quick tour
	Using the menus

	References
	Also see

	Graph Editor
	Remarks and examples
	Quick start
	Introduction
	Starting and stopping the Graph Editor
	The tools
	The Object Browser
	Right-click menus, or Contextual menus
	The Standard Toolbar
	The main Graph Editor menu
	Grid editing
	Graph Recorder
	Tips, tricks, and quick edits
	Video example

	Reference
	Also see

	Commands
	graph
	Description
	Syntax
	Remarks and examples
	Also see

	graph bar
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	lookofbar_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of bars
	Treatment of data
	Obtaining frequencies
	Multiple bars (overlapping the bars)
	Controlling the text of the legend
	Multiple over()s (repeating the bars)
	Nested over()s
	Charts with many categories
	How bars are ordered
	Reordering the bars
	Putting the bars in a prespecified order
	Putting the bars in height order
	Putting the bars in a derived order
	Reordering the bars, example
	Use with by()
	Video example
	History

	References
	Also see

	graph box
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	boxlook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of multiple yvars versus treatment of over() groups
	How boxes are ordered
	Reordering the boxes
	Putting the boxes in a prespecified order
	Putting the boxes in median order
	Use with by()
	Video example
	History

	Methods and formulas
	References
	Also see

	graph close
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph combine
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Typical use with memory graphs
	Combining twoway graphs
	Advanced use
	Controlling the aspect ratio of subgraphs

	References
	Also see

	graph copy
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	graph describe
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	graph dir
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	graph display
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Changing the size and aspect ratio
	Changing the margins and aspect ratio
	Changing the scheme

	Also see

	graph dot
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	linelook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Relationship between dot plots and horizontal bar charts
	Examples
	Appendix: Examples of syntax

	References
	Also see

	graph drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Typical use
	Relationship between graph drop _all and discard
	Erasing graphs on disk

	Also see

	graph export
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Exporting the graph displayed in a Graph window
	Exporting a graph stored on disk
	Exporting a graph stored in memory

	Reference
	Also see

	graph manipulation
	Description
	Syntax
	Remarks and examples
	Overview of graphs in memory and graphs on disk
	Summary of graph manipulation commands

	Also see

	graph matrix
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Marker symbols and the number of observations
	Controlling the axes labeling
	Adding grid lines
	Adding titles
	Use with by()
	History

	References
	Also see

	graph other
	Description
	Syntax
	Remarks and examples
	Also see

	graph pie
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Data are summed
	Data may be long rather than wide
	How slices are ordered
	Ordering slices by size
	Reordering the slices
	Use with by()
	Video example
	History

	References
	Also see

	graph play
	Description
	Syntax
	Remarks and examples
	Also see

	graph print
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Printing the graph displayed in a Graph window
	Printing a graph stored on disk
	Printing a graph stored in memory
	Appendix: Setting up Stata for Unix to print graphs

	Also see

	graph query
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	graph replay
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	graph save
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	graph set
	Description
	Quick start
	Syntax
	Remarks and examples
	Overview
	Setting defaults

	Also see

	graph twoway
	Description
	Menu
	Syntax
	Remarks and examples
	Definition
	Syntax
	Multiple if and in restrictions
	twoway and plot options

	References

	graph twoway area
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway bar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use: Overlaying
	Advanced use: Population pyramid
	Cautions

	Reference
	Also see

	graph twoway connected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway contour
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Controlling the number of contours and their values
	Controlling the colors of the contour areas
	Choose the interpolation method
	Video example

	Reference
	Also see

	graph twoway contourline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Controlling the number of contour lines and their values
	Controlling the colors of the contour lines
	Choose the interpolation method

	Also see

	graph twoway dot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	graph twoway dropline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway fpfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway fpfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway function
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use 1
	Advanced use 2

	Reference
	Also see

	graph twoway histogram
	Description
	Quick start
	Menu
	Syntax
	Options for use in the discrete case
	Options for use in the continuous case
	Options for use in both cases
	Remarks and examples
	Relationship between graph twoway histogram and histogram
	Typical use
	Use with by()
	History

	References
	Also see

	graph twoway kdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway lfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway line
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Oneway equivalency of line and scatter
	Typical use
	Advanced use
	Cautions

	Reference
	Also see

	graph twoway lowess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpoly
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpolyci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mband
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mspline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway pcarrow
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use
	Advanced use

	References
	Also see

	graph twoway pcarrowi
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pccapsym
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use 1
	Basic use 2

	Also see

	graph twoway pci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pcscatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pcspike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use
	Advanced use
	Advanced use 2

	Reference
	Also see

	graph twoway qfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway qfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway rarea
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway rbar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use

	References
	Also see

	graph twoway rcap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway rcapsym
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rconnected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rscatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rspike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway scatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Scatter syntax
	The overall look for the graph
	The size and aspect ratio of the graph
	Titles
	Axis titles
	Axis labels and ticking
	Grid lines
	Added lines
	Axis range
	Log scales
	Multiple axes
	Markers
	Weighted markers
	Jittered markers
	Connected lines
	Graphs by groups
	Saving graphs
	Video example
	Appendix: Styles and composite styles

	References
	Also see

	graph twoway scatteri
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway spike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway tsline
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph use
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	palette
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	set graphics
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	set printcolor
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	What set printcolor affects
	The problem set printcolor solves
	set printcolor automatic
	set printcolor asis
	set printcolor gs1, gs2, and gs3
	The scheme matters, not the background color you set

	Also see

	set scheme
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	References
	Also see

	Options
	added_line_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Typical use
	Interpretation of repeated options

	Reference
	Also see

	added_text_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Typical use
	Advanced use
	Use of the textbox option width()

	Reference
	Also see

	addplot_option
	Description
	Syntax
	Option
	Remarks and examples
	Commands that allow the addplot() option
	Advantage of graph twoway commands
	Advantages of graphic commands implemented outside graph twoway
	Use of the addplot() option

	Reference
	Also see

	advanced_options
	Description
	Syntax
	Options
	Remarks and examples
	Use of yvarlabel() and xvarlabel()
	Use of yvarformat() and xvarformat()
	Use of recast()

	Also see

	area_options
	Description
	Syntax
	Options
	Remarks and examples
	Use with twoway
	Use with graph dot

	Also see

	aspect_option
	Description
	Quick start
	Syntax
	Option
	Suboptions
	Remarks and examples
	Reference
	Also see

	axis_choice_options
	Description
	Syntax
	Options
	Remarks and examples
	Usual case: one set of axes
	Special case: multiple axes due to multiple scales
	yaxis(1) and xaxis(1) are the defaults
	Notation style is irrelevant
	yaxis() and xaxis() are plot options
	Specifying the other axes options with multiple axes
	Each plot may have at most one x scale and one y scale
	Special case: Multiple axes with a shared scale

	Reference
	Also see

	axis_label_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Default labeling and ticking
	Controlling the labeling and ticking
	Adding extra ticks
	Adding minor labels and ticks
	Adding grid lines
	Suppressing grid lines
	Substituting text for labels
	z-axis options---zlabel(), ztick(), etc.
	Appendix: Details of syntax

	References
	Also see

	axis_options
	Description
	Options
	Remarks and examples
	Also see

	axis_scale_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Use of the yscale() and xscale()
	Specifying the range of a scale
	Obtaining log scales
	Obtaining reversed scales
	Suppressing the axes
	Contour axes---zscale()

	References
	Also see

	axis_title_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Default axis titles
	Overriding default titles
	Specifying multiline titles
	Suppressing axis titles
	Interpretation of repeated options
	Titles with multiple y axes or multiple x axes
	Contour axes---ztitle()

	Also see

	barlook_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	blabel_option
	Description
	Quick start
	Syntax
	Option
	Suboptions

	Remarks and examples
	Increasing the information content
	Changing how bars are labeled

	Also see

	by_option
	Description
	Quick start
	Syntax
	Option
	byopts
	Remarks and examples
	Typical use
	Placement of graphs
	Treatment of titles
	by() uses subtitle() with graph
	Placement of the subtitle()
	by() uses the overall note()
	Use of legends with by()
	By-styles
	Labeling the edges
	Specifying separate scales for the separate plots
	History

	References
	Also see

	cat_axis_label_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	cat_axis_line_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	clegend_option
	Description
	Quick start
	Syntax
	Option
	Content and appearance suboptions for use with clegend()
	Suboptions for use with clegend(region())
	Location suboptions for use with clegend()

	Remarks and examples
	When contour legends appear
	Where contour legends appear
	Putting titles on contour legends
	Controlling the axis in contour legends
	Use of legends with by()

	Also see

	cline_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	colorvar_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	Controlling the number of levels
	Controlling the colors

	References
	Also see

	connect_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	eps_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the eps_options
	Setting defaults
	Note about PostScript fonts

	Also see

	fcline_options
	Description
	Syntax
	Options
	Remarks and examples

	fitarea_options
	Description
	Syntax
	Options
	Remarks and examples

	gif_options
	Description
	Syntax
	Options
	Remarks and examples
	Using gif_options
	Specifying the width or height

	Also see

	jpg_options
	Description
	Syntax
	Options
	Remarks and examples
	Using jpg_options
	Specifying the width or height
	Image quality

	Also see

	legend_options
	Description
	Quick start
	Syntax
	Options
	Content suboptions for use with legend() and plegend()
	Suboptions for use with legend(region())
	Location suboptions for use with legend()

	Remarks and examples
	When legends appear
	The contents of legends
	Where legends appear
	Putting titles on legends
	Use of legends with by()
	Problems arising with or because of legends

	Also see

	line_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	marker_label_options
	Description
	Syntax
	Options
	Remarks and examples
	Typical use
	Eliminating overprinting and overruns
	Advanced use
	Using marker labels in place of markers

	Also see

	marker_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	name_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	nodraw_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	pdf_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the pdf_options
	Setting defaults

	Also see

	play_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	png_options
	Description
	Syntax
	Options
	Remarks and examples
	Using png_options
	Specifying the width or height

	Also see

	pr_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the pr_options
	Setting defaults
	Note for Unix users

	Also see

	ps_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the ps_options
	Setting defaults
	Note about PostScript fonts
	Note for Unix users

	Also see

	rcap_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	region_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Setting the offset between the axes and the plot region
	Controlling the aspect ratio
	Suppressing the border around the plot region
	Setting background and fill colors
	How graphs are constructed

	Also see

	rspike_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	saving_option
	Description
	Quick start
	Syntax
	Option
	Suboptions

	Remarks and examples
	Also see

	scale_option
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	scheme_option
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	std_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	svg_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the svg_options
	Setting defaults

	Also see

	textbox_options
	Description
	Syntax
	Options
	Remarks and examples
	Definition of a textbox
	Position
	Justification
	Position and justification combined
	Margins
	Width and height
	Appendix: Overriding default or context-specified positioning

	Also see

	tif_options
	Description
	Syntax
	Options
	Remarks and examples
	Using tif_options
	Specifying the width or height

	Also see

	title_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Multiple-line titles
	Interpretation of repeated options
	Positioning of titles
	Alignment of titles
	Spanning
	Using the textbox options box and bexpand

	Reference
	Also see

	twoway_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	Styles/concepts/schemes
	addedlinestyle
	Description
	Syntax
	Remarks and examples
	What is an added line?
	What is an addedlinestyle?
	You do not need to specify an addedlinestyle

	Also see

	alignmentstyle
	Description
	Syntax
	Remarks and examples
	Also see

	anglestyle
	Description
	Syntax
	Remarks and examples
	Also see

	areastyle
	Description
	Syntax
	Remarks and examples
	Overview of areastyles
	Numbered styles
	Using numbered styles
	When to use areastyles

	Also see

	axisstyle
	Description
	Syntax
	Remarks and examples
	Also see

	bystyle
	Description
	Syntax
	Remarks and examples
	What is a by-graph?
	What is a bystyle?

	Also see

	clockposstyle
	Description
	Syntax
	Remarks and examples
	Also see

	colorstyle
	Description
	Syntax
	Remarks and examples
	Adjust opacity
	Adjust intensity
	Specify RGB values
	Specify CMYK values
	Specify HSV values
	Export custom colors
	Video example

	References
	Also see

	compassdirstyle
	Description
	Syntax
	Remarks and examples
	Also see

	Concept: gph files
	Description
	Remarks and examples
	Background
	Gph files are machine/operating system independent
	Gph files come in three forms
	Advantages of live-format files
	Advantages of as-is format files
	Retrieving data from live-format files

	Also see

	Concept: lines
	Description
	Syntax
	Remarks and examples
	linestyle
	linealignmentstyle
	linepatternstyle
	linewidthstyle
	colorstyle

	Also see

	Concept: repeated options
	Description
	Remarks and examples
	Also see

	connectstyle
	Description
	Syntax
	Remarks and examples
	Also see

	gridstyle
	Description
	Syntax
	Remarks and examples
	What is a grid?
	What is a gridstyle?
	You do not need to specify a gridstyle
	Turning off and on the grid

	Also see

	intensitystyle
	Description
	Syntax
	Remarks and examples
	Also see

	justificationstyle
	Description
	Syntax
	Remarks and examples
	Also see

	legendstyle
	Description
	Syntax
	Remarks and examples
	What is a legend?
	What is a legendstyle?
	You do not need to specify a legendstyle

	Also see

	linealignmentstyle
	Description
	Syntax
	Also see

	linepatternstyle
	Description
	Syntax
	Remarks and examples
	Also see

	linestyle
	Description
	Syntax
	Remarks and examples
	What is a line?
	What is a linestyle?
	You do not need to specify a linestyle
	Specifying a linestyle can be convenient
	What are numbered styles?
	Suppressing lines

	Reference
	Also see

	linewidthstyle
	Description
	Syntax
	Remarks and examples
	Also see

	marginstyle
	Description
	Syntax
	Remarks and examples
	Also see

	markerlabelstyle
	Description
	Syntax
	Remarks and examples
	What is a markerlabel?
	What is a markerlabelstyle?
	You do not need to specify a markerlabelstyle
	Specifying a markerlabelstyle can be convenient
	What are numbered styles?

	Also see

	markersizestyle
	Description
	Syntax
	Remarks and examples
	Also see

	markerstyle
	Description
	Syntax
	Remarks and examples
	What is a marker?
	What is a markerstyle?
	You do not have to specify a markerstyle
	Specifying a markerstyle can be convenient
	What are numbered styles?

	Also see

	orientationstyle
	Description
	Syntax
	Remarks and examples
	Also see

	plotregionstyle
	Description
	Syntax
	Remarks and examples
	Also see

	pstyle
	Description
	Syntax
	Remarks and examples
	What is a plot?
	What is a pstyle?
	The pstyle() option
	Specifying a pstyle
	What are numbered styles?

	Also see

	ringposstyle
	Description
	Syntax
	Remarks and examples
	Also see

	Schemes intro
	Description
	Syntax
	Remarks and examples
	The role of schemes
	Finding out about other schemes
	Setting your default scheme
	The scheme is applied at display time
	Background color
	Foreground color
	Obtaining new schemes
	Examples of schemes

	References
	Also see

	Scheme economist
	Description
	Syntax
	Remarks and examples
	Also see

	Scheme s1
	Description
	Syntax
	Remarks and examples
	Also see

	Scheme s2
	Description
	Syntax
	Remarks and examples
	Also see

	Scheme sj
	Description
	Syntax
	Also see

	Scheme st
	Description
	Syntax
	Remarks and examples
	stcolor and stcolor_alt
	stgcolor and stgcolor_alt
	stmono1 and stmono2
	stsj

	Also see

	shadestyle
	Description
	Syntax
	Remarks and examples
	What is a shadestyle?
	What are numbered styles?

	Also see

	size
	Description
	Syntax
	Remarks and examples
	Also see

	stylelists
	Description
	Syntax
	Also see

	symbolstyle
	Description
	Syntax
	Remarks and examples
	Typical use
	Filled and hollow symbols
	Size of symbols

	Also see

	text
	Description
	Remarks and examples
	Overview
	Bold and italics
	Superscripts and subscripts
	Fonts, standard
	Fonts, advanced
	Greek letters and other symbols
	Full list of SMCL tags useful in graph text

	Also see

	textboxstyle
	Description
	Syntax
	Remarks and examples
	What is a textbox?
	What is a textboxstyle?
	You do not need to specify a textboxstyle

	Also see

	textsizestyle
	Description
	Syntax
	Also see

	textstyle
	Description
	Syntax
	Remarks and examples
	What is text?
	What is a textstyle?
	You do not need to specify a textstyle
	Relationship between textstyles and textboxstyles

	Also see

	ticksetstyle
	Description
	Syntax
	Also see

	tickstyle
	Description
	Syntax
	Remarks and examples
	What is a tick? What is a tick label?
	What is a tickstyle?
	You do not need to specify a tickstyle
	Suppressing ticks and/or tick labels

	Also see

	Glossary

	[IRT] Item Response Theory
	Contents
	irt
	Description
	Remarks and examples
	References
	Also see

	Control Panel
	Description
	Remarks and examples
	Reference
	Also see

	irt 1pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt 1pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt 2pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt 2pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt 3pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt 3pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt grm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt grm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt nrm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt nrm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt pcm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt pcm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt rsm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt rsm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt hybrid
	Description
	Quick start
	Menu
	Syntax
	mopts
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The likelihood
	Groups
	Gauss--Hermite quadrature
	Adaptive quadrature

	References
	Also see

	irt hybrid postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Empirical Bayes
	Other predictions

	References
	Also see

	irt, group()
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Baseline group model
	Differential item functioning

	Reference
	Also see

	irt, group() postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt constraints
	Description
	Quick start
	Syntax
	Remarks and examples
	Overview
	Constraints in 1PL, 2PL, and 3PL models
	Constraints in graded response models
	Constraints in nominal response models
	Constraints in partial credit models
	Constraints in rating scale models

	Also see

	estat report
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat greport
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irtgraph icc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	irtgraph tcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	irtgraph iif
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	irtgraph tif
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	DIF
	Description
	Remarks and examples
	References
	Also see

	diflogistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	difmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	Glossary

	[LASSO] Lasso
	Contents
	Lasso intro
	Description
	Remarks and examples
	Summary of Stata's lasso and elastic-net features
	What is lasso?
	Lasso for prediction
	How lasso for prediction works
	Stata commands for prediction

	Lasso for model selection
	Lasso for inference
	Why do we need special lasso methods for inference?
	Methods of lasso for inference
	Stata commands for inference

	Where to learn more

	Acknowledgments
	References
	Also see

	Lasso inference intro
	Description
	Remarks and examples
	The problem
	Possible solutions
	Solutions that focus on the true model
	The double-selection solution
	The partialing-out solution
	The cross-fit partialing-out (double machine-learning) solution

	Where to learn more

	References
	Also see

	bicplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	coefpath
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Coefficient path plots
	An example
	Adding a legend
	lambda scale and reference line
	After fitting with sqrtlasso
	After fitting with elasticnet
	After fitting with inference commands

	Also see

	Collinear covariates
	Description
	Remarks and examples
	Summary
	Explanation
	Applies to inferential commands
	Does not apply to alwaysvars

	Also see

	cvplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	dslogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	dspoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	dsregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	elasticnet
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estimates store
	Description
	Remarks and examples
	Overview
	Postestimation commands that work only with current results
	Postestimation commands that work with current results
	lassoselect creates new estimation results

	Also see

	Inference examples
	Description
	Remarks and examples
	1 Overview
	1.1 How to read the example entries
	1.2 Detailed outline of the topics
	1.3 Review of concepts
	1.4 The primary dataset

	2 Fitting and interpreting inferential models
	2.1 Overview of inferential estimation methods
	2.2 Fitting via cross-fit partialing out (xpo) using plugin
	2.3 Fitting via cross-fit partialing out (xpo) using cross-validation
	2.4 Fitting via double selection (ds) using cross-validation
	2.5 Fitting via the other 22 methods
	2.6 Fitting models with several variables of interest
	2.7 Fitting models with factor variables of interest
	2.8 Fitting models with interactions of interest
	2.9 Fitting models with a nonlinear relationship of interest
	2.10 Controls are controls

	3 Fitting logit inferential models to binary outcomes. What is different?
	3.1 Interpreting standard odds ratios
	3.2 Interpreting models with factor variables, nonlinear relationships, and interactions

	4 Fitting inferential models to count outcomes. What is different?
	4.1 Interpreting standard incidence-rate ratios
	4.2 Interpreting models with factor variables

	5 Exploring inferential model lassos
	6 Fitting an inferential model with endogenous covariates

	References
	Also see

	Inference requirements
	Description
	Remarks and examples
	Also see

	lasso
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Lasso fitting and selection methods
	selection(cv): Cross-validation
	The CV function
	Penalized and postselection coefficients
	predict
	Selecting lambda by hand using lassoselect
	More lasso examples

	Stored results
	Methods and formulas
	Lasso and elastic-net objective functions
	Coordinate descent
	Grid of values for lambda
	How to choose the penalty parameter
	How CV is performed
	Adaptive lasso
	Plugin estimators
	BIC

	References
	Also see

	lasso postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	stcurve
	Description for stcurve
	Menu for stcurve
	Syntax for stcurve
	Options for stcurve

	Remarks and examples
	Methods and formulas
	References
	Also see

	lassocoef
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	lasso examples
	Description
	Remarks and examples
	Overview
	Using vl to manage variables
	Using splitsample
	Lasso linear models
	Adaptive lasso
	Cross-validation folds
	BIC
	More potential variables than observations
	Factor variables in lasso
	Lasso logit and probit models
	Lasso Poisson models
	Lasso Cox models

	References
	Also see

	lasso fitting
	Description
	Remarks and examples
	Introduction
	Model selection
	The process
	Step 1. Set the grid range
	Step 2. Fit the model for next lambda in grid
	Selection method none
	Step 3. Identifying a minimum of the CV function
	Plotting the CV function
	Selecting another model

	What exactly is CV?
	Adaptive lasso
	Plugin selection
	Selection using the BIC function

	Also see

	lassogof
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lasso inference postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict

	Remarks and examples
	Also see

	lassoinfo
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	lassoknots
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Measures of fit
	In-sample measures versus estimates of out-of-sample measures
	BIC
	Examples

	Stored results
	Methods and formulas
	Overview
	Statistics that measure the size of the coefficient vector
	Statistics that measure fit
	CV measures of fit
	Single-sample measures of fit
	Deviance formulas
	Saturated log likelihood

	Prediction error formulas
	BIC formula

	References
	Also see

	lasso options
	Description
	Syntax
	Options
	Suboptions for lasso() and sqrtlasso()

	Remarks and examples
	Reference
	Also see

	lassoselect
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	poivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	pologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	popoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	poregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	sqrtlasso
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Notation
	Plugin estimators

	References
	Also see

	xpoivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	xpologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	xpopoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	xporegress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	Glossary

	[M] Mata
	Contents
	Introduction to the Mata manual
	Intro
	Contents
	Description
	Remarks and examples
	References
	Also see

	Introduction and advice
	Intro
	Contents
	Description
	Remarks and examples
	References
	Also see

	Ado
	Description
	Remarks and examples
	A first example
	Where to store the Mata functions
	Passing arguments to Mata functions
	Returning results to ado-code
	Advice: Use of matastrict
	Advice: Some useful Mata functions

	Also see

	First
	Description
	Remarks and examples
	Invoking Mata
	Using Mata
	Making mistakes: Interpreting error messages
	Working with real numbers, complex numbers, and strings
	Working with scalars, vectors, and matrices
	Working with functions
	Distinguishing real and complex values
	Working with matrix and scalar functions
	Performing element-by-element calculations: Colon operators
	Writing programs
	More functions
	Mata environment commands
	Exiting Mata

	Also see

	help
	Description
	Syntax
	Remarks and examples
	Also see

	How
	Description
	Remarks and examples
	What happens when you define a program
	What happens when you work interactively
	What happens when you type a mata environment command
	Working with object code I: .mo files
	Working with object code II: .mlib libraries
	The Mata environment

	Reference
	Also see

	Interactive
	Description
	Remarks and examples
	1. Start in Stata; load the data
	2. Create any time-series variables
	3. Create a constant variable
	4. Drop unnecessary variables
	5. Drop observations with missing values
	6. Put variables on roughly the same numeric scale
	7. Enter Mata
	8. Use Mata's st_view() function to access your data
	9. Perform your matrix calculations

	Review
	Reference
	Also see

	LAPACK
	Description
	Syntax
	Option for set lapack_mkl
	Remarks and examples
	LAPACK in Mata
	set lapack_mkl
	Intel MKL conditional numerical reproducibility
	set lapack_mkl_cnr

	Acknowledgments
	References
	Also see

	Limits
	Description
	Summary
	Remarks and examples
	Also see

	Naming
	Description
	Syntax
	Remarks and examples
	Interactive use
	Naming variables
	Naming functions
	What happens when functions have the same names
	How to determine if a function name has been taken

	Also see

	Permutation
	Description
	Syntax
	Remarks and examples
	Permutation matrices
	How permutation matrices arise
	Permutation vectors

	Also see

	Returned args
	Description
	Syntax
	Remarks and examples
	Also see

	Source
	Description
	Syntax
	Remarks and examples
	Also see

	Tolerance
	Description
	Syntax
	Remarks and examples
	The problem
	Absolute versus relative tolerances
	Specifying tolerances

	Also see

	Language definition
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	break
	Description
	Syntax
	Remarks and examples
	Also see

	class
	Description
	Syntax
	Introduction
	Example
	Declaration of member variables
	Declaration and definition of methods (member functions)
	Default exposure in declarations

	Remarks and examples
	Notation and jargon
	Declaring and defining a class
	Saving classes in files
	Workflow recommendation
	When you need to recompile
	Obtaining instances of a class
	Constructors and destructors
	Setting member variable and member function exposure
	Making a member final
	Making a member static
	Virtual functions
	Referring to the current class using this
	Using super to access the parent's concept
	Casting back to a parent
	Accessing external functions from member functions
	Pointers to classes

	Reference
	Also see

	Comments
	Description
	Syntax
	Remarks and examples
	The /* */ enclosed comment
	The // rest-of-line comment

	Also see

	continue
	Description
	Syntax
	Remarks and examples
	Also see

	Declarations
	Description
	Syntax
	Remarks and examples
	The purpose of declarations
	Types, element types, and organizational types
	Implicit declarations
	Element types
	Organizational types
	Function declarations
	Argument declarations
	The by-address calling convention
	Variable declarations
	Linking to external globals

	Also see

	do
	Description
	Syntax
	Remarks and examples
	Also see

	Errors
	Description
	Remarks and examples
	The error codes

	Also see

	exp
	Description
	Syntax
	Remarks and examples
	What's an expression
	Assignment suppresses display, as does (void)
	The pieces of an expression
	Numeric literals
	String literals
	Variable names
	Operators
	Functions

	Reference
	Also see

	for
	Description
	Syntax
	Remarks and examples
	Also see

	ftof
	Description
	Syntax
	Remarks and examples
	Passing functions to functions
	Writing functions that receive functions, the simplified convention
	Passing built-in functions

	Also see

	goto
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	if
	Description
	Syntax
	Remarks and examples
	Also see

	op_arith
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_assignment
	Description
	Syntax
	Remarks and examples
	Assignment suppresses display
	The equal-assignment operator
	lvals, what appears on the left-hand side
	Row, column, and element lvals
	Pointer lvals

	Conformability
	Diagnostics
	Also see

	op_colon
	Description
	Syntax
	Remarks and examples
	C-conformability: element by element
	Usefulness of colon logical operators
	Use parentheses

	Conformability
	Diagnostics
	Also see

	op_conditional
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_increment
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_join
	Description
	Syntax
	Remarks and examples
	Comma and backslash are operators
	Comma as a separator
	Warning about the misuse of comma and backslash operators

	Conformability
	Diagnostics
	Also see

	op_kronecker
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	op_logical
	Description
	Syntax
	Remarks and examples
	Introduction
	Use of logical operators with pointers

	Conformability
	Diagnostics
	Also see

	op_range
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_transpose
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	optargs
	Description
	Syntax
	Remarks and examples
	What are optional arguments?
	How to code optional arguments
	Examples revisited

	Also see

	pointers
	Description
	Syntax
	Remarks and examples
	What is a pointer?
	Pointers to variables
	Pointers to expressions
	Pointers to functions
	Pointers to pointers
	Pointer arrays
	Mixed pointer arrays
	Definition of NULL
	Use of parentheses
	Pointer arithmetic
	Listing pointers
	Declaration of pointers
	Use of pointers to collect objects
	Efficiency

	Diagnostics
	References
	Also see

	pragma
	Description
	Syntax
	Remarks and examples
	pragma unset
	pragma unused

	Also see

	reswords
	Description
	Syntax
	Remarks and examples
	Future developments
	Version control

	Also see

	return
	Description
	Syntax
	Remarks and examples
	Functions that return results
	Functions that return nothing (void functions)

	Also see

	Semicolons
	Description
	Syntax
	Remarks and examples
	Optional use of semicolons
	You cannot break a statement anywhere even if you use semicolons
	Use of semicolons to create multistatement lines
	Significant semicolons
	Do not use #delimit ;

	Also see

	struct
	Description
	Syntax
	Remarks and examples
	Introduction
	Structures and functions must have different names
	Structure variables must be explicitly declared
	Declare structure variables to be scalars whenever possible
	Vectors and matrices of structures
	Structures of structures
	Pointers to structures
	Operators and functions for use with structure members
	Operators and functions for use with entire structures
	Listing structures
	Use of transmorphics as passthrus
	Saving compiled structure definitions
	Saving structure variables

	References
	Also see

	Subscripts
	Description
	Syntax
	Remarks and examples
	List subscripts
	Range subscripts
	When to use list subscripts and when to use range subscripts
	A fine distinction

	Conformability
	Diagnostics
	Reference
	Also see

	Syntax
	Description
	Syntax
	Remarks and examples
	Treatment of semicolons
	Types and declarations
	Void matrices
	Void functions
	Operators
	Subscripts
	Implied input tokens
	Function argument-passing convention
	Passing functions to functions
	Optional arguments

	Reference
	Also see

	version
	Description
	Syntax
	Remarks and examples
	Purpose of version control
	Recommendations for do-files
	Recommendations for ado-files
	Compile-time and run-time versioning

	Also see

	void
	Description
	Syntax
	Remarks and examples
	Void matrices, vectors, row vectors, and column vectors
	How to read conformability charts

	Also see

	while
	Description
	Syntax
	Remarks and examples
	Also see

	Commands for controlling Mata
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	end
	Description
	Syntax
	Remarks and examples
	Also see

	lmbuild
	Description
	Syntax
	Options
	Remarks and examples
	Background
	Version control

	Also see

	mata
	Description
	Syntax
	Remarks and examples
	Introduction
	The fine distinction between syntaxes 3 and 4
	The fine distinction between syntaxes 1 and 2

	Also see

	mata clear
	Description
	Syntax
	Remarks and examples
	Also see

	mata describe
	Description
	Syntax
	Option
	Remarks and examples
	Diagnostics
	Also see

	mata drop
	Description
	Syntax
	Remarks and examples
	Also see

	mata help
	Description
	Syntax
	Remarks and examples
	Also see

	mata matsave
	Description
	Syntax
	Option for mata matsave
	Option for mata matuse
	Remarks and examples
	Diagnostics
	Also see

	mata memory
	Description
	Syntax
	Remarks and examples
	Also see

	mata mlib
	Description
	Syntax
	Options
	Remarks and examples
	Background
	Outline of the procedure for dealing with libraries
	Creating a .mlib library
	Adding members to a .mlib library
	Listing the contents of a library
	Making it so Mata knows to search your libraries
	Advice on organizing your source code

	Also see

	mata mosave
	Description
	Syntax
	Options
	Remarks and examples
	Example of use
	Where to store .mo files
	Use of .mo files versus .mlib files

	Also see

	mata rename
	Description
	Syntax
	Also see

	mata set
	Description
	Syntax
	Option
	Remarks and examples
	Relationship between Mata's mata set and Stata's set commands
	c() values

	Also see

	mata stata
	Description
	Syntax
	Remarks and examples
	Also see

	mata which
	Description
	Syntax
	Remarks and examples
	Also see

	namelists
	Description
	Syntax
	Remarks and examples
	Also see

	Categorical guide to Mata functions
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	Dates
	Contents
	Description
	Also see

	IO
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	Manipulation
	Contents
	Description
	Remarks and examples
	Also see

	Mathematical
	Contents
	Description
	Remarks and examples
	Also see

	Matrix
	Contents
	Description
	Remarks and examples
	Also see

	Programming
	Contents
	Also see

	Scalar
	Contents
	Description
	Remarks and examples
	Also see

	Solvers
	Contents
	Description
	Remarks and examples
	Also see

	Standard
	Contents
	Description
	Remarks and examples
	Also see

	Stata
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	Statistical
	Contents
	Description
	Remarks and examples
	Also see

	String
	Contents
	Description
	Remarks and examples
	Also see

	Utility
	Contents
	Description
	Remarks and examples
	Also see

	Alphabetical index to Mata functions
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	abbrev()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	abs()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	adosubdir()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	all()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	args()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	asarray()
	Description
	Syntax
	Remarks and examples
	Detailed description
	Example 1: Scalar keys and scalar contents
	Example 2: Scalar keys and matrix contents
	Example 3: Vector keys and scalar contents; sparse matrix
	Setting the efficiency parameters

	Conformability
	Diagnostics
	Also see

	AssociativeArray()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ascii()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	uchar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	assert()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	base64encode()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	blockdiag()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	bufio()
	Description
	Syntax
	Remarks and examples
	Basics
	Argument C
	Arguments B and offset
	Argument fh
	Argument bfmt
	bfmts for numeric data
	bfmts for string data
	Argument X
	Arguments r and c
	Advanced issues

	Conformability
	Diagnostics
	Also see

	byteorder()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	C()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	c()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	callersversion()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cat()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	chdir()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	cholesky()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	cholinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cholsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	comb()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	cond()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	conj()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	corr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cross()
	Description
	Syntax
	Remarks and examples
	Comment concerning cross() and missing values

	Conformability
	Diagnostics
	Also see

	crossdev()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cvpermute()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	date()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	deriv()
	Description
	Syntax
	Remarks and examples
	First example
	Notation and formulas
	Notation
	Numerical differentiation method
	Complex step method

	Type d evaluators
	Example of a type d evaluator
	Type v evaluators
	User-defined arguments
	Example of a type v evaluator
	Type t evaluators
	Example of a type t evaluator
	Example of using step-size lower bounds
	Example of complex step method
	Functions

	Conformability
	Diagnostics
	Methods and formulas
	References
	Also see

	designmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	det()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_diag()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	diag()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diag0cnt()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diagonal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	dir()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	direxists()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	direxternal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	display()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayas()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayflush()
	Description
	Syntax
	Remarks and examples
	Diagnostics
	Also see

	Dmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	_docx*()
	Description
	Syntax
	Create and save .docx file
	Add paragraph and text
	Add image file
	Add table
	Edit table
	Query routines

	Remarks and examples
	Detailed description
	Error codes
	Functions
	Create and save .docx file
	Add paragraph and text
	Add image
	Add table
	Edit table
	Query routines

	Save document to disk file
	Current paragraph and text
	Supported image types
	Linked and embedded images
	Styles
	Performance
	Examples
	Create a .docx document in memory
	Add paragraphs and text
	Display data
	Display regression results
	Add an image
	Display nested table
	Add images to table cells
	Save the .docx document in memory to a disk file

	Diagnostics
	References
	Also see

	dsign()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	e()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	editmissing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittoint()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittozero()
	Description
	Syntax
	Remarks and examples
	Background
	Treatment of complex values
	Recommendations

	Conformability
	Diagnostics
	Also see

	editvalue()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	eigensystem()
	Description
	Syntax
	Remarks and examples
	Eigenvalues and eigenvectors
	Left eigenvectors
	Symmetric eigensystems
	Normalization and order
	Eigenvalue condition
	Balancing
	eigensystem() and eigenvalues()
	lefteigensystem()
	symeigensystem() and symeigenvalues()

	Conformability
	Diagnostics
	References
	Also see

	eigensystemselect()
	Description
	Syntax
	Remarks and examples
	Introduction
	Range selection
	Index selection
	Criterion selection
	Other functions

	Conformability
	Diagnostics
	Also see

	eltype()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	epsilon()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_equilrc()
	Description
	Syntax
	Remarks and examples
	Introduction
	Is equilibration necessary?
	The _equil*() family of functions
	The _perhapsequil*() family of functions
	rowscalefactors() and colscalefactors()

	Conformability
	Diagnostics
	Also see

	error()
	Description
	Syntax
	Remarks and examples
	Use of _error()
	Use of error()

	Conformability
	Diagnostics
	Also see

	errprintf()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exit()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exp()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	factorial()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	favorspeed()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ferrortext()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fft()
	Description
	Syntax
	Remarks and examples
	Definitions, notation, and conventions
	Fourier transform
	Convolution and deconvolution
	Correlation
	Utility routines
	Warnings

	Conformability
	Diagnostics
	Also see

	fileexists()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	_fillmissing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	findexternal()
	Description
	Syntax
	Remarks and examples
	Definition of a global
	Use of globals

	Conformability
	Diagnostics
	Also see

	findfile()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	floatround()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fmtwidth()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fopen()
	Description
	Syntax
	Remarks and examples
	Opening and closing files
	Reading from a file
	Writing to a file
	Reading and writing in the same file
	Reading and writing matrices
	Repositioning in a file
	Truncating a file
	Error codes

	Conformability
	Diagnostics
	Also see

	fullsvd()
	Description
	Syntax
	Remarks and examples
	Introduction
	Relationship between the full and thin SVDs
	The contents of s
	Possibility of convergence problems

	Conformability
	Diagnostics
	Also see

	geigensystem()
	Description
	Syntax
	Remarks and examples
	Generalized eigenvalues
	Generalized eigenvectors
	Criterion selection
	Range selection
	Index selection

	Conformability
	Diagnostics
	References
	Also see

	ghessenbergd()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghk()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghkfast()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	gschurd()
	Description
	Syntax
	Remarks and examples
	Generalized Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Also see

	halton()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hash1()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hessenbergd()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Hilbert()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	I()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	inbase()
	Description
	Syntax
	Remarks and examples
	Positive integers
	Negative integers
	Numbers with nonzero fractional parts
	Use of the functions

	Conformability
	Diagnostics
	Reference
	Also see

	indexnot()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	invorder()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	invsym()
	Description
	Syntax
	Remarks and examples
	Definition of generalized inverse
	Specifying the order in which columns are omitted
	Determining the rank, or counting the number of omitted columns
	Extracting linear dependencies

	Conformability
	Diagnostics
	Also see

	invtokens()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isascii()
	Description
	Syntax
	Conformability
	Also see

	isdiagonal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isfleeting()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isrealvalues()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	issamefile()
	Description
	Syntax
	Remarks and examples
	Conformability
	Also see

	issymmetric()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	isview()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	J()
	Description
	Syntax
	Remarks and examples
	First syntax: J(r, c, val), val a scalar
	Second syntax: J(r, c, mat), mat a matrix

	Conformability
	Diagnostics
	Also see

	Kmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	lapack()
	Description
	Syntax
	Remarks and examples
	Mapping calling sequence from Fortran to Mata
	Flopping: Preparing matrices for LAPACK
	Warning on the use of rows() and cols() after _flopin()
	Warning: It is your responsibility to check info
	Example

	Reference
	Also see

	ldl()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	LinearProgram()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Definition of linear programming problem
	Step 3: Perform optimization
	Step 4: Display or obtain results
	Utility function for use in all steps
	Definition of q
	Functions defining the linear programming problem
	Performing optimization
	Functions for obtaining results
	Utility function

	Remarks and examples
	Introduction
	Details about the interior-point method
	Examples

	Conformability
	Diagnostics
	References
	Also see

	liststruct()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Lmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	logit()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	lowertriangle()
	Description
	Syntax
	Remarks and examples
	Optional argument d
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	lud()
	Description
	Syntax
	Remarks and examples
	LU decomposition
	LAPACK routine

	Conformability
	Diagnostics
	Also see

	luinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	lusolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	makesymmetric()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matexpsym()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matpowersym()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mean()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mindouble()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	minindex()
	Description
	Syntax
	Remarks and examples
	Use of functions when v has all unique values
	Use of functions when v has repeated (tied) values
	Summary

	Conformability
	Diagnostics
	Also see

	minmax()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	missing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	missingof()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mod()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	moptimize()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Definition of maximization or minimization problem
	Step 3: Perform optimization or perform a single function evaluation
	Step 4: Post, display, or obtain results
	Utility functions for use in all steps
	Definition of M
	Setting the sample
	Specifying dependent variables
	Specifying independent variables
	Specifying constraints
	Specifying weights or survey data
	Specifying clusters and panels
	Specifying optimization technique
	Specifying initial values
	Performing one evaluation of the objective function
	Performing optimization of the objective function
	Tracing optimization
	Specifying convergence criteria
	Accessing results
	Stata evaluators
	Advanced functions
	Syntax of evaluators
	Syntax of type lf evaluators
	Syntax of type d evaluators
	Syntax of type lf* evaluators
	Syntax of type gf evaluators
	Syntax of type q evaluators
	Passing extra information to evaluators
	Utility functions

	Remarks and examples
	Relationship of moptimize() to Stata's ml and to Mata's optimize()
	Mathematical statement of the moptimize() problem
	Filling in moptimize() from the mathematical statement
	The type lf evaluator
	The type d, lf*, gf, and q evaluators
	Example using type d
	Example using type lf*

	Conformability
	Diagnostics
	References
	Also see

	more()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mvnormal()
	Description
	Syntax
	Remarks and examples
	Distribution functions
	mvnormal(U,R)
	mvnormal(L,U,R)
	mvnormalcv(L,U,M,V)

	Derivatives of multivariate normal distribution functions
	mvnormalderiv(U,R,dU,dR)
	mvnormalderiv(L,U,R,dL,dU,dR)
	mvnormalcvderiv(L,U,M,V,dL,dU,dM,dV)

	Conformability
	References
	Also see

	_negate()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	norm()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	normal()
	Description
	Syntax
	Remarks and examples
	R-conformability
	A note concerning invbinomial() and invbinomialtail()
	A note concerning ibeta()
	A note concerning gammap()

	Conformability
	Diagnostics
	Also see

	optimize()
	Description
	Syntax
	Remarks and examples
	First example
	Notation
	Type d evaluators
	Example of d0, d1, and d2
	d1debug and d2debug
	Type gf evaluators
	Example of gf0, gf1, and gf2
	Functions

	Conformability
	Diagnostics
	References
	Also see

	panelsetup()
	Description
	Syntax
	Remarks and examples
	Definition of panel data
	Definition of problem
	Preparation
	Use of panelsetup()
	Using panelstats()
	Using panelsubmatrix()
	Using panelsubview()

	Conformability
	Diagnostics
	Also see

	panelsum()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	pathjoin()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Pdf*()
	Description
	Syntax
	PdfDocument
	PdfParagraph
	PdfText
	PdfTable

	Remarks and examples
	PdfDocument class details
	PdfParagraph class details
	PdfText class details
	PdfTable class details
	Error codes
	Examples
	Add paragraph
	Add paragraph with customized text
	Add table (simple example)
	Add table (table with header and footer)
	Add table (table with graph)

	Also see

	pinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	polyeval()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	printf()
	Description
	Syntax
	Remarks and examples
	printf()
	sprintf()
	The %us and %uds formats

	Conformability
	Diagnostics
	Also see

	qrd()
	Description
	Syntax
	Remarks and examples
	QR decomposition
	Avoiding calculation of Q
	Pivoting
	Least-squares solutions with omitted columns

	Conformability
	Diagnostics
	Also see

	qrinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	qrsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	quadcross()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Quadrature()
	Description
	Syntax
	Step 1: Problem initialization
	Step 2: Problem definition
	Step 3: Perform integration
	Step 4: Display or obtain results
	Utility function for use in all steps
	Definition of q
	Functions defining the integration problem
	Performing integration
	Functions for obtaining results
	Utility function

	Remarks and examples
	Introduction
	Examples
	A basic example of Quadrature()
	A basic example of QuadratureVec()
	Integrals with infinite limits
	Passing arguments to the evaluator function
	Singular points and setting tolerances
	Displaying settings and results at each stage
	Solving vectors and matrices of integrals

	Conformability
	Diagnostics
	References
	Also see

	range()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rank()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Re()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	reldif()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	rows()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rowshape()
	Description
	Syntax
	Remarks and examples
	Example of rowshape()
	Example of colshape()

	Conformability
	Diagnostics
	Also see

	runiform()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	runningsum()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	schurd()
	Description
	Syntax
	Remarks and examples
	Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Reference
	Also see

	select()
	Description
	Syntax
	Remarks and examples
	Examples
	Using st_select()

	Conformability
	Diagnostics
	Also see

	setbreakintr()
	Description
	Syntax
	Remarks and examples
	Default break-key processing
	Suspending the break-key interrupt
	Break-key polling

	Conformability
	Diagnostics
	Also see

	sign()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	sin()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	sizeof()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solve_tol()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solvelower()
	Description
	Syntax
	Remarks and examples
	Derivation
	Tolerance

	Conformability
	Diagnostics
	Also see

	solvenl()
	Description
	Syntax
	Remarks and examples
	Introduction
	A fixed-point example
	A zero-finding example
	Writing a fixed-point problem as a zero-finding problem and vice versa
	Gauss{--}Seidel methods
	Newton-type methods
	Convergence criteria
	Exiting early
	Functions

	Conformability
	Diagnostics
	References
	Also see

	sort()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	soundex()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	spline3()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	sqrt()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_addalias()
	Description
	Syntax
	Remarks and examples
	Creating a new alias variable
	Handling errors

	Conformability
	Diagnostics
	Also see

	st_addobs()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_addvar()
	Description
	Syntax
	Remarks and examples
	Creating a new variable
	Creating new variables
	Creating new string variables
	Creating a new temporary variable
	Creating temporary variables
	Handling errors
	Using nofill

	Conformability
	Diagnostics
	Reference
	Also see

	st_data()
	Description
	Syntax
	Remarks and examples
	Description of _st_data() and _st_sdata()
	Description of st_data() and st_sdata()
	Details of observation subscripting using st_data() and st_sdata()

	Conformability
	Diagnostics
	Also see

	st_dir()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_dropvar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_frame*()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_global()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_isalias()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_isfmt()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_isname()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_local()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_macroexpand()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_matrix()
	Description
	Syntax
	Remarks and examples
	Processing Stata's row and column stripes

	Conformability
	Diagnostics
	Also see

	st_numscalar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_nvar()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_rclear()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_store()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_subview()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_tempname()
	Description
	Syntax
	Remarks and examples
	Creating temporary objects
	When temporary objects will be eliminated

	Conformability
	Diagnostics
	Also see

	st_tsrevar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_updata()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varformat()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_varindex()
	Description
	Syntax
	Remarks and examples
	Overview
	Cautions when using variable indices: A variable index can change

	Conformability
	Diagnostics
	Also see

	st_varname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varrename()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_vartype()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_view()
	Description
	Syntax
	Remarks and examples
	Overview
	Advantages and disadvantages of views
	When not to use views
	Cautions when using views 1: Conserving memory
	Cautions when using views 2: Assignment
	Cautions when using views 3: View connections are ephemeral
	Efficiency

	Conformability
	Diagnostics
	Reference
	Also see

	st_viewvars()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_vlexists()
	Description
	Syntax
	Remarks and examples
	Value-label mapping
	Value-label creation and editing
	Loading value labels

	Conformability
	Diagnostics
	Also see

	stata()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	stataversion()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strdup()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	strlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	udstrlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strmatch()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strofreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strpos()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrpos()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strreverse()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrreverse()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrtoname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtrim()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrtrim()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strupper()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrupper()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	subinstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	usubinstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	sublowertriangle()
	Description
	Syntax
	Remarks and examples
	Get lower triangle of a matrix
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	_substr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_usubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	substr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	usubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	udsubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	sum()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	svd()
	Description
	Syntax
	Remarks and examples
	Introduction
	Possibility of convergence problems

	Conformability
	Diagnostics
	References
	Also see

	svsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	swap()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Toeplitz()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	tokenget()
	Description
	Syntax
	Remarks and examples
	Concepts
	Function overview

	Conformability
	Diagnostics
	Also see

	tokens()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trace()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_transpose()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	transposeonly()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trunc()
	Description
	Syntax
	Remarks and examples
	Relationship to Stata's functions
	Examples of rounding

	Conformability
	Diagnostics
	Also see

	uniqrows()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	unitcircle()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	unlink()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	urlencode()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	ustrcompare()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrfix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrnormalize()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrsplit()
	Description
	Syntax
	Remarks and examples
	Conformability
	Also see

	ustrto()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrunescape()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrword()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	valofexternal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Vandermonde()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	vec()
	Description
	Syntax
	Remarks and examples
	Example of vec()
	Example of vech() and invvech()

	Conformability
	Diagnostics
	Also see

	xl()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Creating and opening an Excel workbook
	Step 3: Working with Excel worksheets
	Step 4: Excel active worksheet settings
	Step 5: Reading and writing data from and to an Excel worksheet
	Step 6: Formatting cells in an Excel worksheet
	Step 7: Formatting text in an Excel worksheet
	Step 8: Formatting cell ranges in an Excel worksheet
	Utility functions for use in all steps

	Remarks and examples
	Definition of B
	Specifying the Excel workbook
	Working with Excel worksheets
	Excel active worksheet settings
	Reading data from Excel
	Writing data to Excel
	Dealing with missing values
	Dealing with dates
	Formatting functions
	Numeric formatting
	Text alignment
	Cell borders
	Fonts
	Other
	Formatting examples

	Range formatting functions
	Adding format IDs
	Setting formats by ID
	Cell formatting functions
	Adding font IDs
	Setting font IDs for format IDs
	Font formatting functions
	Range formatting examples

	Utility functions
	Handling errors
	Error codes

	Appendix
	Codes for numeric formats
	Codes for border styles
	Codes for fill pattern styles
	Codes for text rotation
	Format colors

	Also see

	Mata glossary of common terms
	Glossary
	Description
	Mata glossary
	Also see

	[ME] Multilevel Mixed Effects
	Contents
	me
	Description
	Quick start
	Syntax
	Remarks and examples
	Introduction
	Using mixed-effects commands
	Mixed-effects models
	Linear mixed-effects models
	Generalized linear mixed-effects models
	Survival mixed-effects models
	Nonlinear mixed-effects models
	Alternative mixed-effects model specification
	Likelihood calculation
	Computation time and the Laplacian approximation
	Diagnosing convergence problems
	Distribution theory for likelihood-ratio test

	Examples
	Two-level models
	Covariance structures
	Three-level models
	Crossed-effects models
	Nonlinear models

	Acknowledgments
	References
	Also see

	estat df
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat group
	Description
	Menu for estat
	Syntax
	Remarks and examples
	Also see

	estat icc
	Description
	Menu for estat
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Intraclass correlations

	Also see

	estat recovariance
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat sd
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat wcorrelation
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Linear mixed-effects model
	Nonlinear mixed-effects model

	Reference
	Also see

	mecloglog
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	mecloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	meglm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models for continuous responses
	Two-level models for nonlinear responses
	Three-level models for nonlinear responses
	Crossed-effects models
	Obtaining better starting values
	Survey data
	Video example

	Stored results
	Methods and formulas
	Introduction
	Gauss--Hermite quadrature
	Adaptive Gauss--Hermite quadrature
	Laplacian approximation
	Survey data

	References
	Also see

	meglm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	meintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meintreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	melogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Other covariance structures
	Three-level models
	Crossed-effects models

	Stored results
	Methods and formulas
	References
	Also see

	melogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	menbreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	menbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	menl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Random-effects substitutable expressions
	Substitutable expressions
	Linear combinations
	Linear forms versus linear combinations
	Random effects
	Multilevel specifications
	Time-series operators
	Summary

	Specifying initial values
	Two-level models
	Testing variance components
	Random-effects covariance structures
	Heteroskedastic within-group errors
	Restricted maximum likelihood
	Pharmacokinetic modeling
	Single-dose pharmacokinetic modeling
	Multiple-dose pharmacokinetic modeling

	Nonlinear marginal models
	Three-level models
	Obtaining initial values
	Linearization approach to finding initial values
	Graphical approach to finding initial values
	Smart regressions approach to finding initial values
	Examples of specifying initial values

	Stored results
	Methods and formulas
	Introduction
	Variance-components parameters
	Inference based on linearization
	Initial values

	References
	Also see

	menl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	meologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	meoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mepoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Higher-level models

	Stored results
	Methods and formulas
	References
	Also see

	mepoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	meprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mestreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	Survival models
	Survey data

	References
	Also see

	mestreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	metobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	metobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Introduction
	Conditional predictions
	Marginal predictions
	Marginal variance of the linear predictor

	Also see

	mixed
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Covariance structures
	Likelihood versus restricted likelihood
	Three-level models
	Blocked-diagonal covariance structures
	Heteroskedastic random effects
	Heteroskedastic residual errors
	Other residual-error structures
	Crossed-effects models
	Diagnosing convergence problems
	Survey data
	Small-sample inference for fixed effects

	Stored results
	Methods and formulas
	Estimation using ML and REML
	Denominator degrees of freedom
	Residual DDF
	Repeated DDF
	ANOVA DDF
	Satterthwaite DDF
	Kenward{--}Roger DDF

	Fixed-effects constraints

	Acknowledgments
	References
	Also see

	mixed postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	test and testparm
	Description for test and testparm
	Menu for test and testparm
	Syntax for test and testparm
	Options for test and testparm

	lincom
	Description for lincom
	Menu for lincom
	Syntax for lincom
	Options for lincom

	contrast
	Description for contrast
	Menu for contrast
	Syntax for contrast
	Options for contrast

	pwcompare
	Description for pwcompare
	Menu for pwcompare
	Syntax for pwcompare
	Options for pwcompare

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Small-sample inference

	References
	Also see

	Glossary
	References

	[META] Meta-Analysis
	Contents
	Intro
	Description
	Remarks and examples
	Brief overview of meta-analysis
	Meta-analysis models
	Common-effect (``fixed-effect'') model
	Fixed-effects model
	Random-effects model
	Comparison between the models and interpretation of their results
	Meta-analysis estimation methods

	Forest plots
	Heterogeneity
	Assessing heterogeneity
	Addressing heterogeneity
	Subgroup meta-analysis
	Meta-regression

	Publication bias
	Funnel plots
	Tests for funnel-plot asymmetry
	The trim-and-fill method

	Cumulative meta-analysis
	Leave-one-out meta-analysis
	Multivariate meta-regression
	Multilevel meta-regression

	References
	Also see

	meta
	Description
	Remarks and examples
	Introduction to meta-analysis using Stata
	Example datasets
	Effects of teacher expectancy on pupil IQ ({pupiliq.dta})
	Effect of streptokinase after a myocardial infarction (strepto.dta)
	Efficacy of BCG vaccine against tuberculosis (bcg.dta)
	Effectiveness of nonsteroidal anti-inflammatory drugs (nsaids.dta)
	Treatment of moderate periodontal disease (periodontal.dta)

	Tour of meta-analysis commands
	Prepare your data for meta-analysis in Stata
	Basic meta-analysis summary
	Subgroup meta-analysis
	Cumulative meta-analysis
	Heterogeneity: Galbraith plot, meta-regression, and bubble plot
	Funnel plots for exploring small-study effects
	Testing for small-study effects
	Trim-and-fill analysis for addressing publication bias
	Multivariate meta-regression
	Multilevel meta-regression

	Acknowledgments
	References
	Also see

	meta data
	Description
	Remarks and examples
	Overview
	Declaring meta-analysis information
	Declaring effect sizes and their precision
	Declaring a meta-analysis model
	Declaring a meta-analysis estimation method
	Default meta-analysis model and method
	Declaring a confidence level for meta-analysis
	Declaring display settings for meta-analysis
	Modifying default meta settings

	Meta-analysis information
	Meta settings with meta set
	Meta settings with meta esize

	System variables
	Examples of data declaration for meta-analysis
	Declaring precomputed effect sizes using meta set
	Computing and declaring effect sizes using meta esize
	Displaying and updating meta settings

	References
	Also see

	meta esize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Meta-analysis for two-group comparison of binary outcomes
	Meta-analysis for two-group comparison of continuous outcomes
	Meta-analysis for estimating a single proportion
	Meta-analysis for correlation data (StataNow)

	Stored results
	Methods and formulas
	Effect sizes for two-group comparison of continuous outcomes
	Unstandardized mean difference
	Standardized mean difference

	Effect sizes for two-group comparison of binary outcomes
	Odds ratio
	Risk ratio (rate ratio)
	Risk difference
	Zero-cells adjustments for two-sample case

	Effect sizes for estimating a single proportion
	Untransformed (raw) proportion
	Freeman--Tukey-transformed proportion
	Logit-transformed proportion
	Zero-cells adjustments for one-sample case

	Effect sizes for correlation data (StataNow)
	Untransformed (raw) correlation
	Fisher's z-transformed correlation

	Confidence intervals for effect sizes

	References
	Also see

	meta set
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Using meta set

	Stored results
	References
	Also see

	meta update
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	meta forestplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Using meta forestplot
	Plot columns

	Examples of using meta forestplot

	Methods and formulas
	References
	Also see

	meta summarize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using meta summarize

	Stored results
	Methods and formulas
	Fixed-effects and common-effect methods for combining study estimates
	Inverse-variance method
	Mantel--Haenszel method for two-group comparison of binary outcomes
	Peto's method for odds ratios

	Random-effects methods for combining study estimates
	Iterative methods
	Noniterative methods
	Knapp--Hartung standard-error adjustment
	Prediction intervals

	Confidence intervals and significance test
	Heterogeneity measures
	Inverse Freeman--Tukey transformation
	Homogeneity test
	Subgroup meta-analysis
	Fixed-effects model
	Random-effects model

	Cumulative meta-analysis
	Leave-one-out meta-analysis

	References
	Also see

	meta galbraithplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	meta labbeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meta regress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using meta regress

	Stored results
	Methods and formulas
	Fixed-effects meta-regression
	Random-effects meta-regression
	Iterative methods for computing tau-hat-squared
	Noniterative methods for computing tau-hat-squared
	Knapp--Hartung standard-error adjustment

	Residual homogeneity test
	Residual heterogeneity measures

	References
	Also see

	meta regress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Random-effects meta-regression
	Fixed-effects meta-regression

	References
	Also see

	estat bubbleplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using estat bubbleplot

	Methods and formulas
	References
	Also see

	meta funnelplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Funnel plots
	Contour-enhanced funnel plots

	Using meta funnelplot
	Examples of using meta funnelplot

	Stored results
	Methods and formulas
	References
	Also see

	meta bias
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using meta bias
	Examples of using meta bias

	Stored results
	Methods and formulas
	Regression-based tests
	Egger's linear regression test
	Harbord's test for log odds-ratios or log risk-ratios
	Peters's test for log odds-ratios

	Begg's rank correlation test

	References
	Also see

	meta trimfill
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using meta trimfill
	Examples of using meta trimfill

	Stored results
	Methods and formulas
	Estimating the number of missing studies
	Trim-and-fill algorithm

	References
	Also see

	meta meregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Standard meta-analysis as a two-level model
	Three-level random-intercepts model
	Three-level model with random slopes
	Using meta meregress

	Examples of using meta meregress

	Stored results
	Methods and formulas
	Three-level meta-regression
	Methods for estimating Sigma
	Random-effects covariance structures

	Multilevel meta-analysis
	Residual homogeneity test

	References
	Also see

	meta multilevel
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using meta multilevel

	Stored results
	Methods and formulas
	References
	Also see

	meta me postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	meta mvregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using meta mvregress

	Stored results
	Methods and formulas
	Fixed-effects multivariate meta-regression
	Random-effects multivariate meta-regression
	Iterative methods for computing Sigma
	Noniterative method for computing Sigma
	Random-effects covariance structures
	Jackson--Riley standard-error adjustment

	Multivariate meta-analysis
	Residual homogeneity test

	References
	Also see

	meta mvregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Random-effects multivariate meta-regression
	Fixed-effects multivariate meta-regression

	References
	Also see

	estat group
	Description
	Menu for estat
	Syntax
	Remarks and examples
	Also see

	estat heterogeneity (me)
	Description
	Menu for estat
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Multilevel heterogeneity statistics
	Cochran heterogeneity statistic
	Higgins--Thompson heterogeneity statistics

	References
	Also see

	estat heterogeneity (mv)
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Brief overview of heterogeneity statistics
	Cochran heterogeneity statistics
	Jackson--White--Riley heterogeneity statistics
	White heterogeneity statistics

	References
	Also see

	estat recovariance
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat sd
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Glossary
	References

	[MI] Multiple Imputation
	Contents
	Intro substantive
	Description
	Remarks and examples
	Motivating example
	What is multiple imputation?
	Theory underlying multiple imputation
	How large should M be?
	Assumptions about missing data
	Patterns of missing data
	Proper imputation methods
	Analysis of multiply imputed data
	A brief introduction to MI using Stata
	Summary

	References
	Also see

	Intro
	Description
	Remarks and examples
	A simple example
	Suggested reading order

	Acknowledgments
	Also see

	Estimation
	Description
	Also see

	mi add
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi append
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Adding new observations
	Adding new observations and imputations
	Adding new observations and imputations, M unequal
	Treatment of registered variables

	Stored results
	Also see

	mi convert
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi convert as a convenience tool
	Converting from flongsep
	Converting to flongsep

	Also see

	mi copy
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi describe
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mi query
	mi describe

	Stored results
	Also see

	mi erase
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi estimate
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi estimate
	Example 1: Completed-data logistic analysis
	Example 2: Completed-data linear regression analysis
	Example 3: Completed-data survival analysis
	Example 4: Panel data and multilevel models
	Example 5: Estimating transformations
	Example 6: Monte Carlo error estimates
	Potential problems that can arise when using mi estimate

	Stored results
	Methods and formulas
	Univariate case
	Multivariate case

	Acknowledgments
	References
	Also see

	mi estimate using
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mi estimate postestimation
	Postestimation commands
	Remarks and examples
	Using the command-specific postestimation tools

	Also see

	mi expand
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi export
	Description
	Syntax
	Remarks and examples
	References
	Also see

	mi export ice
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	mi export nhanes1
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi extract
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import
	Description
	Syntax
	Remarks and examples
	When to use which mi import command
	Import data into Stata before importing into mi
	Using mi import nhanes1, ice, flong, and flongsep

	References
	Also see

	mi import flong
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import flongsep
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import ice
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	mi import nhanes1
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Description of the nhanes1 format
	Importing nhanes1 data

	Also see

	mi import wide
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi impute
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Imputation methods
	Imputation modeling
	Model building
	Outcome variables
	Transformations
	Categorical variables
	The issue of perfect prediction during imputation of categorical data
	Convergence of iterative methods
	Imputation diagnostics

	Using mi impute
	Univariate imputation
	Multivariate imputation
	Imputing on subsamples
	Conditional imputation
	Imputation and estimation samples
	Imputing transformations of incomplete variables

	Stored results
	Methods and formulas
	References
	Also see

	mi impute chained
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Multivariate imputation using chained equations
	Compatibility of conditionals
	Convergence of MICE
	First use
	Using mi impute chained
	Default prediction equations
	Custom prediction equations
	Link between mi impute chained and mi impute monotone
	Examples

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	mi impute intreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using interval regression
	Using mi impute intreg
	Example

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute logit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using logistic regression
	Using mi impute logit
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mlogit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using multinomial logistic regression
	Using mi impute mlogit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute monotone
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Multivariate imputation when a missing-data pattern is monotone
	First use
	Using mi impute monotone
	Default syntax of mi impute monotone
	The alternative syntax of mi impute monotone---custom prediction equations
	Examples of using default prediction equations
	Examples of using custom prediction equations

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mvn
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Incomplete continuous data with arbitrary pattern of missing values
	Multivariate imputation using data augmentation
	Convergence of the MCMC method
	Using mi impute mvn
	Examples

	Stored results
	Methods and formulas
	Data augmentation
	Prior distribution
	Initial values: EM algorithm
	 Worst linear function

	References
	Also see

	mi impute nbreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using negative binomial regression
	Using mi impute nbreg

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute ologit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using ordered logistic regression
	Using mi impute ologit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute pmm
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using predictive mean matching
	Using mi impute pmm
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute poisson
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using Poisson regression
	Using mi impute poisson

	Stored results
	Methods and formulas
	References
	Also see

	mi impute regress
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using linear regression
	Using mi impute regress
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute truncreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using truncated regression
	Using mi impute truncreg

	Stored results
	Methods and formulas
	References
	Also see

	mi impute usermethod
	Description
	Syntax
	Options
	Remarks and examples
	Toy example: Naive regression imputation
	Steps for adding a new method to mi impute
	Writing an imputation parser
	Writing an initializer
	Writing an imputer
	Storing additional results
	Writing a cleanup program

	Examples
	Naive regression imputation
	Univariate regression imputation
	Multivariate monotone imputation

	Global macros

	Stored results
	Acknowledgment
	Also see

	mi merge
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Merging with non-mi data
	Merging with mi data
	Merging with mi data containing overlapping variables

	Stored results
	Also see

	mi misstable
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi passive
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mi passive basics
	mi passive works with the by prefix
	mi passive works fastest with the wide style
	mi passive and super-varying variables
	Renaming passive variables
	Dropping passive variables
	Update passive variables when imputed values change
	Alternatives to mi passive

	Also see

	mi predict
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using mi predict and mi predictnl
	Example 1: Obtain MI linear predictions and other statistics
	Example 2: Obtain MI linear predictions for the estimation sample
	Example 3: Obtain MI estimates of probabilities
	Example 4: Obtain other MI predictions
	Example 5: Obtain MI predictions after multiple-equation commands

	Methods and formulas
	References
	Also see

	mi ptrace
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi rename
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Specifying the noupdate option
	What to do if you accidentally use rename
	What to do if you accidentally use rename on wide data
	What to do if you accidentally use rename on mlong data
	What to do if you accidentally use rename on flong data
	What to do if you accidentally use rename on flongsep data

	Also see

	mi replace0
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi reset
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi reset
	Technical notes and relation to mi update

	Also see

	mi reshape
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi select
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	mi set
	Description
	Menu
	Syntax
	Option for mi unset
	Remarks and examples
	mi set style
	mi register and mi unregister
	mi set M and mi set m
	mi unset

	Also see

	mi stsplit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi test
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Overview
	Example 1: Testing subsets of coefficients equal to zero
	Example 2: Testing linear hypotheses
	Example 3: Testing nonlinear hypotheses

	Stored results
	Methods and formulas
	References
	Also see

	mi update
	Description
	Menu
	Syntax
	Remarks and examples
	Purpose of mi update
	What mi update does
	mi update is run automatically

	Also see

	mi varying
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Detecting problems
	Fixing problems

	Stored results
	Also see

	mi xeq
	Description
	Syntax
	Remarks and examples
	Using mi xeq with reporting commands
	Using mi xeq with data-modification commands
	Using mi xeq with data-modification commands on flongsep data

	Stored results
	Also see

	mi XXXset
	Description
	Syntax
	Remarks and examples
	Also see

	noupdate option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	Styles
	Description
	Syntax
	Remarks and examples
	The four styles
	Style wide
	Style flong
	Style mlong
	Style flongsep
	How we constructed this example

	Using mi system variables
	Advice for using flongsep

	Also see

	Technical
	Description
	Remarks and examples
	Notation
	Definition of styles
	Style all
	Style wide
	Style mlong
	Style flong
	Style flongsep
	Style flongsep_sub

	Adding new commands to mi
	Outline for new commands
	Utility routines
	u_mi_assert_set
	u_mi_certify_data
	u_mi_no_sys_vars and u_mi_no_wide_vars
	u_mi_zap_chars
	u_mi_xeq_on_tmp_flongsep
	u_mi_get_flongsep_tmpname
	mata: u_mi_flongsep_erase()
	u_mi_sortback
	u_mi_save and u_mi_use
	mata: u_mi_wide_swapvars()
	u_mi_fixchars
	mata: u_mi_cpchars_get() and mata: u_mi_cpchars_put()
	mata: u_mi_get_mata_instanced_var()
	mata: u_mi_ptrace_*()

	How to write other set commands to work with mi

	Also see

	Workflow
	Description
	Remarks and examples
	Suggested workflow for original data
	Suggested workflow for data that already have imputations
	Example

	Also see

	Glossary
	Also see

	[MV] Multivariate Statistics
	Contents
	Intro
	Description
	Also see

	Multivariate
	Description
	Remarks and examples
	Cluster analysis
	Discriminant analysis
	Factor analysis and principal component analysis
	Rotation
	Multivariate analysis of variance, multivariate regression, and related techniques
	Structural equation modeling
	Multidimensional scaling and biplots
	Correspondence analysis
	Bayesian analysis
	Item response theory
	Multivariate time-series models
	Multivariate meta-regression

	Also see

	alpha
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	biplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ca
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	How many dimensions?
	Statistics on the points
	Normalization and interpretation of correspondence analysis
	Plotting the points
	Supplementary points
	Matrix input
	Crossed variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation plots
	Postestimation commands
	cabiplot
	Description for cabiplot
	Menu for cabiplot
	Syntax for cabiplot
	Options for cabiplot

	caprojection
	Description for caprojection
	Menu for caprojection
	Syntax for caprojection
	Options for caprojection

	Remarks and examples
	References
	Also see

	candisc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	canon
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	canon postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster
	Description
	Syntax
	Remarks and examples
	Introduction to cluster analysis
	Stata's cluster-analysis system
	Data transformations and variable selection
	Similarity and dissimilarity measures
	Partition cluster-analysis methods
	Hierarchical cluster-analysis methods
	Hierarchical cluster analysis applied to a dissimilarity matrix
	Postclustering commands
	Cluster-management tools

	References
	Also see

	clustermat
	Description
	Syntax
	Remarks and examples
	References
	Also see

	cluster dendrogram
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	cluster generate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	cluster kmeans and kmedians
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cluster linkage
	Description
	Quick start
	Menu
	Syntax
	Options for cluster linkage commands
	Options for clustermat linkage commands
	Remarks and examples
	Methods and formulas
	Also see

	cluster notes
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	cluster programming subroutines
	Description
	Remarks and examples
	Adding a cluster subroutine
	Adding a cluster generate function
	Adding a cluster stopping rule
	Applying an alternate cluster dendrogram routine

	Reference
	Also see

	cluster programming utilities
	Description
	Syntax
	Options for cluster set
	Options for cluster delete
	Options for cluster measures
	Remarks and examples
	Stored results
	Also see

	cluster stop
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster utility
	Description
	Menu
	Syntax
	Options for cluster list
	Options for cluster renamevar
	Remarks and examples
	Also see

	discrim
	Description
	Syntax
	Remarks and examples
	Introduction
	A simple example
	Prior probabilities, costs, and ties

	Methods and formulas
	References
	Also see

	discrim estat
	Postestimation commands
	Description for estat
	Quick start for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat classtable
	Options for estat errorrate
	Options for estat grsummarize
	Options for estat list
	Options for estat summarize

	Remarks and examples
	Discriminating-variable summaries
	Discrimination listings
	Classification tables and error rates

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	Mahalanobis transformation
	Binary data

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	discrim lda
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Descriptive LDA
	Predictive LDA
	A classic example

	Stored results
	Methods and formulas
	Predictive LDA
	Descriptive LDA

	References
	Also see

	discrim lda postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat classfunctions
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances
	Options for estat grmeans
	Options for estat loadings
	Option for estat structure

	Remarks and examples
	Classification tables, error rates, and listings
	ANOVA, MANOVA, and canonical correlations
	Discriminant and classification functions
	Scree, loading, and score plots
	Means and distances
	Covariance and correlation matrices
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Reference
	Also see

	discrim qda
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim qda postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	factor
	Description
	Quick start
	Menu
	Syntax
	Options for factor and factormat
	Options unique to factormat
	Remarks and examples
	Introduction
	Factor analysis
	Factor analysis from a correlation matrix

	Stored results
	Methods and formulas
	References
	Also see

	factor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, factor loadings, and scores
	Rotating the factor loadings
	Factor scores

	Stored results
	Methods and formulas
	estat
	rotate
	predict

	References
	Also see

	hotelling
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	manova
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way MANOVA
	Reporting coefficients
	Two-way MANOVA
	N-way MANOVA
	MANCOVA
	MANOVA for Latin-square designs
	MANOVA for nested designs
	MANOVA for mixed designs
	MANOVA with repeated measures

	Stored results
	Methods and formulas
	References
	Also see

	manova postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	manovatest
	Description of manovatest
	Menu for manovatest
	Syntax for manovatest
	Options for manovatest

	test
	Description for test
	Menu for test
	Syntax for test
	Options for test

	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	matrix dissimilarity
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	mca
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Compare MCA on two variables and CA
	MCA on four variables
	CA of the indicator matrix
	CA of the Burt matrix
	Joint correspondence analysis

	Stored results
	Methods and formulas
	Notation
	Using ca to compute MCA
	CA of an indicator or Burt matrix
	JCA
	Supplementary variables
	predict

	References
	Also see

	mca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat coordinates
	Options for estat summarize

	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	mca postestimation plots
	Postestimation commands
	mcaplot
	Description for mcaplot
	Menu for mcaplot
	Syntax for mcaplot
	Options for mcaplot

	mcaprojection
	Description for mcaprojection
	Menu for mcaprojection
	Syntax for mcaprojection
	Options for mcaprojection

	Remarks and examples
	Methods and formulas
	References
	Also see

	mds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Euclidean distances
	Non-Euclidean dissimilarity measures
	Introduction to modern MDS
	Protecting from local minimums

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation plots
	Postestimation commands
	mdsconfig
	Description for mdsconfig
	Menu for mdsconfig
	Syntax for mdsconfig
	Options for mdsconfig

	mdsshepard
	Description for mdsshepard
	Menu for mdsshepard
	Syntax for mdsshepard
	Options for mdsshepard

	Remarks and examples
	References
	Also see

	mdslong
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Proximity data in long format
	Modern nonmetric MDS

	Stored results
	Methods and formulas
	References
	Also see

	mdsmat
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Proximity data in a Stata matrix
	Modern MDS and local minimums

	Stored results
	Methods and formulas
	Classical multidimensional scaling
	Modern multidimensional scaling
	Conversion of similarities to dissimilarities

	References
	Also see

	measure_option
	Description
	Syntax
	Options
	References
	Also see

	mvreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mvreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	mvtest
	Description
	Syntax
	References
	Also see

	mvtest correlations
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	Stored results
	Methods and formulas
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	References
	Also see

	mvtest covariances
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	Stored results
	Methods and formulas
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	References
	Also see

	mvtest means
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options with one-sample tests
	Remarks and examples
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	Stored results
	Methods and formulas
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	References
	Also see

	mvtest normality
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mardia mSkewness and mKurtosis
	Henze--Zirkler
	Doornik--Hansen

	Acknowledgment
	References
	Also see

	pca
	Description
	Quick start
	Menu
	Syntax
	Options
	Options unique to pcamat
	Remarks and examples
	Stored results
	Methods and formulas
	Notation
	Inference on eigenvalues and eigenvectors
	More general tests for multivariate normal distributions

	References
	Also see

	pca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, component loadings, and scores
	Rotating the components
	How rotate interacts with pca
	Predicting the component scores

	Stored results
	Methods and formulas
	References
	Also see

	procrustes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to Procrustes methods
	Orthogonal Procrustes analysis
	Is an orthogonal Procrustes analysis symmetric?
	Other transformations

	Stored results
	Methods and formulas
	Introduction
	Orthogonal transformations
	Oblique transformations
	Unrestricted transformations
	Reported statistics

	References
	Also see

	procrustes postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	procoverlay
	Description for procoverlay
	Menu for procoverlay
	Syntax for procoverlay
	Options for procoverlay

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rotate
	Description
	Quick start
	Menu
	Syntax
	Options
	Rotation criteria

	Remarks and examples
	Orthogonal rotations
	Oblique rotations
	Other types of rotation

	Stored results
	Methods and formulas
	References
	Also see

	rotatemat
	Description
	Menu
	Syntax
	Options
	Rotation criteria

	Remarks and examples
	Introduction
	Orthogonal rotations
	Oblique rotations
	Promax rotation

	Stored results
	Methods and formulas
	References
	Also see

	scoreplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	screeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	Glossary
	References

	[P] Programming
	Contents
	Combined subject table of contents for programming
	Intro
	Description
	References
	Also see

	Automation
	Description
	Remarks and examples
	Also see

	break
	Description
	Syntax
	Remarks and examples
	Also see

	byable
	Description
	Syntax
	Option
	Remarks and examples
	byable(recall) programs
	Using sort in byable(recall) programs
	Byable estimation commands
	byable(onecall) programs
	Using sort in byable(onecall) programs
	Combining byable(onecall) with byable(recall)
	The by-group header

	Also see

	capture
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	char
	Description
	Syntax
	Option
	Remarks and examples
	How to program with characteristics

	Also see

	class
	Description
	Remarks and examples
	1. Introduction
	2. Definitions
	3. Version control
	4. Member variables
	5. Inheritance
	6. Member programs' return values
	7. Assignment
	8. Built-ins
	9. Prefix operators
	10. Using object values
	11. Object destruction
	12. Advanced topics
	Appendix A. Finding, loading, and clearing class definitions
	Appendix B. Jargon
	Appendix C. Syntax diagrams

	Also see

	class exit
	Description
	Syntax
	Remarks and examples
	Examples

	Also see

	classutil
	Description
	Syntax
	Options for classutil describe
	Options for classutil dir
	Option for classutil which
	Remarks and examples
	classutil drop
	classutil describe
	classutil dir
	classutil cdir
	classutil which

	Stored results
	Also see

	comments
	Description
	Remarks and examples
	Also see

	confirm
	Description
	Syntax
	Option
	Remarks and examples
	confirm existence
	confirm file
	confirm format
	confirm frame
	confirm names
	confirm number
	confirm matrix
	confirm scalar
	confirm variable

	Also see

	continue
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	creturn
	Description
	Menu
	Syntax
	Remarks and examples
	System values
	Directories and paths
	System limits
	Numerical and string limits
	Current dataset
	Memory settings
	Output settings
	Interface settings
	Graphics settings
	Network settings
	Update settings
	Trace (program debugging) settings
	Mata settings
	Java settings
	LAPACK settings
	putdocx settings
	putpdf settings
	Python settings
	RNG settings
	sort settings
	Unicode settings
	Other settings
	Other system values

	Also see

	_datasignature
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	#delimit
	Description
	Syntax
	Remarks and examples
	Also see

	Dialog programming
	Description
	Remarks and examples
	1. Introduction
	2. Concepts
	2.1 Organization of the .dlg file
	2.2 Positions, sizes, and the DEFINE command
	2.3 Default values
	2.4 Memory (recollection)
	2.5 I-actions and member functions
	2.6 U-actions and communication options
	2.7 The distinction between i-actions and u-actions
	2.8 Error and consistency checking

	3. Commands
	3.1 VERSION
	3.2 INCLUDE
	3.3 DEFINE
	3.4 POSITION
	3.5 LIST
	3.6 DIALOG
	3.6.1 CHECKBOX on/off input control
	3.6.2 RADIO on/off input control
	3.6.3 SPINNER numeric input control
	3.6.4 EDIT string input control
	3.6.5 VARLIST and VARNAME string input controls
	3.6.6 FILE string input control
	3.6.7 LISTBOX list input control
	3.6.8 COMBOBOX list input control
	3.6.9 BUTTON special input control
	3.6.10 TEXT static control
	3.6.11 TEXTBOX static control
	3.6.12 GROUPBOX static control
	3.6.13 FRAME static control
	3.6.14 COLOR input control
	3.6.15 EXP expression input control
	3.6.16 HLINK hyperlink input control
	3.6.17 TREEVIEW tree input control
	3.7 OK, SUBMIT, CANCEL, and COPY u-action buttons
	3.8 HELP and RESET helper buttons
	3.9 Special dialog directives

	4. SCRIPT
	5. PROGRAM
	5.1 Concepts
	5.1.1 Vnames
	5.1.2 Enames
	5.1.3 rstrings: cmdstring and optstring
	5.1.4 Adding to an rstring
	5.2 Flow-control commands
	5.2.1 if
	5.2.2 while
	5.2.3 call
	5.2.4 exit
	5.2.5 close
	5.3 Error-checking and presentation commands
	5.3.1 require
	5.3.2 stopbox
	5.4 Command-construction commands
	5.4.1 by
	5.4.2 bysort
	5.4.3 put
	5.4.4 varlist
	5.4.5 ifexp
	5.4.6 inrange
	5.4.7 weight
	5.4.8 beginoptions and endoptions
	5.4.8.1 option
	5.4.8.2 optionarg
	5.5 Command-execution commands
	5.5.1 stata
	5.5.2 clear
	5.6 Special scripts and programs

	6. Properties
	7. Child dialogs
	7.1 Referencing the parent
	8. Example
	Appendix A: Jargon
	Appendix B: Class definition of dialog boxes
	Appendix C: Interface guidelines for dialog boxes
	Frequently asked questions

	Also see

	discard
	Description
	Syntax
	Remarks and examples
	Also see

	display
	Description
	Syntax
	Remarks and examples
	Introduction
	Styles
	display used with quietly and noisily
	Columns
	display and SMCL
	Displaying variable names
	Obtaining input from the terminal

	Also see

	ereturn
	Description
	Syntax
	Options
	Remarks and examples
	Estimation-class programs
	Setting individual estimation results
	Posting estimation coefficient and variance--covariance matrices

	Stored results
	Also see

	error
	Description
	Syntax
	Remarks and examples
	Introduction
	Summary
	Other messages

	Also see

	estat programming
	Description
	Remarks and examples
	Standard subcommands
	Adding subcommands to estat
	Overriding standard behavior of a subcommand

	Also see

	_estimates
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Estimation command
	Description
	Remarks and examples
	References
	Also see

	exit
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	file
	Description
	Syntax
	Options
	Text output specifications

	Remarks and examples
	Use of file
	Use of file with tempfiles
	Writing text files
	Reading text files
	Use of seek when writing or reading text files
	Writing and reading binary files
	Writing binary files
	Reading binary files
	Use of seek when writing or reading binary files
	Appendix A.1 $mskip 	hinmuskip $ Useful commands and functions for use with file
	Appendix A.2 $mskip 	hinmuskip $ Actions of binary output formats with out-of-range values

	Stored results
	Reference
	Also see

	File formats .dta
	Description
	Also see

	File formats .dtas
	Description
	Also see

	findfile
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	foreach
	Description
	Syntax
	Remarks and examples
	Introduction
	foreach {elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of local and foreach {elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of global
	foreach {elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of varlist
	foreach {elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of newlist
	foreach {elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of numlist
	Use of foreach with continue
	The unprocessed list elements

	References
	Also see

	forvalues
	Description
	Syntax
	Remarks and examples
	References
	Also see

	frame post
	Description
	Syntax
	Remarks and examples
	Also see

	fvexpand
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	gettoken
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	H2O intro
	Description

	if
	Description
	Syntax
	Remarks and examples
	Introduction
	Avoid single-line if and else with ++ and -/- macro expansion

	Reference
	Also see

	include
	Description
	Syntax
	Option
	Remarks and examples
	Use with do-files
	Use with Mata
	Warning

	Also see

	Java intro
	Description
	Also see

	Java integration
	Description
	Syntax
	Calling Java from Stata
	Instance commands

	Option
	Remarks and examples
	How the environment works
	Invoking Java interactively
	Executing Java in a do-file
	Executing Java in an ado-file
	Executing Java files
	Stata Function Interface examples
	Using JAR dependencies

	Also see

	Java plugin
	Description
	Remarks and examples
	References
	Also see

	Java utilities
	Description
	Syntax
	Remarks and examples
	Also see

	javacall
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	levelsof
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References
	Also see

	macro
	Description
	Syntax
	Remarks and examples
	Formal definition of a macro
	Global and local macro names
	Macro assignment
	Macro functions
	Macro function for extracting program properties
	Macro function for extracting program results class
	Macro functions for extracting data attributes
	Macro functions for extracting attributes of alias variables
	Macro function for naming variables
	Macro functions for filenames and file paths
	Macro function for accessing operating-system parameters
	Macro functions for names of stored results
	Macro function for formatting results
	Macro function for manipulating lists
	Macro functions related to matrices
	Macro function related to time-series operators
	Macro function for copying a macro
	Macro functions for parsing
	Macro expansion operators and function
	The tempvar, tempname, and tempfile commands
	Manipulation of macros
	Macros as arguments

	References
	Also see

	macro lists
	Description
	Syntax
	Remarks and examples
	Treatment of adornment
	Treatment of duplicate elements in lists

	Also see

	makecns
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Overview
	Mathematics
	Linkage of the mathematics to Stata

	Stored results
	Also see

	mark
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	matlist
	Description
	Syntax
	Style options
	General options
	Required options for the second syntax
	Remarks and examples
	All columns with the same format
	Different formats for each column
	Other output options

	Also see

	matrix
	Description
	Remarks and examples
	Overview of matrix commands
	Creating and replacing matrices
	Namespace
	Naming conventions in programs

	Reference
	Also see

	matrix accum
	Description
	Syntax
	Options
	Remarks and examples
	matrix accum
	matrix glsaccum
	matrix opaccum
	matrix vecaccum
	Treatment of user-specified weights

	Stored results
	Reference
	Also see

	matrix define
	Description
	Menu
	Syntax
	Remarks and examples
	Introduction
	Inputting matrices by hand
	Matrix operators
	Matrix functions returning matrices
	Matrix functions returning scalars
	Subscripting and element-by-element definition
	Name conflicts in expressions (namespaces)
	Macro functions

	Also see

	matrix dissimilarity
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	matrix eigenvalues
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix get
	Description
	Syntax
	Remarks and examples
	Also see

	matrix mkmat
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mkmat
	svmat

	Acknowledgment
	References
	Also see

	matrix rowjoinbyname
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	matrix rownames
	Description
	Syntax
	Remarks and examples
	Also see

	matrix score
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	matrix svd
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	matrix symeigen
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix utility
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	more
	Description
	Syntax
	Remarks and examples
	Also see

	nopreserve option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	numlist
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	pause
	Description
	Syntax
	Remarks and examples
	Also see

	plugin
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	postfile
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	_predict
	Description
	Syntax
	Options
	Methods and formulas
	Reference
	Also see

	preserve
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	program
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	program properties
	Description
	Option
	Remarks and examples
	Introduction
	Writing programs for use with nestreg and stepwise
	Writing programs for use with svy
	Writing programs for use with mi
	Properties for survival-analysis commands
	Properties for prefix commands
	Properties for disabling collection of results
	Properties for exponentiating coefficients
	Putting it all together
	Checking for program properties

	Also see

	Project Manager
	Description
	Remarks and examples
	Getting started with the Project Manager
	Editing projects
	Properties
	Relative versus absolute paths
	Filtering and searching

	Also see

	PyStata intro
	Description
	Also see

	PyStata integration
	Description
	Syntax
	Options
	Remarks and examples
	Invoking Python interactively
	The distinction between python and python:
	Embedding Python code in a do-file
	Running a Python script file
	Embedding Python code in an ado-file
	Stata Function Interface (sfi) module
	Configuring Python
	Locating modules
	Error codes

	Stored results
	Acknowledgment
	References
	Also see

	PyStata module
	Description
	Also see

	quietly
	Description
	Syntax
	Remarks and examples
	quietly used interactively
	quietly used in programs
	Note for programmers

	Also see

	_return
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	return
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Storing results in r()
	Storing results in e()
	Storing results in s()
	Recommended names for stored results
	Using hidden and historical stored results
	Programming hidden and historical stored results

	Reference
	Also see

	_rmcoll
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	rmsg
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	_robust
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Formulas and simple examples
	Clustered data
	Survey data
	Controlling the header display
	Maximum likelihood estimators
	Multiple-equation estimators

	Stored results
	Methods and formulas
	References
	Also see

	scalar
	Description
	Syntax
	Remarks and examples
	Naming scalars

	Reference
	Also see

	serset
	Description
	Syntax
	Options
	Options for serset create
	Options for serset create_xmedians
	Option for serset create_cspline
	Option for serset summarize
	Option for serset use

	Remarks and examples
	Introduction
	serset create
	serset create_xmedians
	serset create_cspline
	serset set
	serset sort
	serset summarize
	serset
	serset use
	serset reset_id
	serset drop
	serset clear
	serset dir
	file sersetwrite and file sersetread

	Stored results
	Also see

	set locale_functions
	Description
	Syntax
	Option
	Also see

	set locale_ui
	Description
	Syntax
	Also see

	set sortmethod
	Description
	Syntax
	Remarks and examples
	Overview and version control
	Controlling the sorter within a program
	Reproducibility

	Also see

	set sortrngstate
	Description
	Syntax
	Remarks and examples
	Holding and restoring the jumbler state
	Reproducibility

	Also see

	signestimationsample
	Description
	Syntax
	Remarks and examples
	Using signestimationsample and checkestimationsample
	Signing
	Checking
	Handling of weights
	Do not sign unnecessarily

	Stored results
	Also see

	sleep
	Description
	Syntax
	Remarks and examples

	smcl
	Description
	Remarks and examples
	Introduction
	SMCL modes
	Command summary---general syntax
	Help file preprocessor directive for substituting repeated material
	Formatting directives for use in line and paragraph modes
	Link directives for use in line and paragraph modes
	Formatting directives for use in line mode
	Formatting directives for use in paragraph mode
	Directive for entering the as-is mode
	Inserting values from constant and current-value class
	Displaying characters using ASCII and extended ASCII codes
	Advice on using display
	Advice on formatting help files

	Also see

	sortpreserve
	Description
	Syntax
	Option
	Remarks and examples
	Introduction
	sortpreserve
	The cost of sortpreserve
	How sortpreserve works
	Use of sortpreserve with preserve
	Use of sortpreserve with subroutines that use sortpreserve

	Also see

	syntax
	Description
	Syntax
	Syntax, continued
	Remarks and examples
	Introduction
	The args command
	The syntax command

	Also see

	sysdir
	Description
	Syntax
	Option
	Remarks and examples
	Introduction
	sysdir
	adopath
	set adosize

	Also see

	tabdisp
	Description
	Syntax
	Options
	Remarks and examples
	Limits
	Introduction
	Treatment of string variables
	Treatment of missing values

	Also see

	timer
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	tokenize
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	trace
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	unab
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	unabcmd
	Description
	Syntax
	Remarks and examples
	Also see

	varabbrev
	Description
	Syntax
	Remarks and examples
	Also see

	version
	Description
	Syntax
	Option
	Remarks and examples
	Version
	Version a single command
	User version
	Version and random numbers

	Also see

	viewsource
	Description
	Syntax
	Remarks and examples
	Also see

	while
	Description
	Syntax
	Remarks and examples
	Also see

	window programming
	Description
	Syntax
	Also see

	window fopen
	Description
	Syntax
	Remarks and examples
	Also see

	window manage
	Description
	Syntax
	Remarks and examples
	Minimizing or restoring the main window
	Windowing preferences
	Restoring file associations (Windows only)
	Resetting the main window title
	Setting Dock icon's label (Mac only)
	Bringing windows forward
	Commands to manage Graph windows
	Commands to manage Viewer windows

	Also see

	window menu
	Description
	Syntax
	Remarks and examples
	Overview
	Clear previously defined menu additions
	Define submenus
	Define menu items
	Define separator bars
	Activate menu changes
	Add files to the Open recent menu
	Keyboard shortcuts (Windows only)
	Examples
	Advanced features: Dialogs and built-in actions
	Advanced features: Creating checked menu items
	Putting it all together

	Also see

	window push
	Description
	Syntax
	Remarks and examples
	Also see

	window stopbox
	Description
	Syntax
	Remarks and examples
	Also see

	Glossary

	[PSS] Power, Precision, and Sample Size
	Contents
	Introduction to power, precision, and sample-size analysis
	Intro
	Description
	Also see

	Power and sample-size analysis
	Intro (power)
	Description
	Remarks and examples
	Power and sample-size analysis
	Hypothesis testing
	Components of PSS analysis
	Study design
	Statistical method
	Significance level
	Power
	Clinically meaningful difference and effect size
	Sample size
	One-sided test versus two-sided test
	Another consideration: Dropout

	Survival data
	Sensitivity analysis
	An example of PSS analysis in Stata
	Video example

	References
	Also see

	GUI (power)
	Description
	Menu
	Remarks and examples
	PSS Control Panel
	Example using PSS Control Panel

	Also see

	power
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using the power command
	Specifying multiple values of study parameters

	One-sample tests
	Two-sample tests
	Paired-sample tests
	Analysis of variance models
	Linear regression
	Contingency tables
	Survival analysis
	Cluster randomized designs
	Tables of results
	Power curves
	Add your own methods to power

	Stored results
	Methods and formulas
	References
	Also see

	power usermethod
	Description
	Syntax
	Remarks and examples
	A quick example
	Steps for adding a new method to the power command
	Convention for naming options and storing results
	Allowing multiple values in method-specific options
	Customizing default tables
	Setting supported columns
	Modifying the default table columns
	Modifying the look of the default table
	Example continued

	Customizing default graphs
	Other settings
	Handling parsing more efficiently
	More examples: Adding two-sample methods
	Initializer's s() return settings

	References
	Also see

	power, graph
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using power, graph
	Graph symbols
	Default graphs
	Changing default graph dimensions
	Changing the look of graphs
	Parallel plots

	Also see

	power, table
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using power, table
	Default tables
	Modifying default tables
	Custom tables

	Stored results
	Also see

	power onemean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onemean
	Computing sample size
	Computing power
	Computing effect size and target mean
	Performing hypothesis tests on mean
	Video examples

	Stored results
	Methods and formulas
	Known standard deviation
	Unknown standard deviation
	Finite population size

	References
	Also see

	power onemean, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing number of clusters
	Computing cluster size
	Computing power
	Computing effect size and target mean
	Performing hypothesis tests on mean in a CRD

	Stored results
	Methods and formulas
	Equal cluster sizes
	Unequal cluster sizes

	References
	Also see

	power twomeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twomeans
	Computing sample size
	Computing power
	Computing effect size and experimental-group mean
	Testing a hypothesis about two independent means

	Stored results
	Methods and formulas
	Known standard deviations
	Unknown standard deviations
	Unequal standard deviations
	Equal standard deviations

	References
	Also see

	power twomeans, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing numbers of clusters
	Computing number of clusters in one group
	Computing cluster sizes
	Computing power
	Computing effect size and experimental-group mean
	Testing hypotheses about two means in a CRD

	Stored results
	Methods and formulas
	Introduction
	Equal cluster sizes
	Unequal cluster sizes

	References
	Also see

	power pairedmeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pairedmeans
	Computing sample size
	Computing power
	Computing effect size and target mean difference
	Testing a hypothesis about two correlated means
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	power oneproportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneproportion
	Computing sample size
	Computing power
	Computing effect size and target proportion
	Performing hypothesis tests on proportion
	Video examples

	Stored results
	Methods and formulas
	Large-sample normal approximation
	Binomial test

	References
	Also see

	power oneproportion, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing number of clusters
	Computing cluster size
	Computing power
	Computing effect size and target proportion
	Performing hypothesis tests on proportion in a CRD

	Stored results
	Methods and formulas
	Equal cluster sizes
	Unequal cluster sizes

	References
	Also see

	power twoproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twoproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and experimental-group proportion
	Testing a hypothesis about two independent proportions
	Video examples

	Stored results
	Methods and formulas
	Effect size
	Pearsons chi2 test
	Likelihood-ratio test
	Fisher's exact conditional test

	References
	Also see

	power twoproportions, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing numbers of clusters
	Computing number of clusters in one group
	Computing cluster sizes
	Computing power
	Computing effect size and experimental-group proportion
	Testing hypotheses about two proportions in a CRD

	Stored results
	Methods and formulas
	References
	Also see

	power pairedproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pairedproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target discordant proportions
	Testing a hypothesis about two correlated proportions

	Stored results
	Methods and formulas
	References
	Also see

	power onevariance
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onevariance
	Computing sample size
	Computing power
	Computing effect size and target variance
	Performing a hypothesis test on variance

	Stored results
	Methods and formulas
	Reference
	Also see

	power twovariances
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twovariances
	Computing sample size
	Computing power
	Computing effect size and experimental-group variance
	Testing a hypothesis about two independent variances

	Stored results
	Methods and formulas
	References
	Also see

	power onecorrelation
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onecorrelation
	Computing sample size
	Computing power
	Computing effect size and target correlation
	Performing hypothesis tests on correlation

	Stored results
	Methods and formulas
	References
	Also see

	power twocorrelations
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twocorrelations
	Computing sample size
	Computing power
	Computing effect size and experimental-group correlation
	Testing a hypothesis about two independent correlations

	Stored results
	Methods and formulas
	References
	Also see

	power oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and between-group variance
	Testing hypotheses about multiple group means
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	power twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twoway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple populations

	Stored results
	Methods and formulas
	Main effects
	Interaction effects
	Hypothesis testing

	References
	Also see

	power repeated
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power repeated
	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple dependent populations

	Stored results
	Methods and formulas
	Hypothesis testing
	Computing power

	References
	Also see

	power oneslope
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneslope
	Computing sample size
	Computing power
	Computing effect size and target slope
	Performing hypothesis tests on the slope coefficient

	Stored results
	Methods and formulas
	References
	Also see

	power rsquared
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power rsquared
	Computing sample size
	Computing power
	Computing effect size and target R2
	Performing hypothesis tests on the coefficients

	Stored results
	Methods and formulas
	Introduction
	Testing all coefficients
	Testing a subset of coefficients: R2 of full versus reduced models
	Testing a subset of coefficients: Partial multiple correlation

	Reference
	Also see

	power pcorr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pcorr
	Computing sample size
	Computing power
	Computing effect size and target squared partial correlation
	Performing hypothesis tests on the partial correlation

	Stored results
	Methods and formulas
	Reference
	Also see

	power cmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power cmh
	Alternative ways of specifying probabilities

	Motivating example
	Computing sample size
	Computing power
	Computing effect size
	Testing hypotheses about association in 2 x 2 x K tables

	Stored results
	Methods and formulas
	References
	Also see

	power mcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power mcc
	Computing sample size
	Computing power
	Computing target odds ratio
	Testing hypotheses in matched case{--}control studies

	Stored results
	Methods and formulas
	References
	Also see

	power trend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power trend
	Alternative ways of specifying probabilities

	Computing sample size
	Computing power
	Testing hypotheses about a trend in J x 2 tables

	Stored results
	Methods and formulas
	Computing power
	Computing sample size

	References
	Also see

	power cox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power cox
	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Link to the sample-size and power computation for the log-rank test

	Computing power
	Computing effect size
	Performing analyses using a Cox PH model

	Stored results
	Methods and formulas
	References
	Also see

	power exponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power exponential
	Alternative ways of specifying effect

	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Nonuniform accrual
	Exponential losses to follow-up

	The conditional versus unconditional approaches
	Link to the sample-size and power computation for the log-rank test
	Computing power
	Testing hypotheses about two exponential survivor functions

	Stored results
	Methods and formulas
	References
	Also see

	power logrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power logrank
	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring

	Withdrawal of subjects from the study
	Including information about subject accrual
	Computing power
	Computing effect size
	Testing a hypothesis about two survivor functions using the log-rank test

	Stored results
	Methods and formulas
	References
	Also see

	power logrank, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing numbers of clusters
	Computing cluster sizes
	Computing power
	Computing effect size
	Compare two survivor functions with clustered data

	Stored results
	Methods and formulas
	References
	Also see

	Precision and sample-size analysis
	Intro (ciwidth)
	Description
	Remarks and examples
	Precision and sample-size analysis
	Confidence intervals
	Components of PrSS analysis
	Confidence level
	CI width
	Probability of CI width
	Sample size
	One-sided versus two-sided CIs

	Sensitivity analysis
	An example of PrSS analysis in Stata

	References
	Also see

	GUI (ciwidth)
	Description
	Menu
	Remarks and examples
	PSS Control Panel
	Example using PSS Control Panel

	Also see

	ciwidth
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using the ciwidth command
	Specifying multiple values of study parameters

	PrSS analysis for CIs for one population parameter
	PrSS analysis for CIs comparing two independent samples
	PrSS analysis for CIs comparing paired samples
	Tables of results
	Sample-size and other curves
	Add your own methods to ciwidth

	Stored results
	Methods and formulas
	Also see

	ciwidth usermethod
	Description
	Syntax
	Remarks and examples
	A quick example
	Steps for adding a new method to the ciwidth command
	Convention for naming options and storing results
	Allowing multiple values in method-specific options
	Customizing default tables
	Setting supported columns
	Modifying the default table columns
	Modifying the look of the default table
	Example continued

	Customizing default graphs
	Other settings
	Handling parsing more efficiently
	More examples: Compute probability of CI width for a one-proportion CI
	Step 1: Program to simulate the data and compute the CI width
	Step 2: Estimating probability of CI width using simulation
	Step 3: Adding probability of CI width computation to ciwidth
	Step 4: Computing exact probability of CI width

	Initializer's s() return settings

	References
	Also see

	ciwidth, graph
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using ciwidth, graph
	Graph symbols
	Default graphs
	Changing default graph dimensions
	Changing the look of graphs
	Parallel plots

	Also see

	ciwidth, table
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using ciwidth, table
	Default tables
	Modifying default tables
	Custom tables

	Stored results
	Also see

	ciwidth onemean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth onemean
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	Known standard deviation
	Unknown standard deviation
	Finite population size

	References
	Also see

	ciwidth twomeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth twomeans
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	Known equal and unequal standard deviations
	Unknown and equal standard deviations

	References
	Also see

	ciwidth pairedmeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth pairedmeans
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	References
	Also see

	ciwidth onevariance
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth onevariance
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	References
	Also see

	Design specification
	Unbalanced designs
	Description
	Syntax
	Options
	Remarks and examples
	Two samples
	Specifying total sample size and allocation ratio
	Specifying group sample sizes
	Specifying one of the group sample sizes and allocation ratio
	Specifying total sample size and one of the group sample sizes

	Fractional sample sizes

	Also see

	Glossary of common terms
	Glossary

	[R] Base Reference
	Contents
	Introduction
	Intro
	Description
	Remarks and examples
	Arrangement of the reference manuals
	Arrangement of each entry
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	Also see

	A
	about
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	ado update
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Using ado update
	Notes for developers

	Stored results
	Also see

	ameans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	anova
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way ANOVA
	Two-way ANOVA
	N-way ANOVA
	Weighted data
	ANCOVA
	Nested designs
	Mixed designs
	Latin-square designs
	Repeated-measures ANOVA
	Video examples

	Stored results
	References
	Also see

	anova postestimation
	Postestimation commands
	predict
	margins
	test
	Description for test
	Menu for test
	Syntax for test
	Options for test

	Remarks and examples
	Testing effects
	Obtaining symbolic forms
	Testing coefficients and contrasts of margins
	Video example

	References
	Also see

	areg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	areg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	B
	betareg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	betareg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	binreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	binreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	References
	Also see

	biprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	biprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	bitest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	bitest
	bitesti

	Stored results
	Methods and formulas
	Reference
	Also see

	bootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using bootstrap
	Regression coefficients
	Expressions
	Combining bootstrap datasets
	A note about macros
	Achieved significance level
	Bootstrapping a ratio
	Warning messages and e(sample)
	Bootstrapping statistics from data with a complex structure

	Stored results
	Methods and formulas
	References
	Also see

	bootstrap postestimation
	Postestimation commands
	predict
	margins
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	boxcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Theta model
	Lambda model
	Left-hand-side-only model
	Right-hand-side-only model

	Stored results
	Methods and formulas
	References
	Also see

	boxcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	References
	Also see

	brier
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	bsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	bstat
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Bootstrap datasets
	Creating a bootstrap dataset

	Stored results
	References
	Also see

	C
	centile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Default case
	Normal case
	meansd case

	Acknowledgment
	References
	Also see

	churdle
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	churdle postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	ci
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for ci and cii means
	Options for ci and cii proportions
	Options for ci and cii variances

	Remarks and examples
	Confidence intervals for means
	Normal-based confidence intervals
	Poisson confidence intervals

	Confidence intervals for proportions
	Confidence intervals for variances
	Immediate form

	Stored results
	Methods and formulas
	Normal mean
	Poisson mean
	Binomial proportion
	Variance and standard deviation

	Acknowledgment
	References
	Also see

	clogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Matched case--control data
	Use of weights
	Fixed-effects logit

	Stored results
	Methods and formulas
	References
	Also see

	clogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cloglog
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to complementary log--log regression
	Robust standard errors

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	cls
	Description
	Syntax

	cnsreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cnsreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	constraint
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Reference
	Also see

	contrast
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way models
	Estimated cell means
	Testing equality of cell means
	Reference category contrasts
	Reverse adjacent contrasts
	Orthogonal polynomial contrasts

	Two-way models
	Estimated interaction cell means
	Simple effects
	Interaction effects
	Main effects
	Partial interaction effects

	Three-way and higher-order models
	Contrast operators
	Differences from a reference level (r.)
	Differences from the next level (a.)
	Differences from the previous level (ar.)
	Differences from the grand mean (g.)
	Differences from the mean of subsequent levels (h.)
	Differences from the mean of previous levels (j.)
	Orthogonal polynomials (p. and q.)

	User-defined contrasts
	Empty cells
	Empty cells, ANOVA style
	Nested effects
	Multiple comparisons
	Unbalanced data
	Using observed cell frequencies
	Weighted contrast operators

	Testing factor effects on slopes
	Chow tests
	Beyond linear models
	Multiple equations
	Video example

	Stored results
	Methods and formulas
	Marginal linear predictions
	Contrast operators
	Reference level contrasts
	Adjacent contrasts
	Grand mean contrasts
	Helmert contrasts
	Reverse Helmert contrasts
	Orthogonal polynomial contrasts

	Contrasts within interactions
	Multiple comparisons

	References
	Also see

	contrast postestimation
	Postestimation commands
	Remarks and examples
	Also see

	copyright
	Description
	Syntax
	Remarks and examples
	Also see

	Copyright Apache
	Description
	Also see

	Copyright autolink
	Description
	Also see

	Copyright Boost
	Description
	Also see

	Copyright flexmark
	Description
	Also see

	Copyright Hamcrest
	Description
	Also see

	Copyright H2O
	Description
	Also see

	Copyright ICD-10
	Description
	Also see

	Copyright ICU
	Description
	Also see

	Copyright JAXB
	Description
	Source code
	Also see

	Copyright JGoodies Common
	Description
	Also see

	Copyright JGoodies Forms
	Description
	Also see

	Copyright JSON
	Description
	Also see

	Copyright jsoup
	Description
	Also see

	Copyright LAPACK
	Description
	Also see

	Copyright libHaru
	Description
	Also see

	Copyright libpng
	Description
	Also see

	Copyright Mersenne Twister
	Description
	Also see

	Copyright MiG Layout
	Description
	Also see

	Copyright Parsington
	Description
	Also see

	Copyright PolyHook
	Description
	Also see

	Copyright ReadStat
	Description
	Also see

	Copyright Scintilla
	Description
	Also see

	Copyright slf4j
	Description
	Also see

	Copyright ttf2pt1
	Description
	Also see

	Copyright Win32 Dark Mode
	Description
	Also see

	Copyright zlib
	Description
	Also see

	correlate
	Description
	Quick start
	Menu
	Syntax
	Options for correlate
	Options for pwcorr
	Remarks and examples
	correlate
	pwcorr
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	cpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	cumul
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	References
	Also see

	cusum
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Reference
	Also see

	D
	db
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	demandsys
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Some notation
	Cobb{--}Douglas
	Linear expenditure system (LES)
	Translog
	Basic translog
	Generalized translog

	AIDS
	QUAIDS
	Controlling for demographic factors
	Demographic translation
	Demographic scaling
	Epilogue

	Stored results
	Methods and formulas
	Introduction
	LES
	Generalized translog
	QUAIDS with demographic translation
	QUAIDS with demographic scaling
	Estimation

	Acknowledgment
	References
	Also see

	demandsys postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat elasticities

	Remarks and examples
	Introduction
	Elasticities
	Evaluating elasticities
	Compensating and equivalent variation

	References
	Also see

	Diagnostic plots
	Description
	Quick start
	Menu
	Syntax
	Options for symplot, quantile, and qqplot
	Options for qnorm and pnorm
	Options for qchi and pchi
	Remarks and examples
	symplot
	quantile
	qqplot
	qnorm
	pnorm
	qchi
	pchi

	Methods and formulas
	Acknowledgments
	References
	Also see

	display
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	do
	Description
	Quick start
	Menu
	Syntax
	Option
	Reference
	Also see

	doedit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	dotplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Reference

	dstdize
	Description
	Quick start
	Menu
	Syntax
	Options for dstdize
	Options for istdize
	Remarks and examples
	Direct standardization
	Indirect standardization

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dtable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	Describe variables across groups
	Survey data
	Save your style choices for next time
	Composite results
	The default style

	Methods and formulas
	Appendix
	Colors
	Underline patterns
	Shading patterns

	Acknowledgments
	Reference
	Also see

	dydx
	Description
	Quick start
	Menu
	Syntax
	Options for dydx
	Options for integ
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	E
	eform_option
	Description
	Remarks and examples
	Reference
	Also see

	eivreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	eivreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	Epitab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Incidence-rate data
	Stratified incidence-rate data
	Standardized estimates with stratified incidence-rate data
	Cumulative incidence data
	Stratified cumulative incidence data
	Standardized estimates with stratified cumulative incidence data
	Case--control data
	Stratified case--control data
	Case--control data with multiple levels of exposure
	Case--control data with confounders and possibly multiple levels of exposure
	Standardized estimates with stratified case--control data
	Matched case--control data
	Video examples
	Glossary

	Stored results
	Methods and formulas
	Unstratified incidence-rate data (ir and iri)
	Unstratified cumulative incidence data (cs and csi)
	Unstratified case--control data (cc and cci)
	Unstratified matched case--control data (mcc and mcci)
	Stratified incidence-rate data (ir with the by() option)
	Stratified cumulative incidence data (cs with the by() option)
	Stratified case--control data (cc with by() option, mhodds, tabodds)

	Acknowledgments
	References
	Also see

	Error messages
	Description
	Also see

	esize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Estimating effect sizes
	Immediate form
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	estat
	Description
	Syntax

	estat classification
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat gof
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample

	Stored results
	Methods and formulas
	References
	Also see

	estat ic
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat summarize
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat vce
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estimates
	Description
	Syntax
	Remarks and examples
	Saving and using estimation results
	Storing and restoring estimation results
	Comparing estimation results
	Jargon

	Also see

	estimates describe
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estimates for
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	estimates notes
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	estimates replay
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	estimates save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Setting e(sample)
	Resetting e(sample)
	Determining who set e(sample)

	Stored results
	Also see

	estimates selected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estimates stats
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estimates store
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estimates table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estimates title
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	Estimation options
	Description
	Syntax
	Options
	Also see

	etable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	Table comparing regression results
	Multiple-equation models

	Appendix
	Colors
	Underline patterns
	Shading patterns

	Acknowledgments
	Reference
	Also see

	exit
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	exlogistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Sufficient statistics
	Conditional distribution and CMLE
	MUEs and exact confidence intervals
	Conditional hypothesis tests
	Sufficient-statistic p-value

	References
	Also see

	exlogistic postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat predict
	Option for estat se

	Remarks and examples
	Stored results
	Reference
	Also see

	expoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Conditional distribution

	References
	Also see

	expoisson postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	Also see

	F
	fp
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for fp
	Options for fp generate

	Remarks and examples
	Fractional polynomial regression
	Scaling
	Centering
	Examples

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	fp postestimation
	Postestimation commands
	predict
	margins
	fp plot and fp predict
	Description for fp plot and fp predict
	Menu for fp plot and fp predict
	Syntax for fp plot and fp predict
	Options for fp plot
	Options for fp predict

	Remarks and examples
	Examples

	Methods and formulas
	Acknowledgment
	Reference
	Also see

	fracreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	fracreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Performing hypothesis tests

	Also see

	frontier
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	frontier postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	fvrevar
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	fvset
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results

	G
	gllamm
	Description
	Remarks and examples
	References
	Also see

	glm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	General use
	Variance estimators
	User-defined functions

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	glm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Predictions
	Other postestimation commands

	Methods and formulas
	References
	Also see

	gmm
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	The weight matrix and two-step estimation
	Obtaining standard errors
	Factor-variable coefficients in multiple residual functions
	Parameter interpretation using margins
	Exponential (Poisson) regression models
	Specifying derivatives
	Exponential regression models with panel data
	Rational-expectations models
	System estimators
	Dynamic panel-data models
	Details of moment-evaluator programs

	Stored results
	Methods and formulas
	Initial weight matrix
	Weight matrix
	Variance--covariance matrix
	Hansen's J statistic
	Panel-style instruments
	Marginal predictions with unconditional standard errors

	References
	Also see

	gmm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Option for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	References
	Also see

	grmeanby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References

	H
	hausman
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	heckman
	Description
	Quick start
	Menu
	Syntax
	Options for Heckman selection model (ML)
	Options for Heckman selection model (two-step)
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckman postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	heckoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	heckpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	heckprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	help
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Video examples

	Also see

	hetoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	hetoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	hetprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	hetprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	hetregress
	Description
	Quick start
	Menu
	Syntax
	Options for maximum likelihood estimation
	Options for two-step GLS estimation
	Remarks and examples
	Introduction
	Maximum likelihood estimation
	Two-step GLS estimation

	Stored results
	Methods and formulas
	Maximum likelihood estimation
	Two-step GLS estimation

	References
	Also see

	hetregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	histogram
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for use in the continuous case
	Options for use in the discrete case
	Options for use in the continuous and discrete cases

	Remarks and examples
	Histograms of continuous variables
	Overlaying normal and kernel density estimates
	Histograms of discrete variables
	Use with by()
	Video example

	References
	Also see

	I
	IC note
	Description
	Remarks and examples
	Background
	The problem of determining N
	The problem of conformable likelihoods
	The first problem does not arise with AIC; the second problem does
	Calculating BIC, AICc, and CAIC correctly

	Methods and formulas
	References
	Also see

	icc
	Description
	Quick start
	Menu
	Syntax
	Options for one-way RE model
	Options for two-way RE and ME models
	Remarks and examples
	Introduction
	One-way random effects
	Two-way random effects
	Two-way mixed effects
	Adoption study
	Relationship between ICCs
	Tests against nonzero values

	Stored results
	Methods and formulas
	Mean squares
	One-way random effects
	Two-way random effects
	Two-way mixed effects

	References
	Also see

	Inequality
	Description
	Remarks and examples
	References

	intreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	intreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	ivfprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Model setup
	Model identification

	Stored results
	Methods and formulas
	References
	Also see

	ivfprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Stored results
	Methods and formulas
	Also see

	ivpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	GMM estimator for additive model
	GMM estimator for multiplicative model
	CF estimator for multiplicative model

	Stored results
	Methods and formulas
	References
	Also see

	ivpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	ivprobit
	Description
	Quick start
	Menu
	Syntax
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Model setup
	Model identification

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Stored results
	Methods and formulas
	References
	Also see

	ivqregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	When quantile regression matters
	Examples

	Stored results
	Methods and formulas
	The model
	The IQR estimator
	The IQR algorithm
	The IQR default grid algorithm

	The SEE estimator
	The bandwidth selection algorithm

	The robust standard errors

	Acknowledgments
	References
	Also see

	ivqregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat coefplot
	Options for estat endogeffects
	Options for estat dualci
	Options for estat waldplot

	Remarks and examples
	Stored results
	Methods and formulas
	Tests of effects of endogenous variables
	Dual CI

	References
	Also see

	ivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	2SLS and LIML estimators
	GMM estimator
	Video example

	Stored results
	Methods and formulas
	Notation
	2SLS and LIML estimators
	GMM estimator

	References
	Also see

	ivregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat endogenous
	Options for estat firststage
	Options for estat overid
	Options for estat weakrobust (StataNow)

	Remarks and examples
	estat endogenous
	estat firststage
	estat overid
	estat weakrobust (StataNow)

	Stored results
	Methods and formulas
	Notation
	estat endogenous
	estat firststage
	estat overid
	estat weakrobust (StataNow)
	Homoskedastic errors
	Nonhomoskedastic errors
	Confidence intervals

	Acknowledgments
	References
	Also see

	ivtobit
	Description
	Quick start
	Menu
	Syntax
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivtobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Stored results
	Methods and formulas
	References
	Also see

	J
	jackknife
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using jackknife
	Jackknifed standard deviation
	Collecting multiple statistics
	Collecting coefficients

	Stored results
	Methods and formulas
	References
	Also see

	jackknife postestimation
	Postestimation commands
	predict
	margins
	Also see

	K
	kappa
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Two raters
	More than two raters

	Stored results
	Methods and formulas
	kap: m=2
	kappa: m>2, k=2
	kappa: m>2, k>2

	References

	kdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ksmirnov
	Description
	Quick start
	Menu
	Syntax
	Options for two-sample test
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	kwallis
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	L
	ladder
	Description
	Quick start
	Menu
	Syntax
	Options for ladder
	Options for gladder
	Options for qladder
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	level
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	Limits
	Description
	Remarks and examples
	Maximum size limits
	Determining which edition of Stata you are running

	Also see

	lincom
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using lincom
	Odds ratios and incidence-rate ratios
	Multiple-equation models

	Stored results
	References
	Also see

	linktest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lnskew0
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	log
	Description
	Quick start
	Menu
	Syntax
	Options for use with both log and cmdlog
	Options for use with log
	Option for use with set logtype
	Remarks and examples
	Stored results
	Reference
	Also see

	logistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	logistic and logit
	Robust estimate of variance
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	logistic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	predict without options
	predict with the xb and stdp options
	predict with the residuals option
	predict with the number option
	predict with the deviance option
	predict with the rstandard option
	predict with the hat option
	predict with the dx2 option
	predict with the ddeviance option
	predict with the dbeta option

	Methods and formulas
	References
	Also see

	logit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic usage
	Model identification

	Stored results
	Methods and formulas
	References
	Also see

	logit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	loneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The one-way ANOVA model
	R-squared
	The random-effects ANOVA model
	Intraclass correlation
	Estimated reliability of the group-averaged score

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	lowess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Acknowledgment
	References
	Also see

	lpoly
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Local polynomial smoothing
	Choice of a bandwidth
	Confidence bands

	Stored results
	Methods and formulas
	References
	Also see

	lroc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample
	Models other than the last fitted model

	Stored results
	Methods and formulas
	References
	Also see

	lrtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Nested models
	Composite models

	Stored results
	Methods and formulas
	References
	Also see

	lsens
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Models other than the last fitted model

	Stored results
	Methods and formulas
	Reference
	Also see

	lv
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	M
	makespline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	margins
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Obtaining margins of responses
	Example 1: A simple case after regress
	Example 2: A simple case after logistic
	Example 3: Average response versus response at average
	Example 4: Multiple margins from one command
	Example 5: Margins with interaction terms
	Example 6: Margins with continuous variables
	Example 7: Margins of continuous variables
	Example 8: Margins of interactions
	Example 9: Decomposing margins
	Example 10: Testing margins---contrasts of margins
	Example 11: Margins of a specified prediction
	Example 12: Margins of a specified expression
	Example 13: Margins with multiple outcomes (responses)
	Example 14: Margins with multiple equations
	Example 15: Margins evaluated out of sample

	Obtaining margins of derivatives of responses (a.k.a. marginal effects)
	Use at() freely, especially with continuous variables
	Expressing derivatives as elasticities
	Derivatives versus discrete differences
	Example 16: Average marginal effect (partial effects)
	Example 17: Average marginal effect of all covariates
	Example 18: Evaluating marginal effects over the response surface

	Obtaining margins with survey data and representative samples
	Example 19: Inferences for populations, margins of response
	Example 20: Inferences for populations, marginal effects
	Example 21: Inferences for populations with svyset data

	Standardizing margins
	Obtaining margins as though the data were balanced
	Balancing using asbalanced
	Balancing by standardization
	Balancing nonlinear responses
	Treating a subset of covariates as balanced
	Using fvset design
	Balancing in the presence of empty cells

	Obtaining margins with nested designs
	Introduction to nested designs
	Margins with nested designs as though the data were balanced
	Coding of nested designs

	Special topics
	Requirements for model specification
	Estimability of margins
	Manipulability of tests
	Using margins after the estimates use command
	Syntax of at()
	Estimation commands that may be used with margins

	Video examples
	Glossary

	Stored results
	Methods and formulas
	Notation
	Marginal effects
	Fixing covariates and balancing factors
	Estimable functions
	Standard errors conditional on the covariates
	Unconditional standard errors

	References
	Also see

	margins postestimation
	Postestimation commands
	Remarks and examples
	Also see

	margins, contrast
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Contrasts of margins
	Contrasts and the over() option
	The overjoint suboption
	The marginswithin suboption

	Contrasts and the at() option
	Estimating treatment effects with margins
	Conclusion

	Stored results
	Methods and formulas
	Reference
	Also see

	margins, pwcompare
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	marginsplot
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Dataset
	Profile plots
	Interaction plots
	Contrasts of margins---effects (discrete marginal effects)
	Three-way interactions
	Continuous covariates
	Plots at every value of a continuous covariate
	Contrasts of at() groups---discrete effects
	Controlling the graph's dimensions
	Pairwise comparisons
	Horizontal is sometimes better
	Marginal effects
	Plotting a subset of the results from margins
	Advanced usage
	Plots with multiple terms
	Plots with multiple at() options
	Adding scatterplots of the data

	Video examples

	Addendum: Advanced uses of dimlist
	Acknowledgments
	References
	Also see

	Maximize
	Description
	Syntax
	Maximization options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	The mean estimator
	Survey data
	The survey mean estimator
	The standardized mean estimator
	The poststratified mean estimator
	The standardized poststratified mean estimator
	Subpopulation estimation

	References
	Also see

	mean postestimation
	Postestimation commands
	estat sd
	Description for estat sd
	Menu for estat sd
	Syntax for estat sd
	Option for estat sd
	Stored results for estat sd

	Also see

	mfp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Iteration report
	Estimation algorithm
	Methods of FP model selection
	Zeros and zero categories

	Stored results
	Acknowledgments
	References
	Also see

	mfp postestimation
	Postestimation commands
	fracplot and fracpred
	Description for fracplot and fracpred
	Menu for fracplot and fracpred
	Syntax for fracplot and fracpred
	Options for fracplot
	Options for fracpred

	Remarks and examples
	Methods and formulas
	Also see

	misstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for misstable summarize
	Options for misstable patterns
	Options for misstable tree
	Option for misstable nested
	Common options

	Remarks and examples
	misstable summarize
	misstable patterns
	misstable tree
	misstable nested
	Execution time of misstable nested

	Stored results
	Also see

	ml
	Description
	Syntax
	Syntax of subroutines for use by evaluator programs
	Syntax of user-written evaluator

	Options
	Options for use with ml model in interactive or noninteractive mode
	Options for use with ml model in noninteractive mode
	Options for use when specifying equations
	Options for use with ml search
	Option for use with ml plot
	Options for use with ml init
	Options for use with ml maximize
	Option for use with ml graph
	Options for use with ml display
	Options for use with mleval
	Option for use with mlsum
	Option for use with mlvecsum
	Option for use with mlmatsum
	Options for use with mlmatbysum
	Options for use with ml score

	Remarks and examples
	Survey options and ml

	Stored results
	Methods and formulas
	References
	Also see

	mlexp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	Parameter interpretation using margins
	Parameter constraints
	Specifying derivatives

	Stored results
	Methods and formulas
	References
	Also see

	mlexp postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	mlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Description of the model
	Fitting unconstrained models
	Fitting constrained models

	Stored results
	Methods and formulas
	References
	Also see

	mlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Calculating marginal effects
	Testing hypotheses about coefficients

	Reference
	Also see

	more
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	mprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	N
	nbreg
	Description
	Quick start
	Menu
	Syntax
	Options for nbreg
	Options for gnbreg
	Remarks and examples
	Introduction to negative binomial regression
	nbreg
	gnbreg

	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	References
	Also see

	nbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Reference
	Also see

	nestreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Estimation commands
	Wald tests
	Likelihood-ratio tests
	Programming for nestreg

	Stored results
	Acknowledgment
	References
	Also see

	net
	Description
	Syntax
	Options
	Remarks and examples
	Definition of a package
	The purpose of the net and ado commands
	Content pages
	Package-description pages
	Where packages are installed
	A summary of the net command
	A summary of the ado command
	Relationship of net and ado to the point-and-click interface
	Creating your own site
	Format of content and package-description files
	Example 1
	Example 2
	Additional package directives
	SMCL in content and package-description files
	Error-free file delivery

	Also see

	net search
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Topic searches
	Author searches
	Command searches
	Where does net search look?
	How does net search work?

	Also see

	netio
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	nl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Substitutable expressions
	Substitutable expression programs
	Built-in functions
	Lognormal errors
	Other uses
	Weights
	Potential errors
	General comments on fitting nonlinear models
	Function evaluator programs

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	nl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	nlcom
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Basics
	Using the post option
	Reparameterizing ML estimates for univariate data
	nlcom versus eform

	Stored results
	Methods and formulas
	References
	Also see

	nlsur
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expression programs
	Function evaluator programs

	Stored results
	Methods and formulas
	References
	Also see

	nlsur postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	npregress intro
	Description
	Remarks and examples
	Overview
	Nonparametric series regression
	Runge's phenomenon
	Piecewise polynomial splines and B-splines

	Nonparametric kernel regression
	Limitations of nonparametric methods

	References
	Also see

	npregress kernel
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Estimation and effects
	Visualizing covariate effects

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	npregress kernel postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Options for margins

	npgraph
	Description for npgraph
	Syntax for npgraph
	Options for npgraph

	Remarks and examples
	Methods and formulas
	References
	Also see

	npregress series
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Estimation and effects

	Stored results
	Methods and formulas
	Overview
	Polynomials
	Piecewise polynomial splines
	B-splines
	Model selection
	Cross-validation
	Generalized cross-validation
	Mallows's C$_p$
	AIC and BIC

	References
	Also see

	npregress series postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Options for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	nptrend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Cochran--Armitage test
	Jonckheere--Terpstra test
	Linear-by-linear trend test
	Cuzick's test

	Stored results
	Methods and formulas
	Overview
	Cochran--Armitage test for trend
	Jonckheere--Terpstra test for trend
	Linear-by-linear test for trend
	Cuzick's test with rank scores
	Exact p-values

	Acknowledgments
	References
	Also see

	O
	ologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	ologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Obtaining observed means
	Multiple-comparison tests
	Weighted data
	Video example

	Stored results
	Methods and formulas
	One-way analysis of variance
	Bartlett's test
	Multiple-comparison tests

	References
	Also see

	oprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	oprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	orthog
	Description
	Quick start
	Menu
	Syntax
	Options for orthog
	Options for orthpoly
	Remarks and examples
	Methods and formulas
	References
	Also see

	P
	pcorr
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	permute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Monte Carlo permutation tests
	Two-sided p-values from permutation tests
	One-sided permutation test
	Enumeration
	Efficiency considerations for Monte Carlo permutations
	Efficiency considerations for enumeration

	Stored results
	Methods and formulas
	References
	Also see

	pk
	Description
	Remarks and examples
	References
	Also see

	pkcollapse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	pkcross
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pkequiv
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	pkexamine
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	pkshape
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	pksumm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	poisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	poisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	postest
	Description
	Menu
	Syntax
	Remarks and examples
	Overview
	Video example

	Also see

	predict
	Description
	Quick start
	Menu for predict
	Syntax
	Options
	Remarks and examples
	Estimation-sample predictions
	Out-of-sample predictions
	Residuals
	Single-equation (SE) models
	SE model scores
	Multiple-equation (ME) models
	ME model scores

	Methods and formulas
	References
	Also see

	predictnl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Nonlinear transformations and standard errors
	Using xb() and predict()
	Multiple-equation (ME) estimators
	Test statistics and p-values
	Manipulability
	Confidence intervals

	Methods and formulas
	References
	Also see

	probit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Robust standard errors
	Model identification
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	probit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Performing hypothesis tests

	Methods and formulas
	Also see

	proportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Confidence intervals
	Survey data and sampling weights

	References
	Also see

	proportion postestimation
	Postestimation commands
	Remarks and examples
	Also see

	prtest
	Description
	Quick start
	Menu
	Syntax
	Options for prtest
	Options for prtesti
	Remarks and examples
	Tests of proportions
	Adjust for clustering
	Immediate form

	Stored results
	Methods and formulas
	One-sample test
	Two-sample test

	References
	Also see

	pwcompare
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Pairwise comparisons of means
	Marginal means
	All pairwise comparisons

	Overview of multiple-comparison methods
	Fisher's protected least-significant difference (LSD)
	Bonferroni's adjustment
	{accent 20 S}id{accent 19 a}k's adjustment
	Scheff{accent 19 e}'s adjustment
	Tukey's HSD adjustment
	Student--Newman--Keuls's adjustment
	Duncan's adjustment
	Dunnett's adjustment

	Example adjustments using one-way models
	Fisher's protected LSD
	Tukey's HSD
	Dunnett's method for comparisons to a control

	Two-way models
	Pairwise comparisons of slopes
	Nonlinear models
	Multiple-equation models
	Unbalanced data
	Empty cells

	Stored results
	Methods and formulas
	Notation
	Unadjusted comparisons
	Bonferroni's method
	{accent 20 S}id{accent 19 a}k's method
	Scheff{accent 19 e}'s method
	Tukey's method
	Student--Newman--Keuls's method
	Duncan's method
	Dunnett's method

	References
	Also see

	pwcompare postestimation
	Postestimation commands
	Remarks and examples
	Also see

	pwmean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Group means
	Pairwise differences of means
	Group output
	Adjusting for multiple comparisons
	Tukey's method
	Dunnett's method

	Multiple over() variables
	Equal variance assumption

	Stored results
	Methods and formulas
	Reference
	Also see

	pwmean postestimation
	Postestimation commands
	Remarks and examples
	Also see

	Q
	QC
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	qreg
	Description
	Quick start
	Menu
	Syntax
	Options for qreg
	Options for iqreg
	Options for sqreg
	Options for bsqreg
	Remarks and examples
	Median regression
	Quantile regression
	Estimated standard errors
	Interquantile and simultaneous-quantile regression
	What are the parameters?

	Stored results
	Methods and formulas
	Introduction
	Linear programming formulation of quantile regression
	Standard errors when residuals are i.i.d.
	Pseudo-R-squared

	References
	Also see

	qreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	query
	Description
	Syntax
	Remarks and examples
	Also see

	R
	ranksum
	Description
	Quick start
	Menu
	Syntax
	Options for ranksum
	Options for median
	Remarks and examples
	Stored results
	Methods and formulas
	ranksum
	median

	References
	Also see

	ratio
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The ratio estimator
	Survey data
	The survey ratio estimator
	The standardized ratio estimator
	The poststratified ratio estimator
	The standardized poststratified ratio estimator
	Subpopulation estimation

	References
	Also see

	ratio postestimation
	Postestimation commands
	Remarks and examples
	Also see

	reg3
	Description
	Nomenclature

	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	reg3 postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	regress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Ordinary least squares
	Treatment of the constant
	Robust standard errors
	Weighted regression
	Video examples

	Stored results
	Methods and formulas
	Coefficient estimation and ANOVA table
	Weighted regression
	A general notation for the robust variance calculation
	Robust calculation for regress
	Multiway clustering

	Acknowledgments
	References
	Also see

	regress postestimation
	Postestimation commands
	Predictions
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict
	Remarks and examples for predict
	Terminology
	Fitted values and residuals
	Prediction standard errors
	Prediction with weighted data
	Leverage statistics
	Standardized and Studentized residuals
	DFITS, Cook's Distance, and Welsch Distance
	COVRATIO

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	DFBETA influence statistics
	Description for dfbeta
	Menu for dfbeta
	Syntax for dfbeta
	Option for dfbeta
	Remarks and examples for dfbeta

	Tests for violation of assumptions
	Description for estat hettest
	Menu for estat
	Syntax for estat hettest
	Options for estat hettest
	Description for estat imtest
	Menu for estat
	Syntax for estat imtest
	Options for estat imtest
	Description for estat ovtest
	Menu for estat
	Syntax for estat ovtest
	Option for estat ovtest
	Description for estat szroeter
	Menu for estat
	Syntax for estat szroeter
	Options for estat szroeter
	Remarks and examples for estat hettest, estat imtest, estat ovtest, and estat szroeter
	Stored results for estat hettest, estat imtest, and estat ovtest

	Variance inflation factors
	Description for estat vif
	Menu for estat
	Syntax for estat vif
	Option for estat vif
	Remarks and examples for estat vif

	Measures of effect size
	Description for estat esize
	Menu for estat
	Syntax for estat esize
	Options for estat esize
	Remarks and examples for estat esize
	Stored results for estat esize

	Methods and formulas
	predict
	Special-interest postestimation commands

	Acknowledgments
	References
	Also see

	regress postestimation diagnostic plots
	Description
	rvfplot
	Description for rvfplot
	Menu for rvfplot
	Syntax for rvfplot
	Options for rvfplot
	Remarks and examples for rvfplot

	avplot
	Description for avplot
	Menu for avplot
	Syntax for avplot
	Options for avplot
	Remarks and examples for avplot

	avplots
	Description for avplots
	Menu for avplots
	Syntax for avplots
	Options for avplots
	Remarks and examples for avplots

	cprplot
	Description for cprplot
	Menu for cprplot
	Syntax for cprplot
	Options for cprplot
	Remarks and examples for cprplot

	acprplot
	Description for acprplot
	Menu for acprplot
	Syntax for acprplot
	Options for acprplot
	Remarks and examples for acprplot

	rvpplot
	Description for rvpplot
	Menu for rvpplot
	Syntax for rvpplot
	Options for rvpplot
	Remarks and examples for rvpplot

	lvr2plot
	Description for lvr2plot
	Menu for lvr2plot
	Syntax for lvr2plot
	Options for lvr2plot
	Remarks and examples for lvr2plot

	Methods and formulas
	References
	Also see

	regress postestimation time series
	Postestimation commands
	estat archlm
	Description for estat archlm
	Menu for estat
	Syntax for estat archlm
	Options for estat archlm

	estat bgodfrey
	Description for estat bgodfrey
	Menu for estat
	Syntax for estat bgodfrey
	Options for estat bgodfrey

	estat durbinalt
	Description for estat durbinalt
	Menu for estat
	Syntax for estat durbinalt
	Options for estat durbinalt

	estat dwatson
	Description for estat dwatson
	Menu for estat
	Syntax for estat dwatson

	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	reri
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Additive versus multiplicative interactions
	Incidence-rate ratios, hazard ratios, and odds ratios

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	#review
	Description
	Syntax
	Remarks and examples

	roc
	Description
	References

	roccomp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Comparing areas under the ROC curve
	Correlated data
	Independent data
	Comparing areas with a gold standard

	Stored results
	Methods and formulas
	References
	Also see

	rocfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rocfit postestimation
	Postestimation commands
	rocplot
	Description for rocplot
	Menu for rocplot
	Syntax for rocplot
	Options for rocplot

	Remarks and examples
	Using lincom and test
	Using rocplot

	Also see

	rocreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for nonparametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using maximum likelihood

	Remarks and examples
	Introduction
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Stored results
	Methods and formulas
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Acknowledgments
	References
	Also see

	rocreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat nproc
	Options for estat nproc

	Remarks and examples
	Using predict after rocreg
	Using estat nproc

	Stored results
	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	rocregplot
	Description
	Quick start
	Menu
	Syntax
	probit_options
	common_options
	boot_options
	Remarks and examples
	Plotting covariate-specific ROC curves
	Plotting marginal ROC curves

	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	roctab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Nonparametric ROC curves
	Lorenz-like curves

	Stored results
	Methods and formulas
	References
	Also see

	rreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	rreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	runtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References

	S
	scobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Skewed logistic model
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	scobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	sdtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic form
	Immediate form
	Robust test

	Stored results
	Methods and formulas
	References
	Also see

	search
	Description
	Quick start
	Menu
	Syntax
	Options for search
	Option for set searchdefault
	Remarks and examples
	Introduction
	Internet searches
	Author searches
	Entry ID searches
	Return codes

	Acknowledgment
	Also see

	serrbar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	set
	Description
	Syntax
	Remarks and examples
	Also see

	set cformat
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set_defaults
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set emptycells
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set iter
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set rng
	Description
	Syntax
	Remarks and examples
	Introduction
	Random-number generators in Stata

	Reference
	Also see

	set rngstream
	Description
	Syntax
	Remarks and examples
	References
	Also see

	set seed
	Description
	Syntax
	Remarks and examples
	Examples
	Setting the seed
	How to choose a seed
	Do not set the seed too often
	Preserving and restoring the random-number generator state

	Reference
	Also see

	set showbaselevels
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	signrank
	Description
	Quick start
	Menu
	Syntax
	Option for signrank
	Remarks and examples
	Stored results
	Methods and formulas
	signrank
	signtest

	References
	Also see

	simulate
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	sj
	Description
	Remarks and examples
	Installing the Stata Journal software

	Also see

	sktest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	slogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-dimensional model
	Higher-dimension models

	Stored results
	Methods and formulas
	References
	Also see

	slogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	smooth
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Methods and formulas
	Running median smoothers of odd span
	Running median smoothers of even span
	Repeat operator
	Endpoint rule
	Splitting operator
	Hanning smoother
	Twicing

	Acknowledgments
	References
	Also see

	spearman
	Description
	Quick start
	Menu
	Syntax
	Options for spearman
	Options for ktau
	Remarks and examples
	Stored results
	Methods and formulas
	Spearman's rank correlation
	Exact p-values
	Kendall's tau

	Acknowledgment
	References
	Also see

	spikeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	ssc
	Description
	Command overview

	Quick start
	Syntax
	Options
	Options for use with ssc new
	Options for use with ssc hot
	Option for use with ssc describe
	Options for use with ssc install
	Option for use with ssc type
	Options for use with ssc copy

	Remarks and examples
	Acknowledgments
	References
	Also see

	stem
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	stepwise
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Search logic for a step
	Full search logic
	Examples
	Estimation sample considerations
	Messages
	Programming for stepwise

	Stored results
	Methods and formulas
	References
	Also see

	Stored results
	Description
	Syntax
	Option
	Remarks and examples
	References
	Also see

	suest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using suest
	Remarks on regress
	Testing the assumption of the independence of irrelevant alternatives
	Testing proportionality
	Testing cross-model hypotheses

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	summarize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	sunflower
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References

	sureg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	sureg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	swilk
	Description
	Quick start
	Menu
	Syntax
	Options for swilk
	Options for sfrancia
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	symmetry
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Asymptotic tests
	Exact symmetry test

	References
	Also see

	T
	table intro
	Description
	Remarks and examples
	Overview
	Tabulations
	Tables of summary statistics
	Tables of results from other commands
	Flexible tables combining results
	Formatting, customizing, and exporting tables

	Reference
	Also see

	table oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Tabulation of one variable
	Tabulation, including percentages
	Customizing results
	Advanced customization

	Stored results
	References
	Also see

	table twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Tabulation of two variables
	Tabulation, including percentages
	Customizing results

	Stored results
	References
	Also see

	table multiway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Tables with columns defined by multiple variables
	Appending tables
	Multiple tables with specified totals

	Stored results
	Reference
	Also see

	table summary
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic summary statistic tables
	Classic Table 1

	Stored results
	References
	Also see

	table hypothesis tests
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Creating tables from scalars
	Creating tables from matrices

	Stored results
	Reference
	Also see

	table regression
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Tables with results from a single command
	Tables with results from multiple estimation commands
	Regression results with factor variables

	Stored results
	References
	Also see

	table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Specifying the table layout
	Advanced table customization

	Stored results
	Methods and formulas
	Also see

	tabstat
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Acknowledgments
	Reference
	Also see

	tabulate oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	tabulate
	tab1
	Video example

	Stored results
	References
	Also see

	tabulate twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	tabulate
	Measures of association
	N-way tables
	Weighted data
	Tables with immediate data
	tab2
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	tabulate, summarize()
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-way tables
	Two-way tables

	Also see

	test
	Description
	Quick start
	Menu
	Syntax
	Options for testparm
	Options for test
	Remarks and examples
	Introductory examples
	Special syntaxes after multiple-equation estimation
	Constrained coefficients
	Multiple testing

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	testnl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using testnl to perform linear tests
	Specifying constraints
	Dropped constraints
	Multiple constraints
	Manipulability

	Stored results
	Methods and formulas
	References
	Also see

	tetrachoric
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Association in 2-by-2 tables
	Factor analysis of dichotomous variables
	Tetrachoric correlations with simulated data

	Stored results
	Methods and formulas
	References
	Also see

	tnbreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Acknowledgment
	References
	Also see

	tnbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Also see

	tobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	total
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The total estimator
	Survey data
	The survey total estimator
	The poststratified total estimator
	Subpopulation estimation

	References
	Also see

	total postestimation
	Postestimation commands
	Remarks and examples
	Also see

	tpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	translate
	Description
	Quick start
	Syntax
	Options for print
	Options for translate
	Remarks and examples
	Overview
	Printing files
	Printing files, Mac and Windows
	Printing files, Unix
	Translating files from one format to another

	Stored results
	Also see

	truncreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	truncreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	ttest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-sample t test
	Two-sample t test
	Paired t test
	Two-sample t test compared with one-way ANOVA
	Immediate form
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	U
	update
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	V
	vce_option
	Description
	Syntax
	Options
	Remarks and examples
	Prefix commands
	Passing options in vce()

	Methods and formulas
	Also see

	view
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	vwls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vwls postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	W
	which
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	wildbootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	CIs for linear combinations of coefficients
	Constructing a CI inverting the hypothesis test

	Acknowledgments
	References
	Also see

	X
	xi
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Background
	Indicator variables for simple effects
	Controlling the omitted dummy
	Categorical variable interactions
	Interactions with continuous variables
	Using xi: Interpreting output
	How xi names variables
	xi as a command rather than a command prefix
	Warnings

	Stored results
	Also see

	Z
	zinb
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zinb postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	References
	Also see

	ziologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	ziologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	zioprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zioprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	zip
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zip postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	ztest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-sample z test
	Two-sample z test
	Paired z test
	Adjust for clustering
	Immediate form

	Stored results
	Methods and formulas
	One-sample z test
	Two-sample unpaired z test
	Paired z test

	References
	Also see

	[RPT] Reporting
	Contents
	Intro
	Description
	Remarks and examples
	Introduction
	Exporting to a Word (.docx) file
	Exporting to a PDF file
	Exporting to an Excel file
	Creating dynamic documents
	Converting file types

	docx2pdf
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	Dynamic documents intro
	Description
	Remarks and examples
	Also see

	Dynamic tags
	Description
	Remarks
	Descriptions of dynamic tags
	Version control
	Execute and include output from a block of Stata code
	Include strings and values of scalar expressions in text
	Include values of scalar expressions and formatted text in a .docx file
	Export and include a Stata graph
	Include a text file
	Disable dynamic text processing
	Process contents based on condition
	Skip contents based on condition
	Remove contents

	Also see

	dyndoc
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	dyntext
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	html2docx
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	markdown
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	putdocx intro
	Description
	Remarks and examples
	Introduction
	A first example
	Create a document
	Add a paragraph with text
	Add an image to a paragraph
	Add a table of estimation results

	Automating a report
	Workflow options for report building
	Create a complete document in Stata
	Create a document from Stata and Word
	Append files in Stata
	Append files in Word

	References
	Also see

	putdocx begin
	Description
	Quick start
	Syntax
	Options
	Options for putdocx begin
	Options for putdocx save
	Options for putdocx append

	Remarks and examples
	Creating and formatting a .docx file
	Including headers and footers
	Describing the document
	Saving or clearing the .docx file
	Appending .docx files

	Reference
	Also see

	putdocx collect
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	Export a collection
	Specify the style for a collection

	Stored results
	References
	Also see

	putdocx pagebreak
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	putdocx paragraph
	Description
	Quick start
	Syntax
	Options
	Options for putdocx paragraph
	Options for putdocx text
	Options for putdocx textblock begin
	Options for putdocx textblock append
	Options for putdocx pagenumber
	Options for putdocx textfile
	Options for putdocx image

	Remarks and examples
	Adding a paragraph
	Formatting text
	Working with blocks of text
	Adding an image to the document
	Adding a bookmark to the document
	Inserting text files in the document

	Also see

	putdocx table
	Description
	Quick start
	Syntax
	Output types for tables

	Options
	table_options
	cell_options
	row_col_options
	cell_fmt_options
	exp_options
	image_options
	Option for set docx_maxtable

	Remarks and examples
	Introduction
	Creating basic tables
	Exporting summary statistics
	Exporting estimation results

	Creating advanced tables
	Customizing headers and footers with tables

	Stored results
	Reference
	Also see

	Appendix for putdocx
	Description
	Border patterns
	Chapter styles
	Colors
	Page number formats
	Paragraph styles
	Shading patterns
	Underline patterns
	Unsupported estimation commands

	Also see

	putexcel
	Description
	Quick start
	Menu
	Syntax
	Output types

	Options
	Remarks and examples
	Introduction
	Writing expressions and formatting cells
	Exporting summary statistics to Excel
	Exporting estimation results
	Exporting a table from a collection
	Exporting graphs and other images

	Appendix
	Codes for numeric formats
	Colors
	Border styles
	Background patterns

	Stored results
	References
	Also see

	putexcel advanced
	Description
	Quick start
	Menu
	Syntax
	Output types

	Options
	Remarks and examples
	Writing expressions and formatting cells
	Using formulas
	Exporting estimation results

	References
	Also see

	putpdf intro
	Description
	Remarks and examples
	Introduction
	Create a PDF file
	Add a paragraph with text
	Add an image to a paragraph
	Add table of estimation results

	Also see

	putpdf begin
	Description
	Quick start
	Syntax
	Options
	Options for putpdf begin
	Options for putpdf save

	Remarks and examples
	Creating and formatting a PDF file
	Describing the document
	Saving or clearing the PDF file

	References
	Also see

	putpdf collect
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	Export a table with items from a collection

	Stored results
	References
	Also see

	putpdf pagebreak
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	putpdf paragraph
	Description
	Quick start
	Syntax
	Options
	Options for putpdf paragraph
	Options for putpdf text
	Options for putpdf image

	Remarks and examples
	Adding a paragraph
	Adding an image to the document

	Also see

	putpdf table
	Description
	Quick start
	Syntax
	Output types for tables

	Options
	table_options
	cell_options
	row_col_options
	cell_fmt_options
	Option for set pdf_maxtable

	Remarks and examples
	Creating basic tables
	Exporting summary statistics
	Exporting estimation results

	Creating advanced tables

	Stored results
	Reference
	Also see

	Appendix for putpdf
	Description
	Colors
	Unsupported estimation commands

	Also see

	set docx
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	Glossary

	[SEM] Structural Equation Modeling
	Contents
	Acknowledgments
	Reference
	Also see

	Intro 1
	Description
	Remarks and examples
	Also see

	Intro 2
	Description
	Remarks and examples
	Using path diagrams to specify standard linear SEMs
	Specifying correlation
	Using the command language to specify standard linear SEMs
	Specifying generalized SEMs: Family and link
	Specifying generalized SEMs: Family and link, multinomial logistic regression
	Specifying generalized SEMs: Family and link, paths from response variables
	Specifying generalized SEMs: Multilevel mixed effects (2 levels)
	Specifying generalized SEMs: Multilevel mixed effects (3 levels)
	Specifying generalized SEMs: Multilevel mixed effects (4+ levels)
	Specifying generalized SEMs: Multilevel mixed effects with random intercepts
	Specifying generalized SEMs: Multilevel mixed effects with random slopes
	Specifying generalized SEMs: Latent class analysis (LCA)
	Specifying generalized SEMs: Latent class analysis, class predictors
	Specifying generalized SEMs: Latent class analysis, two latent variables

	Reference
	Also see

	Intro 3
	Description
	Remarks and examples
	Specifying indicator variables
	Specifying interactions with indicator variables
	Specifying categorical variables
	Specifying interactions with categorical variables
	Specifying endogenous variables

	Also see

	Intro 4
	Description
	Remarks and examples
	Differences in assumptions between sem and gsem
	sem: Choice of estimation method
	gsem: Choice of estimation method

	Treatment of missing values
	Variable types: Observed, latent, endogenous, exogenous, and error
	Constraining parameters
	Constraining path coefficients to specific values
	Constraining intercepts to specific values (suppressing the intercept)
	Constraining path coefficients or intercepts to be equal
	Constraining covariances to be equal (or to specific values)
	Constraining variances to specific values (or to be equal)

	Identification 1: Substantive issues
	Not all models are identified
	How to count parameters
	What happens when models are unidentified
	How to diagnose and fix the problem

	Identification 2: Normalization constraints (anchoring)
	Why the problem arises
	How the problem would manifest itself
	How sem (gsem) solves the problem for you
	Overriding sem's (gsem's) solution

	References
	Also see

	Intro 5
	Description
	Remarks and examples
	Single-factor measurement models
	Item response theory (IRT) models
	Multiple-factor measurement models
	Confirmatory factor analysis (CFA) models
	Structural models 1: Linear regression
	Structural models 2: Gamma regression
	Structural models 3: Binary-outcome models
	Structural models 4: Count models
	Structural models 5: Ordinal models
	Structural models 6: Multinomial logistic regression
	Structural models 7: Survival models
	Structural models 8: Dependencies between response variables
	Structural models 9: Unobserved inputs, outputs, or both
	Structural models 10: MIMIC models
	Structural models 11: Seemingly unrelated regression (SUR)
	Structural models 12: Multivariate regression
	Structural models 13: Mediation models
	Correlations
	Higher-order CFA models
	Correlated uniqueness model
	Latent growth models
	Models with reliability
	Multilevel mixed-effects models
	Latent class models
	Finite mixture models

	References
	Also see

	Intro 6
	Description
	Remarks and examples
	Comparing groups with sem
	The generic SEM model
	sem: Fitting the model for different groups of the data
	sem: Which parameters vary by default, and which do not
	sem: Specifying which parameters are allowed to vary in broad, sweeping terms
	sem: Adding constraints for path coefficients across groups
	sem: Adding constraints for means, variances, or covariances across groups
	sem: Adding constraints for some groups but not others
	sem: Adding paths for some groups but not others
	sem: Relaxing constraints

	Comparing groups with gsem
	gsem: Fitting the model for different groups of the data
	gsem: Which parameters vary by default, and which do not
	gsem: Specifying which parameters are allowed to vary in broad, sweeping terms
	gsem: Adding constraints for path coefficients across groups
	gsem: Adding constraints for means, variances, or covariances across groups
	gsem: Adding constraints for some groups but not others
	gsem: Adding paths for some groups but not others
	gsem: Relaxing constraints

	Reference
	Also see

	Intro 7
	Description
	Remarks and examples
	Replaying the model (sem and gsem)
	Displaying odds ratios, incidence-rate ratios, etc. (gsem only)
	Obtaining goodness-of-fit statistics (sem and gsem)
	Performing tests for including omitted paths and relaxing constraints (sem only)
	Performing tests of model simplification (sem and gsem)
	Displaying other results, statistics, and tests (sem and gsem)
	Obtaining predicted values (sem)
	Obtaining predicted values (gsem)
	Using contrast, pwcompare, and margins (sem and gsem)
	Accessing stored results

	Reference
	Also see

	Intro 8
	Description
	Options
	Remarks and examples
	Also see

	Intro 9
	Description
	Options
	Remarks and examples
	Reference
	Also see

	Intro 10
	Description
	Remarks and examples
	Also see

	Intro 11
	Description
	Remarks and examples
	Background
	How to use sem with SSD
	What you cannot do with SSD
	Entering SSD
	Entering SSD for multiple groups
	What happens when you do not set all the summary statistics
	Labeling SSD
	Making summary statistics from data for use by others

	Reference
	Also see

	Intro 12
	Description
	Remarks and examples
	Is your model identified?
	Convergence solutions generically described
	Temporarily eliminate option reliability()
	Use default normalization constraints
	Temporarily eliminate feedback loops
	Temporarily simplify the model
	Try other numerical integration methods (gsem only)
	Get better starting values (sem and gsem)
	Get better starting values (gsem)

	Also see

	Builder
	Description
	Remarks and examples
	Video example

	Reference

	Builder, generalized
	Description
	Remarks and examples
	Video example

	Reference

	estat eform
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	estat eqgof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat eqtest
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat framework
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	estat ggof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estat ginvariant
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat gof
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat lcgof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estat lcmean
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat lcprob
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat mindices
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat residuals
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat scoretests
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estat sd
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat stable
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat stdize
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	estat summarize
	Description
	Menu
	Syntax
	Options
	Stored results
	Also see

	estat teffects
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	Example 1
	Description
	Remarks and examples
	Single-factor measurement model
	Satorra--Bentler scaled chi-squared test
	Fitting the same model with gsem
	Fitting the same model with the Builder
	The measurement-error model interpretation

	References
	Also see

	Example 2
	Description
	Remarks and examples
	Background
	Creating the SSD
	At this point, we could save the dataset and stop
	Labeling the SSD
	Listing the SSD

	Reference
	Also see

	Example 3
	Description
	Remarks and examples
	Fitting multiple-factor measurement models
	Displaying standardized results
	Fitting the model with the Builder
	Obtaining equation-level goodness of fit by using estat eqgof

	References
	Also see

	Example 4
	Description
	Remarks and examples
	Reference
	Also see

	Example 5
	Description
	Remarks and examples
	Reference
	Also see

	Example 6
	Description
	Remarks and examples
	Fitting linear regression models
	Displaying standardized results
	Fitting the model with the Builder

	Also see

	Example 7
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Checking stability with estat stable
	Reporting total, direct, and indirect effects with estat teffects

	References
	Also see

	Example 8
	Description
	Remarks and examples
	Using test to evaluate adding constraints
	Refitting the model with added constraints
	Using estat scoretests to test whether constraints can be relaxed

	Also see

	Example 9
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Evaluating omitted paths with estat mindices
	Refitting the model

	References
	Also see

	Example 10
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the MIMIC model with the Builder
	Evaluating the residuals with estat residuals
	Performing likelihood-ratio tests with lrtest

	Reference
	Also see

	Example 11
	Description
	Remarks and examples
	Also see

	Example 12
	Description
	Remarks and examples
	Fitting the seemingly unrelated regression model
	Fitting the model with the Builder

	Also see

	Example 13
	Description
	Remarks and examples
	Also see

	Example 14
	Description
	Remarks and examples
	Also see

	Example 15
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	Example 16
	Description
	Remarks and examples
	Using sem to obtain correlation matrices
	Fitting the model with the Builder
	Testing correlations with estat stdize and test

	Also see

	Example 17
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	Example 18
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	Example 19
	Description
	Remarks and examples
	Reference
	Also see

	Example 20
	Description
	Remarks and examples
	Background
	Fitting the model with all the data
	Fitting the model with the group() option
	Fitting the model with the Builder

	Reference
	Also see

	Example 21
	Description
	Remarks and examples
	Also see

	Example 22
	Description
	Remarks and examples
	Also see

	Example 23
	Description
	Remarks and examples
	Background
	Fitting the constrained model

	Also see

	Example 24
	Description
	Remarks and examples
	Baseline model (reliability ignored)
	Model with reliability
	Model with two measurement variables and reliability

	Also see

	Example 25
	Description
	Remarks and examples
	Preparing data for conversion
	Converting to summary statistics form
	Publishing SSD
	Creating SSD with multiple groups

	Also see

	Example 26
	Description
	Remarks and examples
	Fitting the model with method(ml)
	Fitting the model with method(mlmv)
	Fitting the model with the Builder

	Also see

	Example 27g
	Description
	Remarks and examples
	Single-factor pass/fail measurement model
	Single-factor pass/fail + continuous measurement model
	Fitting the model with the Builder

	Also see

	Example 28g
	Description
	Remarks and examples
	1-PL IRT model with unconstrained variance
	1-PL IRT model with variance constrained to 1
	Obtaining item characteristic curves
	Fitting the model with the Builder

	References
	Also see

	Example 29g
	Description
	Remarks and examples
	Fitting the 2-PL IRT model
	Obtaining predicted difficulty and discrimination
	Using coeflegend to obtain the symbolic names of the parameters
	Graphing item characteristic curves
	Fitting the model with the Builder

	References
	Also see

	Example 30g
	Description
	Remarks and examples
	Fitting the two-level model
	Fitting the variance-components model
	Fitting the model with the Builder

	References
	Also see

	Example 31g
	Description
	Remarks and examples
	Fitting the two-factor model
	Fitting the model with the Builder

	Also see

	Example 32g
	Description
	Remarks and examples
	Structural model with measurement component
	Fitting the model with the Builder

	Also see

	Example 33g
	Description
	Remarks and examples
	Fitting the logit model
	Obtaining odds ratios
	Fitting the model with the Builder

	Reference
	Also see

	Example 34g
	Description
	Remarks and examples
	Fitting the combined model
	Obtaining odds ratios and incidence-rate ratios
	Fitting the model with the Builder

	Reference
	Also see

	Example 35g
	Description
	Remarks and examples
	Ordered probit
	Ordered logit
	Fitting the model with the Builder

	Reference
	Also see

	Example 36g
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the model with the Builder

	Reference
	Also see

	Example 37g
	Description
	Remarks and examples
	Simple multinomial logistic regression model
	Multinomial logistic regression model with constraints
	Fitting the simple multinomial logistic model with the Builder
	Fitting the multinomial logistic model with constraints with the Builder

	Reference
	Also see

	Example 38g
	Description
	Remarks and examples
	Random-intercept model, single-equation formulation
	Random-intercept model, within-and-between formulation
	Random-slope model, single-equation formulation
	Random-slope model, within-and-between formulation
	Fitting the random-intercept model with the Builder
	Fitting the random-slope model with the Builder

	Reference
	Also see

	Example 39g
	Description
	Remarks and examples
	Three-level negative binomial model
	Three-level Poisson model
	Testing for overdispersion
	Fitting the models with the Builder

	References
	Also see

	Example 40g
	Description
	Remarks and examples
	The crossed model
	Fitting the model with the Builder

	Reference
	Also see

	Example 41g
	Description
	Remarks and examples
	Two-level multinomial logistic model with shared random effects
	Two-level multinomial logistic model with separate but correlated random effects
	Fitting the model with the Builder

	References
	Also see

	Example 42g
	Description
	Remarks and examples
	One-level model with sem
	One-level model with gsem
	Two-level model with gsem
	Fitting the models with the Builder

	References
	Also see

	Example 43g
	Description
	Remarks and examples
	Fitting tobit regression models
	Fitting the model with the Builder

	Also see

	Example 44g
	Description
	Remarks and examples
	Fitting interval regression models
	Fitting the model with the Builder

	Also see

	Example 45g
	Description
	Remarks and examples
	The Heckman selection model as an SEM
	Fitting the Heckman selection model as an SEM
	Transforming results and obtaining rho
	Fitting the model with the Builder

	References
	Also see

	Example 46g
	Description
	Remarks and examples
	Fitting the treatment-effects model
	Fitting the model with the Builder

	References
	Also see

	Example 47g
	Description
	Remarks and examples
	Fitting the exponential model
	Obtaining hazard ratios
	Fitting the model with the Builder

	Also see

	Example 48g
	Description
	Remarks and examples
	Censoring and truncation
	Using stset to declare survival characteristics
	Fitting the loglogistic model
	Fitting the model with the Builder

	Reference
	Also see

	Example 49g
	Description
	Remarks and examples
	Fitting the multiple-group model
	Fitting the model with the Builder

	Also see

	Example 50g
	Description
	Remarks and examples
	References
	Also see

	Example 51g
	Description
	Remarks and examples
	Likelihood-ratio test
	Comparing models

	Reference
	Also see

	Example 52g
	Description
	Remarks and examples
	Fitting the two-class model
	Comparing models
	Fitting the three-class model with covariances

	References
	Also see

	Example 53g
	Description
	Remarks and examples
	References
	Also see

	Example 54g
	Description
	Remarks and examples
	References
	Also see

	gsem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	References
	Also see

	gsem estimation options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem family-and-link options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem group options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem lclass options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem model description options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem path notation extensions
	Description
	Syntax
	Options
	Remarks and examples
	Specifying family and link
	Specifying multilevel nested latent variables
	Specifying multilevel crossed latent variables
	Specifying paths for a specific group
	Specifying paths for a specific latent class
	Specifying paths for a specific group and latent class

	Also see

	gsem postestimation
	Postestimation commands
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	gsem reporting options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	lincom
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	lrtest
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	Methods and formulas for gsem
	Description
	Remarks and examples
	Introduction
	Families of distributions
	The Bernoulli family
	The beta family
	The binomial family
	The ordinal family
	The multinomial family
	The Poisson family
	The negative binomial family
	The Gaussian family
	Reliability
	Point mass

	Link functions
	The logit link
	The probit link
	The complementary log--log link
	The log link
	The identity link

	Survival distributions
	The exponential distribution
	The Weibull distribution
	The gamma distribution
	The loglogistic distribution
	The lognormal distribution

	Models with continuous latent variables
	Continuous latent variables likelihood
	Gauss--Hermite quadrature
	Adaptive quadrature
	Laplacian approximation
	Continuous latent variables survey data
	Continuous latent variables predictions

	Models with categorical latent variables
	Categorical latent variables likelihood
	The EM algorithm
	Categorical latent variables survey data
	Categorical latent variables predictions

	References
	Also see

	Methods and formulas for sem
	Description
	Remarks and examples
	Variable notation
	Model and parameterization
	Summary data
	Maximum likelihood
	Weighted least squares
	Groups
	Fitted parameters
	Satorra{--}Bentler variance estimation
	Standardized parameters
	Reliability
	Postestimation

	References
	Also see

	nlcom
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	predict after gsem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	predict after sem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	sem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	References
	Also see

	sem and gsem option constraints()
	Description
	Syntax
	Remarks and examples
	Use with sem
	Use with gsem

	Also see

	sem and gsem option covstructure()
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	sem and gsem option from()
	Description
	Syntax
	Option
	Remarks and examples
	Syntax 1, especially useful when dealing with convergence problems
	Syntax 2, seldom used

	Also see

	sem and gsem option reliability()
	Description
	Syntax
	Option
	Remarks and examples
	Background
	Dealing with measurement error of exogenous variables
	Dealing with measurement error of endogenous variables
	What can go wrong

	Also see

	sem and gsem path notation
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem and gsem syntax options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem estimation options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem group options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem model description options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem option method()
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem option noxconditional
	Description
	Syntax
	Option
	Remarks and examples
	What is x conditional?
	When to specify noxconditional
	Option forcexconditional (a technical note)

	Also see

	sem option select()
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	sem path notation extensions
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem postestimation
	Postestimation commands
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	sem reporting options
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	sem ssd options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	ssd
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	test
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	testnl
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Glossary
	Reference

	[SP] Spatial Autoregressive Models
	Contents
	Intro
	Description
	Remarks and examples
	References for learning SAR models
	Technical references on the development and fitting of SAR models

	Acknowledgments
	References

	Intro 1
	Description
	Remarks and examples
	Also see

	Intro 2
	Description
	Remarks and examples
	Understanding the W matrix
	Missing values, dropped observations, and the W matrix

	Reference
	Also see

	Intro 3
	Description
	Remarks and examples
	Three types of Sp data
	Type 1: Data with shapefiles
	Type 2: Data without shapefiles but including location information
	Type 3: Data without shapefiles or location information

	Sp can be used with cross-sectional data or panel data
	ID variables for cross-sectional data
	ID variables for panel data

	Also see

	Intro 4
	Description
	Remarks and examples
	Overview
	How to find and download shapefiles on the web
	Standard-format shapefiles
	Stata-format shapefiles
	Creating Stata-format shapefiles
	Step 1: Find and download a shapefile
	Step 2: Translate the shapefile to Stata format
	Step 3: Look at the translated data
	Step 4: Create a common ID variable for use with other data
	Step 5: Optionally, tell Sp to use the common ID variable
	Step 6: Set the units of the coordinates, if necessary

	Preparing your data
	Step 7a: Merge your cross-sectional data with the Stata-format shapefiles
	Step 7b: Merge your panel data with the Stata-format shapefiles

	Rules for working with Sp data, whether cross-sectional or panel

	Also see

	Intro 5
	Description
	Remarks and examples
	Preparation of cross-sectional data
	Preparation of panel data
	There are no rules as there are with shapefiles

	Also see

	Intro 6
	Description
	Remarks and examples
	Nongeographic spatial data
	Preparation of cross-sectional data
	Preparation of panel data
	There are no rules as there are with shapefiles

	Also see

	Intro 7
	Description
	Remarks and examples
	Research plan
	Finding and preparing data
	Finding a shapefile for Texas counties
	Creating the Stata-format shapefile
	Merging our data with the Stata-format shapefile

	Analyzing texas_ue.dta
	Testing whether ordinary regression is adequate
	spregress can reproduce regress results
	Fitting models with a spatial lag of the dependent variable
	Interpreting models with a spatial lag of the dependent variable
	Fitting models with a spatial lag of independent variables
	Interpreting models with a spatial lag of the independent variables
	Fitting models with spatially autoregressive errors
	Models can have all three kinds of spatial lag terms

	Also see

	Intro 8
	Description
	Remarks and examples
	spregress, gs2sls
	spregress, ml
	spivregress
	spxtregress
	spxtregress, re
	spxtregress, fe

	Reference
	Also see

	estat moran
	Description
	Quick start
	Menu for estat
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	grmap
	Description
	Quick start
	Menu
	Remarks and examples
	References
	Also see

	spbalance
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Balancing by dropping spatial units

	Stored results
	Also see

	spcompress
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Introduction
	Using the force option

	Stored results
	Also see

	spdistance
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Are coordinates really planar and not latitude and longitude?
	Reverse engineering planar distances
	More than you want to know about coordinates
	Planar coordinates
	Latitude and longitude coordinates

	Stored results
	Methods and formulas
	Reference
	Also see

	spgenerate
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Use with Sp data
	Use with other datasets

	Also see

	spivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	spivregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Remarks for margins

	estat impact
	Description for estat impact
	Syntax for estat impact
	Options for estat impact
	Remarks for estat impact
	Stored results for estat impact

	Methods and formulas
	Predictions
	Reduced-form mean
	Direct and indirect means
	Limited-information mean
	Full-information mean
	Naive-form predictor
	Linear predictor
	Residuals
	Uncorrelated residuals

	Impacts

	References
	Also see

	spmatrix
	Description
	Reference
	Also see

	spmatrix copy
	Description
	Quick start
	Menu
	Syntax
	Also see

	spmatrix create
	Description
	Quick start
	Menu
	Syntax
	Options for spmatrix create contiguity
	Option for spmatrix create idistance
	Options for both contiguity and idistance
	Remarks and examples
	Creating contiguity matrices
	Creating inverse-distance matrices
	Creating inverse-distance contiguity matrices
	The normalize() option
	Panel data

	Also see

	spmatrix drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	spmatrix dir
	Save and drop matrices you are not using

	Stored results
	Also see

	spmatrix export
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Using spmatrix export
	The spmatrix export text-file format

	Also see

	spmatrix fromdata
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	spmatrix import
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	spmatrix matafromsp
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Getting W and id
	Using W without involving the data in memory
	Using W involving the data in memory

	Also see

	spmatrix normalize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Using spmatrix normalize after spmatrix import
	Using spmatrix normalize after other commands
	Using spmatrix normalize to change normalization

	Also see

	spmatrix note
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	spmatrix save
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	spmatrix spfrommata
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	W and v
	Simple use
	Advanced use

	References
	Also see

	spmatrix summarize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	spmatrix use
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	spmatrix userdefined
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Sfcnname() versus Afcnname()
	Programming style
	Advanced programs
	Mixed approaches

	Also see

	spregress
	Description
	Quick start
	Menu
	Syntax
	Options for spregress, gs2sls
	Options for spregress, ml
	Remarks and examples
	Introduction
	Choosing weighting matrices and their normalization
	Weighting matrices
	Normalization of weighting matrices
	Direct and indirect effects and normalization

	Examples

	Stored results
	Methods and formulas
	Model
	GS2SLS estimator
	2SLS estimator of delta
	GMM estimator of rho based on 2SLS residuals
	GS2SLS estimator of delta
	Efficient GMM estimator of rhon based on GS2SLS residuals

	ML estimator
	Log-likelihood function

	Pseudo-R-squared

	References
	Also see

	spregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Remarks for margins

	estat impact
	Description for estat impact
	Syntax for estat impact
	Options for estat impact
	Remarks for estat impact
	Stored results for estat impact

	Methods and formulas
	Predictions
	Reduced-form mean
	Direct and indirect means
	Limited-information mean
	Full-information mean
	Naive-form predictor
	Linear predictor
	Residuals
	Uncorrelated residuals

	Impacts

	References
	Also see

	spset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Determining whether and how data are spset
	Setting data for the first time
	Setting data with a standard-format shapefile
	Setting data with a Stata-format shapefile
	Setting data without a shapefile but with coordinates
	Setting data without a shapefile

	Modifying settings
	Modifying coordinates
	Modifying how coordinates are interpreted
	Modifying the ID variable
	Modifying whether the data are linked to a shapefile

	Converting cross-sectional data to panel data and vice versa

	Stored results
	Also see

	spshape2dta
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	spxtregress
	Description
	Quick start
	Menu
	Syntax
	Options for spxtregress, fe
	Options for spxtregress, re
	Remarks and examples
	Sp panel models
	The fixed-effects model
	The random-effects model
	The random-effects model with autoregressive panel effects
	Differences among models
	Examples

	Stored results
	Methods and formulas
	Fixed-effects estimators
	Random-effects estimators

	References
	Also see

	spxtregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Remarks for margins

	estat impact
	Description for estat impact
	Syntax for estat impact
	Option for estat impact
	Remarks for estat impact
	Stored results for estat impact

	Methods and formulas
	Predictions
	Reduced-form mean
	Direct and indirect means
	Linear predictor

	Impacts in random-effects models
	Impacts in fixed-effects models

	Reference
	Also see

	Glossary

	[ST] Survival Analysis
	Contents
	Intro
	Description
	Also see

	Survival analysis
	Description
	Remarks and examples
	Introduction
	Declaring and converting count data
	Converting snapshot data
	Declaring and summarizing survival-time data
	Manipulating survival-time data
	Obtaining summary statistics, confidence intervals, tables, etc.
	Fitting regression models
	Prediction and model selection
	Sample size and power determination for survival analysis
	Converting survival-time data
	Programmer's utilities

	References
	Also see

	ct
	Description
	Also see

	ctset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Examples
	Data errors flagged by ctset

	Also see

	cttost
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	Discrete
	Description
	Acknowledgment
	References
	Also see

	estat gofplot
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	ltable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Methods and formulas
	Acknowledgments
	References
	Also see

	snapspan
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Snapshot and time-span datasets
	Specifying varlist

	Also see

	st
	Description
	Also see

	st_is
	Description
	Syntax
	Remarks and examples
	Definitions of characteristics and st variables
	Outline of an st command
	Using the st_ct utility
	Comparison of st_ct with sttoct
	Verifying data
	Converting data

	Also see

	stbase
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	stbase without the at() option
	stbase with the at() option
	Single-failure st data where all subjects enter at time 0
	Single-failure st data where some subjects enter after time 0
	Single-failure st data with gaps and perhaps delayed entry
	Multiple-failure st data

	Also see

	stci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data

	Stored results
	Methods and formulas
	References
	Also see

	stcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Cox regression with uncensored data
	Cox regression with censored data
	Treatment of tied failure times
	Cox regression with time-varying covariates in multiple-record data
	Cox regression with time-varying covariates using option tvc()
	Robust estimate of variance
	Cox regression with multiple-failure data
	Stratified estimation
	Cox regression as Poisson regression
	Cox regression with shared frailty

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox PH-assumption tests
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for stphplot
	Options for stcoxkm
	Options for estat phtest

	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Baseline functions
	Making baseline reasonable
	Residuals and diagnostic measures
	Multiple records per subject
	Predictions after stcox with the tvc() option
	Predictions after stcox with the shared() option
	estat concordance

	Stored results
	Methods and formulas
	estat concordance

	References
	Also see

	stcrreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The case for competing-risks regression
	Using stcrreg
	Multiple competing-event types
	stcrreg as an alternative to stcox
	Multiple records per subject
	Option tvc() and testing the proportional-subhazards assumption

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcrreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Baseline functions
	Null models
	Measures of influence

	Methods and formulas
	References
	Also see

	stcurve
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	stcurve after stcox
	stcurve after streg
	stcurve after stcrreg
	stcurve after stintreg and stintcox
	Using at() with stcurve

	References
	Also see

	stdescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Reference
	Also see

	stfill
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	stgen
	Description
	Quick start
	Menu
	Syntax
	Functions
	Remarks and examples
	Also see

	stintcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Single- versus multiple-record interval-censored data formats
	Case II interval-censored data
	Time-varying covariates
	Standard error estimation with interval-censored data
	Current status or case I interval-censored data
	Testing the proportional-hazards assumption using option tvc()

	Stored results
	Methods and formulas
	Data and model
	EM algorithm for computing parameter estimates
	Variance estimation using the profile log-likelihood function
	Stratified estimation
	Option tvc()

	Acknowledgments
	References
	Also see

	stintcox PH-assumption plots
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for stintphplot
	Options for stintcoxnp

	Remarks and examples
	Methods and formulas
	References
	Also see

	stintcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Baseline functions
	Residuals and diagnostic measures
	Postestimation after stintcox with option tvc()
	Survivor curves for multiple-record-per-subject data with time-varying covariates

	Methods and formulas
	Predictions for single-record interval-censored data
	Predictions for multiple-record interval-censored data
	Survivor curves for interval-censored data

	References
	Also see

	stintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Types of interval-censoring
	Case II interval-censored data
	Case I interval-censored data

	Parameterization of ancillary parameters
	Stratified estimation

	Stored results
	Methods and formulas
	Introduction
	Distributions and parameterizations
	Parameter estimation using interval-censored data

	References
	Also see

	stintreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Predicted values
	Residuals and diagnostic measures

	Methods and formulas
	References
	Also see

	stir
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	stmc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Reference
	Also see

	stmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References
	Also see

	stptime
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	References
	Also see

	strate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	streg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Distributions
	Examples
	Parameterization of ancillary parameters
	Stratified estimation
	(Unshared-) frailty models
	Shared-frailty models

	Stored results
	Methods and formulas
	Parameter estimation

	References
	Also see

	streg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	sts
	Description
	Syntax
	Remarks and examples
	Listing, graphing, and generating variables
	Comparing survivor or cumulative hazard functions
	Testing equality of survivor functions
	Covariate-adjusted estimates
	Counting the number lost to censoring
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	sts generate
	Description
	Quick start
	Menu
	Syntax
	Functions
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	sts graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Including the number lost on the graph
	Graphing the Nelson{--}Aalen cumulative hazard function
	Graphing the hazard function
	Adding an at-risk table
	On boundary bias for smoothed hazards
	Video example

	Methods and formulas
	Smoothed hazard estimate

	References
	Also see

	sts list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Methods and formulas
	References
	Also see

	sts test
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The log-rank test
	The Wilcoxon (Breslow--Gehan) test
	The Tarone--Ware test
	The Peto--Peto--Prentice test
	The generalized Fleming--Harrington tests
	The ``Cox'' test
	The trend test
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	stset
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for use with stset and streset
	Options unique to streset
	Options for st

	Remarks and examples
	What are survival-time data?
	Key concepts
	Survival-time datasets
	Using stset
	Two concepts of time
	The substantive meaning of analysis time
	Setting the failure event
	Setting multiple failures
	First entry times
	Final exit times
	Intermediate exit and reentry times (gaps)
	if() versus if exp
	Past and future records
	Using streset
	Performance and multiple-record-per-subject datasets
	Sequencing of events within t
	Weights
	Data warnings and errors flagged by stset
	Using survival-time data in Stata
	Video example

	References
	Also see

	stsplit
	Description
	Quick start
	Menu
	Syntax
	Options for stsplit
	Option for stjoin
	Remarks and examples
	What stsplit does and why
	Using stsplit to split at designated times
	Time versus analysis time
	Splitting data on recorded ages
	Using stsplit to split at failure times

	Acknowledgments
	References
	Also see

	stsum
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data
	Video example

	Stored results
	Methods and formulas
	Also see

	sttocc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	sttoct
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Case 1: entvar not specified
	Case 2: entvar specified

	Also see

	stvary
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Video example

	Stored results
	Reference
	Also see

	adjustfor_option
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Using adjustfor() with sts, stphplot, and stintphplot
	Syntax of at()

	Also see

	Glossary

	[SVY] Survey Data
	Contents
	Intro
	Description
	Also see

	Survey
	Description
	Remarks and examples
	Introduction
	Survey design tools
	Survey data analysis tools
	Survey data concepts
	Tools for programmers of new survey commands
	Video examples

	Acknowledgments
	References
	Also see

	bootstrap_options
	Description
	Syntax
	Options
	Also see

	brr_options
	Description
	Syntax
	Options
	Also see

	Calibration
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	Direct standardization
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for estat effects
	Options for estat lceffects
	Options for estat size
	Options for estat sd
	Options for estat cv
	Options for estat gof
	Options for estat vce

	Remarks and examples
	Stored results
	Methods and formulas
	Design effects
	Linear combinations
	Misspecification effects
	Population and subpopulation standard deviations
	Coefficient of variation
	Goodness of fit for binary response models

	References
	Also see

	jackknife_options
	Description
	Syntax
	Options
	Also see

	ml for svy
	Remarks and examples
	Reference
	Also see

	Poststratification
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	sdr_options
	Description
	Syntax
	Options
	Also see

	Subpopulation estimation
	Description
	Remarks and examples
	Methods and formulas
	Subpopulation totals
	Subpopulation estimates other than the total
	Subpopulation with replication methods

	References
	Also see

	svy
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy bootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy brr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy estimation
	Description
	Menu
	Remarks and examples
	Overview of survey analysis in Stata
	Descriptive statistics
	Regression models
	Health surveys

	References
	Also see

	svy jackknife
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy postestimation
	Postestimation commands
	predict
	margins
	Remarks and examples
	References
	Also see

	svy sdr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The Rao and Scott correction
	Wald statistics
	Properties of the statistics

	Stored results
	Methods and formulas
	The table items
	Confidence intervals
	The test statistics

	References
	Also see

	svydescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	svymarkout
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	svyset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to survey design characteristics
	Finite population correction (FPC)
	Multiple-stage designs and with-replacement sampling
	Replication-weight variables
	Combining datasets from multiple surveys
	Video example

	Stored results
	References
	Also see

	Variance estimation
	Description
	Remarks and examples
	Variance of the total
	Variance for census data
	Certainty sampling units
	Strata with one sampling unit
	Ratios and other functions of survey data
	Linearized/robust variance estimation
	The bootstrap
	BRR
	The jackknife
	Successive difference replication
	Confidence intervals

	References
	Also see

	Glossary

	[TABLES] Customizable Tables
	Contents
	Intro
	Description
	Remarks and examples
	What is in this manual?
	What are collections?
	Do you need collections?
	The dtable and etable commands
	The table command

	Acknowledgments

	Intro 1
	Description
	Remarks and examples
	Also see

	Intro 2
	Description
	Remarks and examples
	Tags, dimensions, and levels
	Introducing collect:
	Introducing collect layout
	Introducing collect recode

	Using collect layout
	Selecting specific levels of a dimension

	What is in my collection?
	Introducing collect levelsof
	Introducing collect label list
	Where do result labels come from?
	Introducing collect label levels
	Introducing collect label save
	Introducing collect label use

	Interactions in collect layout
	Introducing collect style cell
	Introducing collect preview
	Reordering columns
	More layout
	Introducing collect style autolevels

	What is in my collection, regression edition
	The result levels _r_b, _r_se, elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $
	The colname dimension
	Labels on levels of dimension colname
	collect layout with regression results
	Introducing collect style showbase
	Tables of model statistics

	What is in my collection, multiple-equation models (dimension coleq)
	What is in my collection, collecting results from multiple commands (dimension cmdset)
	Seeing what is my collection
	Introducing collect dims
	Factor variables in regressions and other commands

	Special dimensions created by table
	Dimension variables
	Variables from statistic() option---dimension var
	Dimension colname and matching to regressions
	Index of command() options---dimension command
	Index of command() and statistic() options---dimension statcmd
	Other dimensions

	Let's talk styles
	Overview
	Basic targeting
	Advanced targeting
	Saving and using

	Exporting
	Saving collections
	Managing collections

	Also see

	Intro 3
	Description
	Remarks and examples
	Outline of basic steps and key commands

	Reference
	Also see

	Intro 4
	Description
	Remarks and examples
	Introduction
	Prepare to collect results
	Collect results
	Combine collections
	Explore the collection
	Modify the collection
	Lay out rows and columns of the table
	Preview the table
	Modify labels in row and column headers
	Control display of zero coefficients in regression results
	Change styles{---}formats, bolding, colors, and more
	Add a title and notes
	Query collection style properties
	Export the table
	Save styles and labels
	Save the collection
	Manage collections

	Also see

	Intro 5
	Description
	Remarks and examples
	Also see

	Tables Builder
	Description
	Menu
	Remarks and examples
	Overview
	Laying out a table
	Laying out a multiway table
	Modifying the layout
	Laying out stacked dimensions
	Placing multiple results in a cell
	Multiple tables
	Changing row and column headers
	Changing cell/results appearance
	Adding significance stars
	Adding a custom table title
	Changing table title appearance
	Adding table notes
	Changing table note appearance
	Exporting a table
	Advanced tools

	collect get
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Support for other prefix commands
	Fully supported
	Partially supported
	Not supported

	Collecting results from margins, contrast, and pwcompare
	Results not collected by default

	Also see

	collect addtags
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect clear
	Description
	Syntax
	Remarks and examples
	Also see

	collect combine
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect composite
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Example 1: Table of means and standard deviations
	Example 2: Table of means, medians, standard deviations, and confidence intervals
	Example 3: Table of regression results

	Reference
	Also see

	collect copy
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	collect create
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	collect dims
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	collect dir
	Description
	Syntax
	Remarks and examples
	Also see

	collect drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	collect label
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for collect label dim
	Options for collect label levels
	Options for collect label save
	Options for collect label use
	Option for collect label drop
	Options for collect label list

	Remarks and examples
	Stored results
	References
	Also see

	collect levelsof
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	collect notes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Adding notes to a table
	Removing notes

	Stored results
	Reference
	Also see

	collect query
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	collect recode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collect remap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	collect save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect set
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	collect stars
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect title
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect layout
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collect preview
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect export
	Description
	Quick start
	Menu
	Syntax
	Options
	export_options
	docx_options
	html_options
	pdf_options
	excel_options
	tex_options
	smcl_option
	txt_option
	md_option

	Remarks and examples
	Introduction
	Styles for different documents
	Creating more extensive documents

	Stored results
	Also see

	collect style autolevels
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect style cell
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collect style clear
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	collect style column
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style _cons
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style header
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect style html
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect style notes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style putdocx
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style putpdf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style row
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collect style save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect style showbase
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	collect style showempty
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style showomit
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	collect style table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style tex
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect style title
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	Appendix
	Description
	Border patterns
	Diagonal border patterns
	Colors
	Shading patterns
	Underline patterns

	Also see

	Collection principles
	Description
	Remarks and examples
	Basic concepts
	Basics in practice
	How collect layout processes tag specifications
	The process in practice

	Also see

	Predefined styles
	Description
	Remarks and examples
	Creating a new style
	Styles provided by Stata
	default
	dtable
	etable
	table
	coef-table
	coef-table_halign
	coef-table_headers
	default_borders
	default_cidelimiter
	default_halign
	default_headers
	default_margins
	default_nformats
	default_smcl
	default_tex
	dtable_borders
	dtable_composites
	dtable_font
	dtable_halign
	dtable_headers
	dtable_nformats
	etable_borders
	etable_etable
	etable_font
	etable_halign
	etable_headers
	etable_nformats
	etable_showitem
	etable_stars
	table-1
	table-reg1
	table-reg1-fv1
	table-reg2
	table-reg2-fv1
	table-reg3
	table-reg3-fv1
	table-right
	table-tab2
	table_cidelimiter
	table_headers
	table_nformats

	Modifying the default style

	Also see

	set collect_double
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set collect_label
	Description
	Syntax
	Option
	Remarks and examples
	Overview
	Labels for e-class results
	Labels for r-class results
	Labels for other results

	Also see

	set collect_style
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set collect_warn
	Description
	Syntax
	Option
	Remarks and examples

	set dtable_style
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set etable_style
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set table_style
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	Example 1
	Description
	Remarks and examples
	Table of correlations
	Table of correlations, means, and standard deviations

	Reference
	Also see

	Example 2
	Description
	Remarks and examples
	Computing and collecting statistics
	Customizing the table

	Reference
	Also see

	Example 3
	Description
	Remarks and examples
	Computing statistics with the table command
	Customizing the table

	Reference
	Also see

	Example 4
	Description
	Remarks and examples
	Collecting statistics
	Customizing the table

	Reference
	Also see

	Example 5
	Description
	Remarks and examples
	Collecting regression results and creating a table
	Customizing the table

	Reference
	Also see

	Example 6
	Description
	Remarks and examples
	Collecting regression results and creating a table
	Customizing the table

	Reference
	Also see

	Example 7
	Description
	Remarks and examples
	Introduction
	Table of regression results with complex survey data

	Reference
	Also see

	Glossary

	[TS] Time Series
	Contents
	Intro
	Description
	Also see

	Time series
	Description
	Remarks and examples
	Data management tools and time-series operators
	Univariate time series: Estimators
	Univariate time series: Time-series smoothers and filters
	Univariate time series: Diagnostic tools
	Multivariate time series: Estimators
	Multivariate time series: Diagnostic tools
	Forecasting models
	Additional resources

	References
	Also see

	arch
	Description
	Quick start
	Menu
	Syntax
	Details of syntax
	Common models
	Reading arch output

	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Priming values
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arch postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	arfima
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	The likelihood function
	The autocovariance function
	The profile likelihood
	The MPL

	References
	Also see

	arfima postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Forecasting after ARFIMA
	IRF results for ARFIMA

	Methods and formulas
	References
	Also see

	arfimasoc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	arima
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	ARIMA models
	Multiplicative seasonal ARIMA models
	ARMAX models
	Dynamic forecasting
	Video example

	Stored results
	Methods and formulas
	ARIMA model
	Kalman filter equations
	Kalman filter or state-space representation of the ARIMA model
	Kalman filter recursions
	Kalman filter initial conditions
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arima postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Forecasting after ARIMA
	IRF results for ARIMA

	Reference
	Also see

	arimasoc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	corrgram
	Description
	Quick start
	Menu
	Syntax
	Options for corrgram
	Options for ac and pac
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cumsp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	dfactor
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to dynamic-factor models
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	dfactor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	dfgls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dfuller
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat acplot
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat aroots
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	estat sbcusum
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Introduction
	Cusum of recursive residuals
	Cusum of OLS residuals

	Stored results
	Methods and formulas
	References
	Also see

	estat sbknown
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat sbsingle
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	fcast compute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Predictions after var and svar
	Dynamic forecasts after vec

	References
	Also see

	fcast graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	forecast
	Description
	Quick start
	Syntax
	Remarks and examples
	Video example

	References
	Also see

	forecast adjust
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast clear
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	forecast coefvector
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Simulations with coefficient vectors

	Methods and formulas
	Also see

	forecast create
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	forecast describe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast drop
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	forecast estimates
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The advise option
	Using saved estimation results
	The predict option
	Forecasting with ARIMA models

	References
	Also see

	forecast exogenous
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	forecast identity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	forecast list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	forecast query
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	forecast solve
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Performing conditional forecasts
	Using simulations to measure forecast accuracy

	Stored results
	Methods and formulas
	References
	Also see

	irf
	Description
	Quick start
	Syntax
	Remarks and examples
	References
	Also see

	irf add
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	irf cgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf create
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Technical aspects of IRF files
	IRFs and FEVDs
	IRF results for VAR models
	IRF results for VEC models
	IRF results for ARIMA and ARFIMA

	Methods and formulas
	Impulse--response function formulas for VAR models
	Dynamic-multiplier function formulas for VAR models
	Forecast-error variance decomposition formulas for VAR models
	Impulse{--}response function formulas for VEC models
	Algorithms for bootstrapping the VAR IRF and FEVD standard errors
	Impulse--response function formulas for ARIMA and ARFIMA

	References
	Also see

	irf ctable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf describe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf drop
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	irf graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf ograph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	irf set
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	lpirf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lpirf postestimation
	Postestimation commands
	Remarks and examples
	Methods and formulas
	References
	Also see

	mgarch
	Description
	Syntax
	Remarks and examples
	An introduction to MGARCH models
	Diagonal vech MGARCH models
	Conditional correlation MGARCH models
	Constant conditional correlation MGARCH model
	Dynamic conditional correlation MGARCH model
	Varying conditional correlation MGARCH model

	Error distributions and quasimaximum likelihood
	Treatment of missing data

	References
	Also see

	mgarch ccc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch ccc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch dcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dcc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch dvech
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dvech postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch vcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch vcc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mswitch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Markov-switching dynamic regression
	Markov-switching AR
	Video example

	Stored results
	Methods and formulas
	Markov-switching regression models
	Markov chains
	Specification of Markov-switching models
	Markov-switching dynamic regression
	Markov-switching AR

	Likelihood function with latent states
	Smoothed probabilities
	Unconditional probabilities

	References
	Also see

	mswitch postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	One-step predictions
	Dynamic predictions
	Model fit and state predictions

	Stored results
	Methods and formulas
	References
	Also see

	newey
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	newey postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	pergram
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pperron
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	prais
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	prais postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	psdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The frequency-domain approach to time series
	Some ARMA examples

	Methods and formulas
	Introduction
	Spectral density after arima or arfima
	Spectral density after ucm

	References
	Also see

	rolling
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	References
	Also see

	sspace
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to state-space models
	Some stationary state-space models
	Some nonstationary state-space models

	Stored results
	Methods and formulas
	References
	Also see

	sspace postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	References
	Also see

	threshold
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Model with more than two regions

	References
	Also see

	threshold postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Also see

	tsappend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using tsappend with time-series data
	Using tsappend with panel data

	Stored results
	Also see

	tsfill
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Introduction
	Using tsfill with time-series data
	Using tsfill with panel data
	Video example

	Also see

	tsfilter
	Description
	Syntax
	Remarks and examples
	An example dataset
	A baseline method: Symmetric moving-average (SMA) filters
	An overview of filtering in the frequency domain
	SMA revisited: The Baxter--King filter
	Filtering a random walk: The Christiano--Fitzgerald filter
	A one-parameter high-pass filter: The Hodrick--Prescott filter
	A two-parameter high-pass filter: The Butterworth filter

	Methods and formulas
	Acknowledgments
	References
	Also see

	tsfilter bk
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter bw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter cf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter hp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic examples
	Advanced example
	Video example

	References
	Also see

	tsreport
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Also see

	tsrevar
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	tsset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Panel data
	Video example

	Stored results
	References
	Also see

	tssmooth
	Description
	Syntax
	Remarks and examples
	References
	Also see

	tssmooth dexponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tssmooth exponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples
	Treatment of missing values

	Stored results
	Methods and formulas
	References
	Also see

	tssmooth hwinters
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tssmooth ma
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	tssmooth nl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	tssmooth shwinters
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Holt{--}Winters seasonal multiplicative method
	Holt{--}Winters seasonal additive method

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ucm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to UCMs
	A random-walk model example
	Frequency-domain concepts used in the stochastic-cycle model
	Another random-walk model example
	Comparing UCM and ARIMA
	A local-level model example
	Comparing UCM and ARIMA, revisited
	Models for the trend and idiosyncratic components
	Seasonal component

	Stored results
	Methods and formulas
	Introduction
	State-space formulation
	Cyclical component extensions

	References
	Also see

	ucm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat period

	Remarks and examples
	Methods and formulas
	Also see

	var intro
	Description
	Remarks and examples
	Introduction to VAR models
	Introduction to SVAR models
	Short-run SVAR models
	Long-run restrictions
	Instrumental-variables SVAR models (StataNow)
	IRFs and FEVDs

	References
	Also see

	var
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Fitting models with some lags excluded
	Fitting models with exogenous variables
	Fitting models with constraints on the coefficients

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Model selection and inference
	Forecasting

	Methods and formulas
	Also see

	var ivsvar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Structural VAR models with external instruments
	Multiple target shocks

	Stored results
	Methods and formulas
	GMM
	Minimum distance

	References
	Also see

	var ivsvar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Model selection and inference
	Forecasting
	Predictions

	Also see

	var svar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Short-run SVAR models
	Long-run SVAR models

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var svar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	varbasic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varbasic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	vargranger
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varlmar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varsoc
	Description
	Quick start
	Menu
	Syntax
	Preestimation options
	Postestimation option
	Remarks and examples
	Stored results
	Methods and formulas
	Likelihood-ratio statistic
	Model-order statistics
	Lutstats

	References
	Also see

	varstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varwle
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vec intro
	Description
	Remarks and examples
	Introduction to cointegrating VEC models
	VEC model estimation in Stata

	References
	Also see

	vec
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Specification of constants and trends
	Collinearity

	Stored results
	Methods and formulas
	General specification of the VEC model
	The log-likelihood function
	Estimation with Johansen identification
	Estimation with constraints: beta identified
	Estimation with constraints: beta not identified
	Formulas for the information criteria
	Formulas for predict

	References
	Also see

	vec postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	veclmar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	vecnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vecrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The trace statistic
	The maximum-eigenvalue statistic
	Minimizing an information criterion

	Stored results
	Methods and formulas
	References
	Also see

	vecstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	wntestb
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	wntestq
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xcorr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	Glossary
	References

	[XT] Longitudinal Data/Panel Data
	Contents
	Intro
	Description
	Also see

	xt
	Description
	Remarks and examples
	References
	Also see

	quadchk
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	What makes a good random-effects model fit?
	How do I know whether I have a good quadrature approximation?
	What can I do to improve my results?

	vce_options
	Description
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	xtabond
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtabond postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtcloglog
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtcloglog, re and the robust VCE estimator

	References
	Also see

	xtcloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtcointtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for xtcointtest kao
	Options for xtcointtest pedroni
	Options for xtcointtest westerlund

	Remarks and examples
	Overview
	Test details
	Kao tests
	Pedroni tests
	Westerlund tests

	Stored results
	Methods and formulas
	Overview
	Kao tests
	Pedroni tests
	Westerlund tests
	Long-run variance

	References
	Also see

	xtdata
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	xtdescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	xtdidregress
	Description
	Quick start
	Menu
	Syntax
	Reference

	xtdpd
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpd postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtdpdsys
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpdsys postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xteintreg
	Description
	Quick start
	Menu
	Syntax

	xteoprobit
	Description
	Quick start
	Menu
	Syntax

	xteprobit
	Description
	Quick start
	Menu
	Syntax

	xteregress
	Description
	Quick start
	Menu
	Syntax

	xtfrontier
	Description
	Quick start
	Menu
	Syntax
	Options for time-invariant model
	Options for time-varying decay model
	Remarks and examples
	Introduction
	Time-invariant model
	Time-varying decay model

	Stored results
	Methods and formulas
	References
	Also see

	xtfrontier postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtgee
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Calculating GEE for GLM
	Correlation structures
	Nonstationary and unstructured

	References
	Also see

	xtgee postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	xtgls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Heteroskedasticity across panels
	Correlation across panels (cross-sectional correlation)
	Autocorrelation within panels

	Stored results
	Methods and formulas
	References
	Also see

	xtgls postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xthdidregress
	Description
	Quick start
	Menu
	Syntax

	xtheckman
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtheckman postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xthtaylor
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xthtaylor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	xtintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtintreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtivreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for BE model
	Options for FE model
	Options for FD model
	Remarks and examples
	Stored results
	Methods and formulas
	xtivreg, fd
	xtivreg, fe
	xtivreg, be
	xtivreg, re

	Acknowledgment
	References
	Also see

	xtivreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtline
	Description
	Quick start
	Menu
	Syntax
	Options for graph by panel
	Options for overlaid panels
	Remarks and examples
	References
	Also see

	xtlogit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtlogit, re and the robust VCE estimator

	References
	Also see

	xtlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtmlogit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Remarks and examples
	Introduction
	The random-effects estimator
	The conditional fixed-effects estimator
	Curse of dimensionality

	Examples

	Stored results
	Methods and formulas
	References
	Also see

	xtmlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtnbreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE/FE models
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtnbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	xtologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	xtologit and the robust VCE estimator

	References
	Also see

	xtologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	xtoprobit and the robust VCE estimator

	References
	Also see

	xtoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtpcse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	xtpcse postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtpoisson
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtpoisson, re and the robust VCE estimator

	References
	Also see

	xtpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtprobit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtprobit, re and the robust VCE estimator

	References
	Also see

	xtprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtrc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtrc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for BE model
	Options for FE model
	Options for MLE model
	Options for PA model
	Remarks and examples
	Assessing goodness of fit
	xtreg and associated commands

	Stored results
	Methods and formulas
	xtreg, fe
	Absorbed variables with xtreg, fe (StataNow)

	xtreg, be
	xtreg, re
	xtreg, mle
	xtreg, pa

	Acknowledgments
	References
	Also see

	xtreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	xttest0
	Description for xttest0
	Menu for xttest0
	Syntax for xttest0

	Remarks and examples
	Stored results
	Methods and formulas
	Predictions for fixed-effects model with absorbed variables (StataNow)
	xttest0

	References
	Also see

	xtregar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The fixed-effects model
	The random-effects model

	Stored results
	Methods and formulas
	Estimating rho
	Transforming the data to remove the AR(1) component
	The within estimator of the fixed-effects model
	The Baltagi--Wu GLS estimator
	The test statistics

	Acknowledgment
	References
	Also see

	xtregar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	xtstreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Survival models
	xtstreg and the robust VCE estimator

	References
	Also see

	xtstreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtsum
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	xttab
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	xttobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xttobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtunitroot
	Description
	Quick start
	Menu
	Syntax
	Options
	LLC_options
	HT_options
	Breitung_options
	IPS_options
	Fisher_options
	Hadri_options

	Remarks and examples
	Overview
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Stored results
	Methods and formulas
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Acknowledgments
	References
	Also see

	Glossary

	[I] Index
	Contents
	Combined subject table of contents
	Acronym glossary
	Vignette index
	Author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Subject index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

